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FOREWORD TO THE FIRST ENGLISH EDITION

By Professor F.M. Arscort, M.Sc., Ph.D., FI1M.A.,

Department of Mathematics, University of Surrey

A mathematician, pausing two-thirds of the way through the twentieth century
to look back, might feel a justifiable pride in the process of his subject. Many old
problems have been solved and others absorbed into wider questions, while new
branches of the subject have appeared at frequent intervals and blossomed rapidly.
Meanwhile, other scientific disciplines grow more mathematical; it 1s said that really
good work in physics, chemistry or engineering requires a first degree in mathematics,
and even disciplines which were never regarded as scientific are proving susceptible
to mathematical analysis.

This coincidence of an explosion of mathematical activity with greatly enlarged
scope for its application is, unhappily, overshadowed by a communication barrier.
Between those who have mathematical knowledge and those who wish to use it there
lies a great gulf. One can try to bridge this by bringing to the notice of abstract
mathematicians the intriguing and challenging problems waiting for them in other
fields ~ but mathematicians are not easily tempted from their ivory towers. This book
starts, instead, from the other side, putting into the hands of the users of mathemat-
ics an array of powerful tools, of whose existence they may be unaware, with precise
directions for their use. To achieve this in a reasonable compass something has to
be sacrificed and the authors took the bold step of omitting virtually all proofs -
an unorthodox but highly sensible procedure, since otherwise the book might have
been ten times its present size. As it 1s, these covers contain the equivalent of a small
library of standard texts on the uses of mathematics.

It is no coincidence that such a book should come from the Continent, for it
is especially in Germany and eastern Europe that there flourishes the subject of
“Angewandte Mathematik” — better described as “useful”, “utilisable” or “applica-
ble” mathematics rather than by the literal translation of “applied mathematics”,
which in Britain means something very different. For the English translation, there-
fore, the title “Survey of Applicable Mathematics” has been chosen.

The task of editing the translation has been interesting and congenial. We have
sought to produce a text in good mathematical English while preserving all the
distinctive features of the original. Notation has been left practically unchanged;
only where Czech and English usages differ significantly have changes been made.
Terminology has sometimes proved more difficult, such as when direct translation
produced a term which, though clear and acceptable, was not generally used. In
such cases we have usually retained the equivalent of the Czech original, with a note

XVii



xviii

giving the common English alternatives; thus matrices are described as “regular”
rather than “non-singular”, though the latter is given as an equivalent term. When,
however, serious confusion might result, or a different English term has become
completely standard, we have made the necessary changes.

An extensive revision of the bibliography has also been made, giving a fuller
guide to current British and American literature. Translation of Russian literature
have been referenced whenever they could be traced, names of Russian authors being
transliterated according to the practice of the London Mathematical Society.

My colleagues and I have found the editing of this book an exciting and stim-
ulating experience; throughout we have had the inestimable benefit of Professor
Rektorys’s advice and help and in commending this book to the English speaking
mathematical world we would pay our own tribute to the scholarship and imagina-
tion of Professor Rektorys and his co-authors.



PREFACE TO THE FIRST CZECH EDITION

In recent years several books dealing with special fields of mathematics (for ex-
ample, Angot’s Applied Mathematics for Electronic Engineering, and others) have
been published in Czechoslovakia. They have supplied readers with information, in
a condensed form, about those mathematical disciplines which find employment in
these particular fields.

This volume has been published as a result of the initiative of the Cesk4 matice
technicka (Czech Scientific Institution for Propagation of Technical Literature). In
particular, the late Professor Vy¢cichlo devoted much of his time and organisation-
al powers to make clear questions concerning fundamental features and conception
of this volume. The authors have attempted to produce a comprehensive work for
the use of a very wide circle of readers, and the book comprises the great majority
of mathematical disciplines applied in technology, yet the contributions have been
prepared in such a way that a reader with only limited theoretical knowledge of
mathematics can easily follow them. This volume contains, therefore, a survey of
results in applicable mathematics needed by engineering graduates or other research
workers, or by undergraduates and teachers of technological subjects. It is also in-
tended to be of service to theoretical research workers in such related disciplines as
physics, geodesy, etc., and to mathematicians themselves.

It was not easy to select the subject matter and to present it in a form acceptable
to such a varied body of readers. During Professor Vy&ichlo’s lifetime an extensive
survey was made in order to ascertain the views of a number of outstanding technol-
ogists; some of the opinions expressed regarding selection and presentation of subject
matter showed extensive disagreement, but it was possible to formulate an outline
plan for the selection of subject matter and its mode of presentation — even though
some questions remained unanswered.

It was not possible to include any specialised disciplines used only in narrow fields
of technology. Thus, electrical engineers may miss the theory of transmission, while
readers particularly interested in solving systems of linear algebraic equations may
regret the absence of reference to cracovians. On the other hand it was clearly nec-
essary not only to include current mathematical topics but also to pay considerable
attention to approximate methods. Prominent among the latter are approximate
methods in algebra, including solution of systems of linear equations, of transcen-
dental equations and algebraic equations of higher degree, and the determination of
eigenvalues of matrices, while in the field of analysis we have included approximate
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methods for the solution of differential equations (especially partial differential equa-
tions) and of integral equations; these are not yet adequately treated in technological
literature. The book also includes comprehensive tables of integrals, of sums of series,
and of solved differential equations, while in the chapter on statistics (Chapter 34)
attention 1s devoted to the subject of quality control. The book does not, however,
include the theory of computers or the technique of linear programming; these dis-
ciplines are developing so rapidly at the present time that any description would be
out of date before it appeared in print.

The leading experts in our country were invited to write the contributions on
individual subjects. While each author was allowed a certain degree of freedom, the
editor-in-chief (of the Czech edition) has ensured the maintenance of a consistent
style of treatment throughout the book. I should like to thank all the authors for
their great patience and for incorporating my suggestions into their work.

The book omits proofs of the theorems and derivation of the results, but the-
orems and formulae are complemented with explanatory remarks and appropriate
examples; in choosing these examples we have sought to include those which not
only provide suitable illustration but also have practical importance. In stating the
results we have borne in mind the varying standards of mathematical education and
skill of the readers for whom the book is intended. In Algebra, for instance, we write:
“If a, b are real or complex numbers, then ...”  instead of: “If @, b are complex num-
bers, then ...”; a mathematician may legitimately object that the second statement
1s sufficient because real numbers are a special category of complex numbers, but by
using the first form of statement we leave the mathematically less advanced reader
in no doubt that the result is valid for real numbers as well as complex.

Some sections of this volume are not, and by their nature cannot be, truly original
—for instance, the tables of integrals and of solved differential equations. These tables
were abstracted from different books, namely from [26], and have been carefully
checked.

Although the authors and annotators of the various chapters worked with extreme
care, the possibility cannot be excluded that some errors remain undetected, and we
shall be very grateful to any readers who inform us of such errors. The authors of
individual chapters are responsible for their accuracy, while the editor-in-chief takes
overall responsibility for the general outline of the book; he will be grateful for any
criticism relating to the selection of the subject matter and its presentation.

The book is divided into chapters and sections (paragraphs), which are numbered
according to the decimal system, so that 5.3 for example, means Chapter 5, Section 3.
In each section the theorems, examples, etc., are numbered in order and are quoted by
means of that number; if, for instance, in a certain section Example 1 is quoted, this
refers to Example 1 of the current section. If, however, we refer to an example from
another section, then the number of that section is given before the number of the
example. Similarly a reference such as (5.3.2) relates to equation (2) of Section 5.3;
thus in the running heads, we look up the number 5.3 of that section and there we
find equation (2). Generally the page is also quoted for the reader’s convenience.
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The bibliography is to be found at the end of the book; in the text we refer to a
work merely by quoting (in square brackets) its number in the list of references.
Grateful acknowledgement is due to the Ceska matice technick4 and the Publish-
ers of the Technological Literature (SNTL) in Prague. I am indebted also to many
friends and colleagues, particularly to V. Dasek who has read the greater part of the
manuscript, to I. Babuska for his great work in the organization of the project and
for his many valuable suggestions, and to K. Drabek for preparing the diagrams.
Thanks are also due to E. Jokl, M. Josifko, M. Pisl, C. Vitner, J. Vyborna and
R. Vyborny for their most careful revision of the manuscript and their many contri-
butions to the improvement of the whole work. I have also to thank the Prometheus
printing house for their extremely competent work.
Karel Rektorys
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The task of translating this book into English has been pleasant but rather
difficult. I must express appreciation to my colleagues V1. Dlab, K. Kominek and
R. Vyborny who translated the greater part of the text, and also acknowledge the
generous assistance rendered by A. Zaludova who revised the whole translation.

In the preparation and editing of this English translation I have received invalu-
able help from Professor F.M. Arscott and his colleagues at the University of Surrey
in London. Without their co-operation it would be difficult to imagine a successful
production of this English edition.

To all these individuals, and also the Iliffe Books Ltd., I want to express once
more my sincere thanks.

Karel Rektorys
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PREFACE TO THE SECOND REVISED ENGLISH
EDITION

In the original Czech version, our Survey of Applicable Mathematics has appeared
in its fifth edition this year. This fact represents a very satisfaction for the authors,
because it is a testimony that they have succeeded in their primary intention to give
such a book in hands of consumers of mathematics which would serve them as a
sufficiently universal mathematical tool and which they could easily apply.

Nevertheless, in recent years, many fields of applicable mathematics went through
considerable changes. This concerns, first of all, numerical methods, in particular
those in linear algebra and differential equations, especially in the partial ones. It
concerns as well mathematical statistics, new methods in economy, etc. Changes
have been noticed also in so-called classical fields of mathematics. This all showed
the necessity of a considerable revision of the work when the sixth Czech edition was
being planned.

Simultaneously with the new Czech edition the present Second Revised English
Edition was being prepared.

The revision of the book has been essential. This concerns, in particular, its
second volume. Many chapters have been written quite anew. They have been
Chapters 24 (on variational methods in boundary value problems), 25 (approxi-
mate solution of ordinary differential equations), 27 (the finite-difference method),
30 (numerical methods in linear algebra) and 32 (interpolation and splines). The
original Chapters 33, 34 and 35 on probability and mathematical statistics were re-
placed by new Chapters 33 to 36. Quite new is the “economic” Chapter 37. Also
Chapter 22 on functional analysis has been rewritten entirely, serving as a starting
point for analytical as well as numerical methods of solution of partial differen-
tial equations. Essentially different became Chapters 28 (from the point of view
of the Laplace and Fourier transforms), 18 (partial differential equations) and 19
(integral equations). The revision concerns also Chapters 23 (variational calculus),
20 (functions of a complex variable, where a new part on functions of several complex
variables has been added) and 21 (with a small dictionary of conformal mappings).

The first volume of the book, containing “more classical” mathematical fields
(classical algebra, geometry and calculus), was by far not undergone so many changes.
Regarding the purpose of the book (as a handbook for consumers of mathematics,
in the first place), the modernization had to be carried out very carefully here. For
example, the chapter on differential geometry in a modern conception would be too
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abstract for most of the readers. Similarly, §1.1 on some concepts of logic remained
practically unchanged, being of a purely informative character, thus far from any
axiomatic theory, the building up of which would have been quite inadequate from
the point of view of users of this book. We also preferred a rather classical form of
treating the text concerning curvilinear and surface integrals, even though the main
integral theorems (as those by Gauss, Stokes, etc.) have been presented also in the
symbolic of vector analysis. What has been written quite anew here are the sections
on the Lebesgue and Stieltjes integrals, on the space L, orthogonal systems, and the
Bessel functions as well as the text on approximate evaluation of definite integrals
and on harmonic analysis. The new Paragraph 16.7 has been added on the possibility
of treating special functions from the point of view of the theory of representation
of groups.

I wish all this effort turns out useful for the readers.

Finally, I would like to express my sincere thanks to all my co-authors, especially
to Dr. E. Vitasek for his great help to me when editing the book, to Ass. Prof.
K. Drabek for a very careful preparation of drawings and — last but not least - to
Prof. M. Hazewinkel for many good ideas and suggestions and to Kluwer Academic
Publishers for their highly competent work.

Karel Rektorys



LIST OF SYMBOLS AND NOTATION
USED IN VOLUME 1

Symbols and notation are arranged acording to their logical connections with
various parts of mathematics.

The reader should note that it is often difficult to put a symbol or notation
precisely in its apropriate place; it may happen therefore that he will have to look
up a notation in a different place from that which he anticipated.

Symbol or Notation Meaning

Algebra

(is) equal to

(is) identically equal to

(is) not equal to

R S N

(is) not identically equal to

Q

is approximately equal to

is equal, after rounding of, to

is smaller than, is less than

greater than

IN VA

is less than or equal to ...

v

is greater than or equal to ...

-+

plus; positive sign

minus; negative sign
o X multiplied by; this sign is often omitted, e.g. instead of
a . b we often write ab
Y=/ divided by; over; in the text we often write, for example,
. 1 .
1/(2n+1) instead of CRE obviously, 1/2n+1 stands
1 n
for — +1
2n

XXV
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Symbol or Notation

Meaning

(» () {}

(2n)!!

log, a
loga

Ina

parentheses or round brackets, square brackets, curly
brackets, respectively

the n-th root of a (the sign \/ is called the radicle or
the radical or the radical sign), instead of /a we write

simply 1/a
the absolute value of the number a

a.a..... a; the n-th power
N ——

1.2.3..... n (n-factorial or the factorial n);
eg. 31=1.2.3=6

2.4.6..... 2n;eg. 611=2.4.6=48

r(r=1)...(r—k+1)
k!

, 7 any real number

nn—1)...(n—k+1) n!
k! Tk (n—k)!
the binomial coeficient, n a positive integer

the sum of, the summation sign; e.g.
3

E ar = ay +az+as
k=1

3" ar means: we sum over all values ok k considered
k

3
the product; [] ax = ajazas
k=1

the logarithm of a to the base b
the common or Briggs logarithm (to the base 10)
tha natural or Napierian logarithm (to the base e)

is an element of; e.g. « € [a, ] means: ¢ is (or lies) in
the interval [a, b];

is not an element of
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Symbol or Notation

Meaning

max(a, ag, ...

min(ay, asz, . ..

a = (ay,as,..

a
A= 11,
asy,

-
U

,@n)
)an)
ay

az
San), @ =

a3
a23

a12,
a2z,

A', AT

ay2
az2

the sign of inclusion; e.g. M C N (see §1.23)

the union (the sum); e.g. M U N; often written
M + N (see §1.23)

the intersection (or the product); e.g. MNN (see
§1.23)
the greatest of the numbers a3, ao, ..., a,

the least of the numbers a;, as, ..., a,

n-component vector (or vector of order n) with

components (coordinates) a1, asg, ..., a,

the 2 by 3 matrix (see §1.16)

the transpose of a matrix A4

the inverse of a matrix A
the 1dentity matrix
the zero-matrix

the matrices A, B are equivalent

the determinat of order 2 or of the second order
(see §1.17)

the minor belonging to the element a;g

the cofactor belonging to the element a;;

Geometry
(is) parallel to
(is) parallel to ... and of the same orientation

(is) parallel to ...
tion

and of the opposite orienta-

(is) perpendicular to
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Symbol or Notation

Meaning

A

° degree
’ minutes
" second

arc o

C<D

(z,y)
(z,9,2)
()
(p, ¢, 2)
(r,9,¢)

a

AB

a, la|

the triangle; e.g. AABC stands for a triangle with the
vertices A, B, C

in the sexagesimal measure of angles

the arc, the radian (circular) measure of an angle «; if
the magnitude of an angle « is given in degrees then

arca = —,;
180’
e.g. for & = 90°
arco = N_-r
190 2

the radian, the unit angle in circular measure;

Irad = 57°17'44.8"
the segment with the end-points A, B
the length of the segment AB

on an oriented straight line, a point C lies before a
point D

the rectangular coordinates of a point in the plane
the rectangular coordinates of a point in space

the polar coordinates

the cylindrical coordinates of a point in space

the spherical coordinates of a point in space

Vectors in Geometry, Vector Calculus, Vector Analysis

a vector

the vector with the initial (starting) point A and the
end point (terminal) point B

the length (module) of a vector a
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Symbol or Notation

Meaning

i j, k

ka
a.b, ab
a x b, anb,[ab]

[abc], [a, b, €], abc

a'(t), at(1)

gradu, Vu
diva, Va
curla, rota, V x a

v

ijkl

amn

the principal (unit or coordinate) vectors in the axes z,
y, z of a cartesian coordinate system

the radius vector of a point (z,y, z) (a vector with the
initial point (0, 0,0) and the end point (z,y, 2))

k-multiple of the vector @ (k being a scalar)
the scalat (inner) product of vectors a, b (§7.1)
the vector (inner product of vectors a, b (see §7.1)

the mixed product (or the trivector) of vectors a, b, c;
abc = (a x b) . c (see §7.1)

the first, the n-th derivative, respectively, of a vector a
with respect to the scalar variable ¢, 1.e.

da(t) d™a(t)
a7 Tam

(§7.2)

the gradient of u (§7.2)

the divergence of a vector a (§7.2)
the curl of a vector a

the Hamilton nabla operator

the fourth-times contravariant and two-times covariant
tensor

Analysis (Differential and Integral Calculus)

(a,b) or [a, b]

z € [a,b]

[a,b] x [¢, d]

{a,}

an open or closed interval respectively (for details see

§11.1)

z belongs to the interval [a, ],
z lies in the interval [a, 0]

the cartesian product of the intervals [a, b], [¢, d] (in the
cartesian coordinate system in a plane the product is a
rectangle with the vertices (a,¢), (b, ¢), (b,d), (a,d))

a sequence with general term ay,
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Symbol or Notation

Meaning

lim a, =a
n—oo

lim a, = 400
n— oo

limsup a,, lim a,
n—oo Liandn

liminfa,, lim a,
n—00 - 00

Qn

NgE

[
-

ii%

f(z), 9(=), ...
f(=,9), 9(z,9), ...
flo(=)), fl9(z,v), h(z,y))
O(f(2)), o(f(x))

max f(z) or ag]x"g]bf(z)

a<lz<b

RGN N
lim f(z) = A
Jim, $(s) =5,
Ja+0)=B
i 1) = -
fla=0)= -

li ) =C
i, [ = ¢

the sequence {a,} possesses a limit a

the sequence {a,} diverges to +oo

the greatest limiting point of a sequence {a,}

(510.1)

the least limiting point of a sequence {a,} (§10.1)

the infinite series with general term a,

the infinite product with general term a,

function of a single variable z
function of two variables z, y

composite functions
(see §11.4)

the maximum or minimum value of a function f(z)
on an interval [a, ]

the least upper bound (the supremum) or the grea-
test lower bound (the infimum) of a function f(z)
on the interval [¢, b] (on the supremum and infimum

see §1.3)

the function f(x) has the limit A at the point a

the function f(x) possesses the right-hand limit B
at the point a

the function f(z) has the infinite left-hand limit —oco
at the point a

the function f(a) has the limit C at the point +oo
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Symbol or Notation

Meaning

ay as
dz’ dz

dMy dvf
T dae(®)’ de(n)

v, f,

y™, fM(z)

dy, df(x)
dy, 9f(x)
of

ax) f:l:’ f.‘L’

of of

on’ v

azf (2

.8_1,3’ rzr) f.’L';I:

an 1
"8—1—:‘%1 Ty f.l‘y

d. f

df
6(yl)y2; .- 'ayn)
O(zy,22,...,2,)

/
r
-

the (first) derivative of the function y = f(z)

the n-th derivative of the function y = f(z); we
write ", y", f, f"(z) instead of y(2) 4y f(2)(z),
f(z)

the differential of the function y = f(z)

the variaton of the function y = f(z)

the partial derivatives of the function f (of several
variables) with respect to «

the derivative in the direction of the outward nor-
mal

the second partial derivative of the function f with
respect to z

the second mixed derivative of the function f;

1 _ o (o
oxdy Oz \ Oy

the partial differential of the function f (of several
variables)

the total differential of the function f

the functional determinant (the Jacobian) of the
system of functions y;, y2, ..., yn with respect to
the variables x|, zo, ..., z,; cf. §12.7

the indefinite integral (the primitive)
the definite integral beetween the limits a, b

the improper integral (§13.8)
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Symbol or Notation

Meaning

b
fdg

a

[F@)]°

Ik
A
J
I

f (S Lz((t, b)
(f,9)
A1

a region of type A
a solid of type A
a function of type B
T
e
C
M

m

sinx
cos z

tanx

cotx

the Stieltjes integral

f(b) = f(a)

the double integral over (or in) a region Q

the triple integral over (or in) a region 2

the line integral over (or along) a curve k

the surface integral over a surface S

a function f is square integrable in the interval [a, b]
the scalar (inner) product of functions (§16.1)

the norm of the function (§16.1)

(see §14.1)

(see §14.1)

(see §14.1)

the nuinber 7; # = 3-141 592654

the base of natural logarithmus; e = 2-718 281 828
Euler constant; C' = 0-557 215655

the modulus of common logarithmus;

M =loge = 043429448

the modulus of natural logarithins;

m=1Ine = 230258509
the sine
the cosine

the tangent

the cotangent
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Symbol or Notation Meaning
sec the secant
cosec & the cosecant
arcsin the arc sine
arccos the arc cosine
arctan the arc tangent
arccot x the arc cotangent
sinh & the hyperbolic sine
cosh z the hyperbolic cosine
tanh « the hyperbolic tangent
coth z the hyperbolic cotangent
arsinh z sine;
arcosh z the inverse of the hyperbolic cosime
artanh z tangent
arcoth x cotangent
a® the exponential function with the base «, or the general

exponential function

e” the exponential function (we often write exp x, parti-
culary when the argument is rather cumbersome; e.g.
exp (z/at) = e/ at)

log, « the logarithm of & to the base a
Inz the natural logarithm of
I(z) the Gamma function
B(x) the Beta function
Jo(z) the Bessel function of the first kind of order v
Y, (z) the Bessel function of the second kind of order v
Y. (z) the Weber (Neumann) function
H,(,l)(:c), H,(,z)(:c) the Hankel function

L(z), K,(z) the modified Bessel functions
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Symbol or Notation

Meaning

ber z, beiz
ker z, keiz

P, (z)

P (z), Pnm(x)
Yoo (2), Yo (@)
Th(2)
Ln(x)
H,(z)
F(a, B,7,x)
Si (z)
Ci(2)
li(z)
Ei(x)

erf (z)
erfc (z)
F(k, )

E(k, ¢)

K

snu, cnu, dnu

the Kelvin functions

the Legendre polynomials of degree n
the adjoint Legender function

spherical functions

the Chebyshev polynomials of degree n
the Laguerre polynomials of degree n
the Iermite polynomials of degree n
the hypergeometric series (function)
the sine integral (§13.1)

the cosine integral (§13.1)

the logarithimic integral (§13.1)

(§13.1)

2 T
the error function: erf(z) = \/—/ et dt
T Jo
2

erfc(x) = 1 —erf(z) = 77‘:/ =t

the legendre elliptic integral of the first kind in the
normal form

the legendre elliptic integral of the second kind in the
normal form

the complete elliptic integral of the first kind;
K= F(k,Ln)

the complete elliptic integral of the second kind;
E= E(k, im)

jacobian functions; see §13.12
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PREFACE TO VOLUME I1I

This Preface has been written for those readers who do not possess the first
volume of the second revised edition of our Survey and who — consequently —
have not read the preface to the whole revised work.

In recent years, many fields of mathematics passed through considerable changes.
In mathematics for applications, this fact concerned, first of all, numerical methods
(namely in linear algebra and in ordinary and partial differential equations), ma-
thematical statistics and related fields, etc. Changes could be noticed also in many
“classical” fields of mathematics. This all gave an impulse for a deep revision of
our original work.

Many modifications of the text have already been realized in the first volume,
containing classical fields of algebra, geometry and analysis. However, the second
volume has been revised in a much more considerable way. Most of the chapters of
this volume are quite new now. This concerns, in particular, Chapters 30, 25, 24
(numerical methods in linear algebra and in ordinary as well as in partial differen-
tial equations), then 33, 34, 35, 36 (probability, statistics and related topics), 32
(interpolation, splines), 22 (functional analysis) and 37 (the “economic” chapter
on linear programming). The remaining chapters of Volume II went through es-
sential changes: In Chapter 18, sections concerning generalized and weak solutions
of elliptic partial differential equations of “arbitrary order” were added, including
nonlinear equations and a section on solution of evolution problems by the method
of discretization in time (= by the Rothe method equipped with a new technics).
Chapter 20 has been completed by sections on functions of more complex vari-
ables, Chapter 21 by a small dictionary of conformal mappings. Chapter 23 has
been extended by further categories of calculus of variations, Chapter 27 by a sec-
tion concerning general questions on convergence of the finite-difference method, in
Chapter 28 more attention has been paid to Laplace and Fourier transforms than
before. Also the text of some individual sections of these or other chapters became
different, although the titles of these sections remained the same.

The whole work is divided into 37 chapters. Individual chapters are divided
into sections (=paragraphs). If, for example, Theorem 2 from the same section
that is being studied is to be quoted, we write “see Theorem 2” only. However,
if Theorem 2 from an other section, say section 17.17, is in question, we write
“see Theorem 17.17.2”. So we list, in the running heads, number 17.17 of that
section and there we find Theorem 2. Similarly, we write “see equation (1) if the

Xvil



xviii

first equation of the just studied section is in question, but we write “see equation
(17.17.1)” if we speak about the first equation from (another) section 17.17. For
the reader’s convenience, the corresponding page is often quoted.

Finishing the preface, I would like to thank once more all who took part in the
production of this work.

Prague, November 27th, 1991 Karel Rektorys
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Symbol or Notation

Meaning

Functions of a Complex Variable

1 J
Rea, R[a]
Im e, I[of

o

[+

In z

Ing 2z

Jes f(z), res(f(2)]s=x

a+ioo

f f(z) dz

a—ioco

RZn, Ccn

Sl

the imaginary unit, i2 = —1, i3 = —i (in elec-
trical engineering j is used instead of i)

the real part of the complex number a

the imaginary part of the complex number «
the absolute value (modulus) of the complex
number «

the (complex) conjugate of the complex
number o

the natural logarithm z

(a multi-valued function)

the principal branch of the function In 2

(a single-valued function)

the residue of a function f(z) at the point
Z = 2

the integral of the function f(z) along the
straight line £ = a which is parallel to the
imaginary axis

see introduction to § 20.7

Functional Analysis

the Hilbert space (§ 22.4)
the Banach space (§ 22.4)
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Meaning

Lz(a, b), L2(.Q)

w¥(2), HY ), Hi(2)
WwP(2), B (2)
W3(02)=H(2) = Ly(2)

Hy
d(u, v)

(u, v), fJull

in particular:

||““H'=(n)

supp u
Diy

H=L+ M H=Le M
Un — U
XGgY
D(A), Da
A—l
14l
A*
F'(ug, v), DF(ug, v),

dF(uo, ’l))
F”(’LL(), Vo, 'U))

the space of functions square integrable in the
interval (a, b), or in the region 2, with the
ot [Jul (e, by> Or [t 2,(s, respectively, |Jul
in brief (§ 22.2)

the Sobolev space (§ 22.4)

the Sobolev space of functions with zero
traces on the boundary (§ 22.4)

the energetic space (§ 22.6)

the distance of two elements u, v in a metric

space (§ 22.2)
the scalar product, the norm

the norm of the function u in the Sobolev
space H¥(12)
the support of the function u (§ 22.4)

the generalized derivative of the function u
(§ 22.4)

the direct sum of subspaces in the Hilbert
space H (§ 22.4)

the weak convergence of the sequence {u,}

(§ 22.5)

the continuous imbedding of the space X into
the space Y (§ 22.4)

the domain of definition of the operator A
(§ 22.5)

the inverse operator to the operator A (§ 22.5)
the norm of the operator A (§ 22.5)

the adjoint operator to the operator A (§ 22.5,
§ 22.6)

the Gateaux differential of the functional F
(§ 22.8)

the second Gateaux differential (§ 22.8)
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Symbol or Notation

Meaning

Probability Theory, Mathematical Statistics, Topics
in Statistical Inference, Stochastic Processes

n

P(A)
P(A|B)

X, Y, Z, ...
Pla< X <b)

F(z) = P(X < z)

/(=)
E(X)

M
1223
var(X)

Kk

» Tn)'

x'=(z1, ..., Tpn)
F(z1, ...y Tn)

x = (x, ...

the space of elementary events (Chap. 33) or
the parameter space (Chap. 34)

the probability of an event A

the conditional probability of an event A
given an event B

random variables

the probability that a random variable X lies
in the interval (a,b]

the distribution function of a random
variable X

the probability of the value z; of a discrete
random variable X

the probability density of a random variable
the mean of a random variable X
the mean of a random variable

the k-th moment

the k-th central moment

the variance of a random variable X
the variance of a random variable
the standard deviation

the coeflicient of skewness

the coefficient of kurtosis

the P-quantile

the mode

the median

the characteristic function of a random
variable

the k-th cumulant
the n-component column vector
the n-component row vector

the distribution function of a random vector
(the joint distribution function)
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Symbol or Notation

Meaning

f(z1, .oy Tn)

.y :L'ik)

.y :L'ik)

Fi, o i(Tiys -
firy i (Tig, o
f(z1]z2)
E(X1|X; = z2)
E(X)
cov(X,Y)
o(X,Y)

Xx
O(t1y .oy tn)
N(u, 0®)
N0, 1)
o()

the probability density of a random vector
(the joint probability density)

the marginal distribution function

the marginal probability density

the conditional probability density

the conditional mean

the mean of a random vector X

the covariance of random variables X, Y

the correlation coefficient of random variables
XY

the covariance matrix of a random vector X
the characteristic function of a random vector
the normal distribution

the standard normal distribution

the probability density of N (0, 1)

the distribution function of N(0, 1)

the P-quantile of N (0, 1)

the x? (chi-square) distribution with

n degrees of freedom

the P-quantile of x2(n)

the ¢t (Student) distribution with n degrees of
freedom

the P-quantile of t(n)

the F' (Fisher-Snedecor) distribution with n;
and ng degrees of freedom

the P-quantile of F(n1, n3)

the n-variate normal distribution
the random sample of size n

the observations of a random sample
X1, ooy Xn

the frequency of an observation z;

the empirical distribution function for
a random sample of size n

the sample mean
the sample variance
the sample standard deviation
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Symbol or Notation

Meaning

M or mj,
Mk or Mg
G1
Ga

X(I)L' oy X(n)
XorzT

b(9)
L(9)

the sample k-th moment

the sample k-th central moment
the sample coefficient of skewness
the sample coefficient of kurtosis
the sample correlation coefficient

the sample correlation coefficient of the i-th
and j-th component of a multivariate random
sample

the ordered random sample
the sample median

the (point) estimator of a parameter ¢
the bias of an estimator of a parameter ¥
the likelihood function

the null hypothesis

the alternative hypothesis

the critical region of a statistical test

the power function of a statistical test

the significance level of a statistical test or the
producer’s risk in an acceptance sampling

the consumer’s risk in an acceptance sampling
the frequencies in a contingency table

the marginal frequencies in a contingency
table

the error variable of a regression model
the residuals of a linear regression model
the coefficient of determination

T4 I =n;
Ti = Y, Tip, T. = Y, 2. Tip in a one-way
p=1 i=1p=1

classification with values x;,
t=1,...., L p=1,...,n)

T =z /ni, T.=x [(m1+ - +nJ)
the total sum of squares

the A-factor sum of squares

the residual sum of squares

the reliability function




XXiv

Symbol or Notation

Meaning

pi(n)

pi; (k)

F())

)
I(\)
P(A)

the hazard rate (the failure rate)

the acceptance number in an acceptance
sampling

the stochastic process (the random function)
the random sequence (the time series)

the probability distribution of a Markov
process at time ¢

the transition probability of a homogeneous
Markov process

the stationary distribution of a Markov
process

the probability distribution of a Markov chain
at time n

the transition probability of a homogeneous
Markov chain (for k = 1 we write p;;, in brief)

the transition matrix of a homogeneous Mar-
kov chain (for £ = 1 we write P, in brief)

the transition intensity of a homogeneous
Markov process

the intensity of the Poisson process
the mean of a stochastic process

the autocovariance function of a stochastic
process

the autocovariance function of a stationary
stochastic process

the mean of a multivariate stochastic process

the matrix autocovariance function
of a multivariate stochastic process

the cross-covariance function of the i-th and
j-th component of a multivariate stochastic
process

the spectral distribution function
of a stochastic process

the spectral density of a stochastic process
the periodogram of a stochastic process
the transfer function of a filter




XXV

Symbol or Notation

Meaning

Numerical Methods of Linear Algebra

a = (a1, az, ..., Gn)
U3
Uz
u =
Un,
UT = (ul, U2,y + v -y un)

@21, Qa22, 0G23

A = (ay)
AI, AT
A—l
A+
I, E
0,0
lal
Al

- a11, Q12
az1, Qg2

A:[au, aiz, 013]

det A
diag(a;)
e(A)
x(A)

Further

M ={2,7,9)
R,, B
E,, E

the n-component vector (of order n) with
components aj, ag, ..., Gy

the n-component column vector
(a one-column matrix)

the transpose of the vector u

the 2 by 3 matrix (§ 1.16)

the matrix with entries (elements) a;;
the transpose of a matrix A

the inverse of a matrix A

the pseudoinverse of a matrix A (§ 30.4)
the identity matrix

the zero matrix, the zero vector

the norm of a vector a (§ 30.3)

the norm of a matrix A (§ 30.3)

the determinant of order 2 (of the second
order) (§ 1.17)

the determinant of a matrix A

the diagonal matrix with diagonal entries a;
the spectral radius of a matrix A (§ 30.3)
the condition number of a matrix A (§ 30.3)

Symbols and Notation

the set M consists of the numbers 2, 7, 9
the set of ordered n-tuples of real numbers
the n-dimensional Euclidean space (the set of
points of the real n-dimensional space
(identified usually with R,), equipped with
the usual Euclidean metric) (§ 22.1)




Symbol or Notation

Meaning

{(z,y) € B2 |zy = 1)}

2, G
R=0+5S=0US

eAx

((u, v)), a(v, u)

oy, 6f(z)
61
FS', or F;,

Z(£(1))
f[.’t(), ey ZN]

A" f(z)
V" f(z)

the set of such points from FE, for which the
relation zy = 1 holds (i.e. which lie on the
hyperbola zy = 1)

the region (§ 22.1)

the closed region

(= the region {2 + its boundary 5)

the exponential function of a matrix A

(§ 17.18)

the bilinear form corresponding to a differ-

ential operator A and to the given boundary
conditions (§ 18.9, § 24.6)

the variation of a function y = f(z) (§ 23.3)
the variation of the functional I (§ 23.3)

the partial derivative of the function F' with
respect to y, or y' (Chap. 23)

the Laplace transform of the function f(t)

(§ 28.1)

the n-th relative (divided) difference (§ 32.6)
the n-th forward (ordinary) difference (§ 32.7)
the n-th backward difference (§ 32.7)
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1. ARITHMETIC AND ALGEBRA

By VAcLAV VILHELM

References: [2], [10], [11], [12], [13], [18], [20], [21], [24], [33], [36], [38], [46], [50], [51],
(53], [58], [61], 63], [69], [70], [71], 73], [77], [79], [82], [83], [88], [92], 93], [97], [98], [100],
[101], [102], [103], [105], [107], [113], [120], [129], [130], [140], [141], [151], [159], [170], [171],
(172], [177], [178], [179).

1.1. Some Concepts of Logic

By a sentence is to be understood any statement concerning which it is meaningful
to say that its content is true (it holds), or false (it does not hold).

The opposite or contradictory of a sentence A (denoted by not-4 or A’) is a sen-
tence defined in the following way: The sentence not-A is true if the sentence 4 is
false, and vice versa.

Example 1. “All chairs in the room are occupied” is an example of a sentence.
Its opposite is the sentence “Not all chairs in the room are occupied”, i.e. “There
is at least one unoccupied chair in the room”.

If A, B are two sentences, then one can construct from them new sentences in
various ways. First, let us introduce the concept of implication.

We say that “the sentence A implies the sentence B’ or ““B follows from A or
“if A is true, then B is true” or “B s a necessary condition for A” or “A is a sufficient
condition for B” (in notation A = B), if the truth of the sentence B follows from the
truth of the sentence A. (If the sentence A is false, then the sentence B can be either
true or false.) In an implication 4= B, 4 is called the premise (cause) and B the
conclusion (effect) of the implication.

Example 2. The implications “If a is an integer divisible by four, then a is even”
and “If the sum of the angles of a triangle is 120°, then every triangle is a right-angled
triangle” are true. (The premise of the second implication is false and thus the impli-
cation is true.)

Another sentence combined from the sentences A4, B is equivalence:
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We say, that “the sentence A is equivalent to the sentence B” or *““4 is true if and
only if B is true” or “A is a necessary and sufficient condition for B” (in notation
A <> B), if the sentences A and B are either both true or both false.

Example 3. A typical example of an equivalence is the sentence “A triangle is
equilateral if and only if all its angles are equal”.

ReMARK 1. The equivalence 4 <> B is true if and only if both A = Band B= 4
are true.

REMARK 2. The sentence A = B is equivalent to the sentence not-B => not-A.

REMARK 3. Mathematical theorems usually have the form of an implication or an
equivalence; e.g. “If a function f(x) possesses a finite derivative at a point x,, then it

is continuous at x,”, *“A quadratic equation with real coefficients has two distinct real
roots if and only if its discriminant is positive.”

1.2, Natural, Integral and Rational Numbers

Natural numbers are the numbers 1, 2, 3,4, 5, ...

Natural numbers satisfy the principle of complete (or mathematical) induction
or finite induction, namely:

If M is any set of natural numbers which contains the number 1 and which has
the further property that if it contains the number n it also contains the number
n + 1, then M contains all natural numbers.

ReMARK 1. This principle is “intuitively evident”: If a set M has the properties
assumed in the above principle, then it contains the number 1. Hence, the property
neM = n + 1 € Mimplies that the set M contains the numbers 1 + 1 = 2,2%+ 1 =
= 3 etc.

The principle of complete induction is the basis of “proofs by complete induction”.
To make the principle of such proofs clear, let us consider an example.

Example 1. Let g # 1. Then, for any natural number k, the formula

qk+1 -1

149+ +¢ +...+¢="——
qg-—1
holds.

We shall prove this statement by complete induction. Let M be the set of those
natural numbers k, for which the statement is valid. Evidently, the statement is true
for k = 1 and thus 1 € M. Let us assume that the statement is true for k = n, i.e.
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-n € M. Then
n+l __ 1 (n+1 -1 + n+2 n+1
14+g+..+q+qg+ =1 4 gt =1 1 .
q—1 q-1
qn+2__l
= q_l ;

hence the statement is true also for n + 1, i.e. n + 1 € M. Since the statement holds
for k = 1, the set M contains, in accordance with the principle of complete induction,
all natural numbers and therefore the statement holds for any natural number k.

Integers are obtained by extending the set of all natural numbers by the numbers 0
(zero) and —1, -2, —3,....
The numbers 1, 2, 3, ... are called positive, the numbers —1, —2, —3, ... negative.

Definition 1. The fact that an integer a is positive, or negative, is denoted by a > 0,
or a < 0, respectively.

We say that a number a is less than or greater than a number b if the difference
b—a>0,orb—a<0,and in that case we write a < b, or a > b, respectively.

REMARK 2. The notation a < b means that either a < b or a = b; similarly
for a = b.

Theorem 1. By the relation < the integers are ordered. This ordering has the
following properties (a, b, ¢, d stand for integers):
A. For any two integers a, b one and only one of the following relations holds:

a<b. a>b, a=b».
a<b, b<e=>a<c.
a<b, cL£d=a+c<b+d.

a<b, ¢>0=ac<bc.

MO0

a<b, ¢c<0=ac>bc.

REMARK 3. The properties A—E express the basic rules of inequalities. D and E
imply that b¢ > 0<>b >0,¢>0o0rb <0,c <.

Rational numbers are obtained by extending the set of all integers by fractions,
i.c. numbers of the form p/q with integers p and g, g # 0. The equality p/g = p'/q’
holds if and only if pqg’ = p'q.

Theorem 2. Any rational number can be written in the form a/b, where a is an
integer and b a natural number.
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Theorem 3. Rational numbers can be added, subtracted, multiplied and divided,
these operations satisfy the following rules (a, b, ¢ stand for rational numbers):

(@a+b)+c=a+(b+c) (associativelaw for addition).

a+b =b+a (commutative law for addition).

Foreverya, a + 0 =a.

For every a, there exists a number —a such that a + (—a) = 0.

(ab) ¢ = a(bc) (associative law for multiplication).

ab = ba (commutative law for multiplication).

For every a,a.l = a.

For every a # 0, there exists a number a’ such that aa’ = 1. (We write a’ =
=alora =1/a)

9. (a + b)c = ac + bc (distributive law).

NAN A WD =

REMARK 4. Addition, multiplication and division of fractions (rational numbers)
are performed according to the following rules:

a, , 4; _ab, +aby aya, aa,
=172 T P27t T172 7172

b, b, b,b, by b, byb,

b, =a_1_ﬁ_albz

a, bya, azb,

In the last rule we assume, of course, that a,/b, # 0, i.e. a, # 0.

Theorem 4. The rational numbers can be ordered in the following way: If a =
= plg, b = p'[q’, where p, p’ are integers and q, q' natural numbers, then a E b
according as pq’ E p'q. This order agrees with that of the integers and satisfies
the rules A—E of Theorem 1.

1.3. Real Numbers

The ordered set of the rational numbers is dense (i.e. between any two different
rational numbers there is an infinity of rational numbers), but it has gaps; this means
that there exist partitions of the set of the rational numbers into two non-empty clas-
ses A, B such that

1° AU B (see Definition 1.23.2, p. 45) is the set of all rational numbers;
2° for every number a € A and every number b € B, the relation a < b holds;



1.3 ARITHMETIC AND ALGEBRA 5

3° the set A has no greatest number and the set B has no least number. (One
can get such a partition by defining e.g. the class B to contain all positive rational
numbers x satisfying x? > 2 and the class 4 all the other rational numbers.)

Filling up these gaps by new, so-called irrational numbers, we extend the set of
rational numbers and so get the real numbers (for the detailed theory see e.g. [4]).

Theorem 1. The rules 1—9 of Theorem 1.2.3 also hold for addition and multi-
plication of real numbers.

Theorem 2. The real numbers can be ordered in such a way that this order
corresponds to that of the rational numbers and the rules A—E of Theorem 1.2.1
hold.

Theorem 3. Every irrational number can be expressed in the form of an in-
finite non-periodic decimal fraction. Rational numbers are expressed by finite or
infinite periodic decimal fractions.

Definition 1. A real number « is said to be algebraic if it is a root of some algebraic
equation x" + a;x" ' + ... + a, = 0 with rational coefficients a,, a,, ..., a,.
If « is not algebraic, it is called transcendental. For example, the numbers e, & are
transcendental.

Definition 2. A set M of real numbers is said to be bounded above (or bounded
below), if there exists a real number a which is greater (or less) than any number
belonging to M, respectively. The set M is said to be bounded if it is bounded above
as well as below.

Definition 3. Let M be a set of real numbers. A real number ¢ is called the least
(exact) upper bound of M (l.u.b., briefly; we shall write & = sup M), if 1° a < ¢
for every a € M, 2° £ is the least number having the property 1°.

Similarly: A number # is called the greatest (exact) lower bound of M (g.lb.;
n =inf M) if 1° a = # for every ae M, 2° 5 is the greatest number having the
property 1°.

Example 1. Let M be the set of all numbers 0, 4, %, 3, ... [i.e. the numbers of the
form (n — 1)/n, where n = 1,2, 3,...]. The set M is bounded, since every number
of M is greater than, say, — 1 and less than, say, 5. The least upper bound of this set
is the number 1, for every x € M satisfies x < 1 (in fact, x < 1) and for every (fixed)
number a < 1 there exists a number of the form (k — 1)/k (k being a natural number),
in the set M, such that (k — 1)/k > a. [The choice of k > 1/(1 — a) is sufficient].
The greatest lower bound of the set M is evidently 0.

The following theorem states the fundamental property of the ordering of real
numbers:
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Theorem 4. Every non-empty set of real numbers bounded above or bounded
below possesses a least upper bound or a greatest lower bound respectively. There-
fore, there are no gaps in the ordering of real numbers.

