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FOREWORD TO THE FIRST ENGLISH EDITION 

By Professor F.M. ARSCOTT, M.Sc., Ph.D., F.I.M.A., 

Department of Mathematics, University of Surrey 

A mathematician, pausing two-thirds of the way through the twentieth century 
to look back, might feel a justifiable pride in the process of his subject. Many old 
problems have been solved and others absorbed into wider questions, while new 
branches of the subject have appeared at frequent intervals and blossomed rapidly. 
Meanwhile, other scientific disciplines grow more mathematical; it is said that really 
good work in physics, chemistry or engineering requires a first degree in mathematics, 
and even disciplines which were never regarded as scientific are proving susceptible 
to mathematical analysis. 

This coincidence of an explosion of mathematical activity with greatly enlarged 
scope for its application is, unhappily, overshadowed by a communication barrier. 
Between those who have mathematical knowledge and those who wish to use it there 
lies a great gulf. One can try to bridge this by bringing to the notice of abstract 
mathematicians the intriguing and challenging problems waiting for them in other 
fields - but mathematicians are not easily tempted from their ivory towers. This book 
starts, instead, from the other side, putting into the hands of the users of mathemat­
ics an array of powerful tools, of whose existence they may be unaware, with precise 
directions for their use. To achieve this in a reasonable compass something has to 
be sacrificed and the authors took the hold step of omitting virtually all proofs -
an unorthodox but highly sensible procedure, since otherwise the book might have 
been ten times its present size. As it is, these covers contain the equivalent of a small 
library of standard texts on the uses of mathematics. 

It is no coincidence that such a book should come from the Continent, for it 
is especially in Germany and eastern Europe that there flourishes the subject of 
"Angewandte Mathematik" - better described as "useful", "utilisable" or "applica­
ble" mathematics rather than by the literal translation of "applied mathematics", 
which in Britain means something very different. For the English translation, there­
fore, the title "Survey of Applicable Mathematics" has been chosen. 

The task of editing the translation has been interesting and congenial. We have 
sought to produce a text in good mathematical English while preserving all the 
distinctive features of the original. Notation has been left practically unchanged; 
only where Czech and English usages differ significantly have changes been made. 
Terminology has sometimes proved more difficult, such as when direct translation 
produced a term which, though clear and acceptable, was not generally used. In 
such cases we have usually retained the equivalent of the Czech original, with a note 
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giving the common English alternatives; thus matrices are described as "regular" 
rather than "non-singular", though the latter is given as an equivalent term. When, 
however, serious confusion might result, or a different English term has become 
completely standard, we have made the necessary changes. 

An extensive revision of the bibliography has also been made, giving a fuller 
guide to current British and American literature. Translation of Russian Iiterature 
have been referenced whenever they could be traced, names of Russian authors being 
transliterated according to the practice of the London Mathematical Society. 

My colleagues and I have found the editing of this book an exciting and stim­
ulating experience; throughout we have had the inestimable benefi.t of Professor 
Rektorys's advice and help and in commending this book to the English speaking 
mathematical world we would pay our own tribute to the schalarship and imagina­
tion of Professor Rektorys and his co-authors. 



PREFACE TO THE FIRST CZECH EDITION 

In recent years several books dealing with special fields of mathematics (for ex­
ample, Angot's Applied Mathematics for Electronic Engineering, and others) have 
been published in Czechoslovakia. They have supplied readers with information, in 
a condensed form, about those mathematical disciplines which find employment in 
these particular fields. 

This volume has been published as a result of the initiative of the Ceska matice 
technicka (Czech Scientific Institution for Propagation of Technical Literature). In 
particular, the late Professor VyCichlo devoted much of his time and organisation­
al powers to make clear questions concerning fundamental features and conception 
of this volume. The authors have attempted to produce a comprehensive work for 
the use of a very wide circle of readers, and the book comprises the great majority 
of mathematical disciplines applied in technology, yet the contributions have been 
prepared in such a way that a reader with only limited theoretical knowledge of 
mathematics can easily follow them. This volume contains, therefore, a survey of 
results in applicable mathematics needed by engineering graduates or other research 
workers, or by undergraduates and teachers of technological subjects. It is also in­
tended to be of service to theoretical research workers in such related disciplines as 
physics, geodesy, etc., and to mathematicians themselves. 

It was not easy to select the subject matter and to present it in a form acceptable 
to such a varied body of readers. During Professor VyCichlo's lifetime an extensive 
survey was made in order to ascertain the views of a number of outstanding technol­
ogists; some of the opinions expressed regarding selection and presentation of subject 
matter showed extensive disagreement, but it was possible to formulate an outline 
plan for the selection of subject matter and its mode of presentation - even though 
some questions remairred unanswered. 

It was not possible to include any specialised disciplines used only in narrow fields 
of technology. Thus, electrical engineers may miss the theory of transmission, while 
readers particularly interested in solving systems of linear algebraic equations may 
regret the absence of reference to cracovians. On the other hand it was clearly nec­
essary not only to include current mathematical topics but also to pay considerable 
attention to approximate methods. Prominent among the latter are approximate 
methods in algebra, including solution of systems of linear equations, of transcen­
dental equations and algebraic equations of higher degree, and the determination of 
eigenvalues of matrices, while in the field of analysis we have included approximate 
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methods for the solution of differential equations ( especially partial differential equa­
tions) and of integral equations; these are not yet adequately treated in technological 
literature. The book also includes comprehensive tables of integrals, of sums of series, 
and of solved differential equations, while in the chapter on statistics (Chapter 34) 
attention is devoted to the subject of quality control. The book does not, however, 
include the theory of computers or the technique of linear programming; these dis­
ciplines are developing so rapidly at the present time that any description would be 
out of date before it appeared in print. 

The leading experts in our country were invited to write the contributions on 
individual subjects. While each author was allowed a certain degree of freedom, the 
editor-in-chief (of the Czech edition) has ensured the maintenance of a consistent 
style of treatment throughout the book. I should like to thank all the authors for 
their great patience and for incorporating my suggestions into their work. 

The book omits proofs of the theorems and derivation of the results, but the­
orems and formulae are complemented with explanatory remarks and appropriate 
examples; in choosing these examples we have sought to include those which not 
only provide suitable illustration but also have practical importance. In stating the 
results we have borne in mind the varying standards of mathematical education and 
skill of the readers for whom the book is intended. In Algebra, for instance, we write: 
"If a, bare real or complex numbers, then ... ", instead of: "If a, bare complex num­
bers, then ... "; a mathematician may legitimately object that the second statement 
is sufficient because real numbers are a special category of complex numbers, but by 
using the first form of statement we leave the mathematically less advanced reader 
in no doubt that the result is valid for real numbers as well as complex. 

Some sections of this volume are not, and by their nature cannot be, truly original 
- for instance, the tables of integrals and of solved differential equations. These tables 
were abstracted from different books, namely from [26], and have been carefully 
checked. 

Although the authors and annotators of the various chapters worked with extreme 
care, the possibility cannot be excluded that some errors remain undetected, and we 
shall be very grateful to any readers who inform us of such errors. The authors of 
individual chapters are responsible for their accuracy, while the editor-in-chief takes 
overall responsibility for the general outline of the book; he will be grateful for any 
criticism relating to the selection of the subject matter and its presentation. 

The book is divided into chapters and sections (paragraphs), which are numbered 
according to the decimal system, so that 5.3 for example, means Chapter 5, Section 3. 
In each section the theorems, examples, etc., are numbered in order and are quoted by 
means ofthat number; if, for instance, in a certain section Example 1 is quoted, this 
refers to Example 1 of the current section. If, however, we refer to an example from 
another section, then the number of that section is given before the number of the 
example. Similarly a reference such as (5.3.2) relates to equation (2) of Section 5.3; 
thus in the running heads, we look up the number 5.3 of that section and there we 
find equation (2). Generally the page is also quoted for the reader's convenience. 



PREFACE TO THE FIRST CZECH EDITION xxi 

The bibliography is to be found at the end of the book; in the text we refer to a 
work merely by quoting (in square brackets) its number in the list of references. 

Grateful acknowledgement is due to the Ceska matice technicka and the Publish­
ers of the Technological Literature (SNTL) in Prague. I am indebted also to many 
friends and colleagues, particularly to V. Da.Sek who has read the greater part of the 
manuscript, to I. Babuska for his great work in the organization of the project and 
for his many valuable suggestions, and to K. Drabek for preparing the diagrams. 
Thanks are also due to E. Jokl, M. Josifko, M. Pisl, C. Vitner, J. Vyborna and 
R. Vyborny for their most careful revision of the manuscript and their many contri­
butions to the improvement of the whole work. I have also to thank the Prometheus 
printing house for their extremely competent work. 

K arel Rektorys 
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The task of translating this book into English has been pleasant but rather 
difficult. I must express appreciation to my colleagues Vl. Dlab, K. Kominek and 
R. Vyborny who translated the greater part of the text, and also acknowledge the 
generous assistance rendered by A. Zaludova who revised the whole translation. 

