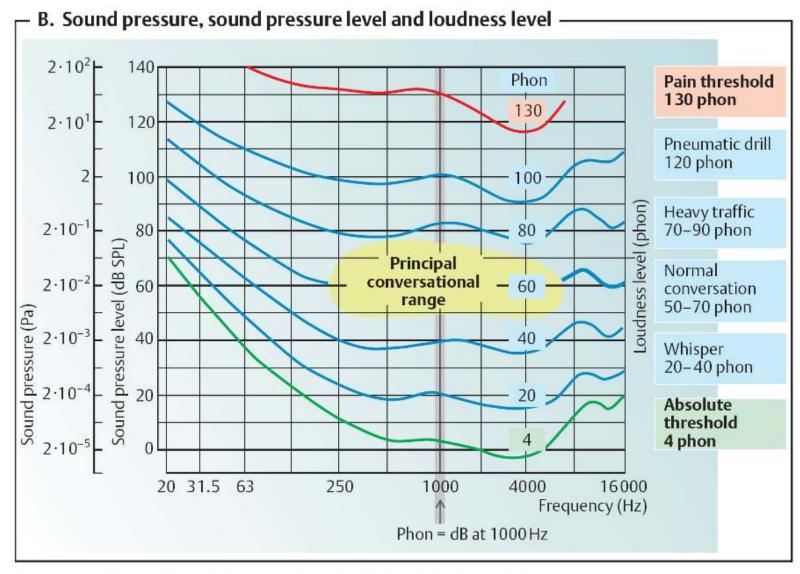
Part 2: Psychophysics

Charles University of Prague, First Medical Faculty


/48/

Outline of part 2

- Introduction: what is psychophysics
- Laws of psychophysics
- Logarithms and other functions quantitative relations between stimulus and response
- Weber Fechner logarithmic law
- Stevens's law enables comparison between modalities

/48/

Despopoulos, Color Atlas of Physiology © 2003 Thieme

Let us remind the hearing range again

Logarithms. There are two kinds of logarithms: common and natural. Logarithmic calculations are performed using exponents alone. The **common** (**decimal**) **logarithm** (log or lg) is the power or exponent to which 10 must be raised to equal the number in question. The common logarithm of $100 (\log 100)$ is 2, for example, because $10^2 = 100$. Decimal logarithms are commonly used in physiology, e.g., to define pH values (see above) and to plot the pressure of sound on a decibel scale (\rightarrow p. 363).

Natural logarithms (ln) have a natural base of 2.71828..., also called *base e*. The common logarithm ($\log x$) equals the natural logarithm of x ($\ln x$) divided by the natural logarithm of 10 ($\ln 10$), where $\ln 10 = 2.302585$. The following rules apply when converting between natural and common logarithms:

$$\log x = (\ln x)/2.3$$

$$\ln x = 2.3 \cdot \log x.$$

When performing mathematical operations with logarithms, the type of operation is reduced by one rank—multiplication becomes addition, potentiation becomes multiplication, and so on.

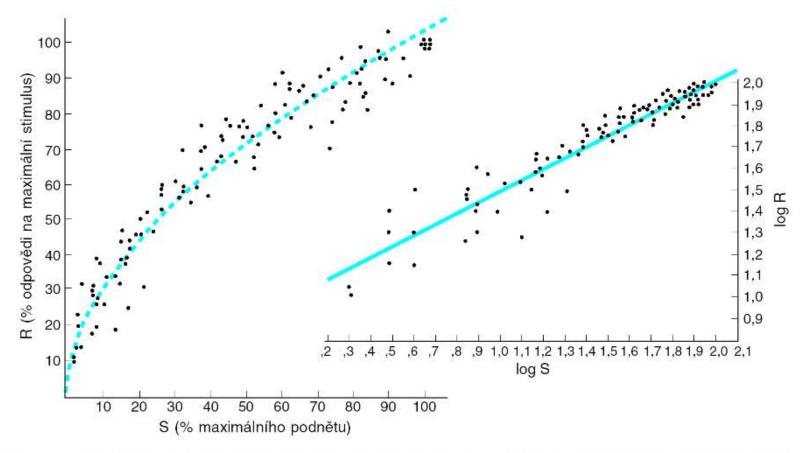
```
Examples:

log(a \cdot b) = log a + log b

log(a/b) = log a - log b

log a^n = n \cdot log a

log \sqrt[n]{a} = (log a)/n


Special cases:

log 10 = ln e = 1

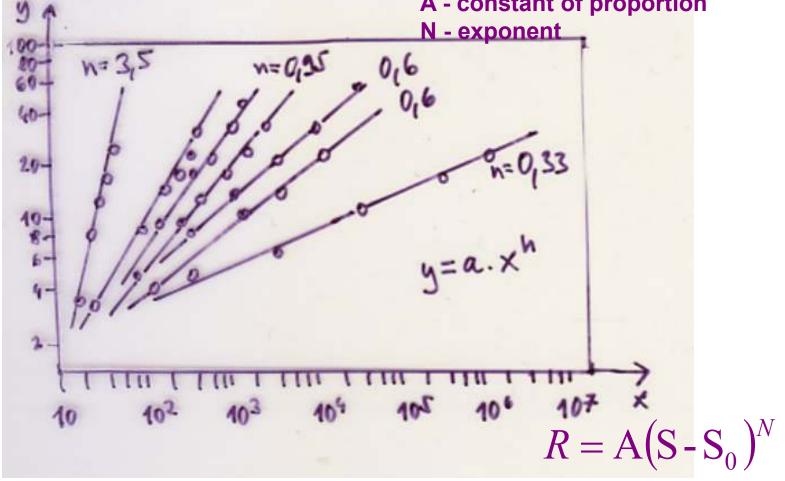
log 1 = ln 1 = 0
```