Theorem 5. If a set M of real numbers possesses a greatest element (maximum,
denoted by max M), then sup M = max M. Similarly if there exists a least element
(minimum, denoted by min M) in M, then inf M = min M.

Theorem 6. Between any two different real numbers there is an infinity of rational
as well as an infinity of irrational numbers.

{
-2 -1-05 0 1 2 p Fig. 1.1a.

0 “;‘ “32” “42 §=1 Fig. 1.1b.

REMARK 1 (The numbered scale or continuum, or axis of real numbers). Real
numbers can be represented by points on a straight line. If we choose, on the straight
line p, the origin O, a certain orientation of the straight line (Fig. 1.1a), and a unit
of length I, then, to every real number a, there corresponds one and only one point A
on the line p, whose coordinate is a; conversely, every point on the line p has a certain
coordinate. The straight line p is then called the numbered scale or continuum.
The points of the numbered scale are often identified with real numbers. A number
a is less than a number b if and only if the point representing a is to the left of the
point representing b on the numbered scale. Fig. 1.1 illustrates several numbers of
the set M of Example 1 and the least upper bound & of this set.

REMARK 2. On so-called rounded off numbers and operations on them (abbreviated
multiplication etc.), see Chap. 32.

1.4. Inequalities between Real Numbers. Absolute Value

Theorem 1. Inequalities between real numbers satisfy the rules A—E of Theorem
1.2.1.

Theorem 2.

0<a<b=>0<—1—<1—,
a

a<b<0=>-1-4<l-<0.
a
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Theorem 3. The inequality

ax+b>0 1)
a>0 x > —bla
with a<0 holds if and only if{ x < —b|a
a=0,b>0 x is arbitrary

Fora =0, b <0, there is no x satisfying (1).
Theorem 4. The solution of the inequality
ax? + bx +¢>0, a#0, (2)

is as follows:
If the polynomial f(x) = ax® + bx + ¢ has real zeros, then

fx)=a(x —a)(x —a), o =a;
so
(a) if a > O, then f(x) > 0 for all x < «, and for all x > ay;
(b) if a <0, then f(x) > 0 for all x satisfying @y < x < &y.If the polynomial
f(x) has no real roots, then it can be expressed in the form

f(x) =a[(x + ¢)> +d] with d>0,
and thus,

(a) if a > 0, then f(x) > O for every real number x;
(b) if a < O, then f(x) < O always and the inequality f(x) > O has no solution.

REMARK 1. On inequalities between powers see Theorem 1.9.2, p. 14.

REMARK 2. Simple inequalities which one meets in practice are frequently reducible
to inequalities of the type (1) or (2). When solving an inequality of the form P(x)/
[Q(x) > 0, where P(x) and Q(x) # 0 are polynomials, without common real zeros,
the following theorem is useful: The function P(x)[Q(x) changes its sign only in the
neighbourhood of the zeros of odd multiplicity of the polynomials P(x) and Q(x).
Thus, knowing the zeros of these polynomials and the sign of the function P/Q at one
point where this function is non-zero, we can solve the given inequality quite easily.
The procedure is illustrated in the following example.

Example 1. Let us solve the inequality

2x — 5
x —1

>3

(i.e. find all real x for which this inequality holds). First, we transform the inequality
to the form

2x—5—3>0, i.e. ——x—-2_>0.
x —1 x —1




8 SURVEY OF APPLICABLE MATHEMATICS 1.5

The polynomials P(x) = —x — 2 and Q(x) = x — 1 have the single zeros —2 and 1.
Since P(0)/Q(0) = 2 > 0, the function P/Q is positive in the interval (—2, 1) and
negative in the intervals (— o0, —2), (1, + o0). Hence the given inequality is satisfied
for all x of the open interval (—2, 1) and only for them (Fig. 1.2); these values of x
represent the solution of the given inequality.

Fig.12. -2 iy 0 1 x

Definition 1. The absolute value of a real number a (denoted by |a|) is defined
as follows:
laj=a for a20, |a]=~a for a<0.
Theorem 5. |a| > 0 for a # 0; [0] = 0; |a| = \/(a?).
Theorem 6. |a + b| < |a| + |b| (triangle inequality).

Theorem 7. ||a| — [b|] < |a + b].

—Ialforc;éo

Theorem 9. Let k > 0. Then the inequality |a — b| < k is equivalent to the inequa-
lities b — k < a < b + k. (The number |a — b| is equal to the distance between
the points a and b on the numbered scale.)

H

Theorem 8. |ab| = |a]

1.5. Further Inequalities. Means

Theorem 1 (Hélder’s Inequality). Let ay, ..., a,, by, ..., b, be real or complex
numbers; let ¢ > 1, q' = q/(q — 1). Then

s Sl s () (S )"

n
Zak k
k=1

Theorem 2 (Cauchy’s Inequality). Let ay, ..., a,, by, ..., b, be real or complex

numbers. Then
¥ b, =( Jo)( S )

(see Theorem 1 for ¢ = 2).
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Theorem 3 (Minkowski’s Inequality). Let ay, ..., a,, by, ..., b, be real or com-
plex numbers, ¢ = 1. Then

n 1/q n 1/q n 1/q
(2 |ax + bqu> = (1\: |aqu> + (Z lbqu) .
k=1 k=1 k=1

oy 1 . , .
Definition 1. The number —(a, + ... + a,) is called the arithmetic mean of the
n
numbers a;, ..., a,. If these numbers are non-negative, then the number J/(a,a, ... a,)
L . 1 .
is said to be the geometric mean and the number A/ |:— (a2 + ...+ a,z,):l the quadratic
n

mean or root-mean-square (r.m.s.) of the numbers a,, ..., a,.

Theorem 4. If a; = 0,...,a, = 0, then

2
:/(alaz--.an)éal_l—"‘_i_an §J01+.__+a"'

n

1.6. Complex Numbers

Complex numbers are numbers of the form o = a + ib, where a, b are real
numbers and i is the so-called imaginary unit (in electrical engineering j is often
used instead of i) which is such that

Definition 1. The equality of two complex numbers o, o, is defined as follows:
The number a; = a, + ib; isequaltoa, = a, + ib, ifand onlyif a; = a,, b; = b,.

Definition 2. Addition and multiplication of complex numbers are defined in the
following way:
(ay + iby) + (az + iby) = (a; + a,) + i(b; + b)),
(a; + iby) (ay + ib,) = (aya, — byb,) + i(ayb, + ayb),
respectively.
Theorem 1. Addition and multiplication of complex numbers satisfy the rules

1--9 of Theorem 1.2.3 (p. 4). Complex numbers cannot be ordered in such a way
that the rules A—E of Theorem 1.2.1 (p. 3) hold.

Division of complex numbers is performed by application of the following
theorem:

Theorem 2. If
a=a+1ib #0,
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then
1 —1 a —ib
o a® + b*’
Definition 3. If « = a + ib, then the real number a is called the real part of the
number « (denoted by Re «) and the real number b the imaginary part of the number

a (denoted by Im ). A number « = a + ib is said to be pure imaginary if a =
= Rea=0and Ima + 0.

REMARK 1. Some authors use the symbols R[«] and I[«] or script letters 2(a),
#(e), instead of Re o and Im a, respectively.

Definition 4. The number a — ib is called the complex conjugate of the number
o = a + ib and is denoted by &.

Theorem 3. For conjugates of complex numbers the following relations hold:

a+B=8a+p, of =ap, <5>=
Y

= | Rl

for y # 0. Further, o = & <> a is a real number.

Definition 5. The absolute value (modulus) of a complex number « = a + ib is
defined to be the real number |o| = \/(a®> + b%) = 0.

Theorem 4. The relations o + B| < |o| + [B], |B] = || [B], |«| = &), ||| — [B]|=
< o~ B £ |o| + |B| hold.

REMARK 2. The Geometrical Representation of Complex Numbers (the Argand
Diagram) is shown in Fig. 1.3a,b. Fig. 1.3b illustrates the first of the inequalities of
Theorem 4 (the so-called triangle inequality).

imaginary axis
a+f

imaginary axis

:
f a

Fig. 1.3a. real axis_ Fig. 1.3b.

Theorem 5 (Trigonometric Form of Complex Numbers). Every complex number
o = a + ib # 0 can be written in the form
« =a +ib = r(cos ¢ + isin @) = re'?,

where r = ]al and the angle ¢ (in radian measure) is determined apart from an
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integral multiple of 2n by the relations

a . b
———— n (p - —-— ——— ;
J(@ + b?) J(a® + b?)

this angle ¢ is called the argument (amplitude) of the complex number a.

Cos @ =

The principal value of the argument of a complex number o (denoted by arg )
is the (uniquely determined) argument ¢ for which —n < ¢ < = (Fig. 1.4a).

imaginary axis

a
r=lal

[ real axis real axis

Fig. 1.4a. Io) Fig. 1.4b.

Theorem 6 (De Moivre’s Formula). If o = r(cos ¢ + isin @) # 0 is a complex
number, then

«" = [r(cos ¢ + isin ¢)]" = r(cos np + isin ng)
for every integer n; in particular,
(cos @ + isin @)* = cosng +isinng.

Theorem 7. For o; = ry(cos ¢, + isin @) and a, = ry(cos @, + isin @,), the
following relation holds:

a4, = riry[cos (@) + @2) + isin(@q + @,)].

REMARK 3. Theorems 6 and 7 are used for multiplication, raising to powers and
extracting roots of complex numbers. For example, [/(3) + i]* = [2(cos 30° +
+ isin 30°)]® = 23(cos 90° + i sin 90°) = 8i. On the use of Theorem 6 for finding
roots, see § 1.21 (p. 42). Multiplication of complex numbers in the Argand diagram

is performed according to Theorem 7; this can be seen in Fig. 1.4b; the number
|ecyot] = ryr; is usually determined by calculation.

1.7. Powers with Integral Exponents

(a) Powers with a Positive Integral Exponent

REMARK 1. In section (a) m, n denote natural numbers, a, b real or complex
numbers.
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Definition 1. The n-th power of a number a is the number a” = aa ... a (n factors
a); a is called the base and n the exponent of the power.

Theorem 1. a™a" = a™*", a"b" = (ab)", (a™)" = a™.

Theorem 2. 0" = 0, a" # 0if a # 0.

(b) Powers with any Integral Exponent

REMARK 2. In section (b) m, n denote integers, a, b real or complex numbers.
Definition 2. For a # 0, we define a° = 1.

If a # 0 and m is a negative integer, then we define a™ = 1/a~™. The symbol a”
is thus (together with Definition 1) defined for every a # 0 and every integral
value of n.

Theorem 3. If a # 0, b # 0 and m, n are integers, then a™a" = a™*", a"b" =
= (ab)", (a™)" = a™, and

1.8. Roots of Real Numbers

Definition 1. Let ¢ > 0 be a real number, n a natural number. Then there exists
exactly one positive real number x such that x" = a. The number x is called the
n-th root of a (denoted by (/ a). Instead of i/ a we write \/a.

Example 1. /4 = 2; the statements \/4 = —2 or /4 = %2 are not correct.

Definition 2. For a = 0, we define (/0 = 0.

Definition 3. For a < Oand an odd n we define %/a = ~1/(—a) (since, —"/(—a)
is the only real number, whose n-th power is a). Thus, e.g. 3/(—8) = —3/8 = —2.

Theorem 1. Let x, y be positive numbers, m, n be natural numbers. Then

) =YY /y=f7y 1t = (3

(k being an integer),

o) =% @ =
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Theorem 2. For any real number x and any even number n, we have Ux" = |x|
Thus, e.g. \/x* = |x|, but in general /x* # x.

REMARK 1. On roots of complex numbers see § 1.21, p. 42.

1.9. General Powers of Real Numbers

(a) Power with a Rational Exponent

Definition 1. Let x > 0 be a real number, r a rational number. Then we define
x" = {/x”, where p and g are integers such that ¢ > 0 and r = p[q. Thus, if n is
a natural number, then

x=1/x, xTUn=1/(1x) = 1"/x.

REMARK 1. The rules for operations with powers with a rational exponent are the
same as those in Theorem 1 in the next section (b).

(b) General Powers

Definition 2. For a positive real number x and for an arbitrary real number a,
the general power x° is defined as the limit of a sequence (see Definition 10.1.2,
p. 336) {x™}, where {a,} is an (arbitrary) sequence of rational numbers a, such that
its limit is the number a. (If, in particular, a is rational, then this definition evidently
coincides with that of Definition 1 and thus x* is the same real number according
to both definitions.)

Theorem 1 (Properties of General Powers). Let x, y be positive real numbers
and a, b real numbers. Then the following rules hold:

1. 1°=1,
a a 1 l a

2. X% = (xy) == <f> ; — = (—) ;
? y x° X

3 xaxb — xa+b’ A xa—b; x79 = __1_ ;
xb x°
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Theorem 2 (Inequalities). Let x, y be positive real numbers and a, b real numbers.
Then

x>0, x°=1;

x<y, a>0=>x <y

1
2
3. x<y, a<0=x">)y%,
4, x>1,a<b=x%<xb
5

x<1l,a<b=x">xb

Definition 3. For g > 0, we define 0 = 0.

1.10. Logarithms

(a) The Concept and Properties of Logarithms

Definition 1. Let x, a be positive numbers, a ¥ 1. Then there exists a unique
real number y such that ¢” = x; the number y is called the logarithm of the number
x to the base a (in symbols, log, x). Thus the logarithm of a number x > 0 to a base
a is the number y = log, x for which 4%~ = x.

Theorem 1 (Properties of Logarithms). Let a, b, ¢, x, y be real numbers, 0 < a #
#1,0<b#1,x>0,y>0. Then

logax

1. a =X;

2. loga=1, log,1 =0;

3. log,xy =log,x + log, y, log,(x/y) =log,x — log,y;
Iog,,l = —log,x; log,x° = clog,x;
X
log,x . .
4. log,x = —=%—=; in particular
log,

log,o x = 0434294 In x ,
In x & 2:302 585log,o x (cf. Definition 2) .

5. Fora>1land x<y, log,x <log,y;
fora<land x <y, log,x > log,y.

6. Fora>1and x>1, log,x >0;
for a>1and x<1, log,x<0.
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Definition 2. Logarithms to the base e = 2:71828... [e = lim (1 + 1/n)", see

n—- o

Theorem 10.1.11] are called natural or Napierian logarithms. Instead of log, x we
usually write In x. Then log, 10 = In 10 = 2-302 585. Logarithms to the base 10
are called common or Briggs logarithms. The value of log,, ¢ is approximately
0-434 294.

REMARK 1. The use of logarithms for calculating the product and the quotient
of two positive numbers, or for calculating the powers of a positive number, is
apparent from the property 3. The practical procedure is described in every table of
logarithms.

ReMARK 2. In the following simple examples, methods of solutions of some expo-
nential and logarithmic equations will be shown.

(b) Exponential Equations

1

. x x2
Example 1. Solve the equation 2**. 2% = ;.

We arrange the equation in the form 24**** = 27* and deduce (comparing the
exponents) that 4x + x?> = —4; the problem is thus reduced to the solution of
a quadratic equation (the solution is x = —2).

Example 2. Solve the equation 2* = 3*~2, 5%, Taking the logarithm of each term
we get x log,o2 = (x — 2)log;o 3 + xlog 5. Hence

—2log, 3

X = .
logyo2 — logyo3 — logo 5

(¢) Logarithmic Equations

Example 3. Solve the equation
[logio (x* + 2)]* — 5log; (x**+2)+6=0.

We put y = log;, (x*> + 2) and solve the equation y* — 5y + 6 = 0 ; this equa-
tion has two roots y, = 2, y, = 3. Thus the solution consists of those x for which
either log,o (x? + 2) = 2, i.e. x2 + 2 = 10%, or log,o (x* + 2) = 3, l.e. x2 + 2 =
= 10%, that is x = +./98 or x = +./998.

Example 4. Solve the equation

210g10(2x+ 3)—10g10(x—2)-— 1 =0.
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We arrange the equation in the form

(2x + 3)?
10—

logo (2x + 3)* — logo(x —2) =1, log >

=1 = log,, 10.

Hence (2x + 3)%/(x — 2) = 10; the problem has thus been reduced to the solution
of a quadratic equation.

In more complicated cases, numerical methods are employed (see Chap. 31).

1.11. Arithmetic and Geometric Sequences. Sums of Powers
of Natural Numbers; Formulae for ¢" + 4"

Definition 1. An arithmetic sequence is a sequence (see Definition 10.1.1, p. 336)
of real or complex numbers a4, a,, a3, ..., 4,, ..., such that a, — a, = a3 — a, =
=..=a,, —a,=d(n=12..).

Theorem 1. The relations

a,=a; +(n—1)d; s,=4n(a, + a,)
n
hold, where s, = Y. a, is the sum of the first n terms.

i=1

Definition 2. A geometric sequence is a sequence of real or complex numbers
b, b,, ..., by, ..., such that there exists a number g with the property that the rela-
tions b2 = blq’ b3 = qu’ o-ey bn+1 = bnq (n = 1, 2, ...) hold.

Theorem 2. For q # 1, the relations
bn = blqn—1 s Sn = bl(q" - l)/(q - 1)
hold, where S, = Y b,.
i=1

Theorem 3. Sums of powers of natural numbers.

1. 1+2+...+n=n—(fl1—);
2
2 Pa2te. 4mo D@L,
6
3. 13+23+...+n3=M‘

4

n(n +1)(2n + 1)(3n? + 3n — 1)
30

4, 1*+2* + ... +n* =

H
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2——-
5. 12+32+52+...+(2n—1)2=ﬁ£3—1—);

6. 1°+3°+5 + ...+ (@2n—1) =n*2n%-1).
Theorem 4. Formulae for a" 4 b" (n, k being natural numbers):

1. a®> —b>=(a+b)(a—b), a*>+ b*=(a+ib)(a — ib);

2. a®+b*=(a+b)(a®F ab + b?);

3. a" —b"=(a—-b)(a"" ' +a" b +a" b+ ... +ab""? + b)),
4. a® — b = (a + b)(a® — a®2p + a3 — .. — pH1);

5. a1 4 bl = (a4 b) (6% — a®* b + 0722 — 4 b,

1.12. Permutations and Combinations

Definition 1. Every ordered n-tuple formed from n given mutually different
elements is called a permutation of these elements.

Example 1. The permutations of three elements a, b, ¢ are the ordered arrange-
ments (a, b, ¢), (a, ¢, b), (b, a, ¢), (b, ¢, a), (c, a, b), (¢, b, a).

Theorem 1. The number of all (different) permutations of a collection of n ele-
ments is
P,=1.2.3.....(n —1)n = n!

REMARK 1. The symbol n! is read factorial n. For n = 0, 0! is defined as having
the value 1.

Definition 2. Let (il, iy, ... i,,) be a permutation of the numbers 1,2,3,..., n.
We say that the numbers ij, i,, when j < k(1 £j < n, 1 £ k < n) form an inver-
sion in this permutation if i; > i,. A permutation possessing an odd, or even number
of inversions is called odd, or even, respectively.

Example 2.

(a) In the permutation (2, 4, 1, 3) of the numbers 1, 2, 3, 4 each of the pairs (2, 1),
(4, 1), (4, 3) is an inversion. The permutation possesses 3 inversions; therefore it is
odd.

(b) The permutation (4, 2,1, 3) possesses 4 inversions and is thus even; the per-
mutation (1, 2, 3, 4) possesses no inversion and is thus even.

Theorem 2. If, among n elements a, b, c, ..., a occurs « times, b B times, ¢ y times,
..., then the number of all different ordered n-tuples is

n!
al Bryt...
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Definition 3. By combinations of n different elements taken k at a time we mean
all possible selections consisting of k different elements chosen from the n given
elements, without regard to the order of selection.

Theorem 3. The number of all combinations of n different elements taken k at
a time is

(n) _nn=1..(n—k+1)_  nl

k 1.2.....k k! (n — k)t

REMARK 2. Besides (Z) , the symbols C(n, k), C¥, ,C,, "C, and C} are also employed.

For k = 0, (g) is defined as having the value 1.

Example 3. Find the number of chess matches required if there are 10 players
and every player is to play once with each other.

The number of matches P is equal to the number of pairs formed out of 10 ele-
ments, i.e. it is equal to the number of combinations of 10 elements taken 2 at a time.

Hence P = 10 =10—'9_=45,
2 2.1

Theorem4. The symbol <Z) satisfies the relations

- (Z)=<nfk>;
) (0

(£)-0
(D-0+(2) )

REMARK 3. By combinations with repetitions of n different elements taken k at
a time we understand all possible selections consisting of k elements chosen from n

given elements (without regard to the order of selection) such that each element
can be repeated any number of times. The number of these combinations with repeti-

+
S
NA

{ =
—
—

. k-1 . . o
tions is (n + ) . For example, all combinations with repetitions of the elements

1, 2, 3 taken 2 at a time are (1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3).
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Definition 4. By permutations of n different elements taken k at a time is meant
all possible ordered arrangements consisting of k different elements chosen from the n
given elements,

Theorem 5. The number of all permutations of n different elements taken k
at a time is
n!
Py=nn-1)..n—-k+1)=—-"-—.
p= =)k ) =

Example 4. All permutations of the three elements 1, 2, 3 taken 2 at a time are
(1, 2), (l, 3), (2, l), (2, 3), (3, 1), (3, 2). Their number is 6 = 3!/(3 - 2)!.

REMARK 4. The permutations with repetitions of n different elements taken k
at a time are all possible ordered arrangements consisting of k elements chosen from
the n given elements such that each element can be repeated any number of times.
The number of these permutations with repetitions is n*.

For example, all permutations with repetition of the elements 1, 2 taken 2 at a time
are (1, 1), (2, 2), (1, 2), (2, 1).

1.13. Binomial Theorem

Theorem 1. Let n be a natural number and let a, b be real or complex numbers.
Then the following (Newton’s) formula holds:

(@£ by =Y (+1} (Z) a" kbt = a" & <'11> a" b+ (Z) a"?bt + L+ (1)
k=0
In particular

1. (a £ b)?
2. (axb) =

It

2ab + b?;

a® +
a® + 3a®b + 3ab® + b3.

ReMARK 1. The binomial coefficients (:) can be readily determined by means

of Pascal’s triangle:

n I Binomial coefficients

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1
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REMARK 2. The case where n is not a natural number is treated in Theorem
15.5.3.

1.14. Polynomials

Definition 1. Let n be a natural number and let ag, a4, ..., a, be real or complex
numbers. The function P(x) which may be defined for all (real or complex) numbers
x by the formula

P(x)=agx" + a,x" "' + ...+ ap_x +a, =Y ax""" (1)
i=0
is called a polynomial (in one variable x with real, or complex, coefficients). Besides
the term polynomial the expression rational integral function is also used. The
numbers a,, dy, ..., 4, are called the coefficients of the polynomial P(x).

Definition 2. Two polynomials P(x) and Q(x) are equal [in symbols, P(x) = Q(x)
or, more precisely, P(x) = Q(x)] if, for every number a, the equality P(a) = Q(a)
holds.

Definition 3. The highest power of the variable x with a non-zero coefficient in
the expression (1) is called the degree of the polynomial P(x). If ay # 0 in (1), then
P(x) has degree n. (See also Theorem 1.)

Definition 4. The polynomial, all the coefficients of which are equal to zero, is
called a zero polynomial. A zero polynomial has no degree. If P(x) is a zero poly-
nomial, we write P(x) = 0 or, more precisely, P(x) = 0. Otherwise, we write P(x) # 0
or P(x) % 0.

Theorem 1. Two polynomials are equal if and only if their difference is a zero
polynomial, i.e. if the coefficients of the corresponding powers of the variable x
are identical.

Theorem 2. The sum and the difference of two polynomials of degrees m and n
are polynomials of degree less than or equal to the number max (m, n) (or zero
polynomials).

Theorem 3. The product of two polynomials of degrees m and n is a polynomial
of degree m + n.

Theorem 4. The product of non-zero polynomials is a non-zero polynomial.
Theorem 5. The quotient of two polynomials need not always be a polynomial.

How to procced in dividing a polynomial by another polynomial is shown in
Example 1.
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Example 1.

(x* — 2x* + x — 1) : (x* — 3x + 2) = x + 1 (partial quotient)
x* — 3x% + 2x

x2— x—1

x? —3x + 2

2x — 3 (remainder).

Hence, x> — 2x* + x — 1 = (x* = 3x + 2)(x + 1) + 2x — 3.

Definition 5. If the remainder on dividing a polynomial P(x) by a polynomial Q(x)
(Q(x) =% 0) equals zero, then the polynomial P(x) is said to be divisible by the poly-
nomial Q(x); Q(x) is called a divisor of the polynomial P(x).

An important result concerning the process of dividing is contained in

Theorem 6. For every two polynomials P(x) and Q(x) % 0, there exist uniquely
determined polynomials S(x) and R(x), such that

1. P(x) = Q(x) S(x) + R(x) ;
2. R(x) is either a zero polynomial or a polynomial of lower degree than the
polynomial Q(x).

Definition 6. A common divisor, with highest possible degree, of the polynomials
P(x) and Q(x) is called the greatest common divisor of the polynomials P(x) and
Q(x); the polynomials P(x) and Q(x) are said to be relatively prime if their greatest
common divisor has degree zero.

Theorem 7 (Euclidean Algorithm). The greatest common divisor of two (non-
zero) polynomials P(x) and Q(x) can be found in the following way:

(i) in accordance with Theorem 6, divide P(x) by the polynomial Q(x),i.e. P(x) =
= Q(x) Sy(x) + Ry(x) (where R,(x) is the remainder) ;

(i) divide Q(x) by the polynomial Ry(x), i.e. Q(x) = Ry(x) S;(x) + Ry(x), then
Ry(x) by the polynomial R,(x), i.e. Ry(x) = R,(x)Ss(x) + Rs(x) etc., the last
remainder Rk(x) # 0 is the required greatest common divisor.

Definition 7. The number « (in general complex) is called a zero of the polynomial

P(z) = Z a;z"™~'  (or a root of this polynomial) if P(a) = Z a; 0™t = 0.
i=0 i=0

Theorem 8 (The Fundamental Theorem of Algebra). Every polynomial of
degree n = 1 has at least one zero.

Theorem 9. If a polynomial P(x) has a zero «, then P(x) is divisible by the linear
polynomial x — « and vice versa. [x — a is a so-called linear factor of the polyno-
mial P(x).]
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Theorem 10 (The Factorisation of a Polynomial into Linear Factors). Every poly-
nomial P(x) —-—*_iaix"_", n =1, can be uniquely written as a product of linear
factors: e

P(x) =ay(x —a)" (x —a )2 ...(x =), ky+k,+...+k =n.

The numbers ay, ..., o, are all distinct zeros of the polynomial P(x). [a, is called
a ky~fold zero, ..., o, a k~fold zero of the polynomial P(x). If k; = 1, a, is called
a simple zero of P(x).]

Theorem 11. « is a k-fold zero of a polynomial P(x) if and only if it is also a
zero of the first, the second, ..., the (k — 1)-th derivatives of the polynomial P(x),
but is not a zero of its k-th derivative:

P)=P(a)=...=P*¥ Va)=0, P®a)#0.
(For the derivative, see § 11.5.)

Example 2. Let us consider the polynomial P(x) = x> — 3x* + 4. We get P'(x) =
= 3x* — 6x, P'(x) = 6x — 6, P"(x) = 6. It is easy to check that P(2) =0,
P'(2) = 0, P"(2) # 0. Thus « = 2 is a double zero of the polynomial P(x). Indeed,
P(x) = (x — 2 (x + 1).

Theorem 12 (Polynomials with Real Coefficients).
(i) If the polynomial P(x) = " a;x"~* with real coefficients a; has a k-fold zero
i<o

o = a + ib, it has also the k-fold zero & = a — 1ib.

(i) A polynomial P(x) can be uniquely factorised into linear and quadratic
polynomials with real coefficients:

P(x) = ag(x — )" .. (x — o) (x* + pix + q1) ... (¥7 + pix + q,)7,

where ry 4+ ...+ r;+ 25, + ...+ 25; = n and pr —4q, <0 (k=1,2,...,J)),
so that x> + p,x + q, has no real zeros (cf. §13.3,p. 457.)

REMARK 1 (Horner’s Method). Horner’s method is used:

(i) to find the value P(a) of a polynomial P(x) and its derivatives at a given point a;
(ii) to divide a polynomial P(x) by a linear polynomial x — a;
(i) to transform a polynomial P(x) by a substitution y = x — a.

Let P(x) = aox" + ... + a,; let a be a real or complex number. We then construct
the following (Horner’s) scheme:

a, a, a, ... a,

l
| aa, ab; ... ab,_,
|

al|l ag by by, ... |b,= Pla)
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Write all coefficients (zero coefficients included) in the first row, leaving for a mo-
ment the second row open; in the third row under the number a, write a, again,
then, under a,, write aa, in the second row and b, = a, + aa, in the third row.
Similarly, under a,, write ab, and b, = a, + ab, in the second and third rows
respectively, etc. The last number b, is then the value P(a). Moreover P(x) = (x — a) .
(apx""' + byx""% + ... + b,_;) + b, so that the third row determines the quo-
tient and the remainder on dividing the polynomial P(x) by the linear polynomial
X — a.

Applying Horner’s scheme for a number a to the polynomial agx"~! + b;x" "2 +
+ ... + b,_,, we get, as the last number in the scheme, ¢,_; = P’(a)/1! Continuing
in this way, we get P"(a)/2! ..., P®(a)/n!, successively. The following Example 3
illustrates the procedure.

Example 3. P(x) = 5x* + 10x> + x — I; a = —2.

|5 10 0 1 ~1
| —-10 0 0 -2 )
20 5 0 0 1 |-3=P(-2)
~10 20 —40
-2 5 —10 20 |=39={£P(=2)
~10 40
-2 5 -20  |60=4P(-2) B
~10
-2 5 [=30=4P"(=2) B

-2 | [5=4P9(-2)

Further, by Taylor’s formula for a polynomial of degree n (see § 11.10, p. 396),
P(x) = P(a) + %P’(a) (v~ @) + . 4~ Pa) (x - a
! n!

so that we have in our example
P(x) = =3 — 39(x + 2) + 60(x + 2)> — 30(x + 2)* + 5(x + 2)*.
By the substitution y = x + 2, P(x) is transformed into the polynomial
S5y* — 30y + 60y* — 39y — 3.
From the third row of Horner’s scheme we get

P(x) =(x +2)(5x* + 1) — 3.
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1.15. Vectors in Algebra

Definition 1. Let n be a fixed natural number. Then, by an n-component (n-coordi-
nate) complex vector (n-vector for short) @ = (ay, a,, ..., a,) we understand in
algebra an ordered n-tuple of complex numbers a,, a,, ..., a,. [ Besidesa = (ay, a,, ...
..., a,) also the notation a(ay, a,, ..., a,) is used.] All these n-component vectors
(i-e. the set of all ordered n-tuples of complex numbers) form a so-called n-dimen-
sional vector space V, (over the complex numbers).

The vectors a = (ay, ..., a,), b = (by, ..., b,) are said to be equal if and only if
a, =by,a,=b,,...,a, =D,

REMARK 1. In the same way as for complex vectors one can define n-component
real vectors (real n-vectors); their components, i.e. the numbers aj, ..., a, being real
numbers. In the following text all concepts and theorems formulated for complex
vectors are valid also for real vectors.

Addition and multiplication by a (scalar) number of n-component vectors of V, is
performed in accordance with the following definition:

Definition 2. 1. The sum of the vectors @ = (ay, ..., a,) and b = (by, ..., b,) is
the vector @ + b = (a; + by, ..., a, + b,).

2. The product of the vector @ = (ay, ..., a,) and the number c is the vector ca =
= (cay, ..., cay).

REMARK 2. We write — a instead of (—1) @; thus —a = (—ay, ..., —a,).

Example 1. The sum of the vectors @ = (1,0, —2) and b = (3,2,0) isa + b =
= (4,2, —2); also 3a = (3,0, —6).

Theorem 1. For the operations on vectors introduced in Definition 2, the fol-
lowing rules hold:

l. a+b=b+a, a+(b+c¢)=(a+b)+c;
2. there exists a vector [the so-called zero vector 0 = (0, ..., 0)] such that a + 0 =
3. for every a =(ay,...,a,) and b = (by, ..., b,) there exists a vector x such
thata+ x=b; x=b—a= (b, —ay,....,b, — a,);
ca+b) =ca+ch;
(¢ +d)a=ca+da;
o(da) = (cd)a; 0a=0, c0=0;
the equality ca = 0 holds if and only if c = 0ora =0;

—(ca) = (—c¢)a=c¢(—a).

Definition 3. We say that the vectors a, ..., a, of V, are linearly dependent if
there exist complex numbers ¢y, ..., ¢, which are not all zero, such that c;a; +
+ca, + ... + ¢a, = 0.

® NNV
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If the vectors ay, ..., a, are not linearly dependent, we say that they are linearly
independent.

Example 2. The vectorsa = (1, —1,0),b = (0,-2,1), ¢ = (2, 4, —3) are linearly
dependent, for 2a + (—3) b + (—1) ¢ = 0. The vectors ¢, = (1,0, 0), e, = (0, 1, 0),
e; = (0, 0, 1) are linearly independent.

Definition 4. A vector ae V, is said to be a linear combination of the vectors
a,, ..., a of V,if complex numbers d,, ..., d, exist such that

a = dlal + ...+ dkak'

Theorem 2. Vectors ay, ..., a, of V, are linearly dependent if and only if at least
one of them can be expressed as a linear combination of the others.

Example 3. The vectors a; = (3, 1,2), a, = (—1,0,2), a5 = (7, 2, 2) are linearly
dependent, for 2a, — a, — a; = 0. From this equation it follows that

=1 1 - —
a, =%}a, + a5, a=2a, —a;, a;=2a, —a,

so that each of them is a linear combination of the other two.

Definition 5. We say that a system {ay, ..., a,} of vectors of V, has the rank h
if there are h linearly independent vectors among the vectors a,, ..., a, but any k +1
vectors of @y, ..., @, are always linearly dependent. (Then h is the maximal number
of linearly independent vectors of the given system.)

Example 4. The rank of the system {a, b, ¢} of the vectors of Example 2 is equal
to two, for a, b are linearly independent while a, b, ¢ are linearly dependent.

Theorem 3. Every system of n-component vectors is of rank h < n.

Theorem 4. The rank of a system of n-component vectors does not change if

1. we change the order of the vectors in the system;
2. we multiply one of the vectors of the system by a non-zero number;
3. we add to one of the vectors a linear combination of the remaining vectors;

4. we drop a vector which is a linear combination of the remaining vectors of the
system.

REMARK 3. Theorem 4 is useful in determining the rank of a given system of vec-
tors. In practice, we can find the rank also by determining the rank of the matrix
whose rows are the vectors of the given system (see Remark 1.16.2 and Example
1.16.2 on p. 27).

REMARK 4. On vectors in three-dimensional space (scalar product, vector product,
etc.) see also Chap. 7.
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1.16. Matrices

Definition 1. A rectangular array A of mn real or complex numbers a;;,ay,, ..., Apy
arranged in m rows and n columns is called an m by n matrix:

A11s Q125 A135 -+ Qiqp
A= | %2 225 G335 +-+5 Aoy

Am1s Ain2s Om3s -+ Amn

If m = n, we call A a square matrix of order n, or an n-rowed square matrix. The
elements a,q, d,,, d33, ... of the matrix A form its principal diagonal, the elements
Aypy A3 p—1> A3 -2, ... of Aformits secondary diagonal. The matrix, all the elements
of which are equal to zero, is called a zero matrix.

Definition 2. The rank of a matrix is the rank of the system of all vectors formed
by the rows of the matrix (see Definition 1.15.5, p. 25). (Cf. Theorem 2.)

Thus, a matrix A is of rank h if there are h linearly independent rows among its
rows, every futher row of the matrix being a linear combination of these h rows.

Example 1. The matrix

I, -1, O
0, -2, 1
2, 4, =3

is of rank 2, for the system of the vectors a@ = (1, —1,0), b = (0, —=2,1), ¢ =
= (2,4, —3) is of rank 2 (Example 1.15.4, p. 25).

Theorem 1. For the rank h of an m by n matrix A, the inequality

h < min (m, n)

holds.

Definition 3. The matrix

Q115 A215 -0 Ap
A = Q12> Q225 «o05 Apa

Ains Q2ns -+ Oy -

formed from the matrix A by a transposition of its elements with respect to the
principal diagonal (i.c. by an interchange of its rows and columns) is called the trans-
pose of the matriz A and is an n by m matrix. The notation AT is also used.

Theorem 2. The rank of a matrix A and that of its transpose A’ are equal,
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Theorem 3. The rank of a matrix does not change if

1. we change the order of the rows of the matrix;

2. we multiply one of the rows by a non-zero number,

3. we add to one of the rows a linear combination of the remaining rows;

4. we drop a row of the matrix which is a linear combination of the remaining

rows of the matrix.

Thus, if we apply one of these operations, to a matrix, then the resulting matrix has
the same rank as the original matrix.

REMARK 1. According to Theorem 2 we can apply the operations of Theorem 3
also to the columns without affecting the rank of the given matrix.

Theorem 4. The matrix

bll’ blz’ b13’ eres bln
O, b22, b23, v ey b2n

B=|0, 0, bss ..., bs, |, (1)
0’ 0’ ’ O’ bkk’ b blm

where by,1b,, ... by, # 0 and where all elements below the principal diagonal are
equal to zero, is of rank k.

REMARK 2. Theorems 3 and 4 can be used in practice to determine the rank of
a given matrix: By means of the operations 1—4 of Theorem 3 and by permutation
of the columns we transform the given matrix to a matrix of the same rank and of the
form (1) and then apply Theorem 4.

Example 2.
1,0,2, 3
-2,1,0 -1
A= -1, 1,2, 2
-1,2,6, 7

The third row is the sum of the first and second rows; if we drop it, we get the matrix

3
-1
s 7

-

v

1,02
A =1|-21,0
-1,2 6

Applying operations 2 and 3 we can get a matrix in which all elements of the first
column of the matrix except the first are zero: First, we add twice the first row to



28 SURVEY OF APPLICABLE MATHEMATICS 1.16

the second row and then we add the first to the third row. We thus obtain the matrix

1, 0,2 3
A,=10,1,4, 5
0, 2, 8, 10

Now we adjust the second column so as to get zero below the second element: We
subtract twice the second row from the third row and thus obtain

1,02 3
A, =|0,1,45
0,0, 0, 0

> > >

In accordance with Theorem 3 we can drop the last row of this matrix. We get a matrix
the rank of which is 2, according to Theorem 4. Hence the rank of A is also 2.

Definition 4. The determinant of order k (see Definition 1.17.1, p. 29) formed
by the elements in the intersections of arbitrary k rows and k columns of a matrix

Amis mas <+ Apyp

is called a minor of order k of the matrix A[1 < k < min (m, n)].

Theorem 5. A matrix A is of rank h if and only if there exists a minor of A of
order h different from zero, any minor of A of order higher than h being equal
to zero.

Example 3. Consider the matrix

1, 0, 2,
A=|-2 10 -1
-1,2,6, 7
All its minors of order 3, namely
1, 0, 2 , 0, 1,2, 3 0,2, 3
-2,1,0(,|-2,1, -1}, |-2,0, —1},1(1,0, —1
—-1,2, 6 -1,2 7] {—-1,6 7 2, 6, 7]
are equal to zero, while the minor of order 2,
1, 0
’ = 1 S .
ERE

Hence the rank of Ais 2, in accordance with Example 2.

REMARK 3. For further results on matrices see § 1.25, p. 49.
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1.17. Determinants
Definition 1. The determinant of order n of a square matrix

Ai1s 125 «ovy gy
A= Az, 235 +vey Agy

Apis pas +oey @
is defined as the number

A= Z("l)r Ak, Aoy oo A,y »

where the symbol }’ indicates the sum of all terms for all possible permutations
(ky, Kz, ..., k,) of the numbers 1,2, ..., n, the integer r being the number of inver-
sions (Definition 1.12.2, p. 17) in the permutation (kys kg, -, ky,); we write

Ay1s Aygs ooey dqy

(1)

4 = Ay1s 25 «vvs Ay

Aty Apay oy Ay |
Example 1.
I

Ay1s Ay 0 1
‘ = (“1) ap1as, + (_1) 12037 = Ay11Q33 — A1203y

djy1, djy;

since the permutations (1, 2), and (2, 1) of the numbers 1,2 have no inversions and
1 inversion, respectively.

Theorem 1. The value of a determinant remains unaltered if its columns and rows
are interchanged:

Aigs Aiay -oey Ay, A1, Q215 «eny Gy
Gp1s Qa3 ooy Qap| | Q1 Ggp, o.sy 4y,
A1y Auay weey Ay Ains Aops evy Apy

Hence, all properties of determinants expressed in the following text for rows hold
also for columns and vice versa.

Theorem 2. The value of a determinant is unaltered if, to one of its rows, a linear
combination of the remaining rows is added.

Theorem 3. If one of the rows is a linear combination of the remaining rows,
then the value of the determinant is zero.
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Theorem 4. The value of the determinant changes its sign if we interchange two
of its rows.

Definition 2. The determinant

a1, dy2s ceey Ay j—15 Qijr1s eess Qqy
azys azz, cees A2 j—1> Q25415 +ees Qog
Aij =1Gi-1,15 Gi—1,25 «++5 Ai—1,j—1> Qi—1,j+1> ++» j—1n|> (2)
Aiv1,10 Di41,25 - Dir1,j—10 Fit+1,j+15 -+ it n

originating from the determinant 4 by omitting the i-th row and j-th column is
called the minor of order n — 1 of the determinant A belonging to the element a,;.

The cofactor A;jof the element a;; in the determinant A is defined as the minor A;;
equipped with the sign (—1)*/; thus, A;; = (—=1)'*J 4;.

Theorem 5 (The Expansion of a Determinant According to the i-th Row). For
the determinant (1) the following expansion holds:

A=ayA;y +apAn + .0+ apAg,
=(—1)*"a 4, + (=1)*2and,p + ...+ (=1)*"a,4,.
Theorem 6. For i # j,
apA+apAp + ..o+ a,A, =0.

Theorem 7 (The Addition Rule). The relation

a, + by, ayy, ..y ay, Agy Qi +oey Ayp by, a3, ..., a;,
a, + by, Ay, ooy Az, | | G2y A2y oey Aoy 4 by, aza, ..., ayy,
a, + b,,, Apzy +vs Qpy Apy, Qya, s Qun bn, A2,y s Aun

holds, and similarly for other columns.

Theorem 8 (The Multiplication of a Determinant by a Number). The relation

CAyqs Ar2s oves A1y Ai1y A1y vo0s Aqy
CAzys 225 --05 Aap| ¢ Az, 235 «--5 Q3p
canb an2’ ’ ann | anl, Ay2, ’ ann

holds, and similarly for other columns.
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In other words: We multiply a determinant by a number ¢ if we multiply by
this number all the elements of a row or of a column.

Theorem 9 (The Multiplication of Determinants). The relation

A11s Ayzs +oes A1n || b11s b12s oy by €115 C125 -+ Cin

A1, A3y -ovs Ao || Doty bagy o5 ban| | €215 €225 ey Cap
- ’

dn1s Au2s s Qnn bnl, an’ 4 bnn\ Cat> Cn2s > Cun

holds, where
cik = ailblk + ai2b2k + ... + ai,,b,,k (l, k = 1, 2, ey n) .

REMARK 1 (Evaluation of a determinant).