In the preparation and editing of this English translation I have received invalu­
able help from Professor F.M. Arscott and his colleagues at the University of Surrey 
in London. Without their co-operation it would be difficult to imagine a successful 
production of this English edition. 

To all these individuals, and also the Iliffe Books Ltd., I want to express once 
more my sincere thanks. 

K arel Rektorys 
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EDITION 

In the original Czech version, our Survey of Applicable Mathematics has appeared 
in its fifth edition this year. This fact represents a very satisfaction for the authors, 
because it is a testimony that they have succeeded in their primary intention to give 
such a book in hands of consumers of mathematics which would serve them as a 
sufficiently universal mathematical tool and which they could easily apply. 

Nevertheless, in recent years, many fields of applicable mathematics went through 
considerable changes. This concerns, first of ail, numerical methods, in particular 
those in linear algebra and differential equations, especiaily in the partial ones. It 
concerns as weil mathematical statistics, new methods in economy, etc. Changes 
have been noticed also in so-cailed classical fields of mathematics. This ail showed 
the necessity of a considerable revision of the work when the sixth Czech edition was 
being planned. 

Simultaneously with the new Czech edition the present Second Revised English 
Edition was being prepared. 

The revision of the book has been essential. This concerns, in particular, its 
second volume. Many chapters have been written quite anew. They have been 
Chapters 24 (on variational methods in boundary value problems), 25 (approxi­
mate solution of ordinary differential equations), 27 (the finite-difference method), 
30 (numerical methods in linear algebra) and 32 (interpolation and splines). The 
original Chapters 33, 34 and 35 on probability and mathematical statistics were re­
placed by new Chapters 33 to 36. Quite new is the "economic" Chapter 37. Also 
Chapter 22 on functional analysis has been rewritten entirely, serving as a starting 
point for analytical as weil as numerical methods of solution of partial differen­
tial equations. Essentiaily different became Chapters 28 (from the point of view 
of the Laplace and Fourier transforms), 18 (partial differential equations) and 19 
(integral equations). The revision concerns also Chapters 23 (variational calculus), 
20 (functions of a complex variable, where a new part on functions of several complex 
variables has been added) and 21 (with a smail dictionary of conformal mappings). 

The first volume of the book, containing "more classical" mathematical fields 
( classical algebra, geometry and calculus), was by far not undergone so many changes. 
Regarding the purpose of the book ( as a handbook for consumers of mathematics, 
in the first place), the modernization had to be carried out very carefuily here. For 
example, the chapter on differential geometry in a modern conception would be too 
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abstract for most of the readers. Similarly, §1.1 on some concepts of logic remained 
practically unchanged, being of a purely informative character, thus far from any 
axiomatic theory, the building up of which would have been quite inadequate from 
the point of view of users of this book. We also preferred a rather classical form of 
treating the text concerning curvilinear and surface integrals, even though the main 
integral theorems ( as those by Gauss, Stokes, etc.) have been presented also in the 
symbolic of vector analysis. What has been written quite anew here are the sections 
on the Lebesgue and Stieltjes integrals, on the space L 2 , orthogonal systems, and the 
Bessel functions as well as the text on approximate evaluation of definite integrals 
and on harmonic analysis. The new Paragraph 16.7 has been added on the possibility 
of treating special functions from the point of view of the theory of representation 
of groups. 

I wish all this effort turns out useful for the readers. 
Finally, I would like to express my sincere thanks to all my co-authors, especially 

to Dr. E. Vitasek for his great help to me when editing the book, to Ass. Prof. 
K. Drabek for a very careful preparation of drawings and - last but not least - to 
Prof. M. Hazewinkel for many good ideas and suggestions and to Kluwer Academic 
Publishers for their highly competent work. 

J( arel Rektorys 



LIST OF SYMBOLS AND NOTATION 
USED IN VOLUME I 

Symbols and notation are arranged acording to their logical connections with 
various parts of mathematics. 

The reader should note that it is often difficult to put a symbol or notation 
precisely in its apropriate place; it may happen therefore that he will have to Iook 
up a notation in a different place from that which he anticipated. 

Symbol or Notation 

= 

< 

> 

< 

> 

+ 

., X 

:, -,I 

Meaning 

Algebra 

(is) equal to 

(is) iclentically equal to 

(is) not equal to 

(is) not iclentically equal to 

is approximately equal to 

is equal, after rouncling of, to 

is srnaller t.han, is less than 

greater than 

is less t.han or equal to ... 

is greater than or equal to ... 

plus; positive sign 

minus; negative sign 

multipliecl by; this sign is often omitted, e.g. insteacl of 
a . b we often write ab 

cliviclecl by; over; in the text we often write, for example, 

1/(2n+ 1) instead of -2 
1 

1; obviously, 1/2n+ 1 stancls 
1 n + 

for- + 1 
2n 

XXV 



xxvi SURVEY OF APPLICABLE MATHEMATICS 

Symbol or Notation Meaning 
~------------------;---------------------------------------------~ 

( ), [ ], { } 

-rja 

Iai 

n! 

(2n)!! 

rr 
Iogb a 

Ioga 

In a 

E 

parentheses or round brackets, square brackets, curly 
brackets, respectively 

the n-th root of a ( the sign v is called the radicle or 
the radical or the radical sign), instead of ?ja we write 
simply Ja 
the absolute value of the number a 

~; the n-th power 
n-times 

1 . 2 . 3 ..... n ( n-factorial or the factorial n); 
e.g. 3! = 1 . 2 . 3 = 6 

2. 4. 6 ..... 2n; e.g. 6!! = 2. 4. 6 = 48 

r( r - 1) ... ( r - k + 1) b 
r any real num er 

k! ' 

n(n-l) ... (n-k+1)_ n! 
-k! k!(n- k)! 

the binomial coeficient, n a positive integer 

the sum of, the summation sign; e.g. 
3 

2:.:: ak = a1 + a2 + a3 

k:! 

I:: ak means: we sum over all values ok k considered 
k 

3 

the product; TI ak = a1a2a3 
k=! 

th:e logarithm of a to the base b 

the common or Briggs logarithm (to the base 10) 

tha natural or Napierian logarithm (to the base e) 

is an element of; e.g. x E [a, b] means: x is (or lies) in 
the interval [a, b]; 

is not an element of 
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Symbol or Notation 

c 

u 

n 

II 
l1 

n 

..L 

Meaning 

the sign of inclusion; eogo M C N (see § 1.23) 

the union (the sum); eogo M U N; often written 
M + N (see § 1.23) 

the intersection (or the product); eogo MnN(see 
§ 1.23) 

the greatest of the numbers a1, a2, 0 0 0, an 

the least of the numbers a1, a2, o 0 o, an 

n-component vector (or vector of ordern) with 
components ( coordinates) a1, a2, o o o, an 

the 2 by 3 matrix (see § 1.16) 

tl1e transpose of a matrix A 

the inverse of a matrix A 

the identity matrix 

the zero-matrix 

the matrices A, 8 are equivalent 

the determinat of order 2 or of the second order 
(see § 1.17) 

the minor belanging to the element ail• 

the cofactor belanging to the element ailc 

Gemnetry 

(is) parallel to 

(is) parallel to 0 0 0 and of the same orientation 

(is) parallel to 0 0 0 and of the opposite orienta­
tion 

(is) perpendicular to 
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Symbol or Notation Meaning 

0 degree } 
1 minutes 
11 second 

arc a 

rad 

AB 

AB 

C-<.D 

(x, y) 

(x, y, z) 

(p, <p) 

(p, <p, z) 

(r,l?,<p) 

the triangle; e.g. 6.ABC stands for a triangle with the 
vertices A, B, C 

in the sexagesimal measure of angles 

the arc, the radian ( circular) measure of an angle a; if 
the magnitude of an angle a is given in degrees then 

e.g. for a = 90° 

7r 

arc a = 180; 

7r • 90 7r 

arca = l9Q = "2 

the radian, the unit angle in circular mea.•mre; 
1 rad = 57°17'44·8" 

the segment with the end-points A, B 

the length of the segment AB 

on an oriented straight line, a point C lies before a 
point D 

the reetangular coordinat.es of a point in the plane 

the reetangular coordinates of a point in space 

the polar coordinates 

the cylindrical coordinates of a point in space 

the spherical coordinates of a point in space 

Vectors in Geometry, Vector Calculus, Vector Aualysis 

0 -AB 

a, Iai 

a vector 

the vector with the initial (starting) point A and the 
end point (terminal) point B 

the length (module) of a vector o 



Symbol or Notation 

i,j, k 

r 

ko 

o. b, ob 

o x b, o 1\ b, [ab] 

[abc], [a, b, c], obc 

o'(t), o(n)(t) 

grad u, V'u 

div o, V'o 

curl o, rot o, V' x o 
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Meaning 

the principal (unit or coordinate) vectors in the axes x, 
y, z of a cartesian coordinate system 

the radins vector of a point (x, y, z) (a vector with the 
initial point (0, 0, 0) and the end point (x, y, z)) 

k-rnultiple of the vector o ( k being a scalar) 

the scalat (inner) product ofvectors o, b (§7.1) 

the vector (inner product ofvectors o, b (see §7.1) 

the mixed product (or the trivector) of vectors o, b, c; 
obc = (o x b). c (see §7.1) 

the first, the n-th derivative, respectively, of a vector o 
with respect to the scalar variable t, i.e. 