 $\log 0 = \ln 0 = \pm \infty$

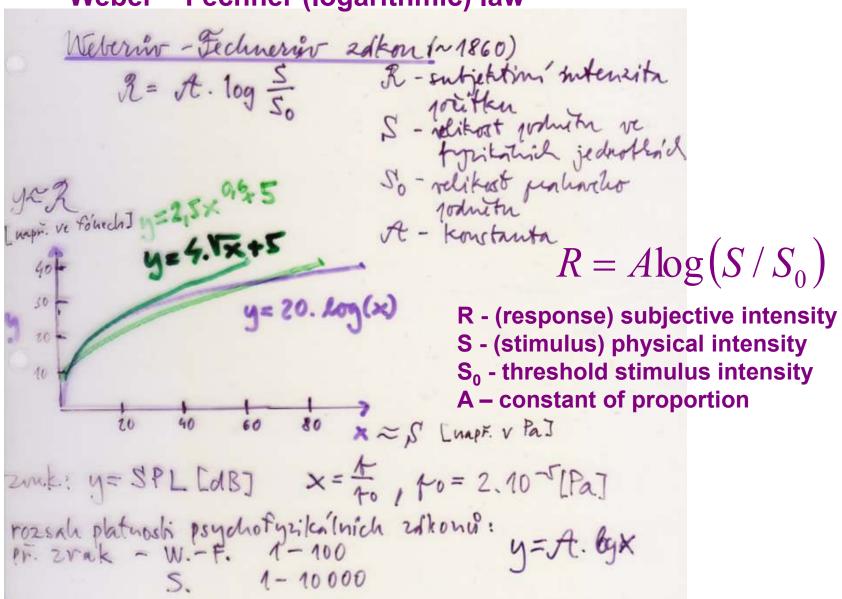
Decibel is defined as ten times decimal $R = 10 \log(S/S_0)$ logarithm of the ration of intensities.

Obr. 5-5. Vztah mezi intenzitou dotykového podnětu (S) a frekvencí akčních potenciálů v senzorických nervových vláknech (R). Tečky znázorňují jednotlivé hodnoty u koček; jsou vyneseny do souřadnic lineárních (vlevo) a logaritmických (vpravo). Rovnice vyjadřuje vypočítaný exponenciální vztah mezi R a S. (Reprodukováno se souhlasem z WERNER, G., MOUNTCASTLE, VB. Neural activity in mechanoreceptive cutaneous afferents. Stimulus-response relations, Weber functions, and information transmission. J Neurophysiol, 1965, 28, 359.)

/48/


Stevens (power) law

R - (response) subjective intensity


S - (stimulus) physical intensity

S₀ - threshold stimulus intensity

A - constant of proportion

Weber - Fechner (logarithmic) law

Exponents in the Stevens (power)law

$$R = A(S - S_0)^N$$

Table 18-1. Representative exponents of power functions relating psychophysical magnitude to stimulus magnitude on prothetic continua*

Continuum	Exponent	Stimulus conditions
Loudness	0.60	Binaural
Loudness	0.54	Monaural
Brightness	0.33	5° target—dark- adapted eye
Brightness	0.50	Point source—dark- adapted eye
Lightness	1.20	Reflectance of gray papers
Smell	0.55	Coffee odor
Smell	0.60	Heptane
Taste	0.80	Saccharine
Taste	1.30	Sucrose
Taste	1.30	Salt
Temperature	1.00	Cold-on arm
Temperature	1.60	Warmth-on arm
Vibration	0.95	60 Hz-on finger
Vibration	0.60	250 Hz-on finger
Duration	1.10	White-noise stimulus
Repetition rate	1.00	Light, sound, touch, and shocks
Finger span	1.30	Thickness of wood blocks
Pressure on palm	1.10	Static force on skin
Heaviness	1.45	Lifted weights
Force of hand-		Precision hand dyna- mometer
grip	1.70	
Autophonic level	1.10	Sound pressure of vocalization
Electric shock	3.50	60 Hz, through fingers