L. asss ay2
= A1143; — 12431 -
azis az;
_ ¥ N

2. Sarrus’s rule for the evaluation of a determinant of the third order:

aiys Ayz> Ag3
N = 041033033 + 031032013 T A31012073 —
d215 G22, Q23 _
N4 \< — Q13032031 — 43303204 Q3301203 -
| 431> Q32, Q33

23S
Q115 Q125 A3

XN N
Az1, d32, Qa3

_ ¥ N

3. The evaluation of a determinant of order »n for n = 3 can be reduced, according
to Theorem 5, to the evaluation of a determinant of order n — 1. First, it is often
advantageous to arrange the original determinant by means of Theorem 2 or Theorem
8 in order to get, in a certain row or column, as many zeros as possible. Then, we
expand the determinant according to this row or column (Theorem 5).
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Example 2.
1, -1, 2,4 1, =1, 2,2 1, —1, , 2
0, 1,—1,2_2 0, 1,—1,1_20, L —-1,1]
3, -1, 2,0 3, =1, 2,0 713, —1, ,0]
-1, 0, 3,2 -1, 0, 3,1 0, -1, 5,3
I, -1, 1 -1, 2,2 -1, 2,2 -1, 2,2
=2(1|—-1, 2,0/ -0{-1,2,0/+3| 1, =1,1{—-0] 1, —1,1]]=
-1, 53 -1, 5,3 -1, 5,3 -1, 2,0
1, -1, 1 ~1, 2,2
=2{—-1, 2,0/+6] 1, —1, 1| =48.
—1, 5, 3 —1, 5’ 3

We proceeded in the above evaluation as follows: First, a common factor 2 was
removed from the last column; then we added the first row to the last row, finally,
we expanded the determinant according to the first column.

1.18. Systems of Linear Equations

(a) Definition and Properties of Systems of Linear Equations

Definition 1. By a system of m linear equations in n unknowns x, X,, ..., X,
we understand the system

Ay1Xy + 13Xy + ...+ agx, = by,
a21x1 + a22x2 + PR + az,,x,, == bz 5

(1)

(@115 +--» Qs by, ..., b, being given real or complex numbers).

By a solution of the system (1) we mean any ordered n-tuple of (real or complex)
numbers (&, &,, ..., &,), i.e. an n-component vector such that if &, ..., &, are sub-
stituted for the unknowns x, ..., x,, then all the equations of the system (1) are
satisfied. Two systems of linear equations (in the same number of unknowns x,, ..., x,)
are said to be equivalent systems of linear equations if every solution of the first
system is also a solution of the second system and vice versa. The matrix

dy15 Aj2s «-+5 QAqp
A= days A3y «-05 Aoy
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is called the matrix of the system (1) The matrix

Ay1s A1z - A1ps by

Ar1s G225 +-es Q3 by
B =

amla amZ’ ’ amm bm

is the so-called augmented matrix of the system (1).

Theorem 1 (Theorem of Frobenius). The system (1) is solvable if and only if the
rank of the matrix of the system is equal to the rank of the augmented matrix of
the system.

Theorem 2. The system of m homogeneous equations in n unknowns

....................... )

has always the (trivial) zero solution 0 = (0, 0, ..., 0).

Theorem 3. If the system (2) has a solution & = (£, ..., £,), then it has also the
solution af = (aé, ..., af,), where o is an arbitrary real or complex number.

If the vectors &M = (&1, ..., W), ..., E® = (&P, .., E®) are solutions of the
system (2), then every linear combination of the form a; & + 0,&® + ... + g &®
(see Definition 1.15.4) is also a solution of the system (2).

Theorem 4. If the rank of the matrix of the system (2) of homogeneous equations
is h, then the system (2) has n — h linearly independent solutions [in the sense
of linear independence of vectors (see Definition 1.15.3)] and every solution of the
system (2) is a linear combination of these n — h solutions.

In particular, if A = n, then the system has only the trivial solution 0 = (0, ..rr 0).
If m = n in (2), then the system has a nontrivial solution if and only if the deter-
minant of the system is zero.

Theorem 5. Let the rank of the matrix of the system (1) be h, let n = (1, ..., 1)
be a solution of the system (1) and let &0, E®,  E"~W pe n — h linearly inde-
pendent solutions of the system (2). Then every solution of the system (1) is the sum
of a soiution ;&N + ... + o, ,E@M of the homogeneous system (2) and the solu-
tion n of the system (1); thus, the form of every solution of the system (1) is «, &) +
+oeee 0, @M g, where ay, ..., ,_, are real or complex numbers.

(b) Solution of Systems of Linear Equations without the Use of
Determinants

Theorem 6. The augmented matrix B of the system (1) can be transformed by
the operations 1—4 of Theorem 1.16.3, p. 27 (see Example 1.16.2, p. 27), to the
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matrix C which has only zeros below the principal diagonal. The system of the
equations in n unknowns whose augmented matrix is the matrix C is equivalent
to the system (1). In this way, the solution of the system (1) is transformed to the
solution of a system which can be easily solved.

Example 1.
(a) x—2y+3z= 2, 1, =2, 3, 2
3x— y+ z= 0, B — 3, -1, 1, O
3x +4y — 7z = -6, T3, 4, -7, -6
Sy —8z=—-6; 0, 5 -8, —6

The matrix B can be arranged as follows: The fourth row is a linear combination
of the second and third rows and therefore can be omitted; also the third row is
a linear combination of the first and second rows (namely, it is the difference of twice
the second row and three times the first row) and thus can also be omitted. It is
sufficient to consider the matrix
[1, -2, 3, 2]
3, -1,1,0]"

Here, we subtract three times the first row from the second one and get the matrix
Cc_ 1, -2, 3, 2 .
0, 5, -8 -6

x—2y+3z= 2,
5y — 8z = —6.

Thus, we solve the system

We get y = 3(8z — 6), x = 4(z — 2). Hence, we can choose an arbitrary (complex)
number for z. The system has an infinite number of solutions x = -}(oc — 2), y=
= }(8x — 6), z = « (« being arbitrary).

(b) x—2y+ 3z= 2,
3x— y+19z2= 0,

Ix+4y— Tz= 1,

3y — 6z=—6.

From the matrix

1, -2, 3, 2
3, -1, 19, O
B= 3, 4, -7, 1
0, 3, —6, —6
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we get successively

1, -2, 3, 27 [1L, -2 3 2
0, 5 10, -6| [0, 5 10, —6
0, 10, —16, =5 | |0, 10, ~16, ~5 |”
0, 3, —6 —-6J Lo, 1, -2 -2

1, -2, 3, 2
0, 5 10, -6
0, 0, =36, 7
0, O

-

=

>

To get the solution we solve the system

xX—-2y+ 3z= 2,

—36z= 17,
0= 171;

oo o

, 0, TI_

Pt
-

-

'

35

“
W

-
—

however, this system has no solution, for the last equation cannot be satisfied. Hence,

the given system is not solvable.

REMARK 1. When rearranging the matrix B of Theorem 6 it is sometimes advan-
tageous to interchange two columns. This can be done, provided neither of them
is the last column; however, we must then interchange the unknowns in the resulting
system corresponding to the interchanged columns. The procedure is obvious from

Example 2.
Example 2.
3x+y+32z2=2, 3,1,
—X +3z=3, B=|-1,0,
4x - z=0, 4, 0, —
we interchange the first and second columns:
1, 3, 3,2 1, 3, 3,
0, -1, 3,3, €=|0 -1, 3,
0, 4, -1,0 0, 0, 11,

The solution to be found is then the solution of the system

y+3x+ 3z= 2,
- x+ 3z 3,
11z = 12.

—_ L) W

S W N

N ta N
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(¢) Solution of Systems of Linear Equations by Means of Determinants

Theorem 7 (Cramer’s Rule). The system of n equations in n unknowns

........................ ()

D=j|.......... #0,

has a unique solution (xy, ..., X,), where x; = Di/D; here, D, is the determinant
obtained by replacing the i-th column of D by the column of elements forming
the right-hand sides of equations (3).

Example 3.
3, — 2%, + x3= 1,
X+ X3 — X3= -2,
2x, —3x;= 0.
3, =2, 1 1, -2, 1
D=1, 1, =1|=—-13#£0; x,=—35|-2, 1, -1|=-3%,
12, 0, -3 | o, 0, -3
3, 1, 1 3, =2, 1
Xp=—35|L =2, -1|==-8, x;=-%|1, 1, -2|=—-.
2, 0, =3 12, 0, 0

Theorem 8 (The System of m Equations in n Unknowns). Let the matrix of a system
and the augmented matrix of the system have the same rank h. Solution: In the
matrix, we find a mincr D, % 0 of order h.In the h equations of the given system (1)
containing the elements of the determinant D,, we leave on the left-hand side those
unknowns whose coefficients belong to D,. We choose arbitrary values for the remain-
ing unknowns, transfer them to the right-hand side and solve this system of h equa-
tions in h unknowns by Cramer’s Rule. We can always proceed this way, both for
homogeneous and non-homogeneous systems.

Example 4.
(a) 3x1 - 2x2 + X3 - x4 = 2 )

—X4 + 3% + x4 = —1,
X, + 3x3 + 2x4
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The matrix of the system and the augmented matrix have rank 2,

3, =2, 1
-1, 0,3, =-16.
0, 1,3
Transform the system to the form
3%, = 2%+ x3= 2+ X4,
=X +3x3=—-1— x4,
X, +3x3= 3 —2x,.
b 24 x, —2,1 b2, -2, 1
X =-—15|=1— x5 0,3|=-%||~1, 03|+
3—-2x,, 1,3 3, L,3
1, =2, 1
+ x40 =1, 0, 3= —%[-31 + 2x,],
-2, 1, 3]
3, 24 x4 1
X;= —15| =1 —1— x4 3| = —&[~33 + 14x,],
0, 3—2x4 3

3, =2, 2+ x4
x3=—1¢| =1L 0, =1~ x4 =—~%[=5+ 6x,]
0, 1, 3-2x,

(x4 is arbitrary).
(b) The system of two homogeneous equations in three unknowns
ay Xy + agyX; + dg3x3 =0,
ay1X; + dy7X) + az3x3 =0
is as follows.
If the rank of the matrix of the system is 2, then the solution is

Ay1a, 13, {413 Q11

a1y, A2

Xy 1Xy:1X3 = : .

dz3, A1

| G225 Q33 az1> A3z

REMARK 2. On the numerical solution of systems of linear equations see Chap. 30.

1.19. Algebraic Equations of Higher Degree.
General Properties

Definition 1. An equation

agx" + ax" '+ ... +a,=0, a,#0, (1)
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where aq, 4y, ..., d, are real or complex numbers, is called an algebraic equation
of degree n.

REMARK 1. On the concept of a roof, its multiplicity and theorems on the
number of roots see §1.14.

Theorem 1 (Properties of Roots). The roots x4, X,, ..., X, of the equation

X +ax'+...+a,=0 (2)
satisfy the relations
n
ay=— (X, + X, + ...+ %)= — ) x;,
i1

n
Ay = X1X; + X, X3+ oo F X (X, = Y XX,

ij=1
i<j
n
ay = — (X1X;%3 4+ X1 X3%g + oo F Xy 2X,1X,) = — 3 XXXy,
i,jk=1
i<j<k
a, = (=1 %%, ... %,
REMARK 2. The expressions
n n
yl—'zxx’ V2 = szxja » Yo = X1X2 Xn
i=1 ij=1
i<j

are called elementary symmetric functions of the variables x, x,, ..., X,.
REMARK 3. On the numerical solution of algebraic equations see Chap. 31.

Definition 2. The resultant of two algebraic equations

agx" +ax" '+ ...+a,=0, as#0, (3)
box" + b)x" ' + ... 4+b, =0, by#O0

is defined as the determinant

agy, dy, cers Qp_1s Ay 0, e, 0

0, ag ay, ..., Ap_1s Qs 0, ..., 0 L, rows
0, , 0, ag, ay, s A1, A

by, by ..., byoy, b,, O, o 0

0, by by, ..., by_y, by 0, veey O L rows |
0, , 0, by, by, , b,_., b,
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Theorem 2. The equations (3) have a common root if and only if their resultant
is equal to zero.

1.20. Quadratic, Cubic and Biquadratic Equations

(a) A quadratic equation is of the form

(@) ax* +bx+c =0 (as#0) or
(b) x*+ px 4+ q =0 (reduced form)

Definition 1. The discriminant of the equation (a) is the number D = b* — 4ac

and that of the equation (b) is the number D = p? — 4q.

Theorem 1.

For D # 0, the equation has two distinct roots;
for D = 0, the equation has one double root.

If the coefficients of the equation are real, then

for D > 0, it has two distinct real roots;
for D < 0, it has two complex conjugate roots;
for D =0, it has only one real (double) root.

The solution can be found:

1. by factorization into linear factors:

ax* + bx + ¢ = a(x — x;)(x —=x;) or x>+ px+q=(x—x)(x — x3),
a(x1 +x2)= "‘b, x1+x2: —p’
ar, Ty = ¢ XX, = ¢

[eg. x> =5x+6=0, (x—2)(x —3)=0, x; =2, x, =3];
2. in the case of the equation ax? + bx + ¢ = 0 by the formula

—b + J(b* — 4ac)

2a

X1,2 =

3. in the case of the equation x*> + px + g = 0 by the formula

(b) A cubic equation is of the form

ax* + bx? + ex +d=0, a#0. (1)
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Theorem 2. By the substitution x = y — b/3a and dividing by a, the equation (1)
becomes

¥y +3py +29 =0, (2)
where
3ac ~ b? 2b3 be d
3p =0T g e 4
P 3q2 1 27a®>  3a®> a
Definition 2. The discriminant of the equation (2) is the number D = —p* — ¢2.
Theorem 3.

For D # 0, the equation (2) has three distinct roots;

for D = 0, the equation (2) has either a double root (if p*> = —q* # 0) or a triple
zero root (if p = q = 0).

If the coefficients of the equation (2) are real, then

for D = 0, it has three real roots which are distinct if D > 0;
for D < 0, it has one real and two complex conjugate roots.

Solution (see also Chap. 31):

1. By factorization into linear factors:

Il
o

ax®* + bx* +ex +d =0; alx — x;)(x — x;)(x — x3)

(x5 X3, x5 are the roots);
d

b c
X, X, +X3=——, XX, + X;X3 + X2X3 =—, X;XpX3= —
a a a

[e-g. x> + 5x* + 6x = 0;x(x* + 5x + 6) = x(x + 2) (x + 3); therootsare x, = 0,
X, = —2,%3 = —3].

2. The algebraic solution (Tartaglia’s or Cardan’s Formulae). The roots y;, y,,
y3 of equation (2) are

yi=u+v, y,=¢&u+ &V, Y3 =&U + &0,

where

_ _l _\ﬁ _ 3 7_ 2 3 3,7, 2 3\7 .
a=—oxits, u=y[-a+ J@+ )] v=VI-a -V + )]
here we choose the cube roots (see § 1.21, p. 42) so that uv = —p. This method is

not suitable if (2) has real coefficients and D > 0, since the real roots y,, y,, y; are
expressed in terms of roots of complex numbers (the irreducible case).

3. The trigonometric solution. Let the coefficients p, g of the equation (2) be
real and different from zero. Denote the roots by y;, y,, y;.- Put r = ¢ \/|pl, where
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TaBLE 1.1
p<0
3 2 3 2 p=>0
p+qg =0 p’+q¢ >0 Check
q q . q
COS(p:r—_,;* cosh«p:;s smhg0=T—3-
Yy = —2r cosg yy = —2r cosh 4 Yy = —2r sinh?f
3 3 3
y2=2rcos<60°—£37> y2=rcosh§+ Y= rsinhg—%—
| . ., P . 1
| +1\/(3)rsmh§ +1\/(3)rcosh§ i+ y2+y3=0
y3 = 2r cos 60"—}~f y3=rcosh?— y3zrsinhz——
3 3 3
R 4 . @
—1\/(3)rsmh§ —1\/(3)rcosh§
* ¢ is in the interval (0°, 90°), r = ¢ /| p| (see above).
£¢=1ifqg > 0and e = —1if g < 0. Then the roots can be determined by means of

the trigonometric or hyperbolic functions according to Table 1.1.
If ¢ = 0 in equation (2), then the equation has the common factor y and can be

solved easily.
If p = 0 in equation (2), then (2) is a binomial equation (see § 1.21, p. 42).

(¢) A biquadratic (or quartic) equation has the form:
ax* + bx* + cx*+dx+e=0, a#0. (3)

Theorem 4. By the substitution x = y — b[4a and dividing by a, the equation (5)
becomes

vapy+qy+r=0 (4)
where
_ e b bedo 36 P bd e
8a2 a 8a® 24> a’ 256a* 16a® 4a® a
Solution:

1. By factorization into linear factors:

ax* + bx3 +ex? +dx +e=0; a(x —x)(x = x2)(x = %3)(x — x4) =0
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(%1, X35 X3, X4 are the roots);

b c
Xi+ X3+ X34+ X4=——; X1X; + X X3+ X;X4 + X3X3 + X3X4 + X3X4 = —
a
d e
X1X3X3 T X1X2Xq + X1X3X4 + X3X3X4 = — —; X X3X3X4 = —.
a a

2. The algebraic solution. The roots y,, y,, ys, ¥4 of the equation (4) are

= JutJntin, n= Y- Jn-Jn,
V3= =21+ 2 = 23, ya= =z, — 7 + 23,

where z,, z,, z; are the roots of the equation (the reducing cubic)

I S LA A P Y
2 16 4 64 ’
here, the roots \/z,, \/z;, \/z3 should be chosen (see § 1.21) such that
NONSNSEES

REMARK 1. This method is not suitable for numerical solution (see Chap. 31).

1.21. Binomial Equations

Definition 1. An equation of the form
—a=0,

where « is a non-zero real or complex number, is called a binomial equation.

1.21

L

(1)

Definition 2. The roots of equation (1) are said to be the n-th roots of the number o
and are denoted in the theory of algebraic equations by the symbol Voz; thus, in this
case (in contrast to § 1.8, p. 12) '{/cx stands for any of the n roots of the equation (1).

Theorem 1. Equation (1) has n simple roots x,, ..., X, given by

et ="/ (1) (cos @+ 2kr i H{k—") (k=0,1,..,n—1),
n n

where o = r(cos @ + isin @) is the trigonometric form of the number a, 3/ (r) > 0.

REMARK 1. By means of Theorem 1 we easily find all the n-th roots of any complex

number.
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Example 1. (a) x> — 2 = 0. First, 2 = 2(cos 0 + isin 0). Hence
x, =3/(2)(cos 0 + isin 0) = 3/(2) = 1-260,

.3)
+1_’

X, = 3/(2) (cos Zn + isin in) = 302 <._

N | —

|
SIS

x3 = 3/(2) (cos in + isin fn) = 3/(2) (—- % — i >
20
V2(-1+i) /2(1+i)
o 2 90° 2
B 120 I
V2(-1-i) V2(1-i)
Fig. 1.5a. 35(_1_./3 2 2 Fig. 1.5b.
2(-3-1%5)

(b) x* + 1 = 0. We have —1 = cos 7 + isin n. Hence

X, =cos§n+isin1n=§(l+i),

X, =cosin+isin%n=l/22(—l + i),
J2

_ § '.E _ N“(_ ~.
X3 = COS 37 + isinim = 2( 1 —1),

x4:coslﬂ:+isin%n=%(l —i).

REMARK 2. The roots of the equation x" — o« = 0 (« # 0) form, in the Argand
diagram, the vertices of an n-sided regular polygon inscribed in the circle with centre
at the origin and radius {/ch[ > 0. Fig. 1.5 illustrates the roots of the equations
x* — 2 =0,x* + 1 = 0. One sees from the figure that the n-th roots can easily be
constructed geometrically.

1.22. Reciprocal Equations

Definition 1. By a reciprocal equation we understand an equation of the form

apx" + ax"" ' +...+a,=0
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where (a) a; = a,_; (i=0,1,...,n) (positively reciprocal equation) or
(b) a; = —a,—; (i=0,1,...,n) (negatively reciprocal equation).

Theorem 1. Every positively reciprocal equation of odd degree and every nega-
tively reciprocal equation of even degree has the root — 1.

Theorem 2. Every negatively reciprocal equation has the root + 1.

Theorem 3. Reducing a reciprocal equation by linear factors of the form x — 1,
X + 1, we get a positively reciprocal equation of even degree

agx™ +ax*™ '+ o+ ax™+ ... +a,=0

which, if divided by x™, becomes

m 1 m=-1 1 1
ag (X" + — )+ a;(x Ralrerrll I SRPPIE S B s +a,=0.
X X x

By the substitution x + 1/x =y, all binomials can be expressed as polynomials in y;

hence we get an equation of degree m in y which in some cases can then be easily
solved.

Example 1. The equation x® + x® — 5x* + 5x> — x — 1 = 0 is a negatively
reciprocal equation of even degree; thus it has theroots €, = —1, &, = + 1. Dividing
by (x + 1) (x — 1), we get a positively reciprocal equation of even degree

*+x* -4+ x+1=0, ie <x2+~1—2>+(x+1>—4=0.
X X
By the substitution x + 1 /x =y, we transform the equation into the form y? + y —
— 6 = 0 (since x? + 1/x* = (x + 1/x)? — 2) with roots y, = 2, y, = —3. Hence,
the remaining four roots of the original equation are the roots of the quadratic
equations

1
x+—=2,x+1—=—3.
X b

1.23. The Concept of a Set and the Concept of a Mapping

A set is a collection of certain objects, called the elements of the set. A set is com-
pletely determined by its elements. Thus, if the sets 4, B consist of the same elements,
we say that they are equal and write A = B.

Examples of sets:

(a) the set of all even numbers;
(b) the set of all points on the circumference of a given circle;
(c) the set of the numbers 1, 2, 3 [we denote it by either {1, 2, 3} or (1, 2, 3)].
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The empty (or void) set (denoted by @) contains no elements at all. For example,
the set of all even numbers greater than 0 and less than 2 is empty.

If x is an element of the set M, we write x € M; if x is not an element of this set,
then we write either x ¢ M or x non € M.

Definition 1. The set A is called a subset of the set B (in symbols, 4 < B) if every
element x of the set A4 is also an element of the set B, i.e. if xe A= x € B.

REMARK 1. For the sets A, B the equality 4 = B holds if and only if both 4 = B
and B = A4 hold.

Definition 2. The union (or sum) of the sets A, B (in symbols, A U Bor 4 + B)
is the set of those elements which belong to at least one of the sets. [Similarly, for
a greater (even infinite) number of sets.]

Definition 3. The intersection (or product) of the sets A, B (in symbols, A N B or
A.B or AB) is the set of elements belonging simultaneously to both A and B.
(Similarly, for a greater (even infinite) number of sets.) If 4 N B = 0, we say that 4
and B are disjoint sets (they have no common element).

Definition 4. The difference (or relative complement) of the sets 4, B (in symbols,
A= Bor A— Bor A\ B)is the set of those elements of 4 which do not belong
to B.

Example 1. If A is the set of real numbers x satisfying 1 < x < 10(i.e. 4 = [1, 10])
and if, similarly B = [5,15], then AuB =[1,15], AnB=[510], A~ B =
=[1,5). If C=[1,2], then Cc 4, Cn B = 0.

Definition 5. The set of all ordered pairs (x, y), where x € A, y € B, is called the
cartesian product of the sets A, B (denoted by A x B).

)4
2
B Ax B/
1
_______ . A X
Fig.1.6. 0 1 2 3 4

Example 2. If A = [2,4], B = [1, 2], then 4 x Bis the set of the ordered pairs
(x, y), where 2 < x £ 4,1 £ y < 2.1If weillustrate (Fig. 1.6) the sets A and B in the
plane of the coordinate axes x, y as the intervals [2,4] of the x axis and as [ 1, 2] of the
y axis, respectively, then 4 x B is represented by the rectangle with the vertices

@2 1), (2,2), (4, 1), (4,2).
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REMARK 2. Let A, be a system of sets with the index o running through a set M.

Then the union and intersection of all the sets A, are denoted by the symbols {J 4,
aeM

and N 4,, respectively. If M is the set of the natural numbers, then the union and
acM

intersection of the sets A;, 4,, 43, ... are often denoted by |J 4; and N} A;, respec-
n i=1 i=1
tively. Similarly, we write |J A4, instead of 4, U A, U ... U A, and correspondingly
k=1

for the intersection.

Theorem 1 (De Morgan’s Formulae). The relations

NBud)=Bu(NA4); U(BnA)=Bn(UA,);

aeM acM aeM aeM

B-UA=NB=~4); B-NA=U(B~+4,)

aeM aeM acM acM

hold.

Definition 6. A mapping f of a set A into a set B is a rule which assigns to every
element x € A a definite element y € B (uniquely determined by the element x). The
element y is denoted by the symbol f(x) and is called the image of the element x.
The element x is said to be the original or inverse image of the element f(x). The set
A is called the domain of the mapping f.

Definition 7. The mapping f of Definition 6 is a mapping of the set A onto the
set B if, for every y € B, there exists at least one x € 4 such that y = f(x).

Definition 8. The mapping f is said to be one-to-one, if x; # x, = f(x;) # f(x2).

Definition 9. Let f be a one-to-one mapping of a set A onto a set B. The mapping
7! which assigns to every y e B the element f~'(y) = x € 4 such that f(x) = y,
is called the inverse mapping to f.

Example 3. (a) Let 4 be the set of the real numbers. For x € 4, put f(x) = x%.
Then f is a mapping (not one-to-one) of the set A into the set A (not a mapping of A
onto A); f is a mapping of the set A onto the set B = [0, ) (onto the set of all real
non-negative numbers).

(b) Let N be the set of the integers. For x € N, put f(x) = x + 5. Then f is a one-
to-one mapping of the set N onto N. For the inverse mapping f ' to f, f~'(y) =
= y — 5 holds.

REMARK 3. Besides the term “mapping” the terms transformation, correspond-
ence, operation, operator, map, functional, function are also used, in cases where
the sets 4, B are in some way specialized.

REMARK 4. On the concept of a function of one real variable x see § 11.1. This
function is usually denoted by f(x), in contrast to mere f as in Definition 6. [In
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theoretical considerations, it is often more advantageous to write only f instead of
f(x), for there can be no misunderstanding as to whether f (x) is a function or the
value of the function at the point x.]

1.24. Groups, Rings, Division Rings, Fields

Definition 1. A group is a non-empty set G in which multiplication is determined
in some way, i.e. a rule is given which assigns to each ordered pair a, b of G a unique
element ¢ = ab € G, their product. Moreover, the multiplication satisfies the fol-
lowing rules (laws, axioms):

1. (ab) ¢ = a(bc) (associative law).

2. For each two elements a, b € G there exist elements x, y € G such that ax = b
and ya = b.

REMARK 1. The axioms 1, 2 immediately imply that there is a unique identity
element e in the group G such that ea = ae = a for every a € G. Furthermore, for
each element a € G, there exists a unique inversea™* of asuchthataa™ = a 'a = e.

Definition 2. A group is called abelian, or commutative, if, for every two of its
elements a, b, the relation ab = ba holds.

REMARK 2. If G is an abelian group, then we frequently use additive notation, i.e.
we write a + b instead of ab. The identity element is denoted by 0 (zero element);
the inverse of a is denoted by —a.

Example 1. (a) The set of all non-zero rational numbers is, with respect to multi-
plication, an abelian group; the number 1 is its identity element.

(b) The setof all integers is an abelian group with respect to addition; the number 0
1s its identity element, the number — a is the inverse of the number a.

(c) The set of all regular matrices of order n is a (non-commutative) group with
respect to matrix multiplication (see Definition 1.25.3, p. 49).

Definition 3. By a ring (more exactly an associative ring) is meant a non-empty
set R, in which addition and multiplication are determined in some way, i.e. rules
are given which assign to each ordered pair a, b € R a unique element a + b€ R
(their sum) and a unique element ab € R (their product). Moreover, this addition
and multiplication satisfy the following rules (laws, axioms):

1. The set R is, with respect to addition, an abelian group, i.e. for every three
elements the relations (a + b) + ¢ =a + (b + ¢) and a + b = b + a hold and
there exists an element x such that a + x = b (the zero element is denoted by 0).



48 SURVEY OF APPLICABLE MATHEMATICS 1.24

2. Multiplication is associative and is distributive with respect to addition, i.e.
for every three elements a, b, ce R

(ab) ¢ = a(bc),

(@ +b)c=ac+bc, a(b+ c)=ab + ac.
holds.

ReMARK 3. In a ring R, the relation a0 = Oa = 0 holds for every element a € R.
In R, non-zero elements a, b may exist such that their product is zero: ab = 0. Such
elements are said to be zero-divisors. If there is an element e in R such that ae =
= ea = q for every a € R, we say that R is a ring with identity. If an identity ele-
ment exists in R, then it is uniquely determined.

Definition 4. A ring R is called a commutative ring if, for each a, b € R, the rela-
tion ab = ba holds.

Example 2. (a) The set of all integers is a (commutative) ring with identity with
respect to addition and multiplication.

(b) The set of all even numbers is a (commutative) ring without identity with respect
to addition and multiplication.

(c) The set of all square matrices of order n is a (non-commutative) ring with zero-
divisors with respect to matrix addition and multiplication (see Theorem 1.25.3,
p. 50).

Definition 5. A division ring (skew field or s-field) D is a ring with identity e # 0
such that, for every a € D, a # 0, there exists an inverse a~! € D such that aa™! =
= a~'a = e. If, moreover, the ring is commutative, then it is called a field.

REMARK 4. The identity element e of the division ring D is usually denoted by 1.
A division ring has no zero-divisors: If the product of two elements of a division
ring is equal to zero, then at least one of the elements is zero. In a division ring, to
any non-zero element there corresponds a unique inverse. The set of all non-zero
elements of a division ring is a group with respect to multiplication.

Example 3. (a) The set of all rational numbers* is a field (the so-called field of
rational numbers).

(b) The set of all real numbers* is a field (the so-called field of real numbers).

(c) The set of all complex numbers* is a field (the so-called field of complex
numbers).

* With operations of addition and multiplication defined in the usual way.
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1.25. Matrices (continued). Operations on Matrices
REMARK 1. The elements of the matrices under consideration — unless otherwise
stated — will always be real or complex numbers.

Definition 1. The matrix «A obtained from a matrix A by multiplication of all
its elements by a number a is called the (scalar) product of the matrix A and the
number a:

Amis -5 Amp ; O pyysy vvos aam".

Definition 2. The sum A + B of two m by n matrices A, B is the m by n matrix
whose elements are the sums of the corresponding elements:

Ants oo o Qnn bmh ey bmn L Amy + bmh cees Qmp -+ bmn -

Theorem 1. The scalar multiplication and addition of m by n matrices satisfy
the following rules:

1. A+(B+C)=(A+B)+C.
2. A+B=B+ A,
3. A+ 0= A, where

is the so-called zero-matrix.

4. For two matrices A, B there exists a matrix X such that A + X = B; it is the
matrix X =B + (—1)A= B — A
5.0(A+ B)=aA+aB; (x+ f)A=aA+ BA.

Definition 3. The product AB of an m by n matrix A and an n by p matrix B
is the m by p matrix C defined as follows: If

Aigs v Oyn byy, «oer bip | Cits +oos C1p

Ap1s ooy A bpis -+ bup Cmis +++s Cmp

where ¢;; = @;by; + @by + oo Ay (i=12.om j=12.., p). (In
words: The rows of the matrix A are multiplied by the columns of the matrix B. The
number of columns of the first matrix must be equal to the number of rows of the
second.)
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Theorem 2. The multiplication of matrices A, B, C satisfies the relations

1. (AB)C = A(BC),
2. (A+B)C =AC + BC, AB+C)=AB+ AC,

if the sums and products of the matrices considered are defined (i.e. if the matrices
A, B, C are of prescribed type).

REMARK 2. In the following text, we restrict ourselves to square matrices of
order n, i.e. to n by n matrices.

Theorem 3. The set of all square matrices of order n whose elements are real or
complex numbers constitutes a ring with respect to matrix addition and multi-
plication (see 1.24, p. 47), the so-called ring of square real or complex matrices.
For n > 1, this ring is non-commutative (i.e., in general, AB # BA); it has an
identity element — the identity matrix

1,0, ...,0
| = 0,1, ...,0
0,0, ..,1

Furthermore, this ring has zero-divisors, i.e. there are pairs of non-zero matrices
A, B such that their product is the zero matrix.

Definition 4. A square matrix A = (a4;) of order n is said to be regular or non-
singular if its determinant |a;;| is different from zero (i.e. if Ais of rank n); a matrix
which is not regular is called singular.

Theorem 4. The determinant of the matrix AB — the product of square matrices

A, B of the same order — is equal to the product of the determinants of the matrices
A B.

Theorem 5. The product of regular matrices of the same order is again a regular
matrix.

Definition 5. The inverse of a square matrix A of order n is a square matrix A™?
of order n such that AA"! = A'A = I where / is the identity matrix.

Theorem 6. The inverse A™! of a square matrix A exists if and only if A is
regular. If

-1 -1 -1
ayqs alz, oo aln AllA N AZIA s eeey AnlA
-1 -1 -1
Ayq, Aspy eney A _ A A A,,A ey AA
A= 21> Y22, s Y2an , then A 1 _ 12 > 22 s 5 n2 ,
AATL A,ATE A,A"1
_an17 Auas «ovy dpp 1in > 2n > sy nn

where A is the determinant of the matrix A and A;j is the cofactor belonging to the
element a;; in the determinant A (see Definition 1.17.2, p. 30).
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REMARK 3 (A System of Linear Equations in Matrix Form). Let

ay1Xy + X, + ... + ayX, = by,

........................... ot (1)

b b,

ay1, A2, --v5 Ayy x b

A= ... ... , o x=| 2|, b=| "2
a a e, a : :

nl> n2s ) nn X b

Then the system of equations (1) can be rewritten in the matrix form
Ax =b. )

If the determinant of the system is non-zero, then the matrix A is regular, and thus,
its inverse A~' exists. Multiplying (2) by this matrix A™!, we get

A"'Ax = A"'b, ie. x=A"'b. (3)

If the inverse A~! of the matrix A is known, then we can, in accordance with (3),
immediately write down the solution of the system (1) (see also Chap. 30).

Theorem 7. The inverse of the product AB of regular matrices A, B is equal to

the product of the inverses of the matrices A and B taken in reverse order:
(AB)™' = BTTATL

REMARK 4. In what follows, A" denotes the transpose of the matrix A (see Defini-
tion 1.16.3, p. 26).

Theorem 8. The transpose of the product AB of two matrices A, B is equal to

the product of the transposes of the matrices A and B taken in the reverse
order: (AB) = B'A’. Furthermore (A + B) = A" + B

Definition 6. A matrix is called symmetric or skew-symmetric respectively, if
A= A,or A= —Aie.ifa;; = a;, ora;; = —ay, for i, j = 1,2, ..., n, respect-
ively.

REMARK 5. The diagonal elements of a skew-symmetric matrix are zero.

Theorem 9 (A matrix expressed as a sum of a symmetric and a skew-symmetric
matrix). A matrix A is a sum of the symmetric matrix $(A + A’) and the skew-
symmetric matrix 3(A — A’); hence A = }(A + A’) + 3(A — A).

Theorem 10. The product of two symmetric matrices A, B is a symmetric matrix
if and only if the matrices commute, i.e. if AB = BA.
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Theorem 11. The rank of a skew-symmetric matrix is always an even number.
Definition 7. A matrix A is called orthogonal if AA’ = I, ie. if A = A™%,

Theorem 12. Let A = (‘aia_'?. be an orthogonal matrix of order n. Then the rela-
tions

DM =

a,zj = 1 ’ .Zla"jakj = 0 (i # k) (4)
j=

1

J

hold. In words: In an orthogonal matrix, the sum of the products of the elements
of an arbitrary row and of the corresponding elements of another row is zero and
the sum of the squares of the elements of an arbitrary row is unity.

A similar statement holds for the columns:

Yajp=1, Yauau=0 (i#k). ©)
Jj=1 j=1

Conversely, if the elements of a matrix A = (ai;) satisfy (4) or (5), then A is ortho-
gonal.

Example 1. The rotation of the rectangular axes in a plane through an angle « is
expressed by the following equations (cf. Theorem 5.13.3, p. 186):

x'= xcosa+ ysin a,
y = —xsin a + ycosa.

The matrix of this transformation, i.e. the matrix
[ cos «, sin oc]
—sin o, COSs a
is orthogonal, as can easily be checked using Theorem 12.
Theorem 13. The determinant of an orthogonal matrix is equal to 1 or to —1.
Theorem 14. The product of orthogonal matrices is an orthogonal matrix.

Theorem 15. The inverse of an orthogonal matrix is an orthogonal matrix.

Definition 8. The (complex) conjugate A of a matrix A (whose elements are com-
plex numbers) is the matrix obtained from A by replacing every element a;; of A
by its conjugate a;;.

Theorem 16. The relations
aA + BB =GA + fB; AB = AB;

A=@A; Al=(A)".
hold.
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Definition 9. A matrix A is called Hermitian, or skew-Hermitian, if
A=A, or A= —A’, respectively.

Definition 10. A matrix A such that

is called unitary.

Theorem 17. A matrix A = (a.;) of order n is unitary if and only if the rela-
tions

Yaydy =1, Yaydy=0 (i#k) (6)
i=1 =1

or
jZla,--iiﬂ =1, _Zlaﬁa,-k =0 (i#k) ()
- i~

hold (cf. Theorem 12).
Theorem 18. The product of unitary matrices is a unitary matrix.

Theorem 19. The inverse of a unitary matrix is again unitary.
Theorem 20. The absolute value of the determinant of a unitary matrix is 1.

Definition 11. By the trace of the square matrix

is meant the sum a,; + a,, + ... + a,, of the diagonal elements of the matrix.

1.26. Matrices Partitioned into Blocks and Operations on Them;
Triangular and Diagonal Matrices

Definition 1 (4 Matrix Partitioned into Blocks). Let A be an m by n matrix.
Divide it into parts by drawing lines between certain rows and certain columns.
These parts (so-called blocks) are again matrices and the matrix A is formed from
these blocks which constitute its elements. We say that the matrix A is partitioned
into blocks.

Example 1.

-

>

Il
— D
—
O‘I\)N
—_— G W

>
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A A
A — i1l» 12}’
[AZI! A22
where the individual blocks are the matrices
_ 1, 4 N A12= 2, 3 s
Au ‘[o, 1] [2, 3}
Ay =[1, -1], A,=[01].

Theorem t (Multiplication by a Scalar). Let a matrix A be partitioned into
blocks A,;:

Thus, for example,

A=| .o, o (1)

Let o be a real or complex number. Then

aA i, al,, ..., dA,,

By, ..., By

be partitioned into blocks of the same type as the matrix (1). Then
All + Blb “eey Aln + Bln

Aml + Bml’ R Amn + an
Theorem 3 (Product). Let two matrices C, D be partitioned into blocks

Ciyy ... Cy, D, ... D

C

mls *-¢

in such a way that the number of columns of the matrix C;; is equal to the number
of rows of the matrix D;, (i = 1,...,m; k = 1, ..., p). Then

Fiy, ..., Fy

p

where F, = C; /D, + C;,D,, + ... + C,D,,.
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Hence: The blocks of the matrix CD are the sums of the products of the blocks
forming the elements of the rows of the matrix C and the blocks forming the elements
of the columns of the matrix D.

ReMARK 1. The products C;;D,,, C;,D,,, ... are defined, since, according to our
assumption, the number of columns of the matrix C;; equals the number of rows
of the matrix Dy.

Example 2. The relation
2,3 2,1 3.4 3,2 2,4 2,
c(ll )’ C(12 ) D(ll )5 D(IZ ) — F(ll )’ F(122)
ctv, ey || otv, bl | T [Fgw, o
holds, where the upper indices indicate the type of the corresponding matrices.

Definition 2. A matrix A partitioned into square blocks of the form

All’ 0’ IRRN] 0
a|® A0 0 |
0, ... 0, A

where the symbols 0 denote zero matrices (and which are, for the sake of brevity,
omitted in the formulation of the following Theorem 4), is called the matrix decom-
posed into diagonal blocks.

Theorem 4. The sum and the product of matrices decomposed into diagonal
blocks (where corresponding blocks have the same order) is a matrix decomposed
into diagonal blocks; these blocks are sums, or products, of the corresponding blocks
of the given matrices, respectively:

A B, A, + By,
. ) + . . - . . ,
An" B"" Ann + B"”
A, B,, A, B,
'Arm .B!m ArmBan

Definition 3. An upper triangular matrix is a square matrix of the form
Q11 12y - Aqp

0, az; ... azy

where the elements below the principal diagonal are zero.
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Theorem S. The sum and the product of upper triangular matrices of the same
order is again an upper triangular matrix. The determinant of an upper triangular
matrix is equal to the product of the elements in the principal diagonal.

Definition 4. A diagonal matrix is a square matrix of the form

a;, 0, ..., 0
0, az, ..., 0
0’ 0’ > ann

Theorem 6. The sum (product) of diagonal matrices of the same order is again
a diagonal matrix; the elements of its principal diagonal are the sums (products)
of the corresponding diagonal elements of the given matrices.

1.27. A-matrices, Equivalence of 1-matrices

Definition 1. A J-matrix A(4) is a square matrix whose elements are polynomials
in the variable A with real or complex coefficients.

REMARK 1. Addition and multiplication of A-matrices and the rank of a A-matrix
are defined in the same way as in §§1.25 and 1.16, pp. 49 and 26.

3—A 1+2

1, S—-4
is a A-matrix. Its rank is 2, for its determinant is a non-zero polynomial (3 — 1).
.(5 -4 — (4 + 1) #0. However, if we substitute for 1 a particular numerical

value, then we obtain another matrix (no longer the original A-matrix) whose rank
can be smaller. For example, if 1 = 2, we get a matrix of rank 1.

Example 1. The matrix

REMARK 2. A-matrices include also ordinary matrices as a particular case where
the elements are polynomials of zero degree or zero polynomials.

Definition 2. By an elementary transformation of a given A-matrix A(A) we under-
stand one of the following rearrangements of the matrix:

1. an interchange of two rows or two columns of the matrix;

2. multiplication of a row or a column by a non-zero number;

3. addition of a row, or a column, multiplied by a polynomial ¢(4) to another
row, or column, respectively.

Definition 3 (The Equivalence of A-matrices). A A-matrix A(4) is said to be equi-
valent to a A-matrix B(4) if the matrix B(4) can be obtained from A(1) by a finite
number of elementary transformations. In this case, we write A(4) ~ B(2).
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Theorem 1. A-matrices A(4), B(A) of order n are equivalent if and only if there
exist A-matrices C(/l), D(/l) of order n such that their determinants are non-zero
(real or complex) numbers and

B(3) = C(i) A(4) D().

Theorem 2. Equivalent A-matrices have the same rank (the converse does not
hold — see Theorem 6).

Theorem 3. Two matrices A, B of the same order whose elements are real or
complex numbers are equivalent if and only if they have the same rank.

Theorem 4. A A-matrix A(Z) of order n is equivalent to one and only one of the
A-matrices of the form

E, (4,0, 0, ..,0

0, Ey4),0, ..0

0, 0, Ej*),...,0 , o)
0o, 0, O, - EJ(2)

where the polynomials E(A) are either zero polynomials or have the coefficient
of the highest power of A equal to 1, and the polynomial Ej“(l) is divisible by the
polynomial E{A) (j = 1,2,...,n — 1).If the rank of A(4) is h, then E;(2) Ey(4)...
o Ey(2) £0, Epy1(2) = Epin(A) = ... = E(4) = 0.

Definition 4. The polynomials E,(2), ..., E,(1) are called invariant factors of the
matrix A(X); the form (1) is called the rational canonical form of the matrix A(2).

Example 2. Rearrangements transforming the matrix of Example 1 to the rational
canonical form reduce the given matrix successively to the following matrices:

3—-4 1+ L 5—-12 I, 5—2 B
1, 5— 2 34, 1+2 [o,(1+,1)+(5—,1)(—3+,1) -
[ 5 -2 1, 0 1,0

10, —A2 4+91— 14 0, —22 +91— 14 0, 22 —-91+ 14 |°

First, we interchanged the rows; then we added the first row multiplied by —(3 — ,1)
to the second one; then we added to the second column the first one multiplied by
A — 5 and, finally, we multiplied the second row by the number —1. Thus, the in-
variant factors of the matrix are the polynomials E;(4) = 1, E5(1) = 2 — 94 + 14.

Theorem 5. The greatest common divisor DJ(1) (the so-called i-th determinant
divisor) of all the i-rowed minors of a matrix A(X) satisfies the relation

DJ(A) = cE,(3) Ex(3) ... E4),
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where E;(A) are the invariant factors of A(X) and c is a non-zero real or complex
number.

Theorem 6. Two A-matrices A(1), B(1) of the same order are equivalent if and
only if they have the same invariant factors.