do(t) 

dt 

the gradient of u (§ 7 .2) 

or 
c[(n)o(t) 

dt(n) 

the divergence of a vector o (§7.2) 

the curl of a vector o 

the Hamilton nabla operator 

(§ 7 .2) 

the fourth-times contravariant and two-times covariant 
tensor 

Analysis (Differential and Integral Calculus) 

(a,b)or[a,b] 

xE[a,b] 

[a, b] x [c, cfj 

{an} 

an open or closed interval respectively (for details see 
§11.1) 

x belongs to the interval [a, b], 
x lies in the interval [a, b] 

the cartesian product of the intervals [a, b], [c, d] (in the 
cartesian coordinate system in a plane the product is a 
reetangle with the vertices (a, c), (b, c), (b, d), (a, d)) 

a sequence with general term an 
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Symbol or Notation 

lim an= a 
n-+oo 

lim an= +oo 
n-+oo 

lim sup an, lim an 
n-+oo tl-+00 

lim inf an, !im an 
n-+oo 

n=l 

00 

n=l 

f(x), g(x), .. . 

f(x,y), g(x,y), .. . 

f(g(x)), f(g(x,y),h(x,y)) 

o(f(x))' o(f(x)) 

max f(x) or min f(x) 
a~x~b a~x~b 

sup f(x) or inf f(x) 
a~x~b a~x~b 

lim f(x) = A 
X-+a 

lim f(x) = B, 
x-+a+ 

f(a+O)=B 

lim f(x) = -oo, 
x--+a-

f(a- 0) = -oo 

!im f(x) = C 
x-++oo 

Meaning 

the sequence {an} possesses a limi t a 

the sequence {an} diverges to +oo 

the greatest limiting point of a sequence {an} 
(§10.1) 

the least limiting point of a sequence {an} (§ 10.1) 

the infinite series with general term an 

the infinite product with general term an 

function of a single variable x 

function of two variables x, y 

composite functions 

(see § 11.4) 

the maximum or minimum value of a function f(x) 
on an interval [a, b] 

the least upper bound (the supremum) or the grea­
test lower bound (the infimum) of a function f(x) 
on the interval [a, b] (on the supremum and infimum 
see § 1.3) 

the function f( x) has the Iimit A at the point a 

the function f(x) possesses the right-hand Iimit B 
at. the point a 

the function f(x) hastheinfinite left-hand Iimit -oo 
at. the point a 

t.he fuuction f( :1:) has the Iimit C at the point +oo 
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Symbol or Notation 

I f' dy elf 
y' ' dx' dx 

(n) (n) X d(n)y ci(n) J 
y 'f ( ), dx(n)' dx(n) 

dy, df(x) 

ay, af(x) 

~~' J~, fx 

af af 
an' 8v 

fP J !" f 
n--2> XX> XX ux 

d,J 

df 

a(y1, Y2, ... , Yn) 
a(xl' x2, ... , x,.) 

Meaning 

the (first) derivative of the function y = f(x) 

t.he n-th derivative of the function y = f(x); we 
wri te y", y"', f", f"' ( x) instead of y( 2), y(3 ), f( 2) ( x), 
j(3)(x) 

t.he differential of the function y = f( x) 

the variaton of the function y = f( x) 

the partial derivatives of the function f (of several 
variables) with respect to x 

the derivative in the direction of the outward nor­
mal 

the second partial derivative of the function f with 
respect to x 

the second mixedderivative of the function J; 

the partial differential of the function f ( of several 
variables) 

the total differential of the function f 

the functional determinant (the Jacobian) of the 
system of functions Yl, Y2, ... , y" with respect to 
the variables x1, x2, ... , xn; cf. § 12.7 

the indefinite integral ( the primitive) 

the definite integral beetween the Iimits a, b 

the improper integral (§ 1:3.8) 
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Symbol or Notation Meaning 

1b feig the Stieltjes integral 

[/(x)]: f(b)- f(a) 

fln the double integral over (or in) a region n 

Jfl the triple integral over (or in) a rcgion n 

1 the line integral over ( or along) a curvc k 

!1 the surface integral over a surface S 

f E L2(a, b) a function f is square integrable in the interval [a, b] 

(f,g) the scalar (inner) product of functions (§ 16.1) 

II/II the norm of the fumtion (§ 16.1) 

a region of type A (see § 14.1) 

a solid of type A (see § 14.1) 

a function of type n (see § 14.1) 

7r the nmnber 1r; 1r :::0:3-141592654 

e the base of natural Iogarithmus; e "'= 2·718 281828 

c Euler constant; C :::0 0-557215655 

M the modulus of common Iogarithmus; 
M = log e "'= 0-4:34 294 48 

m the rnodulus of natural logaritluns; 
m = In e "'= 2-:302 585 09 

Sill X the sine 

cosx thc cosine 

tan x the tangent 

cot x the cotangent 
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Symbol or Notation Meaning 

sec x the secant 

cosec x the cosecant 

arcsm x the arc sine 

arccos x the arc cosine 

aretau x the arc tangent 

arccot x the arc cotangent. 

sinhx the hyperbolic sine 

cosh x the hyperbolic cosine 

tanh x the hyperbolic tangent 

cot.hx the hyperbolic cotangent 

arsinh x r.. 1 arcosh :r the inwrse of the hyperbolic 
cosme 

artanh x t.angent 
arcoth J: cotangent 

ax t.he exponential function with the ba.<>e a, or the general 
exponential funct.ion 

ex the exponential funct.ion (we often write exp x, parti-
culary when tlw argument is rather cumbersome; e.g. 
exp (:1:jal) = exfat) 

Joga x the logarithm of :1: to t.he base a 

In x the natural logarithm of x 

f(:z:) the Gamrna funct.ion 

B(x) the Beta function 

Jv(x) the Bessel function of the first kind of order v 

Yv(x) t.he Bessel function of t.he second kind of order v 

Y"(x) the Weber (Neumann) function 

nVl(x), H~2)(x) the Hanke! function 

lv(x), Kv(x) t.he rnodified Bessel functions 
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Symbol or Notation 

ber x, bei x 
ker x, kei :z: 

P~(x), Pn,m(:z:) 

Y;:'(c)(;z: ), Y;:(,/x) 

T,.(x) 

L,.(x) 

H,.(x) 

F(et, ß, /, x) 

Si (x) 

Ci (x) 

Ii (x) 

Ei ( :z:) 

erf ( x) 

erfc ( x) 

F(k, rp) 

E(k, rp) 

K 

E 

sn u, cn u, ein u 

Mcaning 

the Kelvin functions 

the Legendre polynomials of clegree n 

the acljoint. Legender function 

spherical functions 

the Chebyshev polynomials of clegree n 

the Laguerre polynomials of degree n 

the Hermite polynomials of degree n 

the hypergeometric series (function) 

the sine integral (§ 1:3.1) 

the cosine integral(§ 13.1) 

the logaritlunic integral(§ 13.1) 

2 r 2 

the crror function: erf(x) = ..j1r Jo e-t dt 

erfc(a:) = 1- erf(;~:) = - e-t c!t 2 100 
2 

..)7r X 

the legeneire elliptic integral of the first kincl in the 

normal form 

the Iegemire elliptic integral of the second kind in the 
normal form 

t.he complet.e ellipt.ic integral of the first kind; 

K = F(k, t1r) 

the cornpiete elliptic integral of the second kincl; 

E = E(k, t1r) 

jacobian functions; see § 13.12 
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PREFACE TO VOLUME 11 

This Preface has been written for those readers who do not possess the first 
volume of the second revised edition of our Survey and who - consequently -
have not read the preface to the whole revised work. 

In recent years, many fields of mathematics passed through considerable changes. 
In mathematics for applications, this fact concerned, first of all, numerical methods 
(namely in linear algebra and in ordinary and partial differential equations), ma­
thematical statistics and related fields, etc. Changes could be noticed also in many 
"classical" fields of mathematics. This all gave an impulse for a deep revision of 
our original work. 

Many modifications of the text have already been realized in the first volume, 
containing classical fields of algebra, geometry and analysis. However, the second 
volume has been revised in a much more considerable way. Most of the chapters of 
this volume are quite new now. This concerns, in particular, Chapters 30, 25, 24 
(numerical methods in linear algebra and in ordinary as weH as in partial differen­
tial equations), then 33, 34, 35, 36 (prob ability, statistics and related topics), 32 
(interpolation, splines), 22 (functional analysis) and 37 (the "economic" chapter 
on linear programming). The remaining chapters of Volume 11 went through es­
sential changes: In Chapter 18, sections concerning generalized and weak solutions 
of elliptic partial differential equations of "arbitrary order" were added, including 
nonlinear equations and a section on solution of evolution problems by the method 
of discretization in time (= by the Rothe method equipped with a new technics). 
Chapter 20 has been completed by sections on functions of more complex vari­
ables, Chapter 21 by a small dictionary of conformal mappings. Chapter 23 has 
been extended by further categories of calculus of variations, Chapter 27 by a sec­
tion concerning general questions on convergence of the finite-difference method, in 
Chapter 28 more attention has been paid to Laplace and Fourier transforms than 
before. Also the text of some individual sections of these or other chapters became 
different, although the titles of these sections remained the same. 