Definition 5 (Elementary Divisors of a A-matrix). Let a matrix A(1) have the
invariant factors E,(4), ..., E,(4). We can factorize each of these polynomials in the
variable 4 into the product of powers of distinct linear factors (A — a)*. Then every
such power of a linear factor (1 — «)* is called an elementary divisor of the matrix
A(A). The elementary divisors of the matrix A(1) form the so-called system of ele-
mentary divisors of the matrix A(1) (see Examples 3—35).

Example 3. Let a matrix A(4) of order 5 have the invariant factors E,(1) = 1,
E,(A) = A, E3(4) = M4 + 1), E,(4) = A*(2 + 1)?, Es(4) = 0. Then the system
of its elementary divisors is 4, 4, 4%, (A + 1)%, (1 + 1)~

Example 4. The matrix of Example 2 has the elementary divisors 1 — 2, 1 — 7.

Theorem 7. The invariant factors of a given matrix are uniquely determined
by the order, rank and system of the elementary divisors.

Example 5. Let us determine invariant factors of a matrix A(4) of order 5 and rank
4 if the system of its elementary divisorsis A — 1, 1 — 1, (4 — 1), (4 + 1)%.

In order to find the invariant factors, let us use Theorem 4. Since h = 4, we have
E5(2) = 0. Now Ey(2) Ej(A) Es(A) E4(A) = (A = 1) (A — 1) (A — 1)2 (4 + 1). Since
E,(%), Ey(Z), E5(4) are divisors of E,(1), we get immediately (using Definition 5)
Ed(3) = (1 17 (2 + 1Y Now Ei(3) E{(2) Es(2) = (2 — 1) (2 — 1), E,(2). E(2)
are divisors of E;(1). Hence, E5(4) = A — 1. Similarly, we find that E,(4) = 4 — 1,
and, finally, E,(1) = 1.

Theorem 8. Two A-matrices A(1), B(A) of order n are equivalent if and only if
they have the same rank and the same system of elementary divisors.

Theorem 9. Let a A-matrix A(A) be partitioned into diagonal blocks:

A2, 0, o 0
Ay =| ® Ayy(2), ..., 0
0, 0, N W)

Then the system of elementary divisors of the matrix A(1) is the collection of the
systems of all elementary divisors of the diagonal blocks, i.e. of the A-matrices

A(2), ..., AL(R).
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1.28. Similar Matrices; the Characteristic Matrix
and Characteristic Polynomial of a Matrix

Definition 1. We define two square matrices A, B of order n, the elements of which
are real or complex numbers, to be similar if a regular matrix P of order n exists,
the elements of which are real or complex numbers respectively, for which the rela-
tion

B =P 1AP
holds.

Definition 2. By the characteristic matrix of a square matrix A, we understand
the A-matrix Al — A, where I is the identity matrix (p. 50). Thus, if

11y A1y »eey Ay

A= A1y 225 ovvy Aoy ,
Anys Guzs > Qnn
then
A—day, —ay ..., —dy,
Il — A= '_a21,/1_'a22’ ’ — dan
- Ayt — du2s ’ A Ayn

Definition 3. The determinant of the matrix A7 — Ais said to be the character-
istic polynomial of the matrix A. Its zeros are called the eigenvalues (or character-
istic values or characteristic numbers) of the matrix A.

Example 1. The characteristic polynomial of the matrix

1, 2
~—1,1
A—-1 =2

f(A)=‘ 1,/1—1’=(}“_l)(’1_1)+2=}“2“2’1+3;

is

itszeros 1 + i \/ 2 are the eigenvalues of the given matrix.(On numerical methods for
evaluation of eigenvalues see Chap. 30.)

Theorem 1. The eigenvalues of an upper triangular matrix

all, alz, ooy al,,

A 0, az ...y dap
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are equal to the elements in the principal diagonal, i.e. to the numbers a4, a,,, ...
ves Qppe
Theorem 2. If the characteristic polynomial of a matrix A of order n has n simple

zeros Oy, ..., &, then the system of elementary divisors of the characteristic
matrix Al — Ais A — oy, ..., 4 — o,

Theorem 3. The product of all elementary divisors of the characteristic matrix
Al — Aof a given matrix Ais equal to the characteristic polynomial of the matrix A.

Theorem 4. Two matrices A, B of the same order are similar if and only if their
characteristic matrices A1 — A, A1 — B are equivalent, i.e. if they have the same
elementary divisors.

Theorem 5. Similar matrices have the same characteristic polynomial, and thus
also the same eigenvalues.

Theorem 6. Similar matrices have the same traces (see Definition 1.25.11,
p. 53).

Definition 4. By a Jordan block (of order k) is meant a matrix of order k of the
form

........ L (1)
. 1

where g is a real or complex number.

A matrix decomposed into diagonal blocks (see Definition 1.26.2) which are
Jordan blocks is called a Jordan matrix.

Theorem 7. The characteristic matrix of the Jordan block (1) has the single
elementary divisor (A — o)*. Hence, using Theorem 1.27.9, one can determine the
system of elementary divisors of the characteristic matrix of a given Jordan
matrix.

Example 2. The matrix

o

1,
A=|0,
0

)

(=0 I ]

0
, 1
, 2

. 2
is a Jordan matrix; its Jordan blocks are the matrices [1:] and ': 0’ ;:’ Hence, the

elementary divisors of the characteristic matrix 1/ — Aare A — 1, (A — 2)%.
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Theorem 8. Every square matrix A of order n is similar to a Jordan matrix of
order n; if A is similar to two Jordan matrices, then these matrices differ only in
the order of arrangement of their diagonal blocks.

REMARK 1. The following two examples indicate the method if determining (at
least theoretically) a Jordan matrix which is similar to a given matrix A.

Example 3. Let

, 2, 0
A= 0, 2, 0
-2, =2, -1
The characteristic polynomial is
xz -1, -2, 0
0 A—2,0 =A-1D@A+ 1)(1-2);

2, 2, A+1

this polynomial has simple zeros 1, — 1, 2, and therefore, by Theorem 2, the system of
elementary divisors of the characteristic matrix is 4 — 1, 4 + 1, 4 — 2. According
to Theorem 4, the characteristic matrix of the required Jordan matrix B has the same
system of elementary divisors; hence we can find this Jordan matrix B by Theorem 7.
The matrix B is decomposed into three Jordan blocks of order 1 corresponding to the
elementary divisors (4 — 1), (4 + 1), (A — 2). Hence

I, 0,0
B=|0 —1,0
0, 0,2
Example 4. Let
3, 1, -3
A=| -7 -2, 9
-2, -1, 4
The characteristic polynomial is
|2 -3, -1, 3
7, A+2, -9 =(A-1)1-2)72.
2, 1, A—4

Since it does not have simple zeros, Theorem 2 cannot be applied. We therefore
first determine invariant factors Fi(A), Ez2()), Es(\) of the matrix Al — A. Since
their product is equal to the product of all the elementary divisors, Theorem 3
shows that it is equal to (A — 1) (A — 2)2. Hence either E3(A\) = (A — 1) (A — 2)2,
E;(A) = E1(A) =1, 0or E3(A) = (A=1)(A—=2), E2(A) = A — 2,E;(\)=1 [see Ex-
ample 1.27.5, p. 58].Now, E1(A) E2()) is the greatest common divisor of all minors of
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order 2 of the matrix

A -3, —1, 3
Al —A=|17, A+2, -9
2, 1, A—4
. .1 —-1,3
One of these minors is Laal= —A + 1. Thus, E,(4) cannot be equal to

A — 2,for A — 2 is not a factor of the binomial A — 1. So E,(4) = 1 and the system
of elementary divisors of the matrix A/ — A consists of the polynomials 4 — 1,
(4 — 2)%. The corresponding Jordan matrix is therefore

1,0,0
0,21
0,0, 2

Alternative method: By elementary transformations (Definition 1.27.2, p. 56),
we bring the matrix A/ — A to the rational canonical form and then, by Theorem
1.27.9, we determine its elementary divisors.

Theorem 9. The eigenvalues of a Hermitian matrix are real numbers.

Theorem 10. Let A be a symmetric matrix whose elements are real numbers.
Then its eigenvalues are real numbers.

Theorem 11. Let A be a Hermitian matrix. Then there exists a unitary matrix
U such that the matrix U™ AU is diagonal (and real). U~* AU is the Jordan form
of the matrix A.

Theorem 12. Let A be a symmetric matrix the elements of which are real num-
bers. Then there exists a real orthogonal matrix P such that the matrix P~ 1 AP is
diagonal. P~ AP is the Jordan form of the matrix A.

REMARK 2. A method for finding the matrix P of Theorem 12 is given in Example
1.29.3, p. 65.

Theorem 13, Let U be a unitary matrix. Then there exists a unitary matrix V
such that VYUV is diagonal and the absolute value of each of its elements in the
principal diagonal is 1. V"YUV is the Jordan form of the matrix U.

1.29. Quadratic and Hermitian Forms

Definition 1. A quadratic form in n variables xy, X5, ..., X, is a polynomial of
the form

f(xl, ceey x") = aux% 4+ 2a12xIX2 + e 2a1,,x1x,, +
+ a,,X5 4 2a33%,%5 4 ... + 2a,,%2%, +
P + ApXZ,
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briefly

S(x1ses Xy) ='Z": a;xx; (a; = ajz), (1)

L=

where a;; are real or complex numbers. In the case, where the a;; are real, we say that
the form f(x, ..., x,) is real.

Definition 2. The symmetric matrix of order n
ai1s Q125 «-+ Qg

A= Ay1s ooy «vey Aoy

is called the matrix of the quadratic form (1), its rank being the rank of the quadra-
tic form (1).

Definition 3 (Linear Mapping). The mapping
Vi = qu1¥1 + 412X + oo F GipXas

Y2 = ga1X1 F g22X3 + oot GopXy

briefly

yi= Yaus (= 12.00m) ©)

where ¢;; are fixed real or complex numbers, assigns to every ordered n-tuple (i.e.
n-component vector) X = (X,, ..., X,) an ordered n-tuple (i.e. n-component vector)
Y = (¥1, ---» y») and is called the linear mapping (of the n-dimensional vector space
V, into itself).
The matrix
911> 9125 »-+> 91n

dnis 9n2s - Dnn

is called the matrix of the linear mapping (2). The mapping (2) is said to be regular
if the matrix Q is regular.

Theorem 1. If the mapping (2) is regular, then there exists an inverse linear map-
n
ping x; = Y. pi;y; (i = 1, ..., n), whose matrix P is inverse to the matrix Q.
i=1
n

n
Theorem 2. The composition of two linear mappings z; = Y. 1;y;, Vi = 2. Sij%;
j=1 j=1
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n

with matrices R, S is a linear mapping z; = ) t,;x; with matrix T = RS. If both
ji=1

mappings are regular, then the composite mapping is also regular.

Definition 4. If in a quadratic form f(x,, ..., x,) we substitute for the variables
Xy, ..., X, the variables y,, ..., y, by means of a linear mapping

DM =

X, =
i=1

piyy; (i=1,2,...n), (3)

we say that we apply the linear substitution (3) to f(xy, ..., x,). If the mapping (3)
is regular, then the corresponding linear substitution is said to be regular. If the
numbers p;; are real, then the substitution (3) is real.

REMARK 1 (Matrix Notation for Linear Mappings and Quadratic Forms). If we

X Y1

denote by x the n by 1 matrix | 2 %

and by y the matrix , then the linear map-
Xn Vn

ping (3) can be written in the matrix form x = Py, where P is the matrix (of order n)

of the mapping (3). Similarly, the quadratic form (1) can be written in the matrix

form, f(x, ..., x,) = x’Ax where x’ = [x,, X3y eens x,,].

Example 1. In matrix notation, the form x3 — 4x,x, + 2x3 is written

’ ]9 -2 . Xy
x[_z’ z]x, where x——l:xzjl,

l:xl,xz] |:_;: n;}[i:] = I:x1 — 2x,, —2x; + 2x2:| {2] =

= X% — 2x,X, — 2X,X, + 2x3 .

since

n
Theorem 3. A quadratic form f(xy, ..., x,) = Y, a,;%;X; with matrix A is trans-
NE

formed by a linear substitution (3) (i.e. by a substitution x = Py) into the form

9(y1s s ya) = (Py) A(Py) = y'(P'AP)y = L by,
W=

with matrix B = P'AP, where P is the matrix of the linear substitution (3).

REMARK 2. Square matrices A, B of order n are said to be congruent if there
exists a regular matrix P such that B = P"AP.
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Theorem 4. The quadratic form g(y,, ..., y,) obtained from a form f(xy, ..., %,)
by a regular linear substitution x; =Y. p;y;(i =1,..., n) has the same rank
I

as the form f(xy, ..., x,).

Theorem 5. For every (for every real) quadratic form f(x,, ..., x,) of rank h
there exists a regular linear substitution (3) [a real regular linear substitution (3)]
which transforms the form f(x,, ..., x,) into the form

915 oo ) = Y+ V3 + o Cyn
where ¢y, ..., ¢, are complex (real) numbers, precisely h of which are non-zero.

Example 2. A method of finding such a substitution will be shown in the follow-
ing example: Let f(x;, x,, X3) = XX, + 4x,%; — 2x;X5. Since the form does not
contain the square of any variable, we transform it, first, by the regular linear sub-
stitution x, = z; + 25, X, = z; — Z,, X3 = z3 into the form h(zy,z,,z;) =
= z] — z3 + 22,23 — 62,2z5. This can be rewritten in the form h(zy, z,, z3) =
= (z; + z3)* — z} — 25 — 62,z;. We then apply the regular linear transformation
t, = z, + z3,t, = z,,1; = z;thus obtaining the form k(t,, t,, t;) = 1} — 13 — 15 —
— 6tyt; = t; — (t, + 3t5)* + 9t — 3 which, by means of the regular linear sub-
stitution y, = t,,y, = t, + 3t3, y3 = t; is transformed into the form g(y;, y,, y3) =
= y? — y% + 8y as required. By combining the applied substitutions, we find that
f(x1, X3, x3) is transformed into this final form by the regular linear substitution
Xy =Yy + Y2 — 4Ys, X2 = Y1 — Y2 + 2y3, X3 = Js.

Theorem 6. For every real quadratic form f(x,, ..., x,) with a matrix A, there
exists a (real) regular linear substitution (3) with an orthogonal matrix P which
transforms the form f into the form

g(y) = a,y? + ay? + .+ oy, (4)

where a, ..., a, are the eigenvalues of the matrix A (and are real — see Theorem
1.28.10, p. 62).

3
Example 3. The problem is to find a transformation x; = p,;y; (i = 1,2, 3)
ji=1

with an orthogonal matrix P = (p;;) which brings the given quadratic form
Fx1 X35 X3) = 2x7 + X5 — 4x,x, — 4x,X; into the form g(y,, y,, y;) given by (4).
The matrix of the form f(xy, x,, x3) is

2, =2, O
A= (aij) = _27 15 -2 5
0, -2, O
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its eigenvalues, i.e. the roots of the equation

A—-12,2, 0
2, A—-1,2|=0
0, 2, A

are 1, —2, 4. According to Theorem 6, there exists a transformation x; = Z Pijy;

with an orthogonal matrix P = (p;;) which brings the form f(x;, x,, x3) 1nto the
form g(yy, ¥1, ¥3) = ¥} —2y% + 4y2. The matrix P (and, thus, the required trans-
formation) can be found as follows: If we denote by B = (b;;) the matrix of the form
g(yla Yas y3)’ Le.

1, 0,0
B=1]0, —2,0{,
0, O 4

then, by Theorem 3, B = P'AP. Since P is orthogonal, i.e. by Definition 1.25.7,
P = P“1 the equahty B = P’ AP can be written in the form PB = AP. This means

that Z agpy = Zp”blk (i, k = 1,2, 3). In our problem, we thus get the following

equatlons
(a) 2p1y = 2Py = P11 (b) 2p12 — 2Pp3» = —2pys,
~2pi1 + P21 — 2p31 = P21 —2p12 + P2z — 2py3 = —2p;,,
— 2py = P31 ~ 2p;, = —2p32;
(C) 2p13 — 2pa2s =4p;s,
—2p13 + P23 — 2p33 = 4p,3,
— 2p2;3 = 4p;; .

These are three systems of homogeneous equations, each of them being of rank 2.
Solving, for example, the system a) we can confine ourselves to the first and third
equations from which there follows

| 0, 1] i1, =2

1—=1,01"(0, =2

-2 0 =2:1:-2.
-1
Since p}; + p3; + p}; = 1 (see Theorem 1.25.12, p. 52), we get

P11 - P21 P31 =

-2,

+2
Pu = —~ = +%, pu =1}, pu=F%.
11 \/(22 NPT 2?) 3 21 31
Similarly, we find that p,, = 3%, p,; = 4%, ps2 = %, pis = 3% p23 = F%
P33 = *34. Thus, the matrix P can be chosen as follows:

2 1 %

3 3>
P=| 43 -3

_%a %: %
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Theorem 7 (Sylvester’s Law of Inertia). Any real quadratic form f(xy, ..., X,)
of rank h can be transformed by a real regular linear substitution into the form

Iy V) =Vi+ Vi + o+ Y = Vier — o = Vs (1 +s2=h). (5)

The substitution transforming f(x,, ..., x,) into the form (5) is not unique; however,
the number s, of positive signs as well as the number s, = h — s, of the nega-
tive sings in the resulting form is always the same.

Definition 5. The number s; — s, in Theorem 7 is called the signature of the form

f(xgs es Xp)-

Theorem 8. A real quadratic form f(xy, ..., x,) can be transformed by a real
regular linear substitution into a form g(yy, ..., y,) if and only if both forms
have the same rank and signature.

Definition 6. Let f(x,, ..., x,) be a real quadratic form.

(a) The form f(xy, ..., x,) is called positive (or negative) definite if, for every non-
zero n-tuple (o, ..., &,) of real numbers a, ..., o, (briefly: for any real non-zero
n-tuple), the number f(«,, ..., 2,) is positive (or negative).

(b) The form f(xy, ..., x,) is called positive (or negative) semidefinite if, for every
non-zero real n-tuple (a, ..., a,), the inequality f(a;, ..., ®,) = 0 [or f(ay, ..., @,)
< 0] holds and at the same time there exist non-zero real n-tuples (B,, ..., B,) such

that f(By, ..., B,) = O.

(c) Theform f(x;, ..., x,,) is said to be indefinite if there are non-zero real n-tuples
(e, .- @) and (By, ..., B,) such that f(ay, ..., a,) > 0 and f(By, ..., B,) <O.

REMARK 3. The matrix of a positive, or negative, definite quadratic form is called
positive (or negative) definite. In the following theorems, some conditions for a sym-
metric matrix to be positive definite are introduced.

Theorem 9. Let f(x4, ..., x,) be a real quadratic form of rank h and signature s.

L. f(xy, ..., Xx,) is positive (or negative) definite if and only if h =nand s = n
(or s = —n); the form can be transformed by a real regular linear substitution
into a sum of positive (or negative) squares of all n variables.

2. f(xy, ..., x,) is positive (or negative) semidefinite if and only if h < n and
s=h(ors= —h).

3. f(x1, ...y x,) is indefinite if —h < s < h.

REMARK 4. If a form f(Xy,..., x,) is positive definite, or semidefinite, then the
form —f(xy, ..., x,) is obviously negative definite, or semidefinite, respectively.
Therefore, we can restrict our consideration to positive definite or positive semi-
definite forms.
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Theorem 10. Let f(x,, ..., x,) be a real quadratic form and let A be its matrix.
The form f(x,, ..., X,) is positive definite, or semidefinite, if and only if all the
eigenvalues of the matrix A are positive, or non-negative, respectively.

Theorem 11. A real quadratic form f(x, ..., x,) with a matrix

Apys Apas «--5 4

is positive definite if and only if all the principal minors

dy1, A a a ceey a
ayy, a;, 11> 12> 13 11> s 1in
Ialll’ a a aZl, azz, 6123 9 e 9 | e e e e
21 22 §»
a3y, 325 A33 Apys «oes Apy

of the matrix A are positive.

Example 4. The form a,;x3 + 2a,,%,%, + a,,%5 is positive definite if and only
ifa,; >0, a;,a,, — a?, > 0; it is semidefinite if a,,a,, — a?, = 0; it is indefinite,
lf ay1dy3 — afz < O

Definition 7. A Hermitian (quadratic) form in n variables x,, ..., x, is a poly-
nomial of the form

n
f(xyu Xy x,) = Y ayxX;, a;=4a,; ({,j=1..n), (6)
i.j=1

where the bar indicates a conjugate complex number. The matrix

Apis «-vs Gpnd
of a Hermitian form is a Hermitian matrix, i.e. A = A’ holds.

Theorem 12. A Hermitian form with a matrix A is transformed by a linear sub-
stitution x; = ZP,-jyj into the Hermitian form with the matrix B = P'AP.

REMARK 5. Matrices A, B are said to be conjunctive (Hermitian congruent) if
there exists a regular matrix P such that B = P’AP.

Theorem 13. If (ay, ..., a,) is an arbitrary n-tuple of real or complex numbers
and if f(x, ..., x,) is a Hermitian form, then the number f(ay, ..., a,) is real.

REMARK 6. In the same way as for real quadratic forms, we define the rank and
signature of a Hermitian form, and also positive (negative) definite, semidefinite and
indefinite Hermitian forms (see Definitions 2, 5 and 6). Theorems formulated for real
quadratic forms hold also for Hermitian forms; in such formulation, instead of real
regular linear substitutions we have complex regular linear substitutions and in The-
orem 6 we must replace “orthogonal matrix P’ by “unitary matrix P,
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2.1. Measurement of Angles (Measurement by Degrees
and Circular Measure)

If theoretical problems are under consideration, angles are not measured in degrees,
but in radians (circular measure): The magnitude of an angle « is given by the length
of the arc, intercepted by the arms of the angle « on the unit circle with centre at the
vertex of the angle (Fig. 2.1). We shall denote the magnitude of the angle « in cir-
cular measure again by o; sometimes, instead of «, the notation arc «° is employed,

«° denoting the magnitude of the angle o expressed in degrees (in the sexagesimal
system).

Fig. 2.1.

Theorem 1. The relationship between circular measure and degrees is

T
o = arc ¢ = ———¢°

180°
Example 1. The angle of 90° is in circular measure

o =—1—90° =3in.
180°
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Definition 1. The angle ¢, whose circular measure is 1, is called the radian; its
magnitude measured in degrees (in the sexagesimal system) is
0° = 180°/m = 57295779 5° = 57°17'44-806" .
In centesimal measure,

0% = 40082 = 63-661 977® (grades) .
In particular,

360° = 27, 180° = 7, 90° = 4n, 60° = in, 45° = im, 30° = in.

2.2, Definition of Trigonometric Functions

Definition 1. The trigonometric functions of an angle o in the interval [0, 2n)
are defined by means of a unit circle or (for acute angles) by means of a right angled
triangle (Fig. 2.2) as follows:

sina = AB (for 0 < @ < 4m, sinae = afc),
cosa = OA (for 0 < o < 4m, cosa = b/c),
tana = sinafcosa, o # 4n, 3n  (for 0 < « < im, tana = CD = ab),
cota =cosafsina, o #0, n (for 0 < o < 4m, cota = EF = bla),
sec o = 1lfcosa, o # Im, 3n (for 0 < o < 4n, seca = ¢[b),
coseca = fsina, o # 0, = (for 0 < a < 4m, cosec o = cfa).

Here, AB is the directed length of the segment AB, i.e. AB > 0if ABis in the same
direction and AB < 0 if AB is in the opposite direction to the positive direction
of the y-axis. The other lengths are used with a similar meaning (for example 04 >0
if OA is in the same direction as the positive direction of the x-axis).

Further we define:

Definition 2.
sin (2kn + o) = sin a, cos (2kn + &) = cosa, (1)
tan (kn + «) =tana, cot(km + a) cot o ()

Ii
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for an arbitrary integer k. In this way, the functions sin o and cos « are defined for
all real a, the function tan o for all real « different from in + kn and the function
cot « for all real « different from kr.

REMARK 1. The functions sin o and cos a are periodic functions with period 2x;
the functions tan « and cot « are periodic functions with period .

REMARK 2. In the case where an angle is measured in radians, instead of a we
often write the letter x as is usual in the case of functions, where the letter x stands
for the independent variable; we thus speak about the functions sin x, cos x, tan x,
cot x.

2.3. Behaviour of Trigonometric Functions. Their Fundamental
Properties

ReMARrk 1. In Fig. 2.3, x denotes the angle measured in radians; the figure repre-
sents the graph of the functions sin x, cos x, tan x, cot x for x in the interval [—n, 27z].
Fundamental properties:

1.
— 1<sina=sl,
— 1 Zcosasl,
—o0 <tana < +o0,
—o0 <cota < +
2.
sin (—a) = —sin «;
cos(—a) = cosa;
tan (—o) = —tana;
cot (—a) = —cot «

2.4. Relations Among Trigonometric Functions of the Same Angle

1.
. 2 2 sin o cos o
sin“o + cos“a=1; tanoa = , cota =",
cos « sin o
1 1
sec a = , Coseco = —,
cos a sin o
2 1 2 1
1 + tan® a = , 1+ cot?a=

cos? a sin? a
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Fig. 2.3
TABLE 2.1
Signs of trigonometric functions in individual quadrants
uadrant
Function Q
| o I v
sin o -+ — —
cos o + — — -+
tan a + — -+ —
cot o -+ — -+ —
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TABLE 2.2 Values of trigonometric functions for some special angles

Degrees 0° 30° 45° 60° 90° 120° 135° 150° j
Radians 0 In in in in Zn 3n in

o | 3 |dv2ivs| 1 3y duz| 4
IV R OV S T I R N e SVC IR
tan o 0 13 1 V3 | —J3 | -1 |-+
cot o V3 1 13 0 —3/3) —1 —J3
Degrees 180° 210° 225° 240° 270° 300° 315° 330°
Radians n in an 4n 3n in In n

0 | —% |-1v2|-tvs| -t |—1u3|-1v2| -}
S R VZY = v e A R O . W
tan 0 V3 1 V3 -3 -1 |—33
cot « V3 1 1.3 o |—1.J3] —1 -3

TABLE 2.3 Reduction of trigonometric functions to the first quadrant

Function p=90°+ « B=180° 4 o B=270°+ « B ==360°+ «
sin B + cos a F sin o — cosa + sin o
cos f8 F sin o« — COS & =+ sin « + cos a
tan B Fcota 4- tan « F cot a 4 tan «
cot B F tan « + cot « F tan « 4+ cot a
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2.
. _ 1 — 2 _ ltan al _ 1 :
fsina = (1 = cos®e) = e = T+ w0 e
. 1 |cot o
= 1 —_ 2 = = ;
Jeos af = (1 = sin” ) J(1 +tan®«) /(1 + cot? a)
ltan of = lsing] (1 = cos® a) _ 1
J(1 = sin’ «) |cos «f |cot a ’
tan o = L ; cota = .
cot o tan

REMARK 1. The absolute value must be used in relations 2, since, for example,
sin 30° = /(1 — cos? 30°), but sin 270° = —./(1 — cos? 270°). For a definite «
we have sin « = /(1 — cos?a) or sina = —./(1 — cos® a) according to the sign
of sin « in the corresponding quadrant (Table 2.1).

Similarly for the other formulae in which the absolute values occur.

2.5. The Addition Formulae, the Multiple-angle and Half-angle
Formulae

sin (¢ 4- f) = sin acos f + cosasin f;

cos(x + B) = cosacos B F sin asin §;

tano + t
tan (x + p) = —omaktanf
1 Ftanatan f
cotacot B F 1
cot(aiﬁ):,—a_.ﬂ_i_..

cot f 4 cot a

2. sin no, cos na, for n a natural number can be determined by De Moivre’s
theorem (Theorem 1.6.6, p. 11),

n
cos na + isin no = (cos & + isina) =Y <Z> cos* a (i sin )" 7%,
k=0

sin2a = 2sinacosa; sin3a = 3sina — 4sin® «;

i i _ n\ . - n\ . _
sinng = nsinacos" !a — (3) sin® & cos"” 3a + (5) sinacos" S — .
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cos 20 = cos?a — sin®a; cos3a =4cos’a — 3cosa;

n\ . _ n\ . _
cosnoc=cos"a—<2>smzoccos" 2o+ (4>s1n“ozcos" Yo — ...

2tana 3tan o — tand «
tan2g = ——~ " ; tand3g = — - .
1 — tan?« [ —3tan?«

ntan o — (Z) tan3® o« + (Z)tansrx - ...

tan no = .
n n n
1- tan? o + tan® o — tan®a + ...
2 4 6
cot?a — 1 cot> « — 3 cota
cot 2u = ; cot3a = ;
2 cota 3cot?a — 1
n n—-2 n n~4
cot a—( )cot a+(4>cot o —
cot na =
n—1 h n-3 h n—5
n cot a—<3>cot oc+()cot o —
.o o 1 —cosa
sin—| = /]|#1 — cosa)]; |tan | = [—=
2 \/[ ( >] 2 /1 + cos «
« 1 —cosa sin o
tan - = - = 5
2 sin o 1+ cosa
o o 1 + cosa
cos -| = J[3(1 + cosa)]; feot~| = [—T);
2 2 1 —cosa
o 1+cosa sin a
cot — = - = .
2 sin o 1 —-cosa
. 2 tan $a 1 — tan? i«
sing = ————; cosa=———",
1 + tan? 4« 1 + tan? 1o
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2.6. Sum, Difference, Product of Trigonometric Functions, Powers
of Trigonometric Functions

1.
sina+sinﬁ=25in“+ﬁcosa—ﬂ;

2 2
sina~sinﬁ=2cosa+ﬁsinu;
cosa+cosﬁ=2cosa+ﬂcosa_ﬁ;

2 2
cosoc—cosﬁ=—2sina+ﬂsina*ﬂ,

2 2
in (a0 +
tanaitanﬁ=m——ﬂ);
cos o cos f
in (B +
cotaicotﬁ=§l_n(———ﬂ—__—a—);
sin o sin f
tanaicotﬁ=iw-
cos o sin f8
2.
sin asin = 4[cos (« ~ B) — cos (« + B)];
cos a cos B = %[cos (& — B) + cos (« + B)];
sin o cos B = 4[sin (¢ — ) + sin (x + B)];
t t cot cot
tanatan p = BNEF A0S ot p = OLE T COLB,
cot o + cot f tan o + tan f8
t t
tan acot § = 20* + CotB
tan f + cota
3.

sin? o

Il

3(1 — cos2a); sin® & = (3 sin o« — sin 3x) ;
cos? a = (1 + cos2a); cos® & = &(cos 3a + 3 cos a) ;

sin* a = (cos 4o — 4 cos 2a + 3); cos* o = ¥{cos 4o + 4 cos 200 + 3).

REMARK 1. Higher powers can be found by De Moivre’s theorem (see relations 2,
3 and 4 of the previous § 2.5).
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2.7. Trigonometric Sums

Theorem 1. For an arbitrary real a, an arbitrary real x # 2k=n (k being an integer)
and for n a natural number we have

in1
sinx+sin2x+...+sinnx=Msin{-(n+l)x;
sin $x
inl
cosx+0052x+...+cosnx=Mcos%(n+l)x;
sin 4x
L , sin 3nx .
Y sin (@ + jx) = — sin [a + ¥(n + 1) x];
j=1 sin x
" , sin $nx
Y cos (a + jx) = —=2=cos [ + 4(n + 1) x] .
J=1 sin $x

2.8. Trigonometric Equations

Trigonometric equations are equations in the unknown x of the form
f(cos x, sin x, tan x, cot x, x) = 0. )]

A trigonometric equation can be solved either by employing numerical methods
(see Chap. 31), or, in some simple cases, by rearranging the equation using suit-
able formulae, to contain only one trigonometric function; then we solve the equa-
tion for this function.

Example 1. sin x — cos® x + % = 0; we rearrange the equation by means of the
relation cos? x = 1 — sin? x and put y = sin x. We thus obtain the equation y? +
+ y — 2 = 0 with the roots y, = %, y, = —3. There is no real solution correspond-
ing to the root y, (since [sin x| < 1); the root y, = } gives the solutions x = n +
+ 2km, x = $n + 2kn (k being any integer).

Example 2. acos x + bsinx = ¢ (ab # 0). We put a=rcosd, b=rsini,
r > 0. Then tan A = bla, r = afcos A = bfsin A. The angle 1 is determined to
within an integral multiple of 2n. The equation is transformed into the form
rcosxcos A + rsinxsind = ¢, ie. cos(x — A) =c/r. We get, in general, two
values for x — A which are determined to within an integral multiple of 2z (provided,
of course, that |c¢/r] < 1).

REMARK 1. If relation (1) is satisfied for all real x for which the expression*
f(cos X, sin x, tan x, cot x, x) has a meaning, then it is called a trigonometric
identity.

* Other angles y, z, ... may also be contained in this expression.
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Example 3. Let us decide whether the relation

smx+smy=tanx+y )
cosx + cosy 2
is a trigonometric identity.
We try to arrange the left-hand side in the form tan (x + ). Applying formulae 1

of § 2.6 (p. 76) we get the left-hand side in the form

2sin 3(x + y)cos Hx — y) — tan 4(x + ¥);
2 cos 3(x + y) cos 3(x — y) ’ ,

this means that the relation (2) is a trigonometric identity.

2.9. Plane Trigonometry

(a) Right-angled Triangle (Fig. 2.4a)

ReMARK 1. In this section the following symbols for the elements of a right-
angled triangle will be used: a, b enclose the right angle, ¢ is the hypotenuse; 4, B, C
are the vertices opposite to the sides a, b, c, respectively; «, B, 90° are the interior
angles corresponding to the vertices A4, B, C, respectively; h is the altitude; P-the area.

TABLE 2.4

Formulae for determining the remaining elements of a right-angled triangle if two elements are given

- |
§ |
R The other elements of the triangle {
SR |
210 I
a

a,a | f=90°—a| b=acota | c=— h=acosa P:%azcota
‘ sin o 1
— R
¢, | B=90°— ! a=csina b=ccosa h=%csin2zx P:%czsianx }
|
a | b a 1 1
a, b tan @ = - tan f= — c = — = h=acoso= P = jab |
a sin « bsi i
| = bsin a [
= /(@ + b% !
R i |
. a a 1.2 .. j
a,¢c | sina=-— cos f =~ b=ccosa=| h=acosa= P = zcsin2a= |
c 4 . . i
= csin f= = gsin § =%52tanﬂ |

= J(*—a%
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(b) General (Scalene) Triangle (Fig. 2.4b)

REMARK 2. In this section the following symbols for the elements of a triangle
will be used: a, b, c are the sides; A4, B, C the vertices opposite to the sides a, b, c,
respectively; «, 8, y the interior angles corresponding to the vertices 4, B, C, res-
pectively; r is the radius of the inscribed circle; R the radius of the circumscribed
circle; h,, hy, h, are the altitudes corresponding to the vertices 4, B, C or to the sides

a, b, ¢, respectively, P the area and s = 4(a + b + ¢).

Fig. 2.4a.

Theorem 1. Fundamental relations:

a b c

(= 2R) (the Sine Theorem).

sin o _sin,B ‘siny
2. a* =b*+ ¢* — 2bccos (the Cosine Theorem) .

a+b tanda+ P)
a—>b tani(a — B)

3. (the Tangent Theorem) .

Theorem 2. Further relations:

4. a=>bcosy+ ccosf.

a+b_cosya—p) a—b _sinia-p)

5, 4P ; . .
¢ cos ¥(a + p) c sin #{a + f)
6. sin = ————(S_b)(s_c); cosZ = M.
2 be 2 be
7. tan-— = ————I—)—— ; tan T .
s(s — a) 2 s—a
8. tanog = — 407

b—acosy.
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10.

11.

12.

13.

14.

15.

16.

17.

SURVEY OF APPLICABLE MATHEMATICS
r=stan~a—ttangtanz.
2 2 2
a = 2Rsina; R=Eﬁf.
4P
. . 1
h, =bsiny = csin f; i:i:l-——a:b:c, —1—+—+l=l
h, h, h, h, h, h, r

s -——4Rcosgcos§cosz.

The length of the median corresponding to the side c:
t. = 3/[2(a* + b?) — ] = 3 /[a® + b + 2abcosy];
2+ 17 + 12 = 3(a® + b + ¢?).
The length of the bisector of the angle y:

= 2 /[abs(s — )] _ /[ab[(a + b)*> — c*]] _ 2ab cos Iy
’ a+b a+b a+b

The radius of the circumscribed circle:

R=_2_.
2sin o

The radius of the inscribed circle:

r = 4R sin “sin £ sin 2 = 9%¢ _ (S—a)(s—b)(s—c).
2 2 2 A4Rs s

The area of the triangle:

, sin fsiny B v

. o . . .
P =}labsiny=a = rzcot—coticot— = 2R*sinasin Bsiny,

2sin o

P = [s(s —a)(s = b)(s — ¢)] (Heron’s Formula).

Theorem 3. Solution of a general triangle:

1.

Given the elements a, B,y (B + y < 180°):
n=180° = (B+y); b=SnB, o asy
sin o sin «
2. Given the elements a, b, y:
a-—b>b

o+ B) =90° — 3y; tani(x — B) = cot 3y ;

a+b

29
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hence we determine the angles o, B:

=3+ B)+He—B): B=3at )~ iz )
¢ = /(a® + b* — 2abcosy).
An alternative method:

a sin b sin
tana=——y; tan f = Y

b—acosy a—bcosy’

c asiny a—bcosy

sin o cos
3. Given the elements a, b, o:

sinf =250 180° — (2 + B) ;
a

c =M; P = labsiny.
sin o
If a > b, then B < 90° and there exists a single solution.
If a = b, there exists a single solution for a < 90°.
If a < b (and, o < 90°, of course), then

1° for bsin o < a there exist two solutions (there are two angles B, satisfying the
relation B, = 180° — B,);

2° for bsin a = a there exists a single solution (B = 90°) ;

3° there is no solution for b sin a > a.

Fig. 2.5.

4. Given the elements a, b, c:

If the sum of any two sides is greater than the third side then a single solution
exists and is given by
b% 4 ¢* — a? a P

cosg = ——, tan- =
2bc 2 s(s—a)

s P=Js(s = a)(s = B) (s — 9]

and similarly for the angles B, v.

Example 1. The problem is to find the distance x of an inaccessible point A from
a straight road p (see Fig. 2.5).
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On the road, the points B, C have been chosen, the distance a between them de-
termined and the angles ABC = B, ACB = y measured. By Theorem 2 (formula 17),
the area P of the triangle A ABC is

a® sin B sin y

P , oa=180°— (B +7).

2sin«

In addition, P = }ax. Hence x = a sin f sin y[sin a.

2.10. Spherical Trigonometry

(a) Great Circle on a Sphere; Spherical (Euler’s) Triangle

Definition 1. By a great circle on a given sphere we mean any circle lying on this
sphere, whose centre coincides with the centre of the sphere. Through two points 4, B
on a sphere, which do not lie on the same diameter, one and only one great circle can
be drawn; the smaller of the two arcs cut off by the points 4, B on this circle has
the shortest length d of all the curves on the given sphere joining the points A4, B.
This number d is called the spherical distance of the points A, B. The spherical
distance of opposite points on a sphere equals the semi-circamference of a great
circle.

Definition 2 (Spherical Triangle). Let A, B, C be three points on a sphere which

do not lie on the same great circle. If we draw the three arcs A’B, A’b, BC of the great
circles which do not intersect except at the points 4, B, C, the spherical surface splits
into two spherical triangles with vertices A, B, C. If we choose, in particular, the arcs
AB, AC, BC to be of lengths equal to the spherical distances of their end points
A, B, C, then the smaller of the two spherical triangles obtained (i.e. the one lying
inside the trihedral angle formed by the half-lines 04, OB, OC emanating from the
centre O of the sphere, see Fig. 2.6) is called an Euler triangle.

ReMARK 1. In what follows we deal only with Euler triangles; moreover, we
choose (except in Theorem 3) the radius of the sphere r = 1.

Definition 3. The lengths a, b, ¢ of the corresponding arcs BC, AC, AB of the great
circles are called the sides of the spherical triangle A ABC. Thus, they are determined
by the angles BOC, AOC, AOB of the half-lines 04, OB, OC and are measured
in radians or in degrees (Fig. 2.6).

Definition 4. The interior angles of the faces of the trihedral OABC are called
the angles «, B, y of the spherical triangle A\ ABC. They are measured in radians or
in degrees (Fig. 2.6).
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REMARK 2. The half-lines joining the centre of the sphere with the vertices of the
spherical triangle A ABC form the basic trihedral OABC. The so-called polar
trihedral OA'B’C’ has its edges normal to the faces of the basic trihedral and defines
on the sphere an Euler spherical triangle A A'B’C’, which is polar to A ABC. The
sides of the polar triangle are a = 180° — a, b = 180° — B, ¢ = 180° — 7y; its angles
are oo = 180° — g, f = 180° — b, y = 180° — c. Thus, substituting the supplements
of the angles for the sides and the supplements of the sides for the angles in any
formula, we get a new formula.

Fig. 2.6.

Fundamental properties of spherical triangles:

Theorem 1. The sides and the angles of an Euler triangle are less than 180°
(less than ).

Theorem 2. Thesum of the angles o, B, y of a spherical triangle is always greater
than 180°.

Definition 5. The number
e =a+ 7+ y° = 180°
is called the spherical excess of a spherical triangle.

Theorem 3. The area of a spherical triangle is

(]

nr?

180°

where r is the radius of the sphere and ¢° the excess of the triangle expressed in
degrees.
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(b) Right-angled Spherical Triangle

REMARK 3. In this section, ¢ denotes the hypotenuse, a, b the sides “enclosing”
the right angle and «, f the angles opposite to the sides a, b, respectively (Fig. 2.7).

Theorem 4 (Napier’s Rule). We ascribe the hypotenuse c, the angles o, f and the
complements of the sides 90° — a, 90° — b to the vertices of a pentagon in the order
indicated in Fig. 2.8. Then, the cosine of an arbitrary element equals the product

90°-p 90°-a
B
(P T~
a
b, j ’
Fig. 2.7. c b Fig. 2.8.
[

of the sines of the two opposite elements or the product of the cotangents of the two
adjacent elements. In this way, we obtain the formulae

1. cosc =cosacosbh, 2. cosc =cotacotf,
3. cosa =cosasin f§, 4., cosf =sinacosb,
5. sin a = sin asin ¢, 6. sin b = sin fsin ¢,
7. coso =tan bcotc, 8. cosff =tanacotc,
9. sinag=tanbcotf, 10. sin b =tanacota.

Theorem 5. Spherical excess:
tani = tan gtan2 .
2 2 2

Theorem 6. The solution of a right-angled spherical triangle (Table 2.5):

TABLE 2.5
Given Number in paren.theses denotes
elements the corresponding formula
of Theorem 4

ab c (), a(10), B
4 b (D, a (5, B®

a, « b(10), ¢ (5), pO)
B b9, ¢ (®), 2

G a a5, b M BO

% f a (3, b @& c®
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(c) General (Oblique) Spherical Triangle

REMARK 4. Let us denote the sides of the triangle A ABC by a, b, ¢ and the angles
corresponding to the vertices 4, B, C by «, B, y, respectively (Fig. 2.9).

Theorem 7. Fundamental formulae for an Euler triangle:

1.

sina sinb sinc .
— = — = — (the Sine Theorem) .
sina sinf siny

b N
£ 5%

cosa = cos bcos ¢ + sin bsin ccosa (the Cosine Theorem for the sides).

Fig.29. A B

cosa = —cos Bcosy + sin Bsinycosa (the Cosine Theorem forthe angles).

(a) cosasinb = sinacos bcosy + sinccosa;
(b) cotasinb = sinycota + cosycosbh.

(a) cosasin B = sinycosa — sin acos fcos ¢ ;
(b) cot asin B = sinccot a — cosccos f.

Theorem 8. Further formulae for an Euler triangle:

6.