The whole work is divided into 37 chapters. Individual chapters are divided 
into sections (=paragraphs). If, for example, Theorem 2 from the same section 
that is being studied is to be quoted, we write "see Theorem 2" only. However, 
if Theorem 2 from an other section, say section 17.17, is in question, we write 
"see Theorem 17.17.2". So we list, in the running heads, number 17.17 of that 
section and there we find Theorem 2. Similarly, we write "see equation (1)" if the 

xvii 



xviii 

first equation of the just studied section is in question, but we write "see equation 
(17.17.1)" if we speak about the first equation from (another) seetion 17.17. For 
the reader's eonvenienee, the corresponding page is often quoted. 

Finishing the preface, I would like to thank onee more all who took part in the 
produetion of this work. 

Prague, November 27th, 1991 Karel Rektorys 



LIST OF SYMBOLS AND NOTATION 
USED IN VOLUME 11 

List of symbols and notation relating to algebra, geometry, vector calculus and 
analysis (including special functions) is to be found in the first volume of this work. 

Symbol or Notation Meaning 

Functions of a Complex Variable 

i, j the imaginary unit, i2 = -1, i3 = -i (in elec-
trical engineering j is used instead of i) 

Rea, R[a] the real part of the complex number a 

Ima,I[a] the imaginary part of the complex number a 

lai the absolute value (modulus) of the complex 
number a 

a the (complex) conjugate of the complex 
number a 

lnz the natural logarithm z 
(a multi-valued function) 

lno z the principal branch of the function In z 
(a single-valued function) 

res j(z), res[j(z)]Z=Zk 
Z=Zk 

the residue of a function j(z) at the point 
z = Zk 

a+ioo 

J j(z) dz the integral of the function j (z) along the 
a-ioo straight line x = a which is parallel to the 

imaginary axis 

lR2n , Cn see introduction to § 20.7 

Functional Analysis 

H the Hilbert space (§ 22.4) 
B the Banach space (§ 22.4) 

-
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Symbol or Notation Meaning 

L 2 (a, b), L 2(!1) the spaee of functions square integrable in the 
interval (a, b), or in the region !1, with the 
norm lIuIlL2(a,b), or lIuIlL2(n)' respeetively, Ilull 
in brief (§ 22.2) 

WJk)(!1), H k(!1), Hk(!1) the Sobolev spaee (§ 22.4) 

W~k)(!1), Ht(!1) the Sobolev spaee of functions with zero 
traees on the bounclary (§ 22.4) 

W~(!1) = HO(!1) = L 2 (!1) 

HA the energetie spaee (§ 22.6) 

d(u, v) the clistanee of two elements u, v in ametrie 
spaee (§ 22.2) 

(u, v), Ilull the sealar produet, the norm 
in partieular: 

lIuIlHk(n) the norm of the function u in the Sobolev 
spaee Hk(!1) 

suppu the support of the function u (§ 22.4) 
Diu the generalized derivative of the function u 

(§ 22.4) 
H = L + M, H = L fJJ M the direct sum of subspaees in the Hilbert 

spaee H (§ 22.4) 
U n --" u the weak eonvergenee of the sequenee {u n } 

(§ 22.5) 
X<::;Y the eontinuous imbedding of the space X into 

the space Y (§ 22.4) 

D(A), DA the domain of definition of the operator A 
(§ 22.5) 

A-l the inverse operator to the operator A (§ 22.5) 

II All the norm of the operator A (§ 22.5) 
A* the acljoint operator to the operator A (§ 22.5, 

§ 22.6) 

F'(uo, v), DF(uo, v), the Gateaux differential of the functional F 
dF(uo, v) (§ 22.8) 

F"(uo, vo, w) the second Gateaux differential (§ 22.8) 



xxi 

Symbol or Notation Meaning 

Probability Theory, Mathematical Statistics, Topics 
in Statistical Inference, Stochastic Processes 

il the space of elementary events (Chap. 33) or 
the parameter space (Chap. 34) 

P(A) the prob ability of an event A 

P(AIB) the conditional probability of an event A 
given an event B 

X,Y,Z, ... random variables 

P(a < X ~ b) the probability that a random variable X lies 
in the interval (a, b] 

F(x) = P(X ~ x) the distribution function of a random 
variable X 

Pi = P(X = xi) the probability of the value xi of a discrete 
random variable X 

f(x) the probability density of a random variable 

E(X) the mean of a random variable X 

J.L the mean of a random variable 

J.L~ the k-th moment 

J.Lk the k-th central moment 

var(X) the variance of a random variable X 
a2 the variance of a random variable 

a the standard deviation 

'/'1 the coefficient of skewness 

'/'2 the coefficient of kurtosis 
xp the P-quantile 

X the mode 

XO·5 the median 

cp(t) the characteristic function of a random 
variable 

"'k the k-th cumulant 

x = (Xb ... , Xn )' the n-component column vector 

x' = (Xl, ... , Xn ) the n-component row vector 

F(X1' ... , Xn ) the distribution function of a random vector 
(the joint distribution function) 



xxii 

Symbol or Notation 

Fi " ... , ik (Xi" ... , Xik) 

!i" ... ,ik(Xi" ... , XiJ 

!(XIIX2) 
E(XI IX2 = XZ) 

E(X) 
cov(X, Y) 

e(X, Y) 

Ex 
tp( t I, ... , tn ) 

N(j1, (J2) 

N(O, 1) 
tp(x) 
cp(x) 
Up 

x2 (n) 

x~(n) 
t(n) 

Fp(nl, n2) 

Nn(/L, E) 
Xl, ... , X n 

X or X 

S2 or 8 2 

S or 8 

Meaning 

the probability density of a random vector 
(the joint prob ability density) 

the marginal distribution function 

the marginal probability density 

the conditional probability density 

the conditional mean 

the mean of a random vector X 

the covariance of random variables X, Y 

the correlation coefficient of random variables 
X,Y 

the covariance matrix of a random vector X 

the characteristic function of a random vector 

the normal distribution 

the standard normal distribution 

the probability density of N(O, 1) 

the distribution function of N(O, 1) 
the P-quantile of N(O, 1) 

the X2 (chi-square) distribution with 
n degrees of freedom 

the P-quantile of X2 (n) 
the t (Student) distribution with n degrees of 
freedom 

the P-quantile of t( n) 

the F (Fisher-Snedecor) distribution with nl 
and nz degrees of freedom 

the P-quantile of F(nl, n2) 
the n-variate normal distribution 

the random sample of size n 

the observations of a random sample 
Xl, ... , X n 

the frequency of an observation Xi 

the empirical distribution function for 
a random sample of size n 

the sample mean 

the sample variance 

the sample standard deviation 



Symbol or Notation 

M~ or m~ 
M k or mk 

GI 
G2 

r 

X(1)' ... , X(n) 

X or x 
J 

b( TJ) 

L(iJ) 
Ho 
H I 

W 
ß(iJ) 

ß 

e 

X· X t.' .. 

X· X t., ,. 

Meaning 

the sampie k-th moment 

the sampie k-th central moment 

the sampie coefficient of skewness 

the sam pie coefficient of kurtosis 

the sampie correlation coefficient 

xxiii 

the sampie correlation coefficient of the i-th 
and j-th component of a multivariate random 
sampie 

the ordered random sampie 

the sampie median 

the (point) estimator of a parameter TJ 

the bias of an estimator of a parameter TJ 

the likelihood function 

the null hypothesis 

the alternative hypothesis 

the critical region of a statistical test 

the power function of a statistical test 

the significance level of a statistical test or the 
producer's risk in an acceptance sampling 

the consumer's risk in an acceptance sampling 

the frequencies in a contingency table 

the marginal frequencies in a contingency 
table 

the error variable of a regression model 

the residuals of a linear regression model 

the coefficient of determination 
ni I ni 

Xi. = 2: Xip, X .. = 2: 2: Xip in a one-way 
p=l i=lp=l 

classification with values Xip 

(i = 1, ... , I; p = 1, ... , ni) 

Xi. = Xi.!ni, X .. = x . .!(nl + ... + nI) 

the total sum of squares 

the A-factor sum of squares 

the residual sum of squares 

the reliability function 



xxiv 

Symbol or Notation Meaning 

r(x) the hazard rate (the failure rate) 

c the acceptance number in an acceptance 
sampling 

X(t) the stochastic process (the random function) 

X n the random sequence (the time series) 

pi(t) the prob ability distribution of a Markov 
process at time t 

Pij (t) the transition probability of a homogeneous 
Markov process 

'Tri the stationary distribution of a Markov 
process 

pi(n) the probability distribution of a Markov chain 
at time n 

pij(k) the transition prob ability of a homogeneous 
Markov chain (for k = 1 we write Pij, in brief) 