10.
11.
12.
13.

tan 3(a + b) = %ﬁ-—llgtan e
tan 3(a — b) = %;—fgtan lc.
anio 4 )= 21 o

tan 3(x — B) = wcot 1y.

sin 3(a + b)
cos }(a + B) cos ¢ = cos 4(a + b)siniy.
sin #(o + B) cos ¢ = cos 3(a — b)cos 1y.
cos }(a ~ B)sin ¢ = sin ¥(a + b)sin y.

sin (o — B)sin ¢ = sin 4(a — b)cos iy.
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In formulae 14 and 15 the notation

(@a+b+c), s =

s =1 =s —a, S, =5—-b, s35=5—c¢,
c=Hae+B+7y), 6,=0—a, 6,=06—f, 03=06—19
is used.
a 1 COS 04 COS G, COS &
14. cot— = ! 2 .
2 cosoy —COS G

o 1 sin s, sin s, sin s
15. tan- = — L e
2 sinsg sin §

Theorem 9. The solution of a general spherical triangle is shown in Table 2.6.

TABLE 2.6
r Given Number in parentheses denotes the corresponding
elements formula of Theorems 7 and 8
&a+ﬂ a— B
a, b,y :‘ @8), ——(9), c(e.g. 100r 12)
2 2
a+ b a—b
« B c 3 (6), -5 (M, y(eg. 11 or12)
a, b, c o (15), similarly 8 and y
o, B,y a (14), similarly b and ¢
a, b, «* B, vy (9, c(D
L o, B, a** b)), c (D), v(9)
|

2.11. Inverse Trigonometric Functions

Inverse trigonometric functions are the functions arcsin x (or sin™! x), arccos x
(cos™ x), arctan x (tan™'x), arccot x (cot™!x), which are inverse (see §11.1,
p. 362) to the trigonometric functions.

REMARK 1. In this section, the angles are expressed in circular measure.

* If sin b sin & > sin a, then no solution exists. If sin 4 sin « = sin a there is a single solution
(the triangle is right-angled). If sin b sin « < sin q, it is necessary to distinguish two cases: 1° if a
is nearer to 90° than b, then there exists one solution (8 and b are of the same kind, i.e. both
either acute or obtuse); 2° if b is nearer to 90° than a, then there are two solutions or no solution
according to whether a and « are of the same or of different kinds, acute or obtuse, respectively.

** The discussion of this case can be obtained from the discussion of the case* by substi-
tuting throughout the sides a, b, ¢ for the angles «, §, y and vice versa.
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Definition 1. The function y = arcsin x is inverse to the function x = sin y
—in £y £in); it is defined for x in the interval [—1,1]. Thus: If —1 <
< x £ 1, then arcsin x is the unique angle y in the range [ —4n, x| such that
sin y = x.*

Definition 2. The function y = arccos x is inverse to the function x = cosy
(0 £ y £ m);itis defined for x in the interval [ —1,1]. Thus: If —1 £ x =< 1, then
arccos x is the unique angle y in the range [0, ] such that cos y = x.

Definition 3. The function y = arctan x is inverse to the function x = tan y
(—im < y < in); it is defined for all real x. Thus, if x is a real number, then arctan x
is the unique angle y in the range (- 17, %n) such that tan y = x.

Definition 4. The function y = arccot x is inverse to the function x = cot y
O<y< n); it is defined for all real x. Thus, if x is a real number, then arccot x is
the unique angle y in the range (0, x) such that cot y = x. (The range (—1n, n) is
sometimes used.)

Y
1 +T
\arccos X
‘\
\
N
\
A
\\
\\
N
NI
2
\\
\\ .
\\
\
Ay
AY
\
\
H
=1 o 1 x
Fig.2.10. farcsinx | o
5

REMARK 2. The graphs of the functions arcsin x, arccos x, arctan x, arccot x are
illustrated in Fig. 2.10 and 2.11.

Theorem 1. The values of the inverse trigonometric functions at some special
points:
arcsin 0 = 0, arcsin ¥ = 4n, arcsin 1 =4n, arcsin (—1) = —4=n;

*) In English literature this function is more usually called the principal value of arcsin x,
the general function arcsin x being the (multi-valued) function inverse to x == sin y, and similarly
for the other inverse functions.
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arccos 0 = 4n, arccos} = m, arccos1 =0, arccos(—1)=r;

arctan0 = 0, arctanl = {n, lim arctanx = {7, lim arctanx = — 4r;

x—+ o0 X =0

arccot 0 = 4n, arccot 1 = }n, lim arccot x =0, lim arccot x = 7.

X+ w0 X - o0
y
m
arceot x T TTTeal
.
B .9
N
2\
(0] x=1 x
arctan x
arctan x
I -
2
Fig. 2.11.

Theorem 2. Fundamental formulae and relations among inverse trigonometric

functions (if the domain of validity is not mentioned, then the SJormula holds for
all x):

arccos (—x) = n — arccos x (x| < 1).

1. arcsin (sinx) = x (|x| < 4m), arccos(cosx) =x (0 < x < 7).
2. sin (arcsin x) = x, cos(arccosx) = x (|x| < 1).

3. arctan (tanx) = x (|x| < 4xn), arccot (cotx) =x (0 < x < ).
4. tan (arctan x) = x .

5. cot (arccot x) = x..

6. arcsinx + arccosx = 4n (x| £ 1).

7. arctan x + arccot x = in.

8. arcsin(—x) = —arcsinx (|x] £ 1).

9.

0.

ot

arctan (~x) = —arctan x .
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11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.
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arccot (—x) = m — arccot x .

arcsin x = arctan — (Jx] < 1).

Ja =)

arccos x = arccot <1).

i

. X
arctan x = arcsin -
V(U + %)
X
arccot x = arccos ————— .

JO )

1
arctan x = arccot— (x > 0).
x

arcsin x = arccos /(1 — x?), arccos x = arcsin /(1 — x?) (0 =<x < 1).
arcsin x + arcsin y =
= arcsin [x /(1 — »®) + yJ(1 = x*)] (xy £0orx® + y* 1),
= n — arcsin [x \/(1 = y*) + y J(1 = x*)] (x>0,y > 0and x* + y*> 1),
= —n — arcsin [x /(1 = y?) +y J(1—x?)] (x<0,y<O0andx?+y*>1).
arcsin x — arcsin y =
= arcsin [x /(1 — y?) — y J(1 — x¥)] (xy 2 0orx*>+ y* 1),
= — arcsin [x /(1 —y*) =y J(1 =x*)] (x >0,y <Oand x>+ y*>>1),
= —n — aresin [x /(1 = y*) — y /(1= x*)] (x<0,y>0and x>+ y>*>1).
arccos x + arccos y = arccos [xy — /(1 — x?) /(1 = )] (x +y=20),
= 21 — arccos [xy — /(1 — x*) J(1 = »})] (x+y <0).
arccos x — arccos y = —arccos [xy + /(1 — x?) /(1 = y?))] (x=2y),

= arccos [xy + /(1 — x%) J(1 — »?)] (x < y).

x +
arctan x + arctan y = arctan 4

(xy < 1),

X +y

= 7 + arctan (xy >1,x>0),

x +
= —m 4+ arctan Y

(xy > 1,x <0).

x -7

arctan x — arctan y = arctan
1+ xy

(xy > -1),
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2.12

% + arctan ~——2- (xy < —1,x>0),
+ xy

—x + arctan = (xy < —-1,x <0).
1+ xy

2.12. Hyperbolic Functions

Definition 1. The functions sinh x (hyperbolic sine), cosh x (hyperbolic cosine)
and tanh x (hyperbolic tangent) are defined for all real x as follows:

sinh x = 3(e* — e™™), coshx = 4(e* +e7%),

ef —e7*
tanh x =

sinh x
e +e* coshx
\‘ y 1
1}
\cosh X / &
\ ’ 1
Y / icoth x
Y 1 1
\ 1 1
\ ’ 1
\ / '
\ / '
\‘ ' // \
\ ! 7 \
\ ’ \
AN /’ \
AY ’ ‘\
\\ " \
N ’ \\
. < /sinh x .
AN 1. 1 i
tanh x
0 X ) x
1 ==l =
\\
\
N
\
\
\
Y
\
\
\
1
)
1
\
]
\
1
1
1
1
Fig. 2.12a.
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For x # 0, the function coth x (hyperbolic cotangent) is defined by the relation

e" 4+ e’ 1

X

coth x =

e —e” tanh x

Further, the following functions are defined

sech x = (hyperbolic secant)
cosh x
cosech x = — for x # 0 (hyperbolic cosecant).
sinh x
y
D
/%
(0) A=1 |8 x
Fig. 2.13.

REMARK 1. The behaviour of the hyperbolic functions can be seen in Fig. 2.12a,b.

RemMARK 2. The hyperbolic functions stand in a similar relation to an equiangular
hyperbola with semi-axis of length 1 as do the trigonometric functions to a unit
circle; the independent variable (argument) x = 0 denotes the area of the hyperbolic
sector (the shaded area in Fig. 2.13). Here,

sinh x = BT), cosh x = 073, tanh x = ANC

Theorem 1. Relations between hyperbolic functions:
1. cosh?x — sinh?x =1,
2. coshx + sinh x = e¥,

cosh x — sinh x = e™ .
3. sinh (—x) = —sinh x,

cosh (—x) = coshx,

tanh (—x) = —tanh x .

coth (—x) = —coth x .
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‘ tanh x 1
4. |sinh x| = \/(cosh® x — 1) = \/(ll— tanl|12 x) = J(coth? x — 1)
|cothx| 1

5. coshx = . /(sinh?x + 1) = = .
Vi ) Jleoth? x — 1) /(1 — tanh? x)
sin}l X

6. tanhx = .
J(sinh? x + 1)

7. sinh (x 4+ y) = sinh x cosh y + cosh x sinh y,
cosh (x + ) = cosh x cosh y + sinh x sinh y,
tanh x + tanh y

tanh (x £ y) = = , coth (x + y) = 1 iCothxcothy.
1 + tanh x tanh y coth x * coth y

8. sinh2x = 2sinh x cosh x, cosh 2x = sinh? x + cosh? x

2 tanh x 1 + coth? x
. coth2x = — =

tanh 2x = —
1 + tanh? x 2 coth x

9. De Moivre’s Theorem: (cosh x + sinh x)* = cosh nx + sinh nx .

10. sinhxisinhy:Zsinhxiycoshx—;y,
coshx+coshy=2coshx+ycoshx;y,
coshx—coshy:2sinhx > Y Sinh —y’

sinh (x + )

tanh x + tanh y = .
cosh x cosh y

11. Relations between hyperbolic and trigonometric functions (see Remark
20.4.4):

sin ix = isinh x, cosix = coshx,

tanix = itanhx, cotix = —icothx.

2.13. Inverse Hyperbolic Functions

Inverse hyperbolic functions are the functions arsinh x (sinh ~* x), arcosh x
(cosh™' x), artanh x (tanh™' x), arcoth x (coth™ x) which are inverse (see 11.1,
p. 400) to the hyperbolic functions.
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Definition 1. The function y = arsinh x is inverse to the function x = sinh y;
it is defined for all real x. Thus: If x is a real number, then arsinh x is the unique
number y such that sinh y = x.

Definition 2. The function y = arcosh x is inverse to the function x = cosh y
considered only in the interval [0, oo); it is defined for every x in the interval
[1, o0). Thus: If 1 < x < + oo, then arcosh x is the unique number y in the inter-
val [0, o0) such that cosh y = x.*¥)

]
Fig. 2.14a. | Y !
H arsinh X
'I
i
]
/
4
7
4
/
/,
Z
-1 0] 1 X
d
7’
4
4
7/
4
/7
1
1
1
!
1
[
i
i artanh x
L}
Fig. 2.14b. t
g V4 |l‘
\ arcosh X
‘\
\
\
N\,
\\\
\\\
-1 0] 1 X
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Definition 3. The function y = artanh x is inverse to the function x = tanh y;
it is defined for all x in the interval (—1, 1). Thus: If —1 < x < 1, then artanh x
is the unique number y such that tanh y = x.

*) In English literature the function arcosh x is more usually defined as the two-valued
function inverse to x = cosh y.
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Definition 4. The function y = arcoth x is inverse to the function x = coth y;
it is defined for all x satisfying |x| > 1. Thus: If |x| > 1, then arcoth x is the uni-
que number y such that coth y = x.

REMARK 1. The graphs of the inverse hyperbolic functions are illustrated in Fig.
2.14a,b.

Theorem 1. Inverse hyperbolic functions expressed by means of logarithms:

arsinh x = In[x + /(x> + )], arcoshx =In[x + /(x> = 1)] (x=1),

1 +x x + 1

artanh x = }In 1 (Jx] < 1), arcothx = %1In (|x] > 1).
— x —
Theorem 2. Relations between the inverse hyperbolic functions:
1. arsinhx = artanh ——~——, [arsinh x| = arcosh /(x2 + 1) .

JEF+1

. X
2. artanh x = arsinh —

J(I - x%)

= arcoth ! (|x] < 1, x # 0).
x

(1 < 1.

3. arsinh x + arsinh y = arsinh [x /(1 + y?) + y /(1 + x%)],

larcosh x + arcosh y| = arcosh [xy + /[(x* — 1) (»* — 1)]]
x=1Lyzl),

x+y

+ xy

artanh x + artanh y = artanh

(x| <1, [y] <1).



3. SOME FORMULAE (AREAS CIRCUMFERENCES,
VOLUMES, SURFACES, CENTROIDS, MOMENTS
OF INERTIA)

By VACLAV VILHELM

References: [26], [28], [68].

3.1. Area, Circumference, Centroid and Moments of Inertia
of Plane Figures

REMARK 1. For the calculation of areas and circumferences of plane figures by
means of integrals see § 14.9.

(a) The Triangle (Fig. 3.1). Consider a triangle ABC, denoting its sides by a, b, c,
interior angles by «, f, 7, altitudes by h,, hy, h,, radius of the inscribed circle by r,
radius of the circumscribed circle by R, area by P, semi-perimeter by s = ¥{a + b + ¢),
medians by t,, t,, t., centroid by T. The following relations hold:

P = lah, = ibh, = Lch,, (1)
= /[s(s — a)(s — b) (s — ¢)] (Heron’s formula), (2)
abc
= —— = 2R?%*sin asin Bsiny, 3
4R fsiny ©)
=rs = p? cotgcotgcotx, @)
2 2 2

= lubsiny. (5)
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If x4, 15 X3, V23 X3, y3 are the coordinates of the vertices 4, B, C of a triangle in a
cartesian coordinate system, then

X1 Vi 1 Xy — Xpy Yy —
TP =3%%5 y5 1| =1% 2 vz ! 5 (6)
X3y Vs, 1 X3 — X5, V3 — Yy

the minus sign relates to the case where the determinant is negative.

The coordinates of the centroid T (the point of intersection of the medians
te Iy 1) A€

Xr = %(xl + X + X3), yr= %‘()’1 + v+ ¥3)- (7)

The moment of inertia about a median axis o, i.e. an axis through the centroid
parallel to the side ¢, or about the side c is

Iy = 55ch}, or I, = j5ch, respectively. (8)

The area of a right-angled triangle ABC with hypotenuse ¢ (hence, y = 90°) is
P = lab = %a® tan B = ic? sin 2u. 9)

REMARK 2. For trigonometric formulae concerning a triangle see § 2.9, p. 78.

(b) The Quadrilateral (Fig. 3.2). Consider a quadrilateral with sides a, b, ¢, d
and with vertices 4, B, C, D (the sides intersecting only at the vertices). Let u,, u, be
its diagonals, ¢ the angle between them, and h,, h,, the altitudes of the triangles

Fig. 3.2.
A a B

ABD, BDC, dropped from the points 4, C, respectively. Then the area P of the quadri-
lateral is
P = Yuu,sin ¢ = (h; + hy)u, (10)

(if the quadrilateral is not convex, then u, in (10) is the inner diagonal).

If the vertices of a convex quadrilateral lie on a circle then the area of the quadri-
lateral is

P = J[(s - a)(s = b) (s — o) (s — )] (11)

where s = ¥(a + b + ¢ + d).
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A trapezium (Fig. 3.3a) is a (convex) quadrilateral two opposite sides of which

are parallel. The area P is given by the formulae (10), (11) and
P=Ya+c)h. (12)

The centroid T lies on the segment MN, where M, N, are the mid-points of the
sides a, ¢, respectively, at distance h, = h(a + 2¢)/[3(a + ¢)] from the side a.

Fig. 3.3a.

The moments of inertia of an isosceles trapezium of altitude h about the median
axes 0y, 0, (Fig. 3.3b) are

h*(a* + dac + %) _ ﬁ(a‘* - %)
36(a + c) ? a8(a - )

o1

(13)

A parallelogram (Fig. 3.4) is a quadrilateral the opposite sides of which are
parallel and, consequently, of the same length. If y = 90°, we get a rectangle or
a square. The area P of a parallelogram is given by formulae (10), (11), (12) (where
a=c¢ b=d)and

P =absiny. (14)

A rhombus is a parallelogram with a = b. Then, ¢ = 90° and
P =a*siny = duu,. (15)

A square is a rhombus with y = 90°,
The centroid T of a parallelogram lies at the point of intersection of the diagonals.

Fig. 3.4.

The moment of inertia of a parallelogram about the diagonal u, is

I, = suqujsin® @ = 55Pujsin® ¢ . (16)

The moment of inertia of a rectangle with sides a, b about a median axis o
parallel to the side a is
I _ 1 3
0= l—z—ab . (17)
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3.1

(c) The Polygon. The area can be determined by dividing the polygon into simple
figures, for example into triangles (see Fig. 3.5a).

A regular polygon (Fig. 3.5b) has all its sides and all its angles equal. Let n be the
number of sides, a their common length, & = 360°/n the central angle, r the radius
of the inscribed circle, R the radius of the circumscribed circle, P the area, C the

Fig. 3.5a.

circumference of the regular polygon. Then

o o .
P = inar = ina?® COtE = nrtan- = 4nR?sin «, (18)
.o o
C = na = 2nRsin - = 2nrtan -. (19)
2 2
TABLE 3.1
Calculation of the elements of regular polygons

P P P R a a R r

n — il - = - o = _

a? R? r2 a r r R
3 04330 | 12990 | 51962 | 0-5774 1-732 1 3464 1 2:0000 | 0-5000
4 1-:0000 | 2:0000 | 40000 | 0-7071 1-414 2 2:0000 1-414 2 0-707 1
5 1:7205 | 2:3776 3-6327 0-8507 1-175 6 1-453 1 1-236 1 0-809 0
6 2:5981 | 25981 3464 1 1-0000 1-000 0 1-154 7 1-154 7 0-866 0
7 36339 | 27364 33710 1-152 4 0-867 8 0963 1 11099 0-901 0
8 4-8284 | 28284 33137 1-306 6 0-765 4 0-828 4 1-0824 | 09239
9 6-1818 | 28925 32757 1-461 9 0-684 0 0-7279 1-064 2 0-939 7
10 7-6942 | 29389 3-249 2 1-6180 0-618 0 0-649 8 1-051 5 09511
12 11-196 2 | 3-0000 3-2154 1-9319 0-517 6 0-5359 1-035 3 0-9659
15 17:6424 | 3-0505 3-1883 2:404 9 0-415 8 0-4251 1:0223 0-978 1
16 20-109 4 3:0615 31826 | 25629 0-3902 | 0-3978 1-019 6 0-980 8
20 31-568 8 | 30902 3-1677 3-196 2 0-3129 0-316 8 1-0125 0-987 7
24 45-5745 | 3-1058 3-1597 3-830 6 0-2611 0:263 3 1-008 6 | 09914
32 81-2254 | 31214 | 3-1517 51011 0-196 0 | 0-1970 1-004 8 0-995 2
48 183-0846 | 3-1326 3-146 1 7-644 9 0-130 8 0-1311 1-002 1 0-997 9
64 3256875 | 31365 3-1441 |10-1900 0-098 1 0-098 3 1-001 2 0-998 8
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The centroid of a regular polygon of n vertices is at its centre, the moment of
inertia about an arbitrary axis o passing through the centre is

I, = &nar(12r® + a*) = 5,P(6R? — a?). (20)

(d) The Circle. Let r denote the radius, d the diameter, P the area and C the circ-
umference of the circle. Then

P = nr* = ind* = 1Cd ~ 0785 4d* ; (21)
C = 2nr = nd ~ 3141 59d . (22)

The centroid of a circle is at its centre.
The moment of inertia about an axis o passing through the centre is

I, = inrt*. (23)

0

REMARK 3. For the measurement of angles and for conversion of angles measured
in degrees into radians and vice versa, see § 2.1, p. 69.

The length I of a circular arc of radius r, corresponding to the central angle o
(Fig. 3.6):

I = r arc « (arc « denotes the magnitude of the angle « in radians), (24)
Tro .

l = T80 ~ 0-017 453ra (the angle in degrees) , (25)

I~ J(* + 2. (26)
!

\ 7
A \T\ a ///
Fig. 3.6. g

A segment of a circle (Fig. 3.6, the shaded area). Let r be the radius, I the length of
the arc, t the length of the chord, « the central angle (in degrees), h the altitude of
the segment, P the area of the segment. Then

t=2./(2hr — h*) =2 sing, h=itanz, 27
J@hr =) = 2rsin?, b= tan® @)
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N
P=1r Tgo  Sne)= HIr = r — h)]. (28)

The centroid T lies on the bisector o, of the central angle (Fig. 3.6); its distance
from the centre S is

N in>1
TS = __T4"8m~2fx. (29)
3(1ggm — sin a)

The moments of inertia about the axes oy, 0, (Fig. 3.6) are

" oL . . 1 o .
I, = 35 (5 — 8sin o + sin 20:) s I, = 1" <% -~ Sin 2“) . (30)

A sector of a circle (Fig. 3.7). The area

Irl, (3 1)

where o stands for the magnitude of the central angle in degrees.

The centroid T lies on the bisector o, of the central angle; its distance from the
centre S (Fig. 3.7) is
=< _ 240rsin 3o

s (32)
X

Fig. 3.7.

The moments of inertia about the axes oy, 0, (Fig. 3.7) are

I, =4r* 2 sina),
180

40

I, = 4r*(— + sina). 33
2 8 <180 ) ( )
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An annulus (Fig. 3.8). Let r be the radius of the inner circle, R the radius of the
outer circle, ¢ = 4(r + R), m = R — r, and P the area. Then

P = n(R* — r?) = 2nom . (34)
The centroid lies at the centre S.
The moment of inertia about the median axis o, is
I, = n(R* — r%). (35)
A sector of an annulus (with central angle « in degrees, see Fig. 3.8, the shaded

area). The area P is given by

%
P=—"(R*—=r)=am. 36
2 (ke ) 06)

The centroid T lies on the bisector o, of the central angle; its distance from the
centre S is
== 4 R>—p*sinlx

TS =1 (37)

18ot¥

The moments of inertia about the axes o,, 0, (Fig. 3.8) are

180

I, = #R* — 1% (ﬁ ~ sin oc), I,, = ¥R* - 1% <% + sin a). (38)

Fig. 3.9.

(e) The Ellipse (Fig. 3.9). Let SA = a be the semi-major axis, SC = b the
semi-minor axis, e = \/(a®> — b*)/a the eccentricity of the ellipse, C its circumfer-
ence, P its area. The following relations hold:

P = nab, (39)
C = 4aE(e, in) (40)

where E(e, 4n) = [i/* /(1 — e?sin? @) dg is the so-called complete elliptic integral
of the second kind (see § 13.12). The following approximate formulae hold for the
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circumference of an ellipse:

64 — 3I*

C ~ n[1:5(a + b) — \/(ab)], C =~ n(a + b)—————, where!l =

64 — 16127

Table 3.2. The circumference C is given by the formula C = ak.

The centroid of an ellipse lies at the centre S.

The moments of inertia about the axes a, b are as follows:

3.1

a—>b
a+b

(41)

The circumference of an ellipse with semi-axes a, b can be calculated by using

I, = %mab®, I, = ina®b. (42)
An elliptic sector (Fig. 3.9, the shaded area) has the area
c
P = ab arccos — . (43)
a
ReMARK 4. For further properties of the ellipse see §§ 4.2 and 5.10.
TABLE 3.2
1 { |
b k b k b k b ko b ko
a a a a | a ‘
| oe0 | |
0-00 4-000 0 0-20 4-:202 0 0-40 4-602 6 0-:60 ! 51054 0-80 56723 |
01 0011 21 218 6 41 625 8 61 1324 H 81 702 0 (
02 003 7 22 2356 42 649 2 62 1596 82 7317 :
03 007 8 23 2531 43 672 8 63 1870 83 7615 |
04 0131 ‘1 24 | 2710 44 696 6 64 214 5 84 7915
05 0194 | 25 ; 2892 45 7207 1 65 2421 85 8215 i
06 026 7 26 307 8 46 7450 // 66 269 9 1 86 8516 ;
| 07 034 8 27 : 326 8 47 769 5 ]] 67 ‘ 297 8 * 87 8819 |
| 08 043 8 28 ‘ 346 2 48 794 2 ‘: 68 w’ 3259 :i 88 9122 {
09 0535 29 | 3659 49 8191 || 69 | 3541 |} 89 942 6 :
0-10 064 0 0-30 3859 0-50 844 2 0-70 3824 0-90 9732
‘ 11 0752 31 406 2 51 869 5 71 410 8 91 60038 ‘
i 12 ! 0870 32 426 9 52 8950 72 4394 92 0345 |
13 ; 099 4 33 4479 # 53 920 7 73 468 1 93 065 3 (
: 14 1125 34 469 2 54 946 6 ! 74 496 9 | 94 096 2
‘; 15 126 1 35 490 8 55 972 6 l{ 75 5258 95 127 1 |
: 16 1403 | 36 5126 56 998 8 [ 76 5549 96 158 2 ;
17 1550 37 5347 57 5-0252 77 5841 97 189 3 i
18 170 2 38 5571 58 0518 78 6134 98 2205 \
99 2518 }
|

|
19 1859 39 5797 i 59 078 5 79 642 8
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(f) The Hyperbola (Fig. 3.10). Let 04 = a be the semi-major axis, OC =
= b be the semi-minor axis, e = /(a> + b%)/a the eccentricity.

A segment MBN of the hyperbola (Fig. 3.10, the shaded area) has the area

P =xy —abln <)E + '-V> = xy — ab arcosh X (44)
a b a

where y = (bfa) /(x* — a?).

NN y AoeLZ _______ 7

b fitn ) W
v/ @\,

B ¢ g
N « M
R

Q

Fig. 3.10. Fig. 3.11.

REMARK 5. For further properties of the hyperbola see § 4.3, 5.11.

(2) The Parabola (Fig. 3.11). The area of a segment MVN of the parabola
(the shaded area) is

P = %avsina; (45)
it is thus equal to two-thirds of the area of the parallelogram KLMN.

The length [ of an arc MVR of a parabola is

I =1 J[c* + (4h)2] + gﬁln [4" ; %\/[cz ; (4h)2]] : (46)

C

the following relation holds approximately (for small h/c):

2 4
~ele 3y 232 (Y (47)
3\c S \¢
The centroid T of a parabolic segment MVR (Fig. 3.11) lies on the axis o, of the

parabola; its distance from the vertex Vis

TV = 3h. (48)

wjes
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The moments of inertia of a parabolic segment MVR about the axes oy, 0,
(Fig. 3.11) are

I, = 2hd®, I, =2h%d. 49
15 7

1 02

REMARK 6. For further properties of the parabola see § 4.4, 5.12.

3.2. Volume, Surface, Centroid and Moments of Inertia of Solids
REMARK 1. For the calculation of volumes and surfaces of solids by means of
integrals see § 14.9.

ReMARK 2. In the following text, V always denotes the volume, S the total and Q
the lateral area® of the surface of the respective solids.

(a) The Prism (Fig. 3.12). Let a be the length of the lateral edge or the slant
height, h the height of the prism (i.e. the distance between the planes of the upper
and lower bases), P the area of the base, N the area of the normal section (the plane
section which is perpendicular to the lateral edges). Then

V=Ph = Na, (1)
Q=Cpa, S=2P+ Cya )

where Cy is the circumference of the normal section.

/ Fig. 3.12.

The centroid lies at the mid-point of the segment connecting the centroids of the
two bases of the prism.

A truncated triangular prism (i.e. cut off by a plane non-parallel to the plane of
the base; Fig. 3.13), whose lateral edges are of lengths a, b, ¢, has the volume

V=14N(a + b + ¢). (3)
A parallelepiped is a prism, the base of which is a parallelogram.

* j.e. area of the slant faces or of the curved surface.
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A right parallelepiped (i.e. a right prism, the base of which is a rectangle
ora square), whose edges are of lengths a, b, ¢, has the volume

V = abc (4)
and the surface area
S = 2(ab + ac + bc). (5)

Fig. 3.13. Fig. 3.14.

The moment of inertia about the median axis o which is parallel to the edge ¢ is
I, = Labc(a® + b?).

A cube is a right parallelepiped whose edges are of the same length a; the volume
and surface are given by

V=a*, S=6d. (6)

(b) The Pyramid (Fig. 3.14). Let h be the height of the pyramid (the distance
of the apex H from the plane of the base), P the area of the base. Then

V= 1Ph. ()

The centroid lies on the segment connecting the apex and the centroid of the
base; its distance from the base is }h.

A triangular pyramid with one vertex at the origin of the cartesian coordinate
system, the other three vertices being (x;, y;, z;) (i = 1, 2, 3), has the volume equal
to one-sixth of the absolute value of the determinant

xl’ yla zl
D =x, y5 2|, ie. V=23D|.
X3, Y3s Z3

A regular pyramid (i.e. a pyramid whose base is a regular polygon, and whose
altitude passes through the centre of the base). The lateral area

Q = iCI (8

where C is the circumference of the base and [ the length of the perpendicular
from the apex to (any) of the edges of the base.
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A frustum of a pyramid (Fig. 3.15) (the bases lie in parallel planes). Let P,, P,
be the areas of the bases and h the height (the distance between the two bases).
Then

V= 1h[P, + P, + /(P/P,)]. 9)
If a frustum of a pyramid is regular, then the lateral area 1s

0=HC, +Cy)l (10)

where C,, C, are the circumferences of the bases and [ is the altitude of the trapezoid
formed by an (arbitrary) lateral face.

Fig. 3.16a. Fig. 3.16b.

REMARK 3. (a) A dihedral angle (Fig. 3.16a) (the base is a rectangle with sides
a, b, one pair of opposite siant faces is formed by two congruent isosceles triangles,
the other pair by two congruent isosceles trapezia). The volume:

V= 3%2a + a,) bh. (11)

The centroid lies on the segment connecting the centre of the upper edge a, and

the centre of the base; its distance from the base is
;= h(a + a,)
2(2a + a,)’

(12)

(b) An obelisk (Fig. 3.16b) (the bases are rectangles with sides a, b and ay, by, the
opposite slant faces make the same angle with the base, but they do not intersect
at one point). The volume

V= }h[(2a + a,) b + (2a, + a) b,]. (13)

The centroid lies on the segment connecting the centres of the two bases; its

distance from the lower base is
Lok a(b + b,) + a(b + 3b,) . (14)
2 a(2b + bl) + al(b + 2b1)

(9) The Cylinder (Fig. 3.17). Let h be the height, [ the length of the
side, P the area of the base, N the area of the normal section (plane section per-
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pendicular to the sides) of the cylinder. Then, the volume V and the lateral area Q
of the cylinder are given by:

V=Ph=Nl, Q=Cph=Cyl, (15)

where Cp, and Cy, are the circumferences of the base, and of the normal section,
respectively.

The centroid lies at the mid-point of the segment connecting the centroids of
upper and lower bases of the cylinder.

A right circular cylinder. The base is a circle of radius r, lying in a plane which is
perpendicular to the side of the cylinder, & is the height. Then

V=nmnrlh, Q=2nrh,
S = 2mr(r + h). (16)
The moment of inertia about the axis of revolution o is
I, = inr*h. (17)

A truncated right circular cylinder (Fig. 3.18). Let h, be the shortest and h, the
longest side of the cylinder. Then

V=nr2£l—1—+—h, Q =nr(hy + hy),

S =nmr [hl + hy +r + \/[rz + <hz—;ﬂ>2:”] (18)

[ 9]

Fig. 3.18. Fig. 3.19.

A segment of a right circular cylinder — a cylindrical angle (Fig. 3.19). Using
the notation of Fig. 3.19, we have

3

V= %[a(?arz —a’)+3%b —r)o] = % (sina — 4sin® o — a cos a),

_ 2rh

Q——b—[(b—-r)oc-l-a], (19)
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with the angle « measured in radians (0 < a < ). For « = 4n,we havea = b = r
and

V=2%h, Q=2rh. (20)

A hollow right circular cylinder — a tube (Fig. 3.20). Let r be the inner radius,
R the outer radius, @ = R — r the thickness, ¢ = (r + R) the mean radius, h the
height. Then

V=mn(R? — r*) h = nah(2R — a) = mah(2r + a) = 2mpah . (21)
The moment of inertia about the axis of revolution o is
I, = imh(R* — r¥). (22)
(d) The Cone (Fig. 3.21). Let h be the height, P the area of the base. Then
V = 1Ph. (23)

The centroid lies on the segment connecting the apex and the centroid of the
base; its distance from the base is %h.

A right circular cone. Its base is a circle of radius r, and the line passing through
the apex and through the centre of the base (the axis of the cone) is perpendicular to
the plane of the base; let h be the height. Then

V=14nr*h, Q=mrl, S=mnr(r+1) (24)

where | = /(r* + h?)is the length of the side of the cone.

Fig. 3.20. Fig. 3.21.
The moment of inertia about the axis of revolution ¢ is
I, = &nr'h. (25)

A frustum of a right circular cone (Fig. 3.22). Using the notation of Fig. 3.22,
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we have
V=14nh(R> + Rr+r*), Q=n(R+r)a (26)

where a = \/[h* + (R — r)?] is the length of the side of the frustum.
The centroid lies on the axis of revolution o; its distance from the lower base
(of radius R) is
2 2
h(R* + 2Rr + 3r ) 27)
4R* + Rr + r?)

-
0

Fig. 3.22. Fig. 3.23.

The moment of inertia about the axis of revolution o is

_ nh(R® — r%)
= 1—0(}—5-;—'7 . (28)

o

(e) The Sphere. If r is the radius of the sphere, then
V= 4nr ~ 41888r3, S = 4nr? ~ 12:566r2. (29)

Fig. 3.24. Fig. 3.25.

The moment of inertia about the axis o passing through the centre of the sphere
I, = Znrs. (30)

A sector of a sphere (Fig. 3.23). Using the notation of Fig. 3.23, we have
V=23nr*h, S=mnr(2h+9). (31)
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A segment of a sphere (Fig. 3.24). Using the notation of Fig. 3.24, we have
V = inh(3¢> + h*) = inh*(3r — h),
S = 2nrh + mo*, Q = 2mrh. (32)
A spherical layer (Fig. 3.25). Using the notation of Fig. 3.25, we have
V = 4nh(305 + 30} + h?),
S =n(2rh + o} + 03), Q = 2mrh. (33)

A spherical ring is the part of a spherical layer, obtained by removing from it an in-
scribed frustum of a cone (or a cylinder). If a is the length of the side of the inscribed
frustum of cone (or of the cylinder), then the volume V of the spherical ring is

V = inha®. (34)
(f) The Ellipsoid with semi-axes a, b, ¢ has the lateral area

S =2 4 20 5 (R o) + (@ = &) Bl o)), (35)

Ja? =)

a [b? - c? c
k=- 3 3> @ = arccos —
b\a* —c¢ a

where

and F(k, ¢), E(k, ¢) are the elliptic integrals of the first and second kinds (see § 13.12,
p. 552).
The volume of an ellipsoid

V = 4nabc . (36)

A prolate spheroid is formed when an ellipse with semi-axes a, b (a > b) is rotated
around its major axis; its surface is

2 _ p2
S—2n<b2+ ab 2SN e), o= Y@ 8% (37)

e a

An oblate spheroid is formed when an ellipse with semi-axes a, b (a > b) is rotated
around the minor axis; its surface is

2 2 g2
S=2n(a2+~b—ln1—+——ei), e:M. (38)

2e 1 —e a

The moment of inertia of a spheroid about the semi-axis a is

I, = &mab*. (39)
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(2) The Paraboloid of Revolution (Fig. 3.26). The volume bounded by a para-
boloid of revolution and by a plane perpendicular to its axis at distance h from the
vertex O (the radius of the base being r) is

V= inr’h (40)

Nj=

the lateral area is

Q= 6% [(+2 + 4h2)¥2 — 7], (41)

The centroid lies on the axis of revolution o; its distance from the vertex O of the
paraboloid is %h.

The moment of inertia about the axis o is

1, = inr*h. (42)

s

Fig. 3.26.

(h) The Torus (annuloid, ring) (Fig. 3.27) is formed by rotation of a circle k
of radius r, with centre K around the axis o, lying in the plane of the circle at distance
R (R > r) from the centre K.

V = 2rn*Rr* ~ 19-739Rr?, (43)

S = 4n*Rr ~ 39-478Rr . (44)
The moment of inertia of a torus about the axis of revolution o is

I, = In*Rr*(4R* + 3r%). (45)

(i) The Cask (Fig. 3.28). The diameter of the upper and lower bases is d, the dia-
meter of the central section is D, the height is h.
For a circular shape (ABC being an arc of a circle)

V = 0-262h(2D* + d?). (46)
For a parabolic shape (ABC being an arc of a parabola)
Va 610 h(8D? +4Dd + 3d%) . (47)



4. PLANE CURVES AND CONSTRUCTIONS

By KAReL DRABEK

References: [6], [118], [143], [155], [162], [187)].

4.1. The Circle

A circle (for the definition see § 5.9) with centre S and radius r will be denoted
by k(S, r).
By the construction of a circle we mean the determination of its centre and

radius from certain given conditions (with the help of fundamental theorems of plane
geometry).

Theorem 1. The circle is axially symmetrical about any line passing through
its centre S (and called a diameter) and, hence, it is radially symmetrical about
its centre S (Fig. 4.1).

Theorem 2. The tangent at a point of a circle is perpendicular to the line con-
necting this point and the centre of the given circle; consequently, all the normals
of a circle pass through the centre of the circle.

Theorem 3. The tangents at the points of intersection of a circle and a diameter
are parallel.
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In what follows the term diameter will normally be used in the sense of a so-called
bounded diameter, i.e. the segment determined by the points of intersection of the
diameter and the circle (ellipse, hyperbola, etc.), or its length.

Definition 1. The diameter of a circle parallel to the tangents at the end points
of a given diameter is called the conjugate diameter to the original diameter.
Hence, conjugate diameters of a circle are perpendicular.

r
309
y =

cC rB8 r r D

Fig. 4.2. Fig. 4.3.

Construction 1 of the tangents to a circle k(S, r) from an external point P (i..
from a point whose distance from the centre S of the circle k is d > r): the circle
constructed on the diameter PS, the so-called Thalet’s circle, meets the given circle
k at two points T, T’ (Fig. 4.2) which are the points of contact of the tangents ¢ = PT,
t' = PT’ from the given point P.

Fig. 4.4.

Definition 2. The construction of a segment equal in length to the circumference
of a circle, or of a circular arc, is called the rectification of the circle, or of the cir-
cular arc, respectively.

In practice, i.e. using a ruler and a pair of compasses, these constructions for a circle
are only approximate.

Construction 2 (Kochariski’s rectification of a circle (Fig. 4.3)). At the point B of
a diameter AB we construct the tangent ¢ and determine the point C of intersection
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of t and of the other arm of the angle BSC = 30°. On CB produced we find the
point D such that CD = 3r. Then AD = nr.

Since the error reaches only 1 mm for r &~ 17 m, it need not be taken into account
in our constructions.

Construction 3 (Sobotka's rectification of a circular arc AB (Fig. 4.4)). We deter-
mine the point C on the half-line AS such that AC = 3r. The line CB meets the tan-
gent ¢ constructed at the point A of the circle k at a point D. Then AD ~ 4B.

This construction is very accurate for arcs corresponding to angles ¢ < 30°.
For example, for ¢ = 30° we get an error of 1 mm for r &~ 2-5 m. Therefore, greater
arcs are divided into parts in order to rectify arcs corresponding to angles ¢ < 30°
with sufficient accuracy.

By an inverse construction we can wind a given segment onto a circle or transfer
an arc of a circle onto another circle (Fig. 4.4).

4.2. The Ellipse

For the definition of the ellipse see § 5.10 (p. 183). We denote the foci by F,, F,
(Fig. 4.5); the line connecting a point of the ellipse and a focus is called a focal
radius.

Theorem 1. The ellipse is a curve symmetrical about the axis connecting both foci
(the major axis) and about the perpendicular bisector of the segment F.F, (the
minor axis) and hence it is radially symmetrical about the point S of intersection
of the axes of the ellipse (the centre of the ellipse).
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The points 4, A, of the ellipse on the major axis are called the major vertices,
the points B;, B, on the minor axis the minor vertices. The length A,S = 4,5 = a'is
called the semi-major axis, and the length B,S = B,S = b the semi-minor axis.
Let the length F,S = F,S = ae, so that the ratio F;S/4,S = e. Then e is called
the eccentricity of the ellipse.

Theorem 2. Between the lengths a, b and the eccentricity e, the relation a*e* =
= a* — b? holds.

U,
VY
a /
/ By
M7
b N b
AN
7 v
V2 A NS Az
Y,
B,
Fig. 4.6. Fig. 4.7.

Construction 1 of points of an ellipse with semi-axes a, b by means of its definition
(Fig.4.5): We determine the major and minor vertices of the ellipse and, by Theorem 2,
we determine the foci Fy, F, on the major axis. We choose an arbitrary point L be-
tween the points Fy, F, and describe circles of radii 4,L, about one focus and A,L

about the other. The points of intersection M, M’ of these circles k,, k, are points
of the ellipse. By an interchange of the foci as centres of the constructed circles,
we get two further points M, M} of the ellipse. This construction is not accurate
in the vicinity of the major vertices A4,, 4,.

Construction 2 of points of an ellipse with given semi-axes using affinity with a circle
(Fig. 4.6): Let the (vertex) circles k,, k, with centres at the point S and radii a, b
be cut by a radius from the point S at the points /, 2. The line through the point I
parallel to the minor axis and the line through the point 2 parallel to the major axis
intersect at a point M of the ellipse. The construction is always accurate, for the aux-
iliary lines intersect at right angles.

Construction 3 of an ellipse with given semi-axes a, b (Fig. 4.7).

(a) By means of the difference of the semi-axes: If the segment U,V; = a — b is
moved along two perpendicular lines, then the point M (exterior to the segment
U,V;) describes the ellipse with semi-axes MU, = a, MV, = b.
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(b) By means of the sum of the semi-axes: If the segment U,V, = a + b is moved
along two perpendicular lines, then the point M (interior to the segment U,V,)
describes the ellipse with semi-axes MU, = a, MV, = b.

This construction is often used to determine the length of one of the semi-axes,
given the other semi-axis, the position of the axes and a point of the ellipse.

Theorem 3. The tangent, or the normal, at a given point of an ellipse bisects
the angle between the focal radii which contains, or does not contain, a major
vertex of the ellipse, respectively.

Construction 4 of the tangent and normal at a point M of an ellipse using the ciclres
kg ky, karp (Fig. 4.6): The required tangent is the line connecting the point M of the
ellipse and the point of intersection 3 (or 4) of the tangent constructed at the point 1
(or 2) of the circle k, (or k,) and the major (or the minor) axis of the ellipse. The nor-
mal to the ellipse at the point M joins the point M and the point 5 which is the point
of intersection of the half line SI and the circle k, ., (of centre S and radius a + b).

The following theorems are important for the construction of tangents from an
external point of an ellipse and for some constructions of the ellipse (Fig. 4.5).

Theorem 4. The locus of points Q which are reflections of one focus of an ellipse
in its tangents is the circle q having its centre at the other focus and radius 2a.

Fig. 4.8.

Theorem 5. The locus of the feet P of perpendicular lines dropped from the foci
of an ellipse to its tangents is the vertex circle kS, a).

Theorem 6. The locus of the centres of circles touching the circle q,(F,, 2a) and
passing through its internal point F{ is the ellipse with foci F,, F, and with its
major axis of length 2a.
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Theorem 7. Let the vertex of a right angle rmove along the circle k (S, a) so that
one of its arms passes through an internal point F of the circle k,; then the other
arm is a tangent to the ellipse with focus F |, centre S and semi-major axis of length a.

Construction 5 of tangents to an ellipse from an external point R:

(a) By means of the circle g; (Fig. 4.8a): We determine the points of intersection
Q;, Q, of the circles k(R, RF,) and q,(F, 2a). The perpendicular bisectors of the
segments Q,F,, OQ,F, are the tangents ¢,, ¢, from the point R to the ellipse. The

Fig. 4.9.

points of contact T;, T, are the points of intersection of the tangents ¢, £, and the
lines connecting the points Q,, Q, and the focus F, (i.c. the focus about which the
circle g, is described).

(b) By means of the vertex circle k,(S, a) (Fig. 4.8b): We determine the points
of intersection P, P, of the circle k, and the Thalet circle drawn on the diameter
RF,. The lines connecting P; and P, and the point R are tangents t,, t, of the el-
lipse. The points of contact T;, T, are the points of intersection of the tangents
t,, t, and the lines through the focus F; parallel to SP;, SP,, respectively.

Construction 6 of tangents to an ellipse, which are parallel to a given direction s:

(a) By means of the circle g, (Fig. 4.9a): The line k through the point F; perpendi-
cular to the direction s intersects the circle g,(F,, 24) at points Q;, Q,; the perpen-
dicular bisectors of the segments QF,, Q,F are the required tangents ¢t,, t,.

(b) By means of the vertex circle k, (Fig. 4.9b): The line k through the point F,
perpendicular to the direction s intersects the circle k (S, a) at points Py, P,: then
the required tangents ¢,, t, pass through P,, P, and are parallel to the direction s.
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The line connecting the points of contact Ty, T, of the parallel tangents ¢;, f,
passes through the centre S of the ellipse and is called the conjugate diameter to the
direction s. Tangents to an ellipse parallel to a given direction a always exist.

Construction 7 (the Rytz construction) of the axes of an ellipse given by conjugate
diameters M;M,, N;N,: On the perpendicular erected to one of the diameters,
say M;M,, at the centre S (Fig. 4.10), we draw the segment SR = M,S, join the
points R and N, and describe a circle through the centre of the ellipse about the

>
Al s s Us7 4
1\\\%2
s/

al % SB, b)

Fig. 4.10. Fig. 4.11.

point O as centre, where O is the mid-point of RN,. This circle intersects the line RN,
“n two points U, ¥ through which the required axes pass (the major axis lies always
within the acute angle made by the given conjugate diameters). Furthermore, a =
—RU=N.V, b=RV = N.U.

Construction 8 of the centres of curvature at the vertices of an ellipse:

(a) A perpendicular dropped from the vertex R of the rectangle SA, RB, (Fig.4.11a)
to its diagonal 4B, intersects the major, or minor axis at the centre of curvature
corresponding to the major, or minor vertex of the ellipse, respectively.

(b) The line connecting the points of intersection I and 2 of the circles k,(4,, b)
k,(B,, a) intersects the major, or minor axis at the required centres of curvature
(Fig. 4.11b).

The circle with its centre at a centre of curvature constructed as above, which passes
through the corresponding vertex (the osculating circle of the vertex) approximates
to the given ellipse in the neighbourhood of the vertex.
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4.3. The Hyperbola

For the definition of the hyperbola see § 5.11 (p. 184). We denote the foci by Fy, F,
(Fig. 4.12); by a focal radius, denoted by ry, r,, we shall again mean a line connec-
ting a point of the hyperbola and a focus.

Theorem 1. The hyperbola is a curve symmetrical about the axis connecting both
foci (the major axis) and about their perpendicular bisector (the minor axis) and

hence it is radially symmetrical about the point S of intersection of the axes of the
hyperbola (the centre of the hyperbola).

The points 4,, A, of the hyperbola on the major axis are called the major vertices.
The length 4,S = A,S = a is called the semi-major axis. Let the length F,S =
= F,S = ae, so that the ratio F;S[A,S = e. Then e is called the eccentricity of the
hyperbola.

Construction 1 of points of a hyperbola given by the semi-major axis and focal
distance ae (Fig. 4.12): We chose an arbitrary point Loutside the segment F,F, and
describe circles of radii AL about one focus and 4,L about the other. The points
of intersection M, M’ of these circles are points of the hyperbola. Interchanging
the foci as centres of the constructed circles, we get two further points M, M| of
the hyperbola.

From Construction 1, it is evident that the points of a hyperbola lic on two bran-
ches. The points of one branch satisfy the relation r; — r, = 2a while the points
of the other branch satisfy r, — ry = 2a. All points of a hyperbola (excepting the
major vertices) lie outside the strip bounded by the lines ay, a, parallel to the minor
axis and passing through the points 4, 4,.
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Theorem 2. The tangent, or the normal, at a point of a hyperbola bisects the
angle between the focal radii which contains, or does not contain, the major vertices
respectively.

The following theorems are important for the construction of tangents from an
external point of a hyperbola (i.e. from a point for which the absolute value of the
difference of the focal radii is less than 2a) and for some constructions of the
hyperbola (Fig. 4.12):

Fig. 4.13.

Theorem 3. The locus of points Q which are reflections of one focus of a hyperbola
in its tangents is the circle q having its centre at the other focus and radius equal
to the length of the major axis 2a.

Theorem 4. The locus of the feet P of perpendicular lines dropped from the foci
of a hyperbola to its tangents is the (vertex) circle k,(S, a).

Theorem 5. The locus of the centres of circles touching the circle q,(F,, 2a) and
passing through the external point F of the circle is the hyperbola with foci F,, F,
and with its major axis of length 2a.

Theorem 6. Let the vertex of a right angle move along the circle k,,(S, a) so that
one of its arms passes through an external point F, of the circle k,; then the other
arm is a tangent to the hyperbola with focus F{ and vertex circle k (S, a).

Construction 2 of tangents to a hyperbola from an external point R (Fig. 4.13a,b):

(a) By means of the circle g: We determine the points of intersection Q,, Q, of the
circles k(R, RF,) and q(Fy, 2a). The perpendicular bisectors of the segments Q,F,
0,F, are the tangents t,, t, from the point R to the hyperbola. The points of contact
T;, T, are the points of intersection of the tangents ¢;, t, and the lines connecting
the points Q,, Q, and the focus F, (about which the circle g is described).
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(b) By means of the vertex circle k,: We determine the points of intersection Py, P,
of the Thalet circle k drawn on the diameter RF, and the vertex circle k,. The lines
connecting P, and P, and the point R are tangents ¢,, ¢, of the hyperbola. The points
of contact Ty, T, are the points of intersection of the tangents ¢, ¢, and the lines
through the focus F, parallel to SP,, SP,.

When constructing the tangents from the centre S of a hyperbola, we obtain the
points of contact on these tangents ay, ay; as points at infinity. We usually extend
the locus defining the hyperbola to include these points.

Definition 1. The tangents a;, ay; from the centre S to a hyperbola are called the
asymptotes; their directions *ay, *ay; which determine the points of the hyperbola
at infinity are called the directions of the asymptotes.

Construction 3 of tangents parallel to a given direction s:

(a) By means of the circle g, (Fig. 4.14a): The line k through the point F, per-
pendicular to the direction s intersects the circle g,(F,, 2a) at points Q;, Q,; the
perpendicular bisectors of the segments Q,F,, Q,F, are the required tangents t,,
t, which are parallel to s.

(b) By means of the vertex circle k, (Fig.4.14b): The line k through the point F,
perpendicular to the direction s intersects the circle k (S, a) at points P;, P, through
which pass the required tangents ¢y, t, which are parallel to s.

The line connecting the points of contact T, T, of parallel tangents t,, f, passes
through the centre S of a hyperbola and is called the conjugate diameter to the direc-
tion s.

If ¢ is the acute angle between an asymptote and the major axis of a hyperbola,
and if  is the acute angle between the direction s and the major axis, then tangents
parallel to the given direction s exist only for ¥ > ¢.
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The following theorems can be advantageously used when constructing a hyperbola:

Theorem 7. The segments on an arbitrary secant of a hyperbola (intersecting
the asymptotes) between the points of the hyperbola and the asymptotes are equal.
In particular: The point of contact of a tangent to a hyperbola bisects its segment
between the asymptotes.

Theorem 8. The parallelograms formed by the asymptotes of a hyperbola and
by the lines constructed through points of the hyperbola parallel to the asymptotes
are of a constant area. In particular: The triangles formed by the asymptotes and
the tangents of a hyperbola are of a constant area.

By means of variable parallelograms of constant area we can construct points of
a hyperbola with given asymptotes. Further, by means of variable triangles of constant
area we can construct tangents to a hyperbola with given asymptotes; in particular
the vertex tangent and the vertex of the hyperbola can be determined.

Theorem 9. The perpendicular drawn to an asymptote of a hyperbola at the point
of intersection of the asymptote and a vertex tangent intersects the major axis of the
hyperbola at the centre of curvature of the vertex.

4.4. The Parabola

For the definition of the parabola see § 5.12 (p. 185).The focus will be denoted by F,
the directrix by f (Fig. 4.15). The point F does not lic on the line f.

Fig. 4.15.

If M is a point of the parabola, then MF = r; is one of the focal radii of the point
M; as the second (focal) radius the line through the point M perpendicular to the
directrix f is to be understood.

The point A of the parabola bisecting the distance of the focus F from the directrix
f (this distance is called the parameter) is said to be the vertex of the parabola; the
tangent a at the point A4 is called the vertex tangent.
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Theorem 1. The parabola is a curve symmetrical about the axis, i.e. the line
perpendicular to the directrix through the focus F.

Construction 1 of points of the parabola given by a focus F and a directrix f:
Through an arbitrary point Lon AF produced we construct the line r parallel to the
directrix f. If G is the point of intersection of the axis o and the directrix f, then the
points of intersection of the circle k(F, GL) and the line r are points M, M’ of the
parabola.

Fig. 4.16.

Theorem 2. The tangent, or the normal, at a point of the parabola bisects the
angle between the focal radii in which the vertex of the parabola lies, or does not
lie, respectively.

Theorem 3. The locus of points Q which are reflections of the focus F of the para-
bola in its tangents is the directrix f.

Theorem 4. The locus of the feet P of perpendicular lines dropped from the focus
F of the parabola to its tangents is the vertex tangent a.

Theorem 5. The locus of centres of the circles, touching a line f and passing
through a point F (which does not lie on f) is a parabola with focus F and direc-
trix f.

Theorem 6. Let the vertex of a right angle move along a straight line a so that
one of its arms passes through a point F (which does not lie on a); then the other
arm is a tangent to the parabola with focus F and vertex tangent a.

Construction 2 of tangents to a parabola from an external point R whose distance
from the focus F is greater than the distance from the directrix f:

(2) By means of the directrix f (Fig.4.16a): The circle k(R, RF) intersects the direc-
trix f at the points Q,, Q,; the perpendicular bisectors of the segments Q,F, Q,F
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are the required tangents ¢,, t,. The points of contact T;, T, are the points of inter-
section of the tangents t,, t, and the lines through Q,, Q, parallel to the axis of the
parabola.

(b) By means of the vertex tangent a (Fig. 4.16b): The circle on the diameter RF
intersects the vertex tangent a at the points P, P, through which pass the required
tangents t; = RPy, t, = RP,. The points of contact should be determined as in (a);
consequently, the construction (b) is not convenient in this case.

Fig. 4.17.

Construction 3 of the tangent parallel to a given direction s (Fig. 4.17): A perpen-
dicular k from the focus F to the given direction s intersects the vertex tangent a
at the point P and the directrix f at the point Q. The tangent ¢ || s passes through
the point P (perpendicularly to FQ) and its point of contact T is the point of inter-
section of the tangent ¢ and the line through Q parallel to the axis of the parabola.

Definition 1. The distance between the point of contact T and the point of inter-
section of a tangent, or a normal, of the parabola and its axis is called the length of
the tangent, or the length of the normal, briefly the tangent, or the normal, respective-
ly. The rectangular projection of the tangent, or the normal, onto the axis of the
parabola is called the sub-tangent, or the sub-normal, respectively.

Theorem 7. A sub-tangent is bisected by the vertex. A sub-normal is of constant
length equal to the parameter. The segment which is the sum of the sub-tangent
and the sub-normal is bisected by the focus.

Theorem 8. The line connecting the point of intersection of two tangents to a para-
bola and the midpoint of the corresponding chord of contact is parallel to the axis
of the parabola (and is called a diameter of the parabola).

From this theorem, it follows that all diameters of a parabola are parallel.

Theorem 9. The circle circumscribed about a triangle formed by three tangents
to a parabola passes through its focus.

Theorem 10. The radius of curvature at the vertex of a parabola is equal to the
parameter.,
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Construction 4 of a parabola given by two tangents t;, ¢, with points of contact
Ty, T,: We determine (Fig. 4.18) the diameter p of the parabola by means of the
point of intersection R of the tangents ¢, ¢, and the mid-point U of the chord T, T5.
Denote by 1, 2 the points of intersection of the lines through the points Tj, T, parallel
to the diameter p and a line r (arbitrarily chosen) through the point R, respectively.
The diagonals 1T, 2T, of the constructed trapezium 12T, T, meet at a point T of the
parabola; the tangent ¢ at T'is parallel to r.

In particular: If r L p, we get the vertex 4 and the vertex tangent a. If 7 | T, T,
(then the trapezium becomes a parallelogram) we get a tangent ¢’ parallel to the
chord T, T, whose point of contact T’ bisects the segment RU.

4.5. Parabolas and Hyperbolas of Higher Degree
(Power Curves)

Definition 1. A curve given by the equation
y = ax’ )

is called a power curve (a being constant, n rational, x positive, in general). Forn > 1,
we get the so-called parabolas of higher degree, for n < —1 we get the hyperbolas
of higher degree.

If |n|€(0,1) and a > O, in general, we can write (interchanging the role of the

coordinates)

1/n m

x = by, ie. x=by", where b=a"'", m=1n>1 or < —1.(2)

Theorem 1. A tangent t (at a given point P(x,, y,)) cuts off on the y-axis an inter-
cept equal to (1 — n) yo. The length of a sub-tangent s; on the x-axis, or s] on the
y-axis, is [xo[n|, or |nyq|, respectively.
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Theorem 2a. The tangent to the parabola (1), or (2), at the origin O is the x-axis,
or y-axis, respectively.

Theorem 2b. The asymptotes of the hyperbola (1) are the x-axis and y-axis.

Theorem 3. The length of an arc of the parabola (1) from the point O to the
point P(x,, yo) is given by the integral

Ixo]
s =f J(1 + a?n?x* %) dx,

]

which can be expressed in an elementary way if 1/(2n — 2) or 1/(2n — 2) + } is
an integer.

Theorem 4. The area bounded by a parabola of a higher degree, by the x-axis
and by the ordinate of a point with abscissa x, is given by P = |xoy,l/(n + 1).

Construction 1 of points of the cubical parabola y = ax* (Fig. 4.19a), or of points
of the semicubical parabola y* = ax® (Fig. 4.19b) passing through a given point
P(x,, yo): We divide the coordinates x,, y, of the point P(x,, y,) into an equal num-
ber of parts of the same length. If M is the foot of a perpendicular dropped from the
point P to the x-axis, we describe a semicircle on MP and erect perpendiculars to
the x-axis at the points of subdivision of the segment OM.

P[XO,)'())‘ P(XO.}’O)

N

b)
Fig. 4.19.

(a) Points of the cubical parabola: The circles with the centre M passing through
the points of subdivision of the ordinate MP meet the semicircle on MP at points
which we project rectangularly back onto MP. The lines connecting these projections
and the origin O intersect the perpendiculars constructed at the points of subdivision
of the segment OM at points of a cubical parabola.

(b) Points of the semicubical (Neil’s) parabola: We project the points of sub-
division of the ordinate y, parallel to the x-axis onto the semicircle on MP; we turn
the points of intersection obtained in this way back onto the segment MP by circles
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with centre M. The lines connecting the points so obtained and the origin O inter-
sect the perpendiculars at the points of subdivision of the segment OM at points
of a semricubical parabola.

4.6. The Cyclic Curves

Definition 1. By rolling a curve h (the generating curve or moving polhode),
without slipping, along a fixed curve p (the basic curve or fixed polhode) each point
of a plane moving with the curve k describes a curve called a trochoid.

Theorem 1. The fixed polhode is the locus of points which are instantaneous
centres of rotation for the respective stages of the motion. The moving polhode is
the locus of points which become instantaneous centres of rotation during the motion.
Both polhodes always touch, at a point which is an instantaneous centre of rota-
tion.

Theorem 2. The normal at a point of a trochoid passes through the instantaneous
centre of rotation.

In what follows we consider only the cases in which both polhodes are circles,
or one of them is a circle and the other a straight line.

(a) The cycloids

Definition 2. By rolling a circle k along a straight line p without slipping, each
point of the circle describes a simple (general, normal) cycloid. If the original posi-
tion of the generating point coinciding with the point of contact of the circle h and
the straight line p is the origin O and the straight line p is the x-axis, then

x=r(t—sint), y=r(l—cost) (1)

are parametric equations of this simple cycloid; here, r is the radius of the generating
circle h and ¢ is the angle through which the rolling circle has turned at any instant.

Construction 1 of points of a simple cycloid (Fig. 4.20). We divide the circumference
of the circle h and its rectified length cn the tangent p at the point A into the same

number of equal parts (there are 12 in Fig.4.20). Consequently, 4l =41, 12 =T1,....
Perpendiculars constructed through the points on the straight line p determine on the
line through the point H parallel to the straight line p (i.c. on the path of the point H)
the centres H,, H,, ... of circles hy, h,,....Lines through the points of subdivision
1,2, 3, ... of the circle h, parallel to the straight line p, meet the circles hy, ks, ... at
the points A,, 4,, ... of the cycloid.
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Theorem 3. The normal to a simple cycloid at a given point passes through the
corresponding point of contact of the generating circle h on the given straight line p
(i-e. through the instantaneous centre of rotation). The tangent to a simple cycloid
at a given point passes through the point of the circle h which is diametrically
opposite to the instantaneous centre of rotation.

y ¢
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8 X |
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Fig. 4.20.

Theorem 4. The length of a normal is

n =

t
2r sin E‘ =./(2ry) .

Theorem 5. The radius of curvature at a point other than the cuspidal point
of a simple cycloid is

R =

.t
4r sin 5‘ =2,/(2ry) =2n;

thus, at the vertex
R =4r.

Theorem 6. The length of arc (on a single branch) of a simple cycloid measured
from the cuspidal point to the point P(x, y) is

s = 4r(1 - cosi);
2

thus, the length of the entire branch is
s = 8r.
Theorem 7. The area bounded by the x-axis and by a branch of a simple cycloid is

P = 3nr?.
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Definition 3. If a circle h rolls along a fixed straight line p, without slipping, an
internal or external point moving with the circle h describes a curtate, or a prolate,
cycloid, respectively.

Theorem 8. If t is the angle through which the generating circle h has rolled and
if d < ris the distance between the moving point P and the centre H of the circle h,
the parametric equations of the curtate, or prolate, cycloid traced out by P are
given by the equations

x=rt—dsint, y=r—dcost. (2)

Construction 2 of points of a curtate, or a prolate, cycloid (Fig. 4.21): We attach
to the generating circle h a concentric circle h’ of radius # = HB < r or h” of radius
¥" = HC > r, respectively. Then, on the appropriate radius of an instantaneous
position of the generating circle h, with centre H, (k = 1,2, ...) we determine the
position of the circle h;, or hy, and, consequently, get the point By, or C, of a curtate
or prolate cycloid respectively.

Theorem 9. The normal at a point of a curtate (prolate) cycloid passes through
the point of contact of an instantaneous position of the generating circle h and the
straight line p.

ViV X X X Xi ]

C1z

Fig. 4.21.
Theorem 10. The radius of curvature at the points of a minimum or a maximum
of a curtate (prolate) cycloid is

2 2
R = (_r_—-‘}i)_ , or R= (—r—i—i)—-, respectively .

d

A simple cycloid has an infinite number of cuspidal points, a curtate cycloid has

X
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an infinite number of points of inflexion and a prolate cycloid an infinite number
of double points (so-called nodes).

(b) The epicycloids and hypocycloids

Definition 4. If a generating circle h of radius r rolls along the exterior, or the
interior circumference of a fixed circle p of radius F, then each point of the circle
describes a simple (general, normal) epicycloid, or hypocycloid, respectively.

Theorem 11. The equations
r+r

rt, y=(f;|_—r)sint—rsin =t 3)
r

:x,=(i-—_|-r)cost$rcosfi

are parametric equations of a simple epicycloid (the upper sign) or hypocycloid
(the lower sign).

Fig. 4.22.

If A = r[r is an integer, then A denotes the number of branches of the curve formed
by a single rotation of the circle h around the circle p. If A = p/q is a rational number,
then the curve consists of p branches which are formed by q rotations of the circle A
around the circle p. For an irrational A, the curve contains an infinite number of
branches.

Construction 3 of points of a simple epicycloid, or hypocycloid: We divide the
circumference of the circle k into a certain number of equal parts (Fig. 4.22a,b), to
give the points 4, 1, 2, ....
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On the circle p we determine an arc whose length is equal to the circumference
of the circle h, and divide it by points 4, I, II, ... into an equal number of parts of the
same length as those on h. We describe concentric circles through the points 7, 2, ...
about the centre P of the circle p and find the points Hy, H,, ... of intersection of the
radii PI, PII, ... with the circle described about P through the centre H of the circle h.
Then the circle h;(H,, r) meets the circle k,(P, PI) at a point 4, of a simple epicyc-
loid, or hypocycloid, respectively, etc.

Theorem 12. The radius of curvature at a point (other than a cuspidal point)
of a simple epicycloid, or hypocycloid, is
)
4r(F . T
-————r(r 1) smﬁ
F+ 2r 2r

R:

B

the length of arc (on the same branch)from the pointt = 0 to a point t is

s = 8rF £ 1) sin? 7t
r 4r

(r < 7 is assumed for the hypocycloid). In particular: The radius of curvature at a
vertex is

ar(Fr + 1)
F+2r

and the length of one branch is

P G- r)
—

Here the positive sign holds for an epicycloid, the negative sign for a hypocycloid.

Definition 5. The curve described by an internal, or an external, point rotating
with the generating circle h is called a curtate, or a prolate, epicycloid (hypocycloid),
respectively.

Theorem 13. If d S ris the distance between the generating point and the centre H
of the circle h, then

r+r Ftr

t

x = (F £ r)cost F dcos t, y=(FLr)sint—dsin
are parametric equations of the curves of Definition 5 (the upper signs refer to an
epicycloid, the lower ones to a hypocycloid).

For the construction of points of a curtate or a prolate epicycloid (hypocycloid)
we employ again the concentric circle h’, or h”, attached to the circle h, as in Construc-
tion 2 above.
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Example 1. If 7 = r, d > r, we get a prolate epicycloid (the limagon of Pascal)
of parametric equations (Fig. 4.23)
x =2rcost — dcos?2t,
y = 2rsin t — dsin 2t,

whose equation in rectangular cartesian coordinates (by elimination of the para-
meter ¢ and translation of the origin to the point (d, 0)) is

(x* + y* + 2dx)* = 4r’}(x* + y?).

Y

Example 2. For r = 47, the equations of a simple hypocycloid are
x=rcost, y=0;

hence, it is a segment of length 27 on the x-axis.
The equations of a curtate hypocycloid are

X = i+d cost, y= L sin t ;
2 2

hence it is an ellipse with a semi-major axis of length » + d on the x-axis and a semi-
minor axis of length r — d on the y-axis.

Example 3. For r = 7 (Fig. 4.23) the parametric equations of a (simple) epicycloid
(the cardioid) are

x =r(2cost —cos2f), y=r(2sint— sin2f).
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If the origin of cartesian coordinates is at the centre of the fixed curve and the cuspidal
point lies on the x-axis, then we get the equation of the curve in the form

(2 +y)? — 6r3(a” +y*) + 8’z —3r* = 0;

if the origin is at the double point (and the x-axis is the axis of symmetry), then we

get the equation
(@ 4+ > + 2rz)* — 4r*(2® +y*) =0.

The equation of the cardioid in polar coordinates is
p =2r(1 —cosy).

A cardioid can also be obtained as an orthogonal pedal curve (see Definition
9.10.1, p. 303) of a circle for a pole on the circle.

Example 4. For r = 17 (Fig. 4.24), the parametric equations of a simple epicyc-
loid (the nephroid) are

x =r(3cost — cos3t), y=r(3sint— sin3t);
the equation of the curve in cartesian coordinates is
(x* + y* — 4r*)® — 108r*y*> = 0.

Y

T

Fig. 4.24.

Example 5. For r = 47 (Fig. 4.25), the parametric equations of a (simple) hypo-
cycloid (Steiner’s hypocycloid) are

x = r(2cos t + cos 2t),
y =r(2sin t — sin 2¢);
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the equation of the curve in cartesian coordinates is
(x2 + ¥?)* + 8rx(3y* — x%) + 18r%(x* + y*) — 27r* = 0.

Example 6. For r = 47, the parametric equations of a (simple) hypocycloid (the
astroid, Fig. 4.26) are

x =r(3cost + cos3t), y=r(3sint— sin3t);

Y

Fig. 4.25.

the equation of the curve in cartesian coordinates is
X3 4 y3 = (4r)?3 .

For the curves given in the above examples we can use Theorem 12 to determine
the radius of curvature at any point or the length of an arc, in particular the radius
of curvature at a vertex or the length of a branch.

(©) The involute of a circle

Definition 6. Any point of a plane rotating with a straight line h, rolling on a fixed
circle p, describes an involute of a circle.

Theorem 14. For a fixed circle p(0, r) and a generating point A(r + d, Q) the
parametric equations of the involute are

x=(r+d)cost+rtsint, y=(r+d)sint—rtcost,

where t is the angle between the x-axis and the radius of the circle p perpendicular
to the position of the straight line h.

Definition 7. For d = 0, the (simple, general, normal) circular involute is generated,
for d > 0 (the generating point and the circle p are on opposite sides of the straight
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line h) a curtate involute is generated, for d < 0 (the generating point and the circle p
lic on the same side of the straight line h) we get a prolate involute.

Construction 4 of points of a (simple) circular involute (Fig. 4.27): We divide the
circumference of the given circle p into a certain number of equal parts (for example,
into 12) by the points 4, 1, 2, ...; we rectify the arc corresponding to one part and
then we determine on the tangent to the circle p at every point of subdivision the

e

h;=ny
As
P A \
NI AERN

B /\
h Fig. 4.27.

point at a distance equal to the length of the corresponding number of arcs: at the
point 1 at a distance of one arc, at the point 2 of two arcs, etc.

<]

Theorem 15. The normals to a circular involute are tangents to the fixed circle
p which is therefore an involute of the given curve (see Definition 9.8.3, p. 297) (and
consequently, the locus of centres of curvature).

Theorem 16. For the radius of curvature of a circular involute we have

R=rt,
and for its length of arc
s =3rt?.
Example 7. For d = —r, a prolate involute, the spiral of Archimedes (see § 4.7,

Fig. 4.29) is generated; its parametric equations are
X =rtsint, y= —rtcost;

the equation in polar coordinates is
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(d) Construction of centres of curvature of cyclic curves

Construction 5 at a point M which is not a vertex of the curve (Fig. 4.28): The
centre of curvature S, lies on the normal n = SM. We construct a perpendicular k
through the point S to the normal n and find the point of intersection I of the lines k,
MH. Then S, is the intersection of n and 1P.

Fig. 4.28.

Construction 6 of the centre of curvature at a vertex A of the curve (i.e. at a point
lying on PH) (Fig. 4.28): Using Construction 5, we construct the centre of curvature
Sy for an arbitrary point M of the curve. We determine the point of intersection 2
of k and M A, and then S, is the intersection of 2S,, and HP.

4.7. Spirals

Definition 1. A curve generated by a point moving uniformly along a polar radius
rotating uniformly around its pole is called a spiral of Archimedes (Fig. 4.29).

Construction 1 of points of a spiral of Archimedes (Fig. 4.29): After one revolution,
the distance of the moving point M from the origin O is equal to r,. We divide the
angle 27 and the segment r, (in the figure, ry = OM,,) into n (say, 12) equal parts.
Starting at the origin 0, we successively mark off segments of lengths ry/n, 2ro/n, ...
on the corresponding polar radii. The end points of the segments are points of a spiral
of Archimedes.

Theorem 1. The equation of a spiral of Archimedes in polar coordinates is

Q—r—O(P_a(P
2n

(where 1o, and hence a = ro[2m, is a given constant).
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The acute angle between a tangent to the curve and the polar radius at the point
of contact increases with the polar radius and converges to the value im.

Theorem 2. The length of a polar sub-normal s, is constant and equal to a.
(The polar sub-normal is the segment between the pole and the point N of intersection
of the normaln at the point M under consideration with the perpendicular constructed
at the pole O to the polar radius.)

Fig. 4.29.

At a given point of a spiral of Archimedes we construct its normal and tangent
by using Theorem 2.

The segment OT = s,, where T'is the point of intersection of the tangent ¢ at a point
M of the curve and a perpendicular constructed at the pole to the polar radius of the
point, is called a polar sub-tangent. Thus, for a spiral of Archimedes the equation

holds.

Construction 2 of the centre of curvature at a point of a spiral of Archimedes
(Fig. 4.29): The perpendicular k, constructed at the point M to its polar radius, meets
the perpendicular k, constructed at the point N to the normal n, at a point P. The
centre of curvature Sy, is the intersection of n and PO.

Definition 2. The arc of a spiral of Archimedes for which 2(n — 1)n < ¢ < 2n7,
is called the n-th coil of the curve.

Theorem 3. The individual coils of a spiral of Archimedes are equidistant
curves.
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Since the motion of a generating point on the polar radius can be accomplished
in two directions, a spiral of Archimedes has two branches symmetrical about the
x-axis.

Definition 3. A curve for which (in polar coordinates) the product of the length of
the polar radius and the argument is constant, is called a hyperbolic spiral or recipro-
cal spiral (Fig. 4.30).

Fig. 4.30.

Theorem 4. The equation of a hyperbolic spiral in polar coordinates is

a ;
¢ = — (where a is constant) .
@

If a < 0, then also ¢ < 0 and we get the second branch (not illustrated in the
figure) which is symmetrical to the first one about the x-axis.

Theorem 5. The straight line y = a is an asymptote of the hyperbolic spiral;
the pole O is an asymptotic point.

Theorem 6. For a hyperbolic spiral, the length of the polar sub-tangent s, is
constant and equal to a.

Construction 3 of points and of tangents to a hyperbolic spiral (Fig. 4.30): By
Theorem 6, the end points of polar sub-tangents lie on the circle k(O, a). The point V
of the circle k, where the polar radius makes with the axis an angle ¢ = 1 (in circular
measure) is also a point of the hyperbolic spiral. On an (arbitrary) radius OM, we
find a point M of the hyperbolic spiral and the tangent in the following way: We
connect the point of intersection M,; of the tangent ¢, to the circle k at the
point M, and the evolute e of the point V of the circle k, with the point M, of the
polar sub-tangent and thus get a tangent t to the hyperbolic spiral, which meets the
polar radius OM, at the point of contact M.
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Definition 4. A curve making a constant angle with the polar radii at its points
is called a logarithmic (equiangular, logistic) spiral (Fig. 4.31). It can also be
characterized as the curve whose length of arc between a fixed and a variable point
is proportional to the polar radius of the latter point.

Theorem 7. The equation of a logarithmic spiral in polar coordinates is
o = ae®®,

y
~M

N

Vil ™~_"] X

X Fig. 4.31.

where a, b > 0 are constant, ¢ is the angle (in radians) between the polar radius
and the polar axis and e is the base of natural logarithms.

Theorem 8. If the angles ¢ form an arithmetic progression, then the correspond-
ing polar radii ¢ form a geometric progression.

Theorem 9. The pole O is an asymptotic point of a logarithmic spiral. For
Q= Oa Qo = a.

Construction 4 of points of a logarithmic spiral (Fig. 4.31): We divide the angle 2x
into n (say, 12) equal angles (Fig. 4.31) and calculate two adjacent polar radii ¢, = a,
0, = ae"™®, The triangles OM,M,, OM{M,, ... are similar. We describe circles
ko, k, with radii g,, ¢, about the pole O and mark on them the points M,, I, 2, ...,
and XII, M, 1I, ..., determined by the polar radii. Then, the line through the point
M, parallel to the line joining 1, IT meets the polar radius g, at the point M, of the
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logarithmic spiral, the line through the point M, parallel to the line joining 2, III
meets the polar radius g; at the point M,, etc. Similarly, the point N, of the polar
radius corresponding to the angle ¢ = —3n can be obtained as the point of inter-
section of the polar radius and the straight line through the point M, drawn parallel
to the line joining XII, 11, etc.

Theorem 10. The tangent at a point of a logarithmic spiral makes with its polar
radius an angle 9 satisfying tan 9 = 1/b. For a polar sub-tangent, or sub-normal,
the relations

hold, respectively.

Construction 5 of the tangent at a point of a logarithmic spiral (Fig. 4.32): On the
polar radius OM we determine the point Q such that 0Q = 1. On the perpendicular
through the point O to the polar radius OM we determine the point R such that
OR = 1/b (the sense of OR being such that a rotation from OR to OM is positive).
The angle OQR is equal to 3 and hence the line parallel to QR through the point M
is the required tangent t at the point M of the logarithmic spiral. Other tangents at
points of a logarithmic spiral can be constructed by translation of the constant angle
3 so obtained (see Definition 4 and Theorem 10).

Fig. 4.32.

Theorem 11. The radius of curvature at a point of a logarithmic spiral is

R =9, +b?

and it is equal to the length of the polar normal. The centre of curvature lies at the

point of intersection of the normal and the perpendicular through the point O to the
polar radius of the point.
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Definition 5. Curves satisfying the polar equation

o™ = a™sin mo
are called sinusoidal spirals.

Theorem 12. By a rotation of the coordinate system through an angle ¢ =
(A7/m) — ¢ the equation of a sinusoidal spiral becomes

o™ = a™cos my .

Theorem 13. For rational m, sinusoidal spirals are algebraic curves; for ir-
rational m, they are transcendental curves.

Examgle 1. For special values of m, we get the following sinusoidal spirals:

(a) m = 1; @ = acos ¢, the sinusoidal spiral is a circle given by the equation
x2 + y? =ax;

(b) m = 2; @* = a®cos 2¢, the sinusoidal spiral is a lemniscate of Bernoulli
satisfying the equation (x* + y*)* = a*(x* — y?) (see §4.11);

(c)m=~1;¢0= a/cos @, the sinusoidal spiral is a straight line given by the
equation x = a;
(d) m = —2; @® = a?*[cos 2¢, the sinusoidal spiral is a rectangular hyperbola

satisfying the equation x? — y? = a?;

(e) m = %; ¢ = a cos® 1, the sinusoidal spiral is a cardioid given by the equation
¢ = 2r(1 + cos @), which can be obtained by use of the relation 2cos’ 4 = 1 +
+ cos ¢ on putting a = 4r.

(f) m = —4%; ¢ = afcos® ¢, the sinusoidal spiral is a parabola satisfying the
equation y? = 4a(a — x).

4.8. The Clothoid (Cornu Spiral)

Definition 1. A curve whose radius of curvature R at a point M is inversely pro-
portional to the length s of the arc between this point and a fixed point O is called
the clothoid or Cornu Spiral (Fig. 4.33).

Theorem 1. The intrinsic equation of a clothoid (see Definition 9.4.3 and Remark
9.4.10, pp. 280, 281) is

aZ

R=—.
s
Theorem 2. Parametric equations of a clothoid with the arc s as a parameter
are given by the Fresnel integrals (§ 13.12)

s S2 S s2
x = | cos—-ds, = | sin ——ds.
f 2q* Y J 2a?

0 0
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If the angle ¢ = —lezla2 of the tangent at the point under consideration is taken
as a parameter, then the equations are of the form

a (Pcoso a (®sin ¢
X =— do, = —
V2Jo Ve V2Jo Ve

If @ = int?, then the parametric equations have the form

nt?
x=a.nr cosTdt, y=an

t t
0 0

do .

nt?

sin — dt .
2

Fig. 4.33.

Theorem 3. A clothoid is symmetrical about the point O which is a point of
inflexion and it touches the x-axis at this point.

Theorem 4. The points (%a \/n, 3a \/r), (—4a /7, —%a \/r) are asymptotic points
for a clothoid.

Theorem 5. The tangents of a clothoid at points for which

s2

FZ km (k = 0, 1,2,...)
a
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are parallel to the x-axis, and tangents at the points for which

2a?

2
Sl k=0,1,2..)

are parallel to the y-axis.
Theorem 6. For the angle @ made by a tangent to the curve and the x-axis,

Theorem 2 and Definition 1 yield

N

e

Theorem 7. The following relations hold between the quantities a, s, R, ¢ (in
circular measure):

@ @ =J6R) = <o = RAGe):

(b) S=E=2(pR=a\/(2(p);
& K= T T

d = = e = e
@ ¢ 2R 24* 2R?

For practical use, the Fresnel integrals are tabulated. The constant a is the para-
meter determining the relative magnitude of the curve. If, for example, a = 200, then
all the longitudinal values of the corresponding clothoid are double the values for the
parameter a = 100.

4.9. The Exponential Curve

Definition 1. The curve whose equation in cartesian coordinates is

y = ab”™ (or X = 1—log,,X),
c a

where a > 0, b > 0, c are constants, is called the exponential curve.

For b = e, we get
y = ae* | or x:l—lnX .
¢ a
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Theorem 1. The curves y = ab®, y = ab™* are symmetrical about the y-axis.
Both curves have only positive ordinates y and pass through the point A(O, a).
The x-axis is their common asymptote.

Theorem 2. Three points P(x, y), Pi(xy, y;), Py(x2, y,) of the curve satisfy the

(_y—>xl—xz= (h>x—x1
Y1 Y2

following relation:

Construction 1 of points of the curve (Fig. 4.34): The ordinates y form a geometric
progression if the abscissae x form an arithmetic progression. Hence we construct
the points A(0, a) and B(ab®, 0), and then draw successive perpendiculars BC L AB,
CD 1 BC,...; the segments OA, OB, OC, ... are now the ordinates of the points
whose abscissae are x = 0, 1, 2, .... By a reverse procedure we obtain the points
of the curve for x = -1, —2,....

Theorem 3. The sub-tangent of an exponential curve y = ae™ (with respect to
the x-axis) has the constant value

1
S = — —.
¢

For the sub-normal we have s, = cy*. The length of the tangent ist = \/(y* + 1/c?),
and of the normal is n = y \/(¢*y* + 1).
For a curve y = ab, the sub-tangent is s, = —1[(c In b).

Theorem 4. The radius of curvature R of an exponential curve is given by the
expression
N ()
y

2 4 2
cy n

[}

For the point for which y = \/(2)[2c, the radius R is minimal and equal to 3 \/(3)[2c.
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Construction 2 of the radius of curvature of the curve y = ab®* at a point M (Fig.
4.34): Since y[t = (s, + s;)|R, we construct on the perpendicular through the point M
to the x-axis, the point P such that MP = (s, + s,). The tangent ¢ and the perpen-
dicular to the y-axis at the point P meet at the point Q; then R = MQ = MS,,.

4.10. The Catenaries (Chainettes)

(a) The general catenary

Definition 1. A curve satisfying the equation
y =3}a(e’* + e, ie. y=a cosh %
a

is called a general catenary (Fig. 4.35).

A heavy homogeneous perfectly flexible cable suspended by two points assumes
the form of a general catenary.

| 21

! —

/0

Fig. 4.35.

Theorem 1. A general catenary is symmetrical about the y-axis, on which it
has its vertex A at a distance a from the origin O; the value a is called the parameter
of the catenary.

Theorem 2. A general catenary and the parabola y = a + x2/2a have three-
point contact at the vertex A(0, a). Also an ellipse with centre S(0, 4a), major axis
of length 6a on the y-axis and semi-minor axis a \/3 has three-point contact with
the general catenary at the common vertex A.
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Theorem 3. By a translation of the origin of the coordinate system to the point
of suspension M, (with the abscissa —m in the original system) the equation of
a general catenary becomes

y=a<coshx_ m—coshm>.

a a

Theorem 4. The angle t between a tangent and the x-axis satisfies (in the original
system)

tan T = sinh§=l\/(y2—a2), cos T =
a a

< 1R

Construction 1 of the tangent and the normal at a point M of a general catenary
(Fig. 4.35): The circle on the ordinate M P of the point M and the circular arc about
the point M, or P, of radius r = a intersect at the points N, or T, respectively.
The point T'is a point of the tangent, the point N is a point of the normal at the given
point M.

Theorem 5. The arc s of a general catenary (measured from its vertex A) is
kY 2 2y _ .
s =asinh= = ,/(y* - a*) =atant;
a

thus it is proportional to the tangent of the angle made by the tangent at the end
point of the arc with the x-axis.

According to Construction 1, the arc of Theorem 5 is equal to the segment MT =
= 0Q (where Q is the point of the x-axis for which AQ = y,); thus the arc is
equal to the (rectangular) projection of the ordinate y, of the point M onto the
tangent.

Theorem 6. The radius of curvature R and the length n of the corresponding
normal are equal:

R=n=acosh2>X=2 -_2¢

a a cosit

For the vertex, R = a.

Theorem 7. The area enclosed by the x-axis, the y-axis, the arc of a general
catenary and the ordinate of a given point is given by

L X
P = a*sinh= = as.
a
Example 1. The determination of the parameter a and the position of the axes,

given the length of the cable 2s, the horizontal distance between the points of suspen-
sion 21 and the difference of the heights 2b (Fig. 4.35).
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To solve the problem we use the relations

J(s? = b?)  sinhu a-—l
s u‘

1 u

Putting ¢ = (1/I) /(s> — b*), we determine u from the equation sinh u = cu (for
example, by using the tables of the function @(u) = sinh u/u) and hence the para-
meter a.

Then, the distance of the x-axis from the centre of the segment joining the points
of suspension is

h =scothu.

The displacement of the y-axis in the direction of the lower point of suspension is
0 = av, where tanh v = b/s.

The angles between the tangents at the points of suspension M;, M, and the
x-axis are tan o; = sinh x;/a (i = 1, 2), where x,, x, are the abscissae of the given
points of suspension.

Theorem 8. The involute of a catenary, called the tractrix, has the equation
_ 2 _ 4,2
x=aln2 "4 7 V) Ja y)+\/(a2—y2).
y

Its tangent is of a constant length a.

The points of a general catenary can be constructed using tables of the hyperbolic
cosine.

(b) The catenary of constant strength

Definition 2. The curve satisfying the equation

x . x
e®cos= =1, ie. y= —alncos=,
a a

where a > 0 and where x satisfies the inequalities
7 T .
a(4k — 1)5 < x < a(4k + 1)5 (k an integer) ,

is called a catenary of constant strength.

A heavy perfectly flexible and inelastic cable whose cross-section varies in such
a manner that its resistance to breakage is constant, assumes, after being suspended,
the form of a catenary of constant strength (Fig. 4.36).
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Theorem 9. A catenary of constant strength consists of an infinite number of
congruent branches, touching the x-axis at the points x = 2kna and having the
straight lines x = a(4k + 1) n/2 (k an integer) as asymptotes.

Theorem 10. The angle T between a tangent at a point of a catenary of constant
strength and the x-axis is proportional to the abscissa of the point of contact:

X
T=-.
a
t
- %a .0} ' 3na ' 5na
5 o / 5 na > 2na 5 X
Fig. 4.36.

Theorem 11. The radius of curvature at a point of the curve under consideration is

thus, since R cos T = a, the rectangular projection of the radius of curvature on
the y-axis is constant.

Theorem 12. For an arc s of a catenary of constant strength the relation

x T
s=alntan{ — + -~ ).
(2a 4)

Theorem 13. The area enclosed by a branch of a catenary of constant strength,
by both asymptotes and by the x-axis is

holds.

P=ma’ln2.
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4.11. Examples of Some Algebraic Curves

Example 1 (The cissoid of Diocles; Fig. 4.37). We construct the tangent ¢ || y to
the circle k of diameter a, with the centre on the x-axis and passing through the origin
0. We draw lines through O intersecting k at the points 1, 2, ..., and ¢ at the points
I',2',.... On every such line, we mark the point whose distance from the origin is

Fig. 4.37.

equal to the length of the segment determined by the points of intersection of the
line with the circle and the tangent, i.e. OC, = 1I', 0C, = 22',.... Then Cy, C,, ...
are the points of a cissoid of Diocles.