P(k) the transition matrix of a homogeneous Mar-
kov chain (for k = 1 we write P, in brief) 

Qij the transition intensity of a homogeneous 
Markov process 

A the intensity of the Poisson process 

p,(t) the mean of a stochastic process 

R(s, t) the autocovariance function of a stochastic 
process 

R(t) the autocovariance function of a stationary 
stochastic process 

1-'( t) the mean of a multivariate stochastic process 

R(s, t) the matrix autocovariance function 
of a multivariate stochastic process 

Rij(s, t) the cross-covariance function of the i-th and 
j-th component of a multivariate stochastic 
process 

F(A) the spectral distribution function 
of a stochastic process 

f(A) the spectral density of a stochastic process 

I(A) the periodogram of a stochastic process 

'lj;(A) the transfer function of a filter 



Symbol or Notation Meaning 

Numerical Methods of Linear Algebra 

uT = (Ul, U2, ... , un ) 

A = [an, a12, a13 ] 
a21, a22, a23 

A = (aij) 

A', AT 
A-1 

A+ 

I, E 
0, 0 

11011 
11 All 

D = I an, a121 
a21, a22 

detA 

diag(ai) 

e(A) 
K(A) 

the n-component vector (of order n) with 
components al, a2, ... , an 

the n-component column vector 
(a one-column matrix) 

the transpose of the vector u 

the 2 by 3 matrix (§ 1.16) 

the matrix with entries (elements) aij 

the transpose of a matrix A 
the inverse of a matrix A 

the pseudoinverse of a matrix A (§ 30.4) 

the identity matrix 

the zero matrix, the zero vector 

the norm of a vector 0 (§ 30.3) 

the norm of a matrix A (§ 30.3) 

the determinant of order 2 (of the second 
order) (§ 1.17) 

the determinant of a matrix A 
the diagonal matrix with diagonal entries ai 

the spectral radius of a matrix A (§ 30.3) 

the condition number of a matrix A (§ 30.3) 

Further Symbols and Notation 

M = {2, 7, 9} 
Rn, Rn 
En, En 

the set M consists of the numbers 2, 7, 9 

the set of ordered n-tuples of real numbers 

the n-dimensional Euclidean space (the set of 
points of the real n-dimensional space 
(identified usually with Rn), equipped with 
the usual Euclidean metric) (§ 22.1) 

xxv 



xxvi 

Symbol or Notation Meaning 

{(x, y) E E2 I xy = I)} the set of such points from E 2 for which the 
relation xy = 1 holds (i.e. which lie on the 
hyperbola xy = 1) 

il,G the region (§ 22.1) 

il=il+S=iluS the closed region 
( = the region il + its boundary S) 

eAx the exponential function of a matrix A 
(§ 17.18) 

«u, v)), a(v, u) the bilinear form corresponding to a differ-
ential operator A and to the given boundary 
conditions (§ 18.9, § 24.6) 

8y, 8f(x) the variation of a function y = f(x) (§ 23.3) 

8I the variation of the functional I (§ 23.3) 

F; or F;, the partial derivative of the function F with 
respect to y, or y' (Chap. 23) 

~(f(t)) the Laplace transform of the function f(t) 
(§ 28.1) 

f[xo, ... , XN] the n-th relative (divided) difference (§ 32.6) 
~n f(x) the n-th forward (ordinary) difference (§ 32.7) 
'\Jnf(x) the n-th backward difference (§ 32.7) 
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1. ARITHMETIC AND ALGEBRA 

By VA.CLAV VILHELM 

References: [2], [10], [11], [12], [13], [18], [20], [21], [24], [33], [36], [38], [46], [50], [51], 
[53], [58], [61], [63], [69], [70], [71], [73], [77], [79], [82], [83], [88], [92], [93], [97], [98], [100], 
[101], [102], [103], [105], [107], [113], [120], [129], [130], [140], [141], [151], [159], [170], [171], 
[172], [177], [178], [179]. 

1.1. Some Concepts of Logic 

By a sentence is to be understood any Statement concerning which it is meaningful 
to say that its content is true (it holds), or false (it does not hold). 

The opposite or contradictory of a sentence A (denoted by not-A or A') is a sen­
tence defined in the following way: The sentence not-A is true if the sentence A is 
false, and vice versa. 

Example 1. "All chairs in the room are occupied" is an example of a sentence. 
Its opposite is the sentence "Not all chairs in the room are occupied", i.e. "There 
is at least one unoccupied chair in the room". 

If A, B are two sentences, then one can construct from them new sentences in 
various ways. First, Iet us introduce the concept of implication. 

We say that "the sentence A implies the sentence B" or "B follows from A" or 
"if Ais true, then Bis true" or "Bis a necessary condition for A" or "Ais a sufficient 
condition for B" (in notation A => B), if the truth of the sentence B follows from the 
truth of the sentence A. {If the sentence A is false, then the sentence B can be either 
true or false.) In an implication A => B, A is called the premise (cause) and B the 
conclusion (effect) of the implication. 

Example 2. The implications "lf a is an integer divisible by four, then a is even" 
and "Ifthe sum ofthe angles of a triangle is 120°, then every triangle is a right-angled 
triangle" are true. (The premise of the second implication is false and thus the impli­
cation is true.) 

Another sentence combined from the sentences A, Bis equivalence: 
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We say, that "the sentence Ais equivalent to the sentence B" or "A is true if and 
only if B is true" or "A is a necessary and sufficient condition for B" (in notation 
A ~ B), if the sentences A and B are either both true or both false. 

Example 3. A typical example of an equivalence is the sentence "A triangle is 
equilateral if and only if all its angles are equal". 

REMARK I. The equivalence A ~ B is true if and only if both A => B and B => A 
are true. 

REMARK 2. The sentence A => Bis equivalent to the sentence not-B => not-A. 

REMARK 3. Mathematical theorems usually have the form of an implication or an 
equivalence; e.g. "If a function f(x) possesses a finite derivative at a point x0 , then it 
is continuous at x 0", "A quadratic equation with real coefficients has two distinct real 
roots if and only if its discriminant is positive." 

1.2. Natural, Integral and Rational Numbers 

Natural numbers are the numbers I, 2, 3, 4, 5, .... 

Natural numbers satisfy the principle of complete (or mathematical) induction 

or finite induction, namely: 

If M is any set of natural numbers which contains the number I and which has 
the further property that if it contains the number n it also contains the number 
n + I, then M contains alt natural numbers. 

REMARK I. This principie is "intuitively evident": If a set M has the properties 
assumed in the above principie, then it contains the number I. Hence, the property 
n E M => n + I E M implies that the set M contains the numbers I + I = 2, 2"'"+ I = 
= 3 etc. 

The principle of complete induction is the basis of "proofs by complete induction". 

To make the principle of such proofs clear, Jet us consider an example. 

Example 1. Let q i= 1. Then, for any natural number k, the formula 

k+ 1 I 
I + q + q2 + q3 + ... + qk = q -

q- I 

holds. 

We shall prove this statement by complete induction. Let M be the set of those 
natural numbers k, for which the statement is valid. Evidently, the statement is true 
for k = 1 and thus I E M. Let us assume that the statement is true for k = n, i.e. 
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-n E M. Then 

1 + q + .. . + qn + qn + 1 
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n+l J 
q - + qn+l 
q- I 

q - 1 

qn+! _ J + qn+2 _ qn+1 

q - 1 
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hence the statement is true also for n + I, i.e. n + 1 E M. Since the statement holds 

for k = 1, the set M contains, in accordance with the principle of complete induction, 

all natural numbers and therefore the Statement holds for any natural nurober k. 

Integers are obtained by extending the set of allnatural numbers by the numbers 0 

(zero) and -1, -2, -3, .. .. 

The numbers I, 2, 3, ... are called positive, the numbers -1, -2, -3, ... negative. 

Definition 1. The fact that an integer a is positive, or negative, is denoted by a > 0, 

or a < 0, respectively. 

We say that a number a is less than or greater than a number b if the difference 

b - a > 0, or b - a < 0, and in that case we write a < b, or a > b, respectively. 

REMARK 2. The notation a ~ b means that either a < b or a = b; similarly 

for a ;?; b. 

Theorem 1. By the relation < the integers are ordered. This ordering has the 

following properfies (a, b, c, d stand for integers): 

A. For any two integers a, b one and only one of the following relations holds: 

a < b, a > b, a = b. 

B. a < b, b<cq.a<c. 

c. a < b, c~dq.a+c<b+d. 

D. a < b, c > 0 q. ac < bc . 

E. a < b, c < 0 q. ac > bc . 

REMARK 3. The properties A-E express the basic rules of inequalities. D and E 

imply that bc > 0 ~ b > 0, c > 0 or b < 0, c < 0. 

Rational numbers are obtained by extending the set of all integers by fractions, 

i.e. numbers of the form pfq with integers p and q, q #- 0. The equality pfq = p'fq' 

holds if and only if pq' = p' q. 

Theorem 2. Any rational number can be written in the form afb, where a is an 

integer and b a natural number. 
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Theorem 3. Rational numbers can be added, subtracted, multiplied and divided; 
these operations satisfy the following rules (a, b, c stand for rational numbers): 

1. (a + b) + c = a + (b + c) ( associative law for addition ). 
(commutative law for addition). 2. a + b = b + a 

3. For every a, a + 0 = a . 
4. For every a, there exists a number -a suchthat a + ( -a) = 0. 
5. (ab)c = a(bc) (associativelawformultiplication). 
6. ab = ba (commutative law for multiplication ). 
7. For every a, a . 1 = a. 
8. For every a =1= 0, there exists a number a' such that aa' = 1. (We write a' = 

= a- 1 or a' = lfa.) 
9. (a + b) c = ac + bc (distributive law). 

REMARK 4. Addition, multiplication and division of fractions (rational numbers) 
are performed according to the following rules: 

al 

b1 a 1 b2 a 1b2 -=--=--

In the last rule we assume, of course, that a 2 /b2 i= 0, i.e. a 2 i= 0. 

Theorem 4. The rational numbers can be ordered in the following way: lf a = 
= pfq, b = p'fq', where p, p' are integers and q, q' natural numbers, then a ~ b 
according as pq' ~ p' q. This order agrees with that of the integers and satisfies 
the rules A-E of Theorem 1. 

1.3. Real Numbers 

The ordered set of the rational numbers is dense {i.e. between any two different 
rational numbers there is an infinity of rational numbers), but it has gaps; this means 
that there exist partitions of the set of the rational numbers into two non-empty clas­
ses A, B suchthat 

I 0 A u B (see Definition 1.23.2, p. 45) is the set of all rational numbers; 

2° for every number a E A and every number bEB, the relation a < b holds; 
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3° the set A has no greatest number and the set B has no least number. (One 
can get such a partition by defining e.g. the dass B to contain all positive rational 
numbers x satisfying x2 > 2 and the dass A all the other rational numbers.) 

Filling up these gaps by new, so-called irrational numbers, we extend the set of 
rational numbers and so get the real numbers (for the detailed theory see e.g. [4]). 

Theorem 1. The rules 1-9 of Theorem 1.2.3 also hold for addition and multi­
plication of real numbers. 

Theorem 2. The real numbers can be ordered in such a way that this order 
corresponds to that of the rational numbers and the rules A- E of Theorem 1.2.1 
hold. 

Theorem 3. Every irrational number can be expressed in the form of an in­
finite non-periodie decimal fraction. Rational numbers are expressed by finite or 
infinite periodic decimal fractions. 

Definition 1. Areal number cx is said tobe algebraic ifit is a root ofsoroe algebraic 
equation xn + a 1xn-l + ... + a" = 0 with rational coefficients a 1, a 2 , ••• , a". 
If rx is not algebraic, it is called transcendental. For exarople, the nurobers e, n are 
transeendentaL 

Definition 2. A set M of real numbers is said to be bounded above ( or bounded 
below), if there exists a real number a which is greater (or less) than any number 
betonging to M, respectively. The set M is said tobe bounded if it is bounded above 
as well as below. 

Definition 3. Let M be a set of real numbers. A real number ~ is called the least 
(exact) upper bound of M (l.u.b., briefty; we shall write ~ = sup M), if 1° a ~ ~ 
for every a E M, 2° ~ is the least nurober having the property 1°. 

Similarly: A number '7 is called the greatest (exact) lower bound of M (g.l.b.; 
'1 = inf M) if 1 o a ~ '7 for every a E M, 2° '1 is the greatest nurober having the 
property 1 °. 

Example 1. Let M be the set of all nurobers 0, !, j, t, ... [i.e. the numbers of the 
form (n - 1)fn, where n = 1, 2, 3, .. .]. The set M is bounded, since every number 
of M is greater than, say, -1 and less than, say, 5. The least upper bound of this set 
is the number 1, for every x E M satisfies x ~ 1 (in fact, x < 1) and for every (fixed) 
numbera < 1 thereexistsanumberoftheform(k- 1)/k(kbeinganaturalnumber), 
in the set M, suchthat (k- 1)/k > a. [The choice of k > 1/(1 - a) is sufficient]. 
The greatest lower bound of the set M is evidently 0. 

The following theorem states the fundamental property of the ordering of real 
numbers: 
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Theorem 4. Every non-empty set of real numbers bounded above or bounded 
below possesses a least upper bound or a greatest lower bound respectively. There­
fore, there are no gaps in the ordering of real numbers. 

Theorem 5. If a set M of real numbers possesses a greatest element (maximum, 
denoted by roax M), then sup M = roax M. Similarly if there exists a least element 
(minimum, denoted by roill M) in M, then inf M = roill M. 

Theorem 6. Between any two different real numbers there is an infinity ofrational 
as well as an infinity of irrational numbers. 

-2 

0 

-1- o·s o 1 

1 2 3 
2 34 

2 p Fig. l.la. 

§=1 Fig.l.lb. 

REMARK 1 (The numbered scale or continuum, or axis of real numbers). Real 
llurobers call be represellted by poillts Oll a straight lille. lf we choose, Oll the straight 
line p, the origin 0, a certain orientation of the straight line (Fig. l.la), alld a unit 
of length I, then, to every real nurober a, there corresponds one and only one point A 
on the line p, whose coordinate is a; conversely, every point on the line p has a certain 
coordinate. The straight line p is then called the numbered scale or continuum. 
The points of the nurobered scale are often identified with real nurobers. A nurober 
a is less than a number b if and only if the point representing a is to the left of the 
point representing b on the nurobered scale. Fig. 1.1 b illustrates several nurobers of 
the set M of Example 1 and the least upper bound e of this set. 

REMARK 2. On so-called rounded offnurobers and Operations on thero (abbreviated 
multiplication etc.), see Chap. 32. 

1.4. Inequalities between Real Numbers. Absolute Value 

Theorem 1. Inequalities between real numbers satisfy the rules A- E of Theorem 
1.2.1. 

Theorem 2. 

1 1 
O<a<b=O<-<-, 

b a 

1 1 
a<b<0=--<-<0. 

b a 
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Theorem 3. The inequality 
ax + b > 0 

with {: : ~ } holds if and only if{: : = ::: } . 
a = 0, b > 0 x is arbitrary 

Fora = 0, b ~ 0, there is no x satisfying (1). 

Theorem 4. The solution of the inequality 

ax 2 + bx + c > 0 , a i= 0 , 

is as follows: 
If the polynomial f(x) = ax 2 + bx + c has real zeros, then 

f(x) = a(x - ::x1)(x - ::Xz), ::X1 ~ ::Xz; 

so 
(a) if a > 0, then f(x) > 0 for all x < o: 1 and for all x > o: 2 ; 
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(1) 

(2) 

(b) if a < 0, then f(x) > 0 for all x satisfying o: 1 < x < o:2 .lf the polynomial 

f(x) has no real roots, then it can be expressed in the form 

f(x) = a[(x + c)Z + d] with d > 0, 
and thus, 

(a) if a > 0, then f(x) > 0 for every real number x; 
(b) if a < 0, then f(x) < 0 always and the inequality f(x) > 0 has no solution. 

REMARK 1. On inequalities between powers see Theorem 1.9.2, p. 14. 

REMARK 2. Simple inequalities which one meets in practice are frequently reducible 

to inequalities of the type (1) or (2). When solving an inequality of the form P(x)/ 
/Q(x) > 0, where P(x) and Q(x) i= 0 are polynomials, without common real zeros, 

.the following theorem is useful: The function P(x)/Q(x) changes its sign only in the 

neighbourhood of the zeros of odd multiplicity of the polynomials P(x) and Q(x). 
Thus, knowing the zeros of these polynomials and the sign of the function P / Q at one 

point where this function is non-zero, we can solve the given inequality quite easily. 

The procedure is illustrated in the following example. 

Example 1. Let us solve the inequality 

2x - 5 
-->3 
X- 1 

(i.e. find all real x for which this inequality holds ). First, we transform the ineq uality 

to the form 

2x - 5 - 3 > 0 , I.e. 
X- 1 

-X- 2 

X - 1 
> 0. 
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The polynomials P(x) = -x - 2 and Q(x) = x - 1 have the single zeros -2 and 1. 
Since P(O)/ Q(O) = 2 > 0, the function P/ Q is positive in the interval (- 2, 1) and 
negative in the intervals (- oo, -2 ), ( 1, + oo ). Hence the given inequality is satisfied 
for all x of the open interval ( -2, I) and only for them (Fig. 1.2); these values of x 
represent the solution of the given inequality. 

Fig. 1.2. -2 -1 0 1 X 

Definition 1. The absolute value of a real number a (denoted by Iai) is defined 
as follows: 

Iai = a for a ~ 0, Iai = -a for a < 0. 

Theorem 5. Iai > 0 for a :F 0; 101 = 0; Iai = -J(a2). 

Theorem 6. Ia + bl ~ Iai + lbl (triangle inequality). 

Theorem 7. I Iai - lbll ~ Ia + bl. 

Theorem 8. iabi = iaiibl; ~~~ = m for c :F 0. 