The equation of the curve in polar coordinates is

. sin? @
g=asmoetan ¢ = a ,
Cos @

and in cartesian coordinates

3
x(x* + y*) —ay* =0 (or yr == >
a—x

The parametric equations are
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A cissoid of Diocles is an algebraic curve of the third degree. The tangent ¢ (of
equation x = a) to the circle k is an asymptote of the curve.

A cissoid of Diocles is the orthogonal pedal curve of a parabola for a pole at the
vertex of the parabola.

Example 2 (The folium of Descartes, Fig. 4.38). A cissoid of the ellipse x* — xy
+ y* + a(x + y) = 0, a > 0, with regard to the straight line x + y + a = 0 for

/ x+y+a=0

Fig. 4.38. Fig. 4.39.

the pole O is called the folium of Descartes. The equation of this curve in cartesian
coordinates is

x>+ y* — 3axy =0,
and in polar coordinates

3asin ¢ cos ¢

. b
sin® ¢ + cos® @

the parametric equations are

_ 3at v 3at?
1+ £ 1+

A folium of Descartes is a curve of the third degree symmetrical about the straight
line y = x; at the point O, it has a node with the x-axis and y-axis as tangents; at the
point A(3a, $a), it has a vertex; the straight line x + y + a = 0is its asymptote.

Construction 1 of points of a folium of Descartes: We draw a line through the pole O
to meet the tangent constructed at the vertex A at the point 7. On this line we de-
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termine the point /" such that 41 = A1I’; we then construct the harmonic point M to the
point J with regard to O and I’ (i.e. the cross-ratio (0, I’, I, M) = —1). The point M
is a point of the folium of Descartes.

Example 3 (The strophoid; Fig. 4.39). We intersect the pencil of circles having
the x-axis as a common tangent, with the common point of contact at the origin, by
the diameters drawn through the point A(a, 0). The end points of the diameters lie
on a (straight) strophoid, whose equation in polar coordinates is

2
4 0529

b
cos @

and in cartesian coordinates is

x(x* + y?) —a(x* — y*) =0 <or yr=x2t—2 ——x>;
a+x

the parametric equations are

_a(l —1?) y_at(l—tz)
1+2° 1+

The curve is symmetrical about the x-axis, it has a node with the tangents y = +x
at the origin O and the straight line x + a = 0 is its asymptote.

Construction 2 of the normal and tangent at a point M of a strophoid: The per-
pendicular bisector of the segment OM intersects the line through the point A per-
pendicular to AM at the point N of the normal n; having obtained the normal, the
tangent at M can be determined.

Example 4 (The lemniscate of Bernoulli; Fig.4.40). This curveis a rectangular pedal
curve of the rectangular hyperbola x*> — y? = a?. Its equation is

(xz + y2)2 - aZ(xZ _ yz),
or in the polar form

0% =a’cos2¢.

Its parametric equations are

_af(l + 1% y_at(l—tz)
1+ 1+

The vertices 4, A, of the rectangular hyperbola are the vertices of the lemniscate,
at the point O there is a double point (of inflexion) with the tangents y = +x (which
are the asymptotes of the hyperbola).

The lemniscate of Bernoulli is one of the Cassinian ovals, i.e. its points have
a constant product (equal to 3a?) of their distances from two fixed points (+%a /2,0).
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Construction 3 of points of a lemniscate of Bernoulli: We intersect the circle with
centre O and radius }a \/2 by a line, for example, from the vertex A4,, at the points
Cy, C,. Then ry = A,C,, r, = A,C, are the focal radii of a point of the lemniscate
of Bernoulli.

The polar form shows that ¢ is restricted to the intervals(— 2, in), (3r, 3n), and
thus the curve lies within the right angles made by the tangents at the point O, con-
taining the x-axis.

A lemniscate of Bernoulli has two axes of symmetry and, hence, it is radially sym-
metrical about their point of intersection. At the points whose coordinates are
(£iay/6, £1av/2),ie. for which ¢ = +m, 2, I and o = /2, the tangents are parallel
to the z-axis.

The angle between a tangent and the polar axis is equal to +3n + 3¢, the angle
between a normal and the polar axis is equal to 3¢, and the angle between a normal
and the polar radius is equal to 2¢.

Example 5 (The conchoid of Nicomedes; Fig. 4.41). We intersect a fixed straight
line x = a by a pencil of straight lines with vertex (pole) at 0. On each line of the
pencil we mark off segments of a constant length b on both sides of the point of
intersection with the fixed straight line. The end points of the segments liec on a con-
choid of Nicomedes whose equation in polar coordinates is

and in rectangular coordinates is

(x* + y*) (x — a)* — b2x* = 0.
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A conchoid of Nicomedes consists of two branches; it is symmetrical about the
x-axis, and the straight line x = g is its asymptote. If b > a, then a branch has a node
at O;if b = a, then it has a cusp at O;if b < q, then O is an isolated point.

The normals of all conchoids corresponding to the points of a given polar radius
pass through a point N which is the point of intersection of the perpendicular to the
polar radius at the pole O with the line parallel to the x-axis through the point of
intersection P of the polar radius and the straight line x = a.

Fig. 4.41.

Example 6 (The conchoid of a circle; Fig. 4.42). We intersect the circle ¢ = a cos ¢
by a pencil of straight lines with the vertex (pole) at O and mark off segments of
a constant length b on both sides from the point of intersection of a straight line of
the pencil and the circle. The end points of the segments liec on a conchoid of the
circle whose equation in polar coordinates is

g=acoso b,
and in rectangular coordinates is
(x? + y* — ax)* = b¥(x* + y¥) = 0.

The conchoid of a circle (the limagon of Pascal) is symmetrical about the x-axis,
and has a double point at the pole 0. (For b < a the double point is a node, for
b = a it is a cuspidal point (the curve is a cardioid) and for b > a it is an isolated
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point.) The equations of the tangents at the pole are
x\/(a*> = b*) £ by =0;

the equation of the double tangent is

Fig. 4.42.

the points of contact have the ordinates

_ £b/(4a> — b?)
4q )

y

4.11

The normals of all conchoids corresponding to the points of a given polar radius
pass through a point N which is the point of intersection of the perpendicular erected

to the polar radius at the pole O and the fixed circle.
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4.12, The Sine Curves

To express periodical phenomena that repeat, without change, after a certain time,
we use the sine functions. The least value of the constant, which, being added to the
argument, does not change the value of the function, is called a primitive period.

Example 1. y = sin x (Fig. 4.43). The primitive period is 2, the zero points
0, +®, +2x, ... are points of inflexion of the curve and the tangents at these points
make an angle of +in with the x-axis.

Fig. 4.43.

s

\ s y=asinbx™_ /
N._ ./ -~

Fig. 4.44.

Example 2. y = sin (x + ¢). The graph can be obtained from the graph of
Example 1 (Fig. 4.43) by a translation through a distance —c in the direction of the
X-axis.

Example 3. y = asin x (Fig. 4.43). The graph can be obtained from the graph
of Example 1 by multiplying the ordinates y by a.
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Example 4. y = sin bx (Fig. 4.44). The primitive period is 2n/b and the zero
points (of inflexion) are x = +kn/b (k = 0, 1, 2, ...). The tangents at these points
have the direction of the hypotenuse of the right-angled triangle one side of which
is on the x-axis and is of unit length, the other side being of length b. The graph can
be obtained from the graph of Example 1 by a change of the x-coordinates in the
ratio 1/b. The coefficient b indicates the number of waves coming into the length 2n
and is called the circular (angular) frequency.

Example 5. y = a sin bx (Fig. 4.44). The graph can be obtained from the graph
of Example 4 by multiplying the ordinates y by a.

Example 6. y = asin (bx + ¢). The graph can be obtained from the graph of
Example 5 (Fig. 4.44) by a translation through a distance —c/b in the positive
direction of the x-axis. By this function, so-called simple harmonic motion is
given, The notation

y = asin (ot + @) (1)

is often used, with amplitude a > 0, circular frequency w and phase displacement
¢ (o] < m). The period is T = 2n/w; the frequency is n = w/n = 1/T.
Equation (1) can be put in the form

y = a, sin wt + a, cos wt, (2

where a; = a cos ¢, a, = asin ¢. Conversely, if the form (2) is given, we get (1)
by putting

a=/(al +ad3), o= arctan 22 + kn,

a;
where
k= 0fora, >0,
k= 1fora;, <0, a, >0,
k=-1fora; <0, a,<0.

4.13. The Curves of Oscillations

(a) Undamped (continuous) oscillations

(«) Free undamped oscillations are accomplished by a particle of mass m,on which
a force Cy proportional to the displacement y from an equilibrium position is exerted;
in dynamics, C is called the spring constant. The motion is given by the following
differential equation:

Jj+—y=0.
m
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The solution is (see §17.13 and equation (4.12.1))

y = asin (0ot + @), (1)

where w, = /(C[m) and a, ¢ are constants given by the initial conditions of the
motion.

The composition of two harmonic motions

I. IDENTICAL CIRCULAR FREQUENCIES

asin (ot + ¢;) + bsin (ot + @,) = A, sin ot + A, cos wt = A sin (0t + ¢),

©)

where

Ay =acos ¢, + bcos ¢,, A, =asin ¢, + bsin ¢,, A=\/(Af+A§),

tan(p=/i2.

1

In particular, for equal amplitudes b = a we get

P

a sin (ot + ¢,) + a sin (ot + ¢,) = 2a cos ——:2& sin (ot + @),

where

+
¢=(P12(P2- (3)

Thus, in the case of equal frequencies the sum is a harmonic motion of the same
frequency.

II. IDENTICAL AMPLITUDES, DIFFERENT FREQUENCIES

@1 = D24 in

. . 0, +
a sin ot + a sin w,t = 2a cos 1 ¥ 9y (4)

(B) Forced undamped (continuous) oscillation is the motion of a particle of
mass m under a periodically varying force P sin wt in addition to the force Cy.
This motion satisfies the differential equation

. C P
y+—y=—smnwt.
m m
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The solution is (see § 17.14):
y = Ysin ot + asin (0ot + ¢) (0 # w,)

where w, = /(C[m), a, ¢ are constants given by the initial conditions and

For ® = w, (the case of resonance),

y=- t cos wot + a sin (wet + @) .

2mawyq

4.13

()

)

(7)

As a rule, m, w,, P are fixed constants. The dependence of Y on w expressed in (6)

is illustrated in Fig. 4.45 (the resonance curve).

Pimw}

0 S S T (wra,)?

Fig. 4.45

(b) Damped oscillations. The motion is retarded by a force F proportional

to the velocity (F = —kyp).
(oc) Free damped oscillations. The differential equation of the motion is

J+2by + wjy =0
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where w, = /(C[m), b = k[(2m). The solution depends on the roots of the auxiliary
equation (cf. § 17.13)
o® + 2ba + w5 = 0. 9)

1. If b = wy, then a; = ay = —wyp. The general solution is

y =e ®(C, + C,i).

y =alec,e*? -og,ex ) /foe, - cc,)

Fig. 4.46.

If, for t = 0, the initial conditions are y = a, y = 0, then the solution is
y =ae” (1 + wyt).
This is the case of critical damping. For t - + oo we have y — 0 (Fig. 4.46).
2. If b > w,, then the roots
ap = =b+ (b* - w5), @ =—b~-/(b* - )
are real and distinct. The general solution is
y = Ce™ + Cpe™*;

if for t = 0,

then
a

y = (aleazt _ azealt) .

dy — Ay

This case is referred to as supercritical damping (Fig. 4.47). The motions 1, 2 are
called aperiodic.

3. If b < w,, then, writing

Wy = \/(a)(z) - b2) »
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the general solution is

y = e ?(C, cos wyt + C, sin w,t).

If, for t = 0, the initial conditions are y = a, y = 0, then

y=c¢ ¥ (a cos w,t + ab sin w1t> = Ae” " sin (0t + @) (10)
Wy

y

Fig. 4.47.

(cf. equation (4.12.2)). Here, the period T = 2n/w, is longer than in the case of an
undamped oscillation. The ratio of the displacements y,, y, at instants ¢;, t; + Tis

Y1 _ 2nblon .
Y2

its natural logarithm 3 = 2nb/w; = bT is called the logarithmic decrement of the
motion,
The zero points of the curve (10) are obtained for 7, = (nt — @)[w;, the vertices for

, _ arctan (wy/b) — @ + nn _ Aw, b

" R T BE I
o, J(@? + b?)

The curve (10) can be constructed (Fig. 4.48) by means of the enveloping curves
y, = Ae" and j; = —Ade™
(see Construction 4.9.1) and by the curve
y, = sin (o4 + @),

using the proportion
Liyi=y2t1y.
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(B) Forced damped oscillations. The differential equation is
7+ 2by + oy =£sinwt (11)
m

(the notation as in equation (8)). The general solution (provided equation (9) has
complex roots) is

y = A;sinwt + A, cos ot + ¢ (C; cos w;t + C, sin w,t) =
= Asin (ot + @) + e7*(C, cos w,t + C, sin ;1) (12)

. = Ae-bt
\‘\y., Ae
~.
~.
N .
~ '\-\ 1/”—\\\\ y2=sln(01t *+ w,
y=Ae-btsin(u1f+¢)‘N_‘__
% =t
"/}':=-Ae'“
./'.
7
',' Fig. 4.48.
.‘/'
(cf. (4.12.2)). Here
P(w¢ — w?)
w,; = 0)2 - b2 s A = 9 ’
1 \/( Y ) 1 m[(wg _ wz)z + 4b2w2]
—2Pbow
A = ’ 13
2 m[(CU(Z) _ COZ)Z + 4b2(1)2] ( )
P

mJ[(w} — w?)? + 4b%w?]
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Since b > 0, the second term of (12) becomes negligible, after a certain time, with
regard to the first one, so that the motion is characterized only by the first term with
the amplitude A. The magnitude of this amplitude depends on (P, m, w,, b are
constants) and is illustrated in Fig. 4.49 (the resonance curve). The case w = wy
is said to give resonance. For small b(b < w,) A attains its maximum for w & w,
(more precisely, if wj > 2b% for @ = \/(w} — 2b%)). The first and second terms of
the oscillation (12) are often called the steady-state and transient oscillations, respec-
tively.

A

L
“Wo
Fig. 4.49.
4.14. Growth Curves
Definition 1. A solution x = F(t) of the differential equation

dx

_— = X 1

& ) 0

is called the law of growth which is assigned to any phenomenon observed to satisfy
the equation.

We make the following assumptions:

(a) the necessary parameters involved in f(x) have been established for the
phenomenon under consideration on the basis of statistical data;
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(b) the growth of the quantity x in time ¢ takes place without any external inter-
vention;

() the initial condition ¢ = 0, x = x, holds.
Example 1. If f(x) = m = const., the solution of the differential equation (1) is
X = mt + Xq 2

and the growth curve is the straight line of gradient tan « = m; this line passes
through the point (0, X,).

Example 2. If f(x) = ax + b, a # 0, the solution is

x=—l—)+(xo+£’>e‘" 3)

a a

and the law of growth is given by the exponential curve passing through the point
(0, xo).
If b = 0, x, 5 0, the law (3) assumes the form (Fig. 4.50)

x = xoe*, or (writing ¢= —a when a<0) x= x4, 4)
If b # 0, xo = 0, the law (3) takes the form (Fig. 4.51)
x = A" —1) or x=A(—-e"), (5)
where ¢ = —a (if a < 0) and 4 = bfa or A = bc, respectively.
X x=A /
N
N x=Ale™1)
\\
N
h e x=A(1-¢")
~
\\\\\\nge-al
(O,XO} \\\\\
o t o ¢
Fig. 4.50. Fig. 4.51.

In Fig. 4.51 the auxiliary curve x = Ae™ " is also shown. The line x = 4 = b/c
is the asymptote of the second of curves (5) and it determines the limit of the evolu-
tion.

Example 3. If f(x) = m + ax — bx* = b(x — x,)(x; — x),a > 0,b>0,m >0
so that x;, x, are the roots of the quadratic equation f(x) = 0, then the general
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solution of equation (1) is

X — X _
T2 eGumxbrta o = const . (6)
X, — X

The solution can be written in the form

_ xl - x2
X =X + 1 + Ce—(xx—xz)bt (7)
or
x=xl+x2+x1_x2tanhu(bt+c). ®)
2 2 2

The straight lines x = x;, x = x, are the asymptotes of integral curves (6). The
ordinate of the point of inflexion of the curve is & = 4(x, + x,); the abscissa t of
this point satisfies bt + ¢ = 0. Using the given initial condition x = x,, we get

1 Xy — Xo

T = In .
b(x; — x;,) X — X,

By translation of the origin to the point of inflexion (by means of the equations
X =x — & T =t — 1) equation (8) assumes the form

x=2X ; X2 tanh Xt ; X2 T 9)

The gradient of the tangent at the point of inflexion is

tan o = —Z(x1 — x,)%.

Hence the law of growth in this case takes the form of a hyperbolic tangent, some-
times called a logistic curve. The curve is symmetrical about the point of inflexion
and its graph lies within the strip bounded by the asymptotes x = x;, x = x,.

Example 4. If, in Example 3, m = 0, then the solution of equation (1) is called
Robertson’s law of growth. Here f(x) = x(a — bx). The given initial condition t = 0,
X = x, yields the solution

a a — bx,

x=—————, where C = (10)
b(1 + Ce™*) bxo
Using the coordinates ¢ = af2b, t = (1/a) In [(a — bx,)/bx,] of the point of in-
flexion we get the form
a a a
x =— 4+ —tanh- (¢t — 1) ; 11
2b  2b 2( ) ( )
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on translating the origin we get

X =2 tanh 27, (12)
26 2

The asymptotes are x = a/b, x = 0; the gradient of the tangent at the point of
inflexion is

aZ
tan o = — .
4b
x,=% x x X
1
!
i
i
|
i
|
X !
xzso P !
(0) fix) O T I t

=

Fig. 4.52.

In Fig. 4.52 Robertson’s law of growth together with the parabola f(x) = ax — bx?
and the determination of the coordinates of the point of inflexion is illustrated; the
curve is constructed in the coordinates T, X. The curve

w_ e
dT  4bcosh®}aT’

(also illustrated), shows the speed of growth.

4.15. Some Approximate Constructions

Construction 1 of the tangent ¢ at a given point T of a curve k (Fig. 4.53): We draw
secants through the point T meeting the curve in the points ..., -2, —1, 1,2, ...
near T, and an arbitrary straight line g (not passing through T') in the points ..., —2’,
—-I1,12,.... Now, on the secants corresponding to the points 1, 2, ... we determine
the points at the distances T, T2, ... from I', 2’,... on one side of the straight line g;
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in a similar manner, we determine the points on the secants corresponding to — 1,
—2,... on the other side of q. These points determine the curve s intersecting the
straight line g at the point O’. The tangent ¢ is then the line O'T.

Construction 2 of the point of contact T of a tangent ¢ constructed (by means of
a ruler) from a point R to a curve k (Fig. 4.54): From the point R we construct a pencil
of secants, which intersect the curve k in the neighbourhood of the required point T

i Fig. 4.54. Fig. 4.55. \\
N

in pairs of points —1I, +1; —2, +2;.... On parallel lines drawn through these
points we mark off points at distances equal to the length of the corresponding
chords; on one side of the curve for the points marked by + and on the other side
for the points marked by —. If we join those points, the resulting curve s intersects
the tangent ¢ (and thus, also the curve k) at the point of contact T of the tangent ¢.

Construction 3 of a normal n from a point R to a curve k (Fig. 4.55): From the
point R we describe concentric circles, each intersecting the curve at two points
—1,4+1; —2, +2;... in the neighbourhood of the foot N of the required normal.
The curve s constructed in the same way as in Construction 2 intersects the curve k
at the foot N of the required normal n from the point R.
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5.1. Coordinates of a Point on a Straight Line and in a Plane.
Distance between Two Points

Definition 1. Let us divide a straight line p by a point O into two half-lines + p and
—p (Fig. 5.1). Let us choose on p a unit of length. The coordinate x of a point M
is defined to be the distance of the point M from the point O prefixed by a sign, plus
or minus (the so-called directed distance) according as M belongs to +p or —p,
respectively. We write M(x).

REMARK 1. The position of a point M on a line p is uniquely determined by the
coordinate x (and vice versa). We say that a coordinate system has been introduced
on the line p. The point O is called the origin of the coordinate system.

N-2) O  M3S
Fig.51. -4-3-2-1 012 34 p

Theorem 1. The distance d between two points A(x,) and B(x,) on a line is equal
to

d=|x; —x]|. (1)

REMARK 2. In a similar way, a coordinate system can be introduced in a plane
(Fig. 5.2): Weselect units of length on two intersecting lines, called axes of coordinates;
the intersection of the lines is taken as the origin on each of them; we denote it by O
and call it the origin of the coordinate system in the plane. A point M in the plane
is then uniquely determined by its coordinates x, y (see Fig. 5.2), and vice versa.

If the axes x, y are mutually perpendicular, the coordinate system is called rectan-
gular. As in the case of coordinates on a line, the coordinate x or y gives the direc-
ted distance of the point M(x, y) from the coordinate axis y or x, respectively.
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A rectangular system in which both axes have the same unit of length is called cartesian.
Throughout this chapter — unless otherwise stated — we use the cartesian coordinate
system.

The plane is divided by the coordinate axes into four parts called the quadrants
(Fig. 5.2).

Fig.-5.2.

Theorem 2. The distance between two points A(xl, y,) and B(xz, y2)in a cartesian
coordinate system is equal to

d = J[(x2 = x1)* + (v2 = ¥1)*]- )

REMARK 3. In § 7.1, the concept of a three-dimensional (real) vector is introduced.
Similarly, a two-dimensional vector a with two components a,, a, can be defined;
the notation a(ay, a,) or @ = (ay, a,) is used. As in the case of three-dimensional
vectors, two-dimensional vectors can also be represented by directed line segments.
If two-dimensional vectors are used in problems of analytical geometry in a plane,
they are, of course, represented by directed segments lying in the plane.

A two-dimensional vector represented by a directed line segment in a plane xy is
often considered as a special case of a three-dimensional vector, the third component
of which is zero (although this is not written explicitly). Then we can, without any
alterations, apply the definitions and theorems of Chap. 7 concerning operations on
vectors in three-dimensional space. For example, the formula

a.b = albl + a2b2

for the scalar product of two vectors a(ay, a,) and b(b,, b,) holds.

The number /(a? + a3) is called the length (or magnitude) of the vector a and
is denoted by either |a| or a.
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5.2. Division of a Line Segment in a Given Ratio. Area of a Triangle
and Polygon

Theorem 1. An arbitrary point M(x, y) on the line segment with the end points
M,(x,, y,) and M,(x,, y,) can be represented in vector form by

m=m +tm,—m) 0=1<1), (1)

where m, m; and m, are the radius vectors of the points M, M, and M, respectively,
or in coordinate form by

X =xy + t(x; — x,),

y =y +Hy; — ») €3]

i

©o=st=).

If the point M(x, y) divides the line segment M; M, in the ratio MM :M,M = 1 < 0,
then, putting t = — /(1 — 1), we obtain

x=x1‘_/1x2’ :,V1"/1YZ. (3)
1-2 1-2
If A = —1, M is the midpoint of the line segment M;M,, and formulae (3) become
Xy + X Yi+ )2
x=SatX o Nt Is 4
> y 5 )

Theorem 2. The area of a polygon with vertices Ay(xy, y1), A(%25 ¥2), -0
<oy Ap(Xn> ¥n) Occuring in that order, is

Xl, xz
Vi, Y2

x2’ x3
Y2, V3

Xp> X1
Yar V1

P=4

(5)

In particular, the area of the triangle with vertices A,(xy, y,), Ay(x,, y2) and
Aa(xs, ys) is
X1 Y1» 1
P = % XZ, yz, 1 . (6)
X35 Y3, 1

5.3. The Equation of a Curve as the Locus of a Point

Definition 1. The equation of a curve is the name given to the relation (equation)
which is satisfied by the coordinates x, y of all the points lying on the given curve
(and only those points).
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In order to obtain the equation of a curve as a locus of a point having a given
property, we proceed as follows:

1. we choose an arbitrary point M of the curve and denote its coordinates by
(%, »)s

2. we express the required property of points on the locus by an equation between
x and y;

3. we arrange the equation in a simpler form, if possible, at the same time expressing
all the quantities involved in terms of x, y and the given elements (constants).

Example 1. Let us obtain the equation of the locus of the pointina plane, whichis
always at a distance d = 3 from the point S(—2, 1).

Thus,
L M(x, y) ; (1)
2. VI +2)2 + (y - 1] =35 )

3. we square equation (2) and obtain the equation (x + 2)* + (y — 1)> =9,
which needs no further rearrangement; it is the equation of a circle.

5.4. The Gradient, Intercept, General and Vector Forms of the Equation

of a Straight Line. Parametric Equations of a Straight Line. Equation

of the Straight Line through Two Given Points. The Point of Intersection
of Two Straight Lines. Equation of a Pencil of Lines

kx + q (the gradient form of the equation of a straight line) ; (1)
+ ﬁ =1 (p#0,q#0) (theintercept form of the equation of a straight line) ;

(2)

ax + by + ¢ =0 (a*+ b* > 0) (the general equation of a straight line) ;  (3)

m=m, + ta (a # 0) (thevector equation of a straight line) ; 4)
= t

X=Xt } (the parametric equations of a straight line) . (5)

y =y +a

The geometrical meaning of the constants involved in these equations can be seen
from Fig. 5.3, 5.4, 5.5, 5.6; k = tan ¢ is the so-called slope (or gradient) of the line.
For k = 0 the line is parallel to the x-axis. For ¢ = 0 the line passes through the
origin. The equation of the y-axis or a line parallel to the y-axis (i.e. if ¢ = 4=)cannot
be written in the form (1).

The numbers, p, g, in equation (2) (which may be positive or negative) are the
so-called intercepts on the axes. A straight line which passes through the origin or is
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parallel to a coordinate axis cannot be written in the form (2) The constants a, b in
equation (3) determine the vector n(a, b) perpendicular to the line (3). If a = 0,
the line is parallel to the x-axis; if b = 0, it is parallel to the y-axis. The third
parameter c is related to the distance of the line from the origin (see § 5.6); if
¢ = 0, the line passes through the origin.

y=kx+q \y Ly/
X . ¥_
—+4=1
10,9/ P 9q
y ~(p,0) o x
0 X
Fig. 5.4.
,q)
Fig. 5.3. 9
4
\\ Y N\ax+by+c=0
ax+by= 0 N m ta
b Icl nla, b)
\\\ "az'_bﬁ/
\\\ ) /,/ ’"1
(0]hN \ X (0] / X
\ a
\
\
\

Fig. 5.5. Fig. 5.6.

The line (4) passes through the point M,(x,, y,), the radius vector of which is
denoted by my; its direction is determined by the vector a(ay, a,) and ¢ is a var-
iable parameter (—o <t < +o0). To each particular value of ¢ there corres-
ponds a particular point M(x, y) whose radius vector is m (Fig. 5.6). The vector
equation is, in fact, a more concise version of the parametric equations (5).

Example 1. The straight line given by the parametric equations
x=3+2t,
y=1-3t

is to be expressed in the form (3).
Eliminating ¢ from the parametric equations we obtain the required relation be-
tween x and y: adding three times the first equation to twice the second we obtain

3x+2y=11,
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ie.
3x+2y—-11=0.

Example 2. Find the equation of the straight line whose segment AB, intercepted
by the positive semi-axes x and y, is bisected by the point P(4, 3).

Similarity of the triangles PCB and AOB (Fig. 5.7) implies that p = 8, ¢ = 6 and
thus, by (2) the required equation is

i Bip,0)
0 Cc X

Fig. 5.7.

Theorem 1. The equation of the straight line passing through two given points
A(xy, y,) and B(x3, y,) is
X=X _ YN
X=X Y2 — V1 ’

ie.
y_y1=}’2"‘)"1(x__x1)-
2~ X

If x, = x,, or y, = y,, then the equation of the straight line is x = x,;, or y = y,,
respectively.

Example 3. The line passing through the points A(—1, 5), B(3, 7) has the equation
7-5 .
~5=—-"-(x+1), ie. x—2y+11=0.
y P (x + 1) y

The line passing through the points A4(3, 3), B(3, 8) has, of course, the equation x = 3
(and is a line parallel to the y-axis).

Theorem 2. The point of intersection P(xo, Yo) of two intersecting straight lines
given by equations a;x + b;y + ¢; = 0 and a,x + b,y + ¢, = 0 can be found
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by solving these equations simultaneously; hence,

‘_"1, b, a, —€
—¢3, by az —¢ . a;, by
Xo = p——" = , provided that 0. 6
a3, b, asz, bz}
If ap bl 0, the lines are parallel or they coincide
az by| P y com )

Definition 1. The set of straight lines in a plane, all of which pass through one
point S, is called a pencil of lines. The point S is called the centre (or vertex) of the
pencil of lines.

Theorem 3. The straight lines belonging to the pencil with centre S(x,, y,) have
as their equation either

y—-y0=k1x-x0) (7)
or
X = Xo = kz(y - J’o) s (7')

where k; (i = 1, 2) is a variable parameter; to each line of the pencil, there corre-
sponds a unique value of ky or k,, and conversely.

Theorem 4. The straight lines belonging to the pencil determined by the inter-
secting lines

ax+by+c¢, =0 and ax + by +¢, =0
have as their equations:
A(ayx + byy + ¢1) + A(azx + byy 4+ ¢;) =0, (8)

where A; (i =1, 2) are variable parameters not simultaneously equal to zero;
to each line of the pencil there corresponds a unique ratio A;[A, or A,[A,, and
conversely.

Definition 2. Equations (7), (7') or (8) are called the equations of a pencil of lines.

Example 4. Let us find the equation of the straight line which passes through the
point of intersection of the lines

2x—y+3=0, x+3y—-1=0

and through the point P(2, 1).
The equation of the line will be, by (8), of the form

M2x —y+3)+ 4(x+3y-1)=0. 9)
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The point P(2, 1) must lie on the line (9) and hence

W2.2-143)+,2+3.1-1)=0,
64, + 44, = 0 (10)

in order to satisfy equation (10), it suffices to put i; = 2, 4, = —3. Then, by (9)
the required equation is

22x —y+3)=3(x+3y—-1)=0, ie. x—-1ly+9=0.

Check: We can calculate the coordinates of Q, the point of intersection of the two
lines (by Theorem 2) and then verify that the points P and Q satisfy the equation x —
- 11y + 9 =0.

5.5. Directed (Oriented) Straight Line. Direction Cosines. The Angle
between Two Straight Lines

Definition 1. A straight line p is said to be directed (or oriented), if, for every pair
of points 4, B(A % B) on this line, one can decide by means of a given rule, whether 4
lies before B (notation A. < B) or B lies before A (while the relations A < Band B < C
together imply A < C). We say that on p the so-called positive sense and negative
sense of orientation are given. It is customary to mark the direction (orientation)
of a line in diagrams by an arrow showing its positive sense.

In a similar way, a directed half-line and directed line segment are defined. In
the case of a directed half-line we speak of its initial point; in the case of a directed
line segment we speak of its initial and end points. If we choose a point O on a directed
line, we divide it into the so-called positive part (positive half-line) +p and the
negative part (negative half-line) — p by this point.

Definition 2. If A(ay, a,) and B(b,, b,) are two points on a directed line p such that
A lies before B, then the expressions

by — a4

JIby = ay)* + (by — a,)*]

and
b, —a,

JI(by = a1)? + (by — a,)’]

are called the direction cosines of the directed line p; we denote them by cos «y,
cos ;. (The unit-vector with components cos a;, cos a, lies on the line p.)

Theorem 1. The expressions introduced in Definition 2 and denoted by cos a;,
cos &, are cosines of the undirected angles ay, o, (0 < oy, a; < 180°) between the
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positive part of the line p and the positive parts of the coordinate axes x and y,

respectively.

Example 1. Let us choose the points A(1,2) and B(0, —1) on the straight line
y = 3x — 1 (Fig. 5.8); if this line is directed from A4 to Bthen its direction cosines are

0-1 _ -1
JIO =1+ (=1-27] 10’
~1-2_ -3
J1o 10’

The corresponding direction angles are

cos oy =

cos o, =

o, = 108°26'
o, = 161°34" .

Theorem 2. If ¢ is the acute angle between the lines y = k;x + g4 and y =
= kzx + q, thEn

tan ¢ = ki ke <k1 # — 1 ; see Theorem 4). 1)
1 + k1k2 k2
y ly=3x-1
A(1,2)

O/éy X
@4 B(0,-1)
Fig. 5.8.

If the lines are given in the form a;x + b,y + ¢; = O and a,x + b,y + ¢, = 0,
then
a;b, — ayb,

(aya; + byb, # 0; see Theorem 4) . (1)
aa; + bib,

tan ¢ =

Theorem 3. The condition for the straight lines of Theorem 2 to be parallel is

kl = k2 , or albz - azbl =0,
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Theorem 4. The condition for the straight lines of Theorem 2 to be perpendicular
is

k2="—', or a1a2+b1b2=0.

Example 2. Let us determine the angles between the following straight lines:
a) y=3x~—1, y=—-x+7,b) 2x+3y—5=0,3x -2y +1=0; ¢) y=
=2x+3,4x—2y+1=0.

Solution: a) ky, =3, k, = —1. Thus, tan ¢ = —4/(1 — 3) =2, ¢ = 63°26".
b) a;a; + byb, =2.3 — 3.2 = 0; the lines are perpendicular. c) First, we put
the equations of both lines in the same form: 2x — y + 3 =0, 4x — 2y + 1 = 0.
Clearly, a;b, — a,b; = 2.(~2) — (=1) .4 = 0; the lines are parallel.

ReMARK 1. The equation of any line perpendicular to the straight line
ax +byy+¢, =0 (2
can be written in the form
bx —ay +c¢;=0 (3)

(since, the coefficients of the variables x and y in equations (2) and (3) satisfy the
conditions of Theorem 4, namely a,b, + b;(—a,) = 0).

Example 3. Find the equation of the line p passing through the point P(1, 4) and
perpendicular to the line

2x+3y+5=0. 4)
By (3), the equation of the line p can be written in the form
3x =2y +c¢, =0. (5)

Substituting the coordinates 1 and 4 of the point P for x and y respectively into (5),
we obtain

3.1-2.44+¢,=0,
i.e. ¢; = 5 and thus the equation of the line p is
3x -2y +5=0.

Example 4. Find the equation of the straight line which passes through the point
of intersection of the lines

X—2y+3=0,
3%+ 5y —2=0
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and which is perpendicular to the line
4 + y—-71=0. (6)
By (5.4.8), p- 173, the equation of the required line is of the form

A(x =2y +3)+ ,0(3x + 5y - 2) =0,
ie.
The condition for the lines (6) and (7) to be perpendicular is, by Theorem 4,

4(}.1 + 3/12) + (—2/11 -+ 512) = 0,
i.e.
2}.1 + 17/12 = 0 .

Hence, it suffices to choose 4, = 2, 4, = —17. Substituting these values into (7),
we obtain the required equation in the form

—1lx + 44y - 55=0,
ie.
x—4y+5=0.

5.6. The Normal Equation of a Straight Line. Distance of a Point from
a Straight Line. The Equations of the Bisectors of the Angles between
Two Straight Lines

Definition 1. The equation

e @) i@

where a, b, ¢ are three arbitrary numbers (a? + b* > 0) and the sign of the denomi-
nators is the opposite of that of the number c, is called the normal equation of a straight
line.

The geometrical meanings of the coefficients are:

(1)

a b .
1. , is a unit-vector perpendicular to the straight
(w(az +5) £/ + b2>> P :

line (directed from the origin of coordinates to the line);

is the length d of the perpendicular from the origin to the

straight line.
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Denoting the direction cosines of the above-mentioned vector by cos « and cos f,
(a, B are the magnitudes of the angles which it makes with the positive parts of the
axes x, y; see Theorem 5.5.1, p. 174), then

a b
T P Tma
+./(a® + b?) +./(a® + b?)

and the equation (1) can be rewritten in the form

Cos o =

xcoso+ ycosB—d=0.
Theorem 1. The distance d of a point A(x,, y,) from a straight line ax + by +
+ ¢ = 0is given by
axg + byy + ¢ @)
J@+ 5 |
Theorem 2. The equations of the bisectors of the angles between the two straight
lines a;x + byy + ¢y, =0 and a,x + b,y + ¢, = 0 are

a;x + by +c¢;  azx -+ by + ¢,

Ja+i5) d@rm) ®)

and
agx + bly + Cy _ ax + b2y + Cy -0 (3,)
(et + b) J(az + b3) '
REMARK 1. In order to decide which of the two bisectors (3), (3") passing through

a given vertex of a triangle is the internal bisector of the angle, it is sufficient to find
which one meets the opposite side of the triangle.

5.7. Polar Coordinates

The position of a point M may be determined by polar coordinates g, ¢: the co-
ordinate g is the distance of the point M from the origin (or pole) O, the coordinate ¢
is the directed angle between the segment OM and a fixed half-line p (with initial

'l Fig. 5.9.
0 P
point O) called the polar semi-axis (or initial-line (Fig. 5.9.)). Here ¢ 2 0,0 < ¢ <
< 2. It is necessary to restrict the coordinates ¢ and ¢ in some way in order to
establish a one-to-one correspondence between the points of a plane and the pairs
of numbers (g, ¢) (with the exception of the pole), and we choose this particular
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way. However, sometimes ¢ is not restricted to this, or even any interval (and
occasionally even g < 0 is used, especially in the equations of spirals etc.).

The relations between the cartesian and polar coordinates in the case where the
pole is at the origin of the cartesian system and the polar semi-axis coincides with
the positive part of the x-axis are:

X=0C0sp, y=o0sine; (1)
conversely

e =J&E*+ ¥,

(p=arctan§ for x>0,y>0;
¢ =in for x=0,y>0;
¢ =1+ arctanf for x < 0, y arbitrary ; (1')
@ =3n for x=0,y<0;

<p=21t+arctanX for x>0,y<0.
X

Example 1. The point M, the cartesian coordinates of which are (—2, 1), has polar
coordinates (4/5, 2+68) (the angle being measured in radians). The point N, the polar
coordinates of which are (4, 3r), has cartesian coordinates (2, —2 ./3) (Fig. 5.10).

4
M 1
T
e
\(_h
-2 O\\ X
\ 5
* |
\ z
\ !
\x 5
\»XE
\ :
\ :
S 7
A
\
\
Fig. 5.10. e )
ig. 5.10. N

The equation of a curve in polar coordinates is — as in the case of cartesian co-
ordinates — a relation which is satisfied by the coordinates of all the points of the
curve (and only those points). The equations of some curves have a particularly
simple form in polar coordinates.
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Example 2. The cartesian equation of the circle whose centre is at the origin and
whose radius is 7 is x> + y* = 49, If the coordinates are changed to polars using
(1), the equation, after a small simplification, takes the form ¢ = 7, which is the equa-
tion of the same circle. (This is obvious geometrically.)

Example 3. If we choose as pole the focus of an ellipse, hyperbola, or parabola,
and if that part of the focal axis of symmetry which does not contain the nearer
vertex, be chosen as polar semi-axis, then all these curves have an equation of the
form:

0o=—2~ @)
1 —ecosop

where e is the eccentricity (see §§ 5.10, 5.11, 5.12) and 2p is the latus rectum (i.e. the
focal chord perpendicular to the focal axis of symmetry). In the case of the ellipse
and hyperbola, p = b?/a; in the case of the parabola, e = 1.

5.8. Parametric Equations of a Curve in a Plane

The equations x = x(f), y = y(t), where ¢ is a variable parameter, are called the
parametric equations of a curve.

Here x(1), y(¢) are, as a rule, differentiable functions of ¢ within an interval I. If ¢
ranges over this interval, the point M (x, y) moves along the curve. See Chap. 9.

LI M(5cos t;,3sin t,)

3sin:ta
to) | \!
0| Scost,| X

Fig. 5.11.

Example 1. a) The equations x = 5cost, y = 3sin ¢t for 0 £ ¢t < 2r are the para-
metric equations of an ellipse, the axes of which coincide with the coordinate axes,
the lengths of the semi-axes being a = 5, b = 3 (Fig. 5.11).

b) If we eliminate ¢ from these equations, we obtain the equation of the ellipse in
cartesian coordinates (see §5.10):

x .
=~ =cost, Xzsmt;
5 3
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hence
2 2
X 4+ (2 =cos’t +sin?t=1,
5 3
i.e.
2 2
SR AR
25 9

REMARK 1. Some curves can only be expressed in a simple form parametrically,
(either we cannot eliminate ¢ from the parametric equations or it is inconvenient to do
so; for example, in the case of a cycloid x = ¢t —sint, y = 1 — cos t); some curves
can be expressed simply in both ways. Obviously, we use whichever form is more con-
venilent.

5.9. The Circle (see also §4.1, p. 112)
Definition 1. A circle is the locus of a point X(x, y) in a plane which moves so
that its distance from a fixed point — the centre S — is constant.

Theorem 1. The equation of the circle, whose centre in cartesian coordinates is
S(Xo, o) and whose radius is r, is

(x = x0)? + (y — yo)> =12 (1)
Example 1. The circle with centre S(—2, 1) and radius r = 3 has the equation
(x+22+(y—172=9.
If we remove the brackets in equation (1), we obtain an equation of the form
x2 4+ y 4+ mx +ny+p=0. (2

If we want to obtain an equation of the form (1) from equation (2), we “complete
the squares” on the left-hand side of equation (2) and obtain

m\? n\? m?> n?
x4+ =)+ (y+2) ="+ —p. 3
( 2) (y 2) Ll (3)

Comparing this with equation (1) we can see that the expression on the right-hand
side of equation (3) must be positive in order to get a real circle; also (—4m, —4n)
are the coordinates of the centre of this circle.

Theorem 2. The parametric equations of a circle are

X =Xy + rcost,

y=yo+rsint,
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where the point S(x,, yo) is the centre, r is the radius, (x, y) are the coordinates
of a general point X on the circle and t (0 < t < 2n) is a variable parameter, the
geometrical significance of which is that it is the angle formed by the half-line SX
and the positive semi-axis + X.

Theorem 3. The equation of a circle of radius a in polar coordinates is ¢ = a,
if S coincides with O (see Example 5.7.2,p. 180),and ¢ = 2a cos ¢ (—3irn < ¢ < in),
if S lies on the polar semi-axis and the circle passes through the pole.

Example 2. Find the coordinates of the points of intersection P,, P, of the line
4x — 3y +4=0 (4)

with the circle whose centre is at the point (2, 4) and whose radius r is 5.
The equation of the circle is, by (1),

(x=2%+(—472=25. )

The coordinates of the common points of the line and the circle satisfy simultaneously
equations (4) and (5); hence, they are given by solving the equations (4) and (5).
From (4), it follows that

y=4x+1). (6)
Substituting (6) in (5), we obtain the quadratic equation

25(x* — dx + 4) = 225,
1e.
x?—4x —5=0,

for the x-coordinates of the points of intersection, the roots of this equation being
X, =5, x;=—1. (7

The corresponding values for y,, y, are found by substituting (7) into (6) (not into
(5))):

yi=8, y.=0.
The required points of intersection are Py(5, 8), Py(—1, 0).

REMARK 1. The problem of finding the points of intersection of a straight line
and a circle reduces therefore to the solution of a quadratic equation. If this equation
possesses two real roots, or a double root, or two conjugate complex roots, then the
straight line is a secant (chord) of the circle, or a tangent to the circle, or it does not
intersect the circle at all, respectively.

We proceed in the same way (and the same conclusion holds) when finding the
points of intersection of a straight line and other conics. The only exceptions are the
lines parallel to the axis of a parabola and to the asymptotes of a hyperbola.
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5.10. The Ellipse (see also § 4.2, p. 114)

Definition 1. An ellipse is the locus of a point X(x, y) which moves in a plane such
that the sum of its distances from two fixed points F,(x;, y;) and Fy(x;, y,) — the
foci — is equal to a constant which is usually denoted by 2a if the foci both lie on
the x-axis.

Fig. 5.12.

Clearly F F, < 2a (i.e. F\F, = 2ae where e is some positive number less than
unity).

Definition 2. The number e is called the eccentricity of the ellipse.

Theorem 1. The standard equation of an ellipse (for the case where the axes
of the ellipse coincide with the coordinate axes, the foci lying on the x-axis
(Fig. 5.12)) is

2 2

Y

e L, (1)

aix
Y

where b* = a*(1 — €?).
In fact a is the length of the semi-major axis and b the length of the semi-minor
axis of the ellipse.