Theorem 9. Let k > 0. Then the inequality Ia - bl < k is equivalent to the inequa­
lities b - k < a < b + k. (The number ja - bl is equal to the distance between 
the points a and b on the numbered scale.) 

1.5. Further Inequalities. Means 

Theorem 1 (Hölder's Inequality). Let al> .. . , ano b1 , ... , bn be real or complex 
numbers; let q > 1, q' = qf(q - 1). Then 

Theorem 2 (Cauchy's Inequality). Let al> ... , ano b1 , ••• , bn be real or complex 
numbers. Tlzen 

(see Theorem 1 for q = 2). 
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Theorem 3 (Minkowski's Inequality). Let al> .. . , a"' b1 , •• • , b,. be real or com­
plex numbers, q ~ 1. Then 

Definition 1. The number .!_ (a 1 + ... + an) is called the arithmetic mean of the 
n 

numbers a1, •• • , a,.. Ifthese numbers are non-negative, then the number ::/(a1a2 ... a") 

is said tobe the geometric mean and the number J[; (a~ + ... + a;)}he quadratic 

mean or root-mean-square (r.m.s.) of the numbers a1, ••• , an. 

Theorem 4. If a1 ~ 0, ... , a" ~ 0, then 

11 I( ) < a 1 + ... + a,. ~- Jai + .n .. + a;. v ala2 ... a" = -=------"-
n 

1.6. Complex Numbers 

Complex numbers are numbers of the form a = a + ib, where a, b are real 
numbers and i is the so-called imaginary unit (in electrical engineering j is often 
used instead of i) which is such that 

i 2 = -1 ' j3 = -i' i4 = 1 . 

Definition 1. The equality of two complex numbers a1, a2 is defined as follows: 
The number a1 = a 1 + ib1 is equalto a2 = a2 + ib2 if and only if a1 = a2 , b1 = b2 • 

Definition 2. Addition and multiplication of complex numbers are defined in the 
following way: 

(a 1 + ib1) + (a 2 + ib2) = (a 1 + a2 ) + i(b1 + b2), 

(a1 + ib1) (a 2 + ib2 ) = (a 1a2 - b1b2) + i(a1b2 + a2b1), 

respectively. 

Theorem 1. Addition and multiplication of complex numbers satisfy the rules 
1-9 of Theorem 1.2.3 {p. 4). Complex numbers cannot be ordered in such a way 
that the rules A-E of Theorem 1.2.1 {p. 3) hold. 

Division of complex numbers is performed by application of the following 
theorem: 

Theorem 2. If 

a = a + ib =F 0 , 
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then 

1 _1 a - ib 
--a ----
a- - a2 + b2 • 

Definition 3. If a = a + ib, then the real number a is called the real part of the 

number a (denoted by Re a) and the real number b the imaginary part ofthe number 

ex (denoted by Im ex). A number a = a + ib is said to be pure imaginary if a = 
= Re a = 0 and Im a =!= 0. 

REMARK 1. Some authors use the symbols R[a] and I[a] or script letters ~(ex), 

J(a), instead of Re ex and Im ex, respectively. 

Definition 4. The number a - ib is called the complex conjugate of the number 

ex = a + ib and is denoted by iX. 

Theorem 3. For conjugates of complex numbers thefollowing relations hold: 

ex + ß = iX + ß , exß = iXß , (~) = ~ 

for y i= 0. Further, ex = iX ~ ex is a real number. 

Definition 5. The absolute value (modulus) of a complex number cc = a + ib is 

defined tobe the real nurober lexl = .J(a2 + b2 ) ~ 0. 

Theorem 4. The relations Iex + PI ~ Iai + lßl, laßl = lallßl, iexi = läl, iiexi - IPII ~ 
~ Iex - ßi ~ lexi + lßl hold. 

REMARK 2. The Geometrical Representation of Camplex Numbers (the Argand 
Diagram) is shown in Fig. 1.3a,b. Fig. 1.3b illustrates the first of the inequalities of 

Theorem 4 (the so-called triangle inequality). 

imaginary axis imagi"nary axis 

a+P 

Fig. 1.3a. real axis Fig. 1.3b. 
a 

Theorem 5 (Trigonometrie Form of Camplex Numbers). Every complex number 

ex = a + ib i= 0 can be written in the form 

a = a + ib = r( cos r:p + i sin r:p) = reiq> , 

where r = iexl and the angle r:p (in radian measure) is determined apart from an 



1.7 ARITHMETIC AND ALGEBRA II 

integral multiple of 2n by the relations 

this angle cp is called the argument (amplitude) of the complex number IX. 

The principal value of the argument of a complex number IX (denoted by arg IX) 

is the (uniquely determined) argument cp for which -n < cp ~ n (Fig. 1.4a). 

a1a2 !imaginary axis 

imaginary axis 

a 

real axis 

Theorem 6 (De Moivre's Formula). If IX= r(cos <p + i sin cp) "# 0 is a complex 

number, then 

IX"= [r(cos <p + i sin cp)]" = r"(cos n<p + i sin n<p) 

for every integer n; in particular, 

(cos cp + i sin cp)" = cos n<p + i sin n<p. 

Theorem 7. For IX1 = r 1(cos cp 1 + i sin <p 1) and IX2 = r2 (cos <p2 + i sin <p2 ), the 

following relation holds: 

IX 1 1X 2 = r 1 r2 [cos (<p 1 + <p 2 ) + i sin (cp 1 + <p 2)]. 

REMARK 3. Theorems 6 and 7 are used for multiplication, raising to powers and 

extracting roots of complex numbers. For example, [y'(3) + i] 3 = [2(cos 30° + 
+ i sin 30°)r = 23(cos 90° + i sin 90°) = 8i. On the use of Theorem 6 for finding 

roots, see § 1.21 (p. 42). Multiplication of complex numbers in the Argand diagram 

is performed according to Theorem 7; this can be seen in Fig. 1.4b; the number 

IIX1 1X2 1 = r1r2 is usually determined by calculation. 

1.7. Powers with Integral Exponents 

(a) Powers with a Positive Integral Exponent 

REMARK 1. In section (a) m, n derrote natural numbers, a, b real or complex 

numbers. 
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Definition 1. The n-th power of a number a is the number a" = aa ... a (n factors 
a ); a is called the base and n the exponent of the power. 

Theorem 2. 0" = 0, a" =1: 0 if a =1: 0. 

(b) Powers with any Integral Exponent 

REMARK 2. In section (b) m, n denote integers, a, b real or complex numbers. 

Definition 2. For a =1: 0, we define a0 = 1. 

If a =1: 0 and m isanegative integer, then we define am = 1/a-m. The symbol a" 
is thus (together with Definition 1) defined for every a =1: 0 and every integral 
value of n. 

Theorem 3. If a =1: 0, b =1: 0 and m, n are integers, then ama" = am+n, a"b" = 

=(ab)", (am)" = amn, and 

1.8. Roots of Real Numbers 

Definition 1. Let a > 0 be a real number, n a natural number. Then there exists 
exactly one positive real number x such that x" = a. The number x is called the 
n-th root of a ( denoted by ':ja). Instead of;} a we write ,Ja. 

Example 1. ,J4 = 2; the statements ,J4 = -2 or ,J4 = ±2 arenot correct. 

Definition 2. For a = 0, we define ':j 0 = 0. 

Definition 3. Fora < 0 and an odd n we define ':..) a = -z/( -a) (since, -':)( -a) 
is the only real number, whose n-th power is a ). Thus, e.g. V (-8) = - Z/8 = -2. 

Theorem 1. Let x, y be positive numbers, m, n be natural numbers. Then 

(k being an integer), 

~ (':j X) = m:J X , (':j X)" = X • 
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Theorem 2. For any real number x and any even number n, we have '!j xn = jxj. 
Thus, e.g . .Jx2 = jxj, but in general .Jx2 =1= x. 

REMARK 1. On roots of complex numbers see § 1.21, p. 42. 

1.9. General Powers of Real Numbers 

(a) Power with a Rational Exponent 

Definition 1. Let x > 0 be a real number, r a rational number. Then we define 
x' = '!jxP, where p and q are integers suchthat q > 0 and r = pfq. Thus, if n is 
a natural number, then 

xl/n = '!jx' x-1/n = ':./(1/x) = 1/'!Jx. 

REMARK 1. The rules for operations with powers with a rational exponent are the 
same as those in Theorem 1 in the next section (b ). 

(b) General Powers 

Definition 2. For a positive real nurober x and for an arbitrary real nurober a, 
the general power xa is defined as the Iimit of a sequence (see Definition 10.1.2, 
p. 336) {x""}, where {an} is an (arbitrary) sequence of rational numbers ansuchthat 
its Iimit is the nurober a. (If, in particular, a is rational, then this definition evidently 
coincides with that of Definition 1 and thus x" is the same real nurober according 
to both definitions.) 

Theorem 1 (Properties of General Powers). Let x, y be positive real numbers 
and a, b real numbers. Then the following rules hold: 

1. Ia = 1, 

2. xaya = (xy)a; ;: = (~)"; _!_ = CY; Xa X 

3. xaxb = xa+b; xa a-b -a 1 
-,;=X ; X = -; 
X xa 

4. (xa)b = xab. 
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Theorem 2(Inequalities). Let x, y be positive real numbers and a, b real numbers. 
Then 

1. x• > 0, x 0 = 1; 

2. X< y, a > 0 => x• < y•; 

3. X< y, a < 0 => x• > y•; 

4. X> 1, a < b => x• < xb; 

5. X< 1, a < b => x• > xb. 

Definition 3. Fora > 0, we define 0" = 0. 

1.10. Logarithms 

(a) The Concept and Properties of Logarithms 

Definition 1. Let x, a be positive numbers, a #- 1. Then there exists a unique 
real number y suchthat aY = x; the number y is called the logarithm of the number 
x to the base a (in symbo1s, log. x). Thus the logarithm of a number x > 0 to a base 
a is the number y = log. x for which a10g"x = x. 

Theorem 1 (Properties of Logarithms). Let a, b, c, x, y be real numbers, 0 < a #­
#- 1, 0 < b #- 1, x > 0, y > 0. Then 

2. log. a = 1 , log. 1 = 0 ; 

3. log. xy = log. X + log. y, loga (xj y) = log. X - log aY ; 

1 
log.-= -log. x; log. xc = c log. x; 

X 

4. 1ogb x = log. x in particular 
log. b 

log 10 X ~ 0·434 294ln X, 

In x ~ 2·302 585log10 x (cf. Definition 2). 

5. For a > 1 and x < y, log. x < log. y ; 

for a < 1 and x < y , log. x > log. y . 

6. For a > 1 and x > 1 , log. x > 0; 

for a > 1 and x < 1 , log. x < 0. 
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Definition 2. Logarithms to the base e = 2·718 28 ... [e = lim (1 + 1/n)", see 
n-+oo 

Theorem 10.1.11] are called natural or Napierian logarithms. Instead of Ioge x we 
usually write In x. Then Ioge 10 = In 10 = 2·302 585. Logarithms to the base 10 
are called common or Briggs logarithms. The value of log10 e is approximately 
0·434 294. 

REMARK 1. The use of logarithms for calculating the product and the quotient 
of two positive numbers, or for calculating the powers of a positive number, is 
apparent from the property 3. The practical procedure is desc,ribed in every table of 
logarithms. 

REMARK 2. In the following simple examples, methods of solutions of some expo­
nential and logarithmic equations will be shown. 

(b) Exponential Equations 

Example 1. Solve the equation 24 " • 2"2 = 1
1
6 • 

We arrange the equation in the form 24"+x2 = 2- 4 and deduce (comparing the 
exponents) that 4x + x 2 = -4; the problern is thus reduced to the solution of 
a quadratic equation (the solution is x = -2). 

Example 2. Solve the equation 2" = 3"- 2 • 5". Taking the logarithm of each term 
we get x log10 2 = (x - 2) log10 3 + x log 105. Hence 

-2log10 3 
X = ----------~~-------

}oglO 2 - log10 3 - log10 5 

(c) Logarithmic Equations 

Example 3. Solve the equation 

We put y = log10 (x2 + 2) and solve the equation y2 - 5y + 6 = 0; this equa­
tion has two roots y 1 = 2, y2 = 3. Thus the solution consists of those x for which 
either log10 (x2 + 2) = 2, i.e. x2 + 2 = 102 , or log10 (x2 + 2) = 3, i.e. x2 + 2 = 
= 103 , that is x = ± -./98 or x = ± -./998. 

Example 4. Solve the equation 

2log10 (2x + 3) - log10 (x - 2) - 1 = 0. 
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We arrange the equation in the form 

(2x + 3)2 
log10 (2x + 3}2 - log10 (x - 2} = 1 , log10 = 1 = log1o lO . 

x-2 

Hence (2x + 3)2/(x - 2} = lO; the problern has thus been reduced to the solution 
of a quadratic equation. 

In more complicated cases, numerical methods are employed (see Chap. 31). 

1.11. Arithmetic and Geometrie Sequences. Sums of Powers 
of Natural Numbers; Formulae for a" ± b" 

Definition 1. An arithmetic sequence is a sequence (see Definition lO.l.l, p. 336) 
of real or complex numbers al> a2 , a3 , ... , a,., ... , suchthat a 2 - a 1 = a 3 - a 2 = 

= ... = a,.+ 1 - a,. = d (n = 1, 2, ... ). 

Theorem 1. The relations 

an= a1 + (n - 1} d; s,. = tn(a 1 + a,.) 

" hold, where s,. = La; is the sum of the first n terms. 
i=l 

Definition 2. A geometric sequence is a sequence of real or complex numbers 
b1, b2 , ••• , b,., ... , suchthat there exists a number q with the property that the rela­
tions b2 = b1q, b3 = b2q, ... , b,.+ 1 = b,.q (n = 1, 2, ... ) hold. 

Theorem 2. For q =F l, the relations 

n 

hold, where S,. = I b;. 
i=l 

Theorem 3. Sums of powers of natural numbers. 

n(n + l) 
1. 1+2+ ... +n= ; 

2 

12 22 2 _ n(n + 1) (2n + 1) . 
2. + + ... + n - , 

6 

n2(n + 1)2 
3. 13 + 23 + ... + n3 = ; 

4 

14 24 4 _ n(n + 1)(2n + 1)(3n2 + 3n- 1). 
4. + + ... + n - , 

30 
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5. 
n(4n 2 - I) 

12 + 32 + 52 + ... + (2n - 1)2 = ; 
3 

6. 13 + 33 + 53 + ... + (2n - 1)3 = n2(2n 2 - 1). 

Theorem 4. Formulae for a" ± b" (n, k being natural numbers): 

1. a2 - b2 = (a + b) (a - b), a2 + b2 = (a + ib) (a - ib); 

2. a 3 ± b3 = (a ± b) (a 2 + ab + b2); 
3. a" - b" = (a - b) (a"- 1 + a"- 2b + a"- 3 b2 + ... + ab"- 2 + b"- 1); 

4. a2k _ b2k = (a + b)(a2k-1 _ a2k-2b + a2k-3b2 _ ... _ b2k-1); 

5. a2k+1 + b2k+1 = (a + b)(a2k _ azk-1b + azk-zbz _ ... + bzk). 

1.12. Permutations and Combinations 

17 

Definition 1. Every ordered n-tuple formed from n given mutually different 
elements is called a permutation of these elements. 

Example 1. The permutations of three elements a, b, c are the ordered arrange­
ments (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a). 

Theorem 1. The number of all (different) permutations of a collection of n ele-
ments is 

Pn = 1 . 2. 3 ..... (n - 1) n = n! 

REMARK 1. The symbol n! is read factorial n. For n = 0, 0! is defined as having 
the value 1. 

Definition2. Let (i 1, i 2 , ... , in) be a permutation of the numbers 1, 2, 3, ... , n. 
We say that the numbers ii, ik, when j < k (1 ~ j ~ n, 1 ~ k ~ n) form an inver­
sion in this permutation if i i > ik. Apermutation possessing an odd, or even nurober 
of inversions is called odd, or even, respectively. 

Example 2. 

(a) In the permutation (2, 4, 1, 3) of the numbers 1, 2, 3, 4 each of the pairs (2, 1), 
(4, 1), (4, 3) is an inversion. The permutation possesses 3 inversions; therefore it is 
odd. 

(b) The permutation (4, 2, 1, 3) possesses 4 inversions and is thus even; the per­
mutation (1, 2, 3, 4) possesses no inversion and is thus even. 

Theorem 2. If, among n elements a, b, c, ... , a occurs ct times, b ß times, c y times, 
... , then the number of all different ordered n-tuples is 

n! 

IX! ß! y! ... 
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Definition 3. By combinations of n different elements taken k at a time we mean 
all possible selections consisting of k different elements chosen from the n given 
elements, without regard to the order of selection. 

Theorem 3. The number of all combinations of n different elements taken k at 
a time is 

(n) = n(n - 1) ... (n - k + 1) = n! . 
k 1. 2 ..... k k! (n - k)! 

REMARK 2. Besides (:), the symbo1s C(n, k), C!, nCk, nclc and q arealso employed. 

For k = 0, (~) is defined as having the value 1. 

Example 3. Find the number of chess matches required if there are 10 players 
and every player is to play once with each other. 

The number of matches P is equal to the number of pairs formed out of 10 ele­
ments, i.e. it is equal to the number of combinations of 10 elementstaken 2 at a time. 

( 10) 10.9 Hence P = = -- = 45. 
2 2. 1 

Theorem4. The symbol (~) satisfies the relations 

1. (:) = (n : k) ; 

2' G) = (n: 1) = 11 ' (:) = G) = 1; 

3' e : 1) = (~) + (k ~ 1); 
4. (~: ~) = (~) + (n ~ 1) + ... + (:)-

REMARK 3. By combinations with repetitions of n different elements taken k at 
a time we understand all possible selections consisting of k elements chosen from n 
given elements (without regard to the order of selection) such that each element 
can be repeated any number of times. The nurober of