REMARK 1. If the axes of an ellipse are parallel to the cooordinate axes and if the
centre is at the point S(x,, yo), then (1) becomes

(x —ZXO)Z + (y "l‘)zyo)2 =1. (1')

a

ReMARK 2. If the foci lie on the y-axis the sum of the focal distances is denoted
by 2b, F,F, = 2be and a is now defined by a® = b*(1 — ). The equation is the
same as (1).

For the equation of an ellipse in polar coordinates see Example 5.7.3, p. 180;
for parametric equations of an ellipse see Example 5.8.1, p. 180.
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5.11. The Hyperbola (sce also § 4.3, p. 119)

Definition 1. A hyperbola is the locus of a point X(x, y) which moves in a plane
such that the difference of its distances from two fixed points Fy(x;, y;) and
Fy(x, y;) — the foci — is in absolute value equal to a constant which is usually
denoted by 2a if the foci both lie on the x-axis.

Clearly F,F, > 2a(i.e. F,F, = 2ae where e is some number greater than unity).

Definition 2. The number e is called the eccentricity of the hyperbola.

Fig. 5.13.

Theorem 1. The standard equation of a hyperbola (for the case where the axes
of the hyperbola coincide with the coordinate axes, the foci lying on the x-axis
(Fig. 5.13)) is

[

2
y
—n-h (1)

Q,X
N

where b? = a*(e* — 1).
In fact a is the length of the (real) semi-major axisand b the length of the (imaginary)
semi-minor axis of the hyperbola.

ReMARK 1. If the foci lie on the y-axis the absolute value of the difference of the
focal distances is denoted by 2b, F,F, = 2be and a is now defined by a® = b*(e* — 1).
Equation (1) becomes

xZ 2

a2

- 1. (1)

/s

ReMARK 2. If the axes of the hyperbola are parallel to the coordinate axes and the
centre is at the point S(x,, o), then (1) and (1") become

(x —asz)Z - (y ;Zyo)z = +1. (1")
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Theorem 2. The lines y = +bx/a are the asymptotes of the hyperbolas (1) and
(1"). Their equations can be combined thus:

N
N

8,1%
~N
!
{
o

G"[‘<:
)

2

REMARK 3. If a = b the hyperbola is called rectangular; its equation is x* — y
= a? (or y* — x* = a?), the equations of its asymptotes being y = +x.

REMARK 4. The hyperbolas x?/a® — y?[b? = 1 and y*[b®> — x*[a® = 1 are called
conjugate. They have the same asymptotes; the first of these hyperbolas has real
points of intersection with the x-axis, the second one with the y-axis.

5.12. The Parabola (sce also § 4.4, p. 122)

Definition 1. A parabola is the locus of a point X(x, y) in a plane, equidistant
from a fixed point F(x;, y;) — the focus — and from a fixed line d — the directrix.

Theorem 1. The parabola whose vertex is at the origin of the coordinate system
(Fig. 5.14) and whose axis coincides with the x-axis, or y-axis, has the cartesian
equation

y*> =2px, or x*=2py, respectively. (1)

dly x2=2py

Fig. 5.14.

Theorem 2. The parabola y* = 2px has the focus F(4p,0), and the directrix
X = —4p. The parabola x*> = 2py has the focus F,(0, 1p) and the directrix y =
= —3p.

(In the English literature the standard form of the equation of a parabola is generally
taken as y> = 4ax, so that the focus is (a, 0) and the directrix is x = —a.)
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REMARK 1. If the axis of the parabola is parallel to the x-axis, or to the y-axis
and its vertex is at the point V(x,, yo), equations (1) become

(y — vo)®> =2p(x — xo), or (x — x0)> =2p(y — yo), respectively . )]

5.13. Congruent Transformations of Cartesian Coordinates in a Plane

We assume that all the different cartesian coordinate systems considered in this
paragraph have the same unit of length.

Theorem 1. Any change from one cartesian coordinate system to another can
be performed by one translation and one rotation provided that both systems have
the same orientation (i.e. both are right-handed or both left-handed).

Theorem 2. The transformation of the coordinates of a point X when passing
from the cartesian system (O; x, y) to the similarly oriented cartesian system
(0'; x', ¥'), in which the axes x', y', are parallel to the axes x, y, respectively, is
given by the formulae:

1’

XN =x—-m, (1)
y’ =)y —n,
where (m, n) are the coordinates of the new origin O' in the original system
(0; %, y).
Conversely:
x=x+m,

(1)

Theorem 3. The transformation of the coordinates of a point X when passing
from the cartesian system (O;x,y) to the similarly oriented cartesian system
(0; x', y') which is obtained from (O; x, y) by a rotation about the common origin
through an angle o, is given by the formulae:

I
‘<\
+

y

x'= xcosa 4 ysin «, )
y = —xsin « + ycosa.
Conversely:
x = x"cosa — y'sin «,
y = x"sin a + y' cosa. @)

Theorem 4. In any change from a cartesian coordinate system (0; x, y) to a simi-
larly oriented cartesian coordinate system (O'; x', y') the coordinates are trans-



5.14 PLANE ANALYTIC GEOMETRY 187

formed according to the formulae:

x' = xcosa+ ysino—m,
y' = —xsina+ ycosa —n'. (3)
Conversely:

x=x'cosa— y'sina+m,

y=x'sin a + y' cosa + n. (3)

The numbers m, n are the coordinates of the origin O’ in the system (O; x, y),
m' =mcose + nsina, n’ = —msinoa + ncosa, and « is the angle of rotation of
the coordinate axes.

REMARK 1. The determinant consisting of the coefficients of x, y in equations (2)
or (3) equals unity. This fact is characteristic of congruent transformations of carte-
sian coordinates in a plane; it is also a sufficient condition for the equations (2) or
(3) to be solvable in x, y (to give the inverse transformations (2) and (3); the deriva-
tion of (1") from (1) is obvious).

REMARK 2. Equations (1), (2), (3) represent the relationship between the coordin-
ates of a fixed point in a plane with respect to two different coordinate systems; but

they may also be interpreted as showing the relationship between the coordinates
of two different points in a plane with respect to the same coordinate system.

5.14. Homogeneous Coordinates

Definition 1. The three ordered numbers (&, &5, &;) (&, # 0) are called the
rectangular homogeneous coordinates of a point M in a plane, if &, /£, = x, &,[&; =
=y, where (x, y) are the cartesian coordinates of the point M. We write M(&0, &4, 5).
[The coordinate &, is frequently placed last in the group of these numbers viz.

(61: 529 50)]'
Theorem 1. If we use homogeneous coordinates then the equations of algebraic

curves in a plane are homogeneous.

Example 1. If we transform the cartesian equation of a line ax + by + ¢ = 0 by
means of the formulae in Definition 1, we obtain the linear homogeneous equation:

aly + bé, + &y =0. (1)

ReEMARK 1. In contrast to the case of the general equation of a line in cartesian
coordinates, the numbers a and b in equation (1) may both be equal to zero, so that
the equation can be of the form
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this is the equation of the so-called line at infinity (improper line), by which the plane
has been extended due to the introduction of homogeneous coordinates.

Example 2. The equation of an ellipse

(x-%?* (-3
a? * b2 =1

[whose centre is at the point (%, )] becomes, on substitution of homogeneous
coordinates and after some simplification:

(483 + D*ED) &5 + DPELT + aPERE5 — 2b7EE Eoky — 207808 80¢; =
= a’b?E5&s

this is a homogeneous equation of the second degree in the variables &,, £, &,.

5.15. General Equation of a Conic

Theorem 1. The general equation of a curve of the second degree in cartesian
coordinates is

a1y X° + 2a1,%y + a5, + 2a53% + 20,3y + a33 =0 (1)

this equation may represent an ellipse (a circle as a special case), a hyperbola,
a parabola, a pair of straight lines (which may coincide), a point, or it may not
be satisfied by any (real) point at all.

Dafinition 1. Let us form two determinants from the coefficients of equation (1):

A115 G125 13 Q11> A2
A= ay,, az, a3, 0= 5
13, G235 433 12, 422

the number 4 is called the discriminant of the conic section (1), § — the discriminant
of the quadratic members.

Theorem 2. The curves of the second degree can be classified in terms of A and 9,
as shown in Tab. 5.1, p. 189.

Theorem 3. By means of a rotation of the coordinate system through an angle ¢
it is possible to make the axes (or the axis) of a regular conic parallel to the
coordinate axes; the angle ¢ can be found from the relation

tan 2¢ = 2a1

(2)

dyy — Qa2

If a;; = a,, we can choose ¢ = }r (see Example 5.17.1, p. 193).
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TABLE S.1
Regular (non-singular) conic sections Singular conic sections
(4 #0) (4=0)

>0 an ellipse (real or imaginary) two imaginary lines with a real point of
intersection

<0 a hyperbola two intersecting lines

=20 a parabola two parallel lines (real or imaginary,
different or coincident)

Theorem 4. If the position of a regular conic is such that its axes are parallel
to the coordinate axes (or its axis is parallel to one of the coordinate axes), then
its equation does not contain the term involving xy, i.e. a;, = 0 (and conversely).
The nature of the conic can then be determined as follows:

a) ay1a;, > 0 — an ellipse (a circle if ay; = ay,),
b) ay1a;;, < 0 — a hyperbola (a rectangular hyperbola if ay; = —a,,),
C) ay1a;, = 0 — a parabola .

REMARK 1. In the case mentioned in Theorem 4, i.e. when the equation does not
contain any xy term, we can easily find the type of the conic section and at the same
time find its centre (or vertex) and semi-axes by the method of “completing the
squares”, as in the case of the circle (Equation (5.9.3), p. 181).

5.16. Affine and Projective Transformations

Definition 1. The affine (position) ratio of a point M on a straight line with
respect to two base points P, Q of the line is the ratio of the distances of the point M
from the two points P, Q; if M is an inner point of the line-segment PQ, the ratio is
negative, if it is an external point, the ratio is positive. We use the notation

PM
POM)=— (M # Q).
(poM) = T (M # 0)
Definition 2. The cross ratio of four points P,Q, M,N on a line (the order in which
they are written is important) is the quotient of the affine ratios of the points M and N
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with respect to P and Q. We write

_(POM) _PM ON

PQMN ==
(POMN) (PON) QM PN

(M # Q,N # P).

Definition 3. By an affine transformation of a plane we mean a transformation
which carries the point M(x, y) into the point M'(x’, y") according to the equations

x'=a1x+ bly‘l'cla (1)
V' =ax + by + ¢,
where
ag;, b,
(22, b2 # O

Theorem 1. An affine transformation preserves the affine ratio of a point on
a line with respect to any two points on the line; the line at infinity is transformed
into itself (i.e. parallelism is preserved).

Theorem 2. An affine transformation of a plane into which a homogeneous
coordinate system is introduced, is given by the equations:

$o = aey,
& =a,éo + b8 + s, (2)
& = ayt, + by, + ¢85,
where
ag, 0, 0O
ag;, by, ¢ 1 #0.
a, by, ¢,

Theorem 3. Every congruent transformation is a particular case of an affine
transformation.

Theorem 4. By an affine transformation, a conic section is transformed into
a conic section of the same type, i.e. an ellipse into an ellipse, a hyperbola into
a hyperbola and a parabola into a parabola.

Definition 4. By a projective transformation of a plane we mean a transformation
which carries the point M(x, y) into the point M’(x’, y") according to the equations:

i = dur¥ + a;py + ag;

b
azXx + aszy + ass

¢ Q31X + Ay + azs (3)

azX + aszy + ass
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where
ay1, A12, dy3
Ayq, Gg3, Az3 | # 0.

sy, A3z, 433

Theorem 5. A projective transformation preserves the cross ratio of any four
points on a line.

Theorem 6. A projective transformation of a plane into which a homogeneous
coordinate system is introduced is given by the equations:

&o = ay1éo + agéy + a3é,,
$1 = az8o + az8; + azsd,, (4)
£y = a3 o + a3y + assd,y,

where

|
ay1> A1z, dy3

Gy, App, A3 | # 0.

a3y, A3z, A3s

Theorem 7. Every affine transformation is a particular case of a projective
transformation.

Theorem 8. By a projective transformation a regular conic section is transformed
into a regular conic section (not necessarily of the same type), a singular conic
section is transformed into a singular conic section (of the same type in the pro-
Jjective sense; i.e. the properties of being real, imaginary, distinct or coincident are
preserved).

REMARK 1. Since the determinants of the systems (1)—(4) are different from zero,
the undashed coordinates can be expressed by means of the dashed coordinates in
each of the systems, i.e. there exists an inverse transformation for each of the trans-
formations under consideration.

5.17. Pole, Polar, Centre, Conjugate Diameters and Tangents of a Conic
Section

Definition 1. If the cross ratio of four points 4, B, C, Disequalto —1, i.e. (ABCD)=
= —1, we say that these points form a harmonic set (range).

Theorem 1. Let us consider a pencil of lines passing through a point P chosen
in the plane of a regular conic, the individual lines intersecting the conic in pairs
of points My, Ny; M,, N, etc. (Fig. 5.15). Then, the locus of a point Q;, which forms
a harmonic set with the point P and the points M;, N, on every line of the pencil
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(ie. M,N.,PQ;) = —1), isa straight line p called the polar of the point P with respect
to the conic. The point P is called the pole of the line p with respect to the conic.

Theorem 2. The equation of the polar p of a point P(x,, Yo) With respect to the
regular conic

ay X% + 2a;,%y + axy* + 2a;3% + 2453y + a33 =0 (1)

Fig. 5.15.

is
(@11%0 + @120 + ay3) X + (@12%0 + a23¥0 + a23) ¥y + (a13%0 + a23y0 + a33) =0.
@)

Theorem 3. The polar of a point T(x,, y,) of a regular conic with respect to this

conic passes through the point T and is the tangent to the conic at this point.
Its equation is

x_x;g + % =1 for an ellipse whose equation is in standard form ,

a

ﬁi—o - }’_l;Vz_o =1 for a hyperbola whose equation is in standard form ,
a

¥¥o = p(x + x,) for the parabola y* = 2px .
Theorem 4. The tangents from a point P to a regular conic (if they exist) pass
through the points of intersection of the polar of P and the conic.
Theorem 5. The mid-points of all parallel chords of a regular conic lie on a line.

Definition 2. The line on which all the mid-points of parallel chords of a regular
conic lie is called a diameter of the conic.

Definition 3. The common direction of parallel chords of a regular conic is said
to be conjugate to the direction of the diameter which passes through the mid-points
of those chords.

Theorem 6. a) All diameters of a parabola are parallel.
b) All diameters of an ellipse (or hyperbola) pass through a com-
mon point called the centre of the ellipse (or hyperbola).
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Theorem 7. The coordinates of the centre of the conic (1) are given by the solu-
tion of the equations:
a; x + azy + a3 = O, (3)
2% + az,y + a3 =03
(the left-hand sides of equations (3) are in fact half the partial derivatives of the
left-hand side of equation (1) with respect to x and y, respectively.)

Theorem 8. If the direction (s,) is conjugate to the direction (s,) with respect
to a regular central conic, then the direction (s,) is conjugate to the direction (s,)
with respect to the same conic. Thus, such directions are called conjugate directions
with respect to the conic.

Definition 4. Two diameters of a regular conic whose directions are conjugate with
respect to this conic are said to be conjugate diameters of this conic.

Definition 5. The two conjugate diameters of a central conic which are perpendi-
cular are called the axes of the conic.
Theorem 9. The slopes k,, k, of conjugate directions satisfy the relation
ayy + ag(ky + ky) + azokik, =0, ©)
i.e.

b? . Lo
kik, = — = Jor an ellipse whose equation is in standard form ,

2
k.k, = b—2 for a hyperbola whose equation is in standard form .
a

Theorem 10. The equation of the diameter conjugate to the direction whose
slope is k, is

G11X + ay,y + ag3 + k(agpx + az0y + az3) =0, (5)
i.e.
2

y = - —2% x for an ellipse whose equation is in standard form ,

a

2
y = = x for a hyperbola whose equation is in standard form ,
a

y = % for the parabola y* = 2px .

Example 1. Let us investigate the curve of the second degree which is given by the
equation
3x2 = 2xy + 3y  +4x + 4y -4 =0 (6)

and draw the tangents from the point P(3, 1) to it.
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Solution: Since

3, ~1, 2 s
4=|-1, 3 2=—64¢O,5=‘_1’ 3l=8>0,
2, 2, -4 ’

either the curve (6) is an ellipse or it contains no real points (see Theorem 5.15.2).
Further, from the formula (5.15.2) we can see that ¢ = 4m; thus,sin ¢ = cos ¢ =
= 4 /2 so that by successive substitution into equations (5.13.2') and from them
into (6), we obtain the equation

x?+2y*+2,/2)x' —2=0,
ie.
’ 2 2
&+ V2 ¥
4 2

Hence, (6) is the ellipse whose centre is at the point (—./2, 0) and whose semi-axes a
(of length 2) and b (of length /2) make an angle ¢ = 4 with the coordinate axes.
The coordinates of the centre S are expressed in the transformed coordinates; its
coordinates in the original system can be found, for instance, by equations (3):
3x— y+2=0,
—-x+3y+2=0;

hence xo = —1, y, = —1, and so S is the point (—1, —1).

Fig. 5.16.

In order to find the equation of a tangent from the point P to the ellipse, we first
find its polar; by (2) the equation of the polar is 5x + y + 2 = 0. The coordinates
of the points of contact T;, T, are given by the simultaneous solution of this equation
and equation (6): Ty(0, —2), To(—+%, 75)- Then, by means of the coordinates of
P, T, and T,, we can easily find the equations of the tangent lines: x — y — 2 = 0,
x =13y + 10 =0.
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6.1. Coordinate Systems

The position of an arbitrary point in three dimensional space is usually determined
so that, to each point of the space an ordered triplet of real numbers (called coordin-
ates) is assigned and conversely, to each ordered triplet of real numbers there cor-
responds a certain unique point of the space.

Definition 1. Surfaces consisting of those points which have one particular co-
ordinate constant are called coordinate surfaces.
Various coordinate systems can be established, the most important being:

a) Rectangular coordinate system. This system is introduced in a manner
similar to that for a rectangular coordinate system in a plane (see Remark 5.1.2,
p. 167): We choose three mutually perpendicular directed lines x, y, z in space passing
through a common point O and three units of length, one on each line. The directed
distances x, y, z (cf. Remark 5.1.2, p. 167) of an arbitrary point M from the planes
yz, xz, xy respectively, are called the rectangular coordinates of the point M. We
write M(x, y, z) to denote this. If the units of length are identical, the coordinates
are called cartesian. In what follows we shall always be referring to these coordinates
(unless otherwise stated).

The point M;(x, y,0)is the orthogonal projection (top view) of the point M onto
the plane xy, so that x, y are the cartesian coordinates of the projection of the
point M in the system (O; x, ) in the sense of plane analytical geometry (see Remark
5.1.2, p. 167). The situation is similar for the point M 2(0, Vs z) — front view of the
point M — and for the point M;(x, 0, z) — side view of the point M.

The lines x, y, z are called the coordinate axes, the point O — the origin of the
coordinate system, and the planes yz, xz, xy — the coordinate planes.

Definition 2. If when viewed from an arbitrary point on the positive semi-axis +z,
the positive semi-axis +x is carried by counter-clockwise rotation through a right
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angle into the positive semi-axis + y, the coordinate system (O; x, y, z) is said to be
positively oriented (right-handed). Otherwise the system is said to be negatively
oriented (left-handed) — see Fig. 6.1a,b.

Theorem 1. The coordinate surfaces in a cartesian coordinate system are planes
parallel to the coordinate planes (perpendicular to the corresponding coordinate
axes).

-
2 ,
Fig. 6.1.

Y b)

b) Cylindrical (semi-polar) coordinate system. This system is determined
by a coordinate plane xy into which polar coordinates g, ¢ are introduced (see p- 178)
and by a directed z-axis, passing through the pole of the system, perpendicular to
the plane. An arbitrary point M is determined by an ordered triplet of numbers
(0, @, z), where g, @ are the polar coordinates of the orthogonal projection M, of the
point M onto the plane xy and z is the directed distance of the point M from the plane
xy (see Fig. 6.2).

Theorem 2. The coordinate surfaces in a cylindrical system are

a) half-planes passing through the z-axis (¢ = const.) ;

b) cylinders of revolution with axis coinciding with the z-axis (¢ = const.; ¢ = 0
corresponds to the z-axis) ;

¢) planes perpendicular to the z-axis (z = const.).

c) Spherical (polar) coordinate system. This system is determined by a co-
ordinate plane xy into which polar coordinates ¢, ¢ are introduced (see p. 178)
and by a directed half-line, passing through the pole of the system perpendicular to
the plane. The following coordinates determine the position of an arbitrary point M
in this coordinate system:

a) the distance r of the point M from the origin (pole) O of the system;

b) the magnitude ¢ of the angle between the half-line OM, and the positive semi-
axis +x, where M, is the orthogonal projection of the point M onto the plane xy;

c) the magnitude & of the angle between the half-line OM and the positive semi-
axis +z (the axes x, y, z are at the same time the axes of a cartesian coordinate
system ~ the so-called adjoined system; see Fig. 6.3).
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The coordinate r is never negative (r = 0), the coordinate ¢ ranges over the inter-
val [0, 2m), the coordinate 9 ranges over the interval [0, n]. (Sometimes the interval
(—m, n] is used for ¢.)

Theorem 3. The coordinate surfaces in a spherical system are

a) spheres whose centres are at the pole of the system (r = const.);

b) half-planes passing through the z-axis (¢ = const.);

c) cones (or half-cones, more precisely) of revolution, the vertices of which are
at the pole and the axes of which coincide with the z-axis ($ = const.).

Fig. 6.2. Fig. 6.3.

In particular, r = O gives one point (the pole), $ = 4n — the plane xy, $ = 0,
n — the half-lines +z, —z, respectively.

Theorem 4. The cartesian coordinates x, y, z, the cylindrical coordinates ¢, ¢, z

and the spherical coordinates r, S, ¢ of the same point satisfy the following
relations:

a) x=gcosg, y=gsing, z=z,

Q—_—\/(x2+y2)’ sin(pz_y—_ L R A— tan(pzz;

NCGESON VE A+ ) x

b) x =rsin%cos ¢, y=rsinYsingp, z=rcos9,

) 24 y?
r=./(x*+ y*+ 2%, sind = —-i————,
W Y ) \/x2+yz+z2

2 2
cos 3 = z , tan 3 = M R
JEE+ yr+2Y) z
sin ¢ = 4 cos ¢ = *
NEEND NEERD
ReMARK 1. The correspondence between the sets of coordinates and the points
themselves is one-to-one without exception, only in the case of a rectangular system.

tan @ =

® i<
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It is not so in the other two systems. All points on the z-axis are so-called singular
points of those systems — the coordinate ¢ may be chosen quite arbitrarily; however

these points are uniquely determined by their remaining two coordinates. In calcula-
tions though, care is sometimes required.

Theorem 5 (Transformation of a Cartesian Coordinate System).

a) Translation. If x, y, z denote the coordinates in the original system,
X, Y, Z — the coordinates of the same point in the new system, Xg, Yo, Zo — the
coordinates of the new origin in the original system, then

X=x—-1x,

Y=y —yy, Z=2z— 2.

b) Rotation and reflection. If the cosines of the angles formed by the new
axes X, Y, Z and the original axes x, y, z are as shown in the following scheme

x | v | z
x a, a, as
y b, b, b,
z ¢y c, C3

then the following relations hold between the original and new coordinates of the
same point:

x=a X+ a,Y+a;Z, X =ax+ by + cz,
y=b1X+b2Y+b3Z, Y=a2x+b2y+cZz,
z=c, X + Y+ c3Z; Z =azx+ byy+ ciz.

Theorem 6. The cosines listed in the table above satisfy the relations:

2

ad+ai+di=1, a2+bi+ci=1,

b2+ b3+ bi=1, a+b5+c5=1,

S +cs+ci=1; a5+bi+ci=1;
a;b; + a;b, + azby; =0, aya, + bib, + ¢y, =0,
ac; +aze, +ases =0, ajga; + bibsy + cic3 =0,
byc; + byey, + byey =0; a,a; + bybsy + c¢5 =0.
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Theorem 7.
a;, Ay, a3

4 = |by, by, by| = £1 (the so-called determinant of the transformation),
C1s €2, €3

where the {?pper} sign is valid according as the two systems have{
ower

orientations (see Definition 2).

the same
different

If the orientation of the two systems is the same, then each element of the deter-
minant above is equal to its complement (cofactor). In the case of different orienta-
tions of the systems each element of the determinant of transformation is equal
to minus its complement.

6.2. Linear Concepts

In § 6.2 we confine ourselves to relations expressed in cartesian coordinates. (For
the meaning at any vector terminology mentioned see Chap. 7.)

Theorem 1. The distance d between two points M,(xy, ¥y, z1), My(x3, ¥,, 25) is
equal to the length of the vector M, M; i..

d =M M| = |r; = ri| = J[(x2 = %) + (02 = ¥1)* + (22 = 21)°],
where ry, r, are radius vectors of the points M, M,.

Theorem 2. A point M lying on the line which joins the points M, M, is deter-
mined by the ratio A = M;M[M,M (cf. §5.2). If ry, r, are the radius vectors of
the points M., M,, then the radius vector r of the point M # M, is given by

ry — Air,

1—1

r =

i.e. the coordinates x, y, z of the point M are given by

_ X A A _ni— iz

3 bl

1 -2 1-2 1—-4
In particular, if M is the mid-point of the line segment, we have

ry+r, e _ X1+ X _ ity z=z1+22

= —, L€, s ———Y )

2 2 2 2
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Theorem 3. The centroid (centre of mass — if the mass is uniformly distributed)
of a triangle is given by

ry+r+r; . x:x1+x2+x3 yz}’1+J’2+.V3

re=—— 2 je. , .

3 3 3

Z Zl+22+23

3

’

where the r, (k = 1, 2, 3) denote the radius vectors, and the X, y;, z; (k = 1, 2, 3)
the coordinates, of the vertices of the triangle.

REMARK 1. The radius vector of the centre of mass of a system of particles
M,(r,) with masses m; (k = 1,2, ..., n) is given by

n
ka’k
P ket .

my
1

T;M:

Theorem 4. The volume V,, of a tetrahedron with vertices M(x;, yi» i) (k =
= 1,2,3,4) is given by

xli yls 21, 1
Xa — X1, Y2 — V15 22 — 24 X35 Vs 25 1
. _ 2 2 2>
+Vi=3|X3 =X, V3= Y1, 23— 21| = % 1
X3s V3, Z3,
X4 = X1, Y4 — Y1s 24 — 23 1
X4 y4s Z4,

(Obviously the positive value of V, is taken).

ReMARK 2. All the four points M, lie in the same plane if and only if the above
determinant is equal to zero.

Theorem 5. The equation of a plane can be written:

a) in general form: Ax + By + Cz + D = 0(at least one of the numbers A, B, C
being non-zero);

b) in vector form:r.n+ D =0
[the vector n = (A, B, C) is perpendicular to the plane, and is a so-called normal
vector to the plane];

c) in normal form: xcosa + ycosf + zcosy —d =0, ie. r.n®°—d=0
(d = 0 is the distance of the plane from the origin; a, B, y are the magnitudes of the
angles formed by that normal to the plane which is directed from the origin, and
the coordinate axes; n® is the unit vector in the direction of the normal; if d = 0
then the orientation of the normal is not uniquely determined);
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d) in intercept form:

X z

Trliia
p q r

(p, g, r are the intercepts cut on the coordinate axes by the plane, due regard being

paid to their orientation;forinstance p = — 3 means that the plane cuts the negative

semi-axis —x at a distance 3 from the origin, i.e. at the point (—3, 0, 0)).

REMARK 3. The equation of any plane can be written in the forms a), b), c) but
it is impossible to write the equation of planes which are parallel to one of the co-
ordinate axes or which pass through the origin in the intercept form d).

Theorem 6. The general equation of a plane can be turned into the normal form
by dividing throughout by the number +./(A*> + B* + C?). The sign in front of
the root is the opposite of that of the constant term in the general equation. (The
normal of the plane is thereby directed from the origin to the plane.)

+ Example 1. 2x — 3y — 6z + 21 = 0] : [—/(2* + 3 + 6%)] = -7, and so we
obtain

-—2—x+iy+———62—3=0, ie. ——ﬁx+§y+§z—3=0.
-7 -7 -7 7 7 7

To construct the given plane, first construct the vector

—=2n° =323 6y_(_69 18
n=3n"=3-33%33=(-%%%3

whose initial point is at the origin, and then the plane which is perpendicular to, and
which contains the terminal point of, n.
Theorem 7. The general equation of a plane can be turned into the intercept form
by dividing throughout by minus the constant term (i.e. by the number — D).
Example 2. 2x — 3y — 6z + 21 = 0] :(-21),
x L

— b
-5 7

+Z=1.,

NN

Theorem 8. The equation of the plane which is perpendicular to the vector
a(ay, a,, a;) and which passes through the point M(xy, yy, z,), is

a)(x — x,) + ay(y — y1) + as(z — z,) = 0.
Theorem 9. The equation of the plane containing the three non-collinear points
M(%4 Yo z) (k = 1,2, 3), is
x, y, z, 1
X5 Y15 Zp5 1

X2s V25 225 1
X35 V3, 235 1
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or, in vector form:
[(r=r)(rs—r)(rs —r)]=0.

([a b c] is the mixed or triple scalar product of the vectors a, b, ¢; see Definition
7.1.13, p. 230.)

Theorem 10. The equation of the plane which contains the two points My(X,, yi, Z;)
(k = 1,2), and which is parallel to the vector a(ay, a,, a,), is

X — X, Y — Vi, Z — 24
Xy = Xg, Yo = Y1, 22 — 21| =0
ay, as, as

or, in vector form:
[a(r=r)(r,—r)]=0.

Theorem 11. The equation of the plane which contains the point M(xy, yy, z;)
and which is parallel to the two vectors a(ay, a,, a3), b(by, by, b3) is

X =X Y — V1 T2y
a, as, a, =0;

bl’ bZ’ b3
or, in vector form:

[ab(r—r)]=0.

Theorem 12. The distance of the point M(z1,v1,21) from the plane Az +
By + Cz+ D = 0 is equal to the absolute value of the result of substituting the
coordinates of the point in the left-hand side of the normal equation of the plane, i.e.

_ }Ax, + By, + Cz, + D
| V(4 + B* + C?)

Theorem 13. The angle between the two planes A;x + By + Cyz + D; =0,
Ayx + B,y + C,z + D, = 0 is equal to the angle between their norimals (which
are represented by the vectors ny(Ay, By, Cy), ny(4,, B, C;)). Thus considering
0= o<

|ny . ny| _ |4:4, + BB, + C,C,] .
|ni] |n|  J[(41 + BY + C1) (43 + B; + C3)]

cos @ =

In particular, a necessary and sufficient condition for the two planes to be per-
pendicular is that

n,.n, = A A, + BB, + C;C, =0.
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Further, since the normals to two parallel planes are parallel, we have the following
theorem:

Theorem 14. A necessary and sufficient condition for the two planes
Ax+ By+Ciz+ D, =0, A)x+ B,y +Cyz+ D, =0
to be parallel is that
A :A,=B;:B,=C;:C,, ie. n = 2n,.

REMARK 4. The equations of two parallel planes can, therefore, always be modified
so that the coefficients of the variables are the same for both planes and the equations
may differ only in the constant term. This is especially useful when calculating the
distance between two parallel planes:

Theorem 15. The distance d between the two parallel planes Ax + By + Cz +
+ D, =0, Ax + By + Cz + D, = 0 is given by
d = l D, - D, I
V(4 + B + )

Example 3. The distance between the planes 4x — 2y — 4z + 11 =0, —2x +
+ y + 2z + 5 = 0 can be calculated by the foregoing formula thus: we first multi-
ply the second equation by the number —2. Then, A =4, B= -2, C = —4,
D, =11, D, = —10 and so

|- ||
Va6 F 4+ 16) |

~21 _ 35,
6 |

Definition 1. The set of all planes which pass through a fixed line or the set of all
planes parallel to a particular plane is called an (axial) pencil of planes (sheaf of
planes).

REMARK 5. We often speak in geometry about points, lines and planes at infinity.
Accordingly, in the preceding definition it is sufficient to refer to the set of all planes
which have a line in common (at infinity in the case of parallel planes).

Theorem 16. The planes belonging to a pencil, two of whose members are the
planes A;x + B,y + C,z + D, =0 and A,x + B,y + C,z + D; = 0, have as
their equations:

A(A1x + Byy + C1z + Dy) + A,(A,x + By + C,z + D,) =0, m

where Ay, A, are variable parameters, at least one of them being non-zero; clearly,
only their ratio is significant.
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REMARK 6. The above equation is especially useful when solving problems in
which the equation of a plane passing through the line of intersection of two given
planes and satisfying some additional condition is to be found.

Example 4. A plane is determined by the point M(2, —1, 3) and the line of inter-
section of the planes whose equations are 6x + 2y —z — 3 =0, 3x + 4y — 2z —
— 2 = 0. Find its equation.

If we substitute the coordinates of the given point into equation (1) which represents
this particular pencil, we obtain the condition 44, — 64, = O for 4, 4,. This condi-
tion will be satisfied, if we choose, for instance 4, = 3, 1, = 2. The equation of the
required plane is then

3(6x +2y —z—3)+203x +4y —22—-2)=0,
ie. 24x 4+ 14y — 7z - 13 =0.

Theorem 17. The equations of the planes which bisect the angles between two inter-
secting planes ¢, = 0, 0, = 0 can be obtained if we add and subtract the normal
equations of the two given planes:

Ayx + B,y + Cyz + D, + Axx + By + Cyz + D,
JAI+ B+ C) T 4+ B+ C)

Example 5. 9, =2x — y—22z+4+3=0,90, =3x + 2y + 6z — 1 = 0. The nor-
mal equations of these planes are

2x—y—322+3=0 and 3x+2y;—6z—1=

0,

respectively. Adding both equations and simplifying we obtain
5x — 13y — 32z 424 =0.
Subtracting we obtain, similarly,
23x —y+4z +18=0.

Definition 2. The set of all planes which pass through a fixed point (see Remark 5)
is called a bundle of planes (star of planes).

Theorem 18. The planes belonging to a bundle, three of whose members are the
planes Alx -+ Bly + Clz + Dl = 0, A2x + Bzy + sz + D2 = 0, A3x + B3y +
+ C3z + D3 = 0, have as their equations:

ll(Alx + B1y + Clz -+ Dl) +‘A.2(A2x + Bzy + CZZ + Dz) +
+ 13(A3x + B3y + C3Z + D3) = 0 s



6.2 SOLID ANALYTIC GEOMETRY 205

where A,, A,, A5 are variable parameters, at least one of them being non-zero;
clearly, only their ratios are significant.

REMARK 7. The relative positions of several planes can be decided by a detailed
analysis of the solution of the system of linear equations which represent these
planes (see § 1.18).

The position of two points relative to each other with respect to a given plane can
easily be decided on the basis of the result of substituting the coordinates of these
points into the equation of the plane:

Theorem 19. If the results of substituting the coordinates of two points into the
left-hand side of the general equation of a plane are of the same sign, then both
points lie in the same half-space determined by the plane (i.e. on the same side of
the plane); if they are of different sign, then the two points lie in different half-spaces
(i-e. on different sides of the plane). (If the result equals zero, the point lies in the
plane, of course.)

Theorem 20. The equations of a straight line:
a) the general equations are
Ax + B,y+ Ciz+ D, =0,
A;x + B,y +Cyz+ D, =0
provided that the two planes represented by these equations intersect, i.e.
A :B:C; # A4,:B,:C,;
b) the vector equation is
r=r,+ta

where r is the radius vector of a fixed point on the line, @ — the direction of the
line, i.e. a vector parallel to the given line, and t is a variable parameter;

c) the parametric equations (merely a paraphrase of the vector equation):
X =Xg+ayt, y=yo+azt, z=2z¢+ ast,

where (xo, Yo, Z,) is a fixed point on the line, @ = (ay, a,, a3) — the direction vector
of the line (a;, a,, a5 are so-called direction parameters of the line);

d) the reduced equations:
x=mz+p, y=nz+gq.

The equations of lines parallel to the plane xy cannot be written in this form. These
equations are a particular case of the general equations, the reference planes being
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those planes which contain the line and its projection on the xz and yz planes res-
pectively. They are, however, also a particular case of the parametric equations, in
which the coordinate z is chosen as the parameter, i.e. z = t. The point (p, g) is then
the point of intersection of the given line and the plane xy. Choosing the coordinate
X, or y, as the parameter we obtain the other pairs of reduced equations of the line —
provided that the line is not parallel to the plane yz, or xz, respectively.

Theorem 21. The equation of a line determined by

a) a point (Xo, yo, o) and a direction vector @ = (a,, a,, as):
in canonical form

x—xozy—yozz——zo. (2)
a; a as ’

in parametric form

X=2Xg+ ait, y=yo+ at, z=2zy+ ast; (3)

b) two points (xl’ Vi Zl)’ (x2’ Yas 22):

X=X -_ Y=Yy _ Z—7Z

u
X2 — X1 Y2— 1 Z — 24

or (in parametric form)
x=x1+(x2-—x1)t, y=y1+(y2_y1)t, Z=Zl+(22‘—zl)t.

REMARK 8. Equations (2) can be obtained from the parametric equations (3) by
eliminating the parameter. If zero occurs in the denominator of some of the above
fractions we consider those equations which are involved as a mere formal notation
and, as a rule, use another form of the equations.

Theorem 22. The direction vector of a line is parallel to the vector product of the
normal vectors of any two planes which contain the line, i.e.

Bl’ Cl Cl: A-l AI’ Bl
BZa C2 CZ’ AZ AZ’ BZ

a12a22a3= . .

Example 6. Obtain the parametric equations of the line given by the general

equations
3x +4y +52-3=0,

x—~2y—3z+4+4=0.
The direction vector of the line can be found by Theorem 22:

4, s 5,313, 4|
~2, =37 | =3, 1|1, 2|~

=(-2):14:(=10) = 1:(=7):5.

al:az:a3=
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In order to find the parametric equations of this line we determine one of its points.
We choose z, = 0 say and find x,, y,, from the equations

3x +4y —-3=0,
x—2y+4=0.

We obtain x, = ~1, y, = 1'5. Thus, the required equations are
x=—-1+t, y=15-Tt, z=>5t.
Theorem 23. The distance d of a point P(x,, yo, zo) from the line

X=X Y= _Z- 24

a, a as

is given by

d==|ix—a|, where u = (xo — X1, Yo — V1, Zo — 21), @ = (ay, ay, as).

|a|
Example 7. Find the distance of the point M(3, ~1, 2) from the line
x—2 y z+1

2 1 -2
Here,

—1 3 3,1 1, -1
u=(1,-1,3), a=(2,1,—-2), uxa= ’ , N =
( ) ( ) (| 1, =2 1—2,21 2, 1')
=(~1,8,3),

jux a = JI(~17 + 8 + 7] = Y74, || = J[2* + 12 + (=2] = 3;

d = 5—/?‘:7—%= 2:867....

REMARK 9. In the same way, the distance between two parallel lines can be cal-
culated: we choose a particular point on one of them and then find the distance
of this point from the other line.

Theorem 24. The distance d between two skew lines'p =r =r, + at,?’p=r =
= r, + bt' is given by

d = |[(r, — ry) °b:||.
la x bj

Example 8. Find the distance between the skew lines

x =1 +2 z+3 X -2 +1 z-—-1
p = =2 = . 2p =7 =

2 2 —1 1 -2 -2
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Herer, = (1, =2, =3),r, = (2, ~1,1),a = (2,2, ~1), b = (1, =2, —2), and thus

r'2—"1=(15 1’4)»
axb=(| > |7L21 12 232263, —),
-2, =2 -2,1 1, =2

lax bl =9, [(r, — r)ab]

Hence

I

(r,—r).(@ax b)=—6+3—24=-27.

2 Gy

T 9

U

REMARK 10. Two lines 'p = r = r, + at, >p = r = r, + bt’ lie in the same plane
if and only if the mixed product [(r, — r;)ab] equals zero. If, in addition, a is not
parallel to b, then they intersect.

Theorem 25. The angle between two lines is equal to the angle between their
direction vectors a, b, . Thus considering 0 < p < %71',

a.b ab, + ayb, + asb;

COS = = .
CT0al B] T J(@ + a2 + a2) J(bF + bZ + b)

Theorem 26. a) A necessary and sufficient condition for two straight lines whose
direction vectors are a, b to be perpendicular is

a.b=20; ie. a;b, +ayb,+ azb;=0.

b) A necessary and sufficient condition for two straight lines whose direction
vectors are a, b to be parallel is

allb, ie. a,:a,:a;=">by:b,:b;.

Theorem 27. The angle ¢ between a line and a plane is equal to the complement
of the angle between the direction vector of the line and a normal vector to the

plane; thus
sin ¢ = ___l_]a n ,
|a| - |n]
ie.if r=ry + at and Ax + By + Cz + D = 0 are the equations of the line and
the plane, respectively, then \
la;A + a,B + a5C|
J(@? + a2 + a3) J(4% + B® + C?)

sin ¢ =

A necessary and sufficient condition for a line and a plane to be perpendicular is

aln; ie a,:a,:a;=A4A:B:C.
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A necessary and sufficient condition for a line and a plane to be parallel is

a.n=0; ie aAd+a,B+a;C=0.

6.3. Quadrics (Surfaces of the Second Order)

ReEMARK 1. In this section, a surface is defined as the locus of a point whose
rectangular coordinates satisfy the equation F(x, y, z) = 0, where F is a function
having continuous partial derivatives of at least the first order at every point. The
points of a surface at which at least one of these partial derivatives differs from zero
are called regular points of the surface, whereas the points at which all the first partial
derivatives vanish are called singular points of the surface (for example the vertex
of a cone).

(For a more detailed treatment see Chap. 9.)

Theorem 1. The equation of the sphere with centre S(x,, Yo, Zo) and radius r is
(x = %)+ (y = yo) +(z =z =12,

If we perform the operations indicated in this equation, we obtain the general
equation of a sphere in the form

x> +y*+z224+mx+ny+pz+qg=0.

It should be noticed that the products xy, xz, yz do not occur and that the coeffi-
cients of the squared variables are all equal.

The coordinates of the centre, and the radius, of a sphere given by the general
equation can be found by completing the squares:

2 2 2 2 2 2
x+—nl -{-y+E +z+1—) =n——————1+n+p—q.
2 2 2 4

If the right-hand side of this modified equation is a positive number, then the general
equation represents the so-called real sphere with centre S(—-}m, —4n, —1%p) and
radius r = /[{(m? + n® + p*) — ¢]; if the right-hand side equals zero, then only
one real point (the centre of the sphere of zero radius) satisfies the general equation;
if the right-hand side is a negative number, then no real point in space satisfies the
general equation. (In this case we speak about a virtual sphere.)

Theorem 2. The equation of the general ellipsoid with centre at the origin and the
semi-axes a, b, ¢, coincident with the x, y and z axes, respectively, is

(]

2 2
y
T

]
—

+

mN|><
ﬁN[N
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Particular cases are:

a) a = b > ¢ (anoblate spheroid; Fig. 6.4) ;
b) a = b < ¢ (a prolate spheroid; Fig. 6.5) ;
¢) a=b=c (asphereof radius a).

In cases a,) b) the z-axis is the axis of revolution.

Fig. 6.4. Fig. 6.5.

Theorem 3. Hyperboloids with centre at the origin and semi-axes a, b, ¢ coincident
with the axes x, y, z, respectively are of two types:

a) a hyperboloid of one sheet (Fig. 6.6), having the equation

(&)
(8

B"|'<
N

- -1

+ il
2

Q]X
N
[}

(a, b being its real semi-axes, and c its imaginary semi-axis),

b) a hyperboloid of two sheets (Fig. 6.7), having the equation

2 2
ic_..|..y___=_1
2 bZ C2

Q

(a, b being its imaginary semi-axes, and c the real semi-axis).

If, in either case, a = b, then the hyperboloid is a hyperboloid of revolution and
the z-axis is the axis of revolution.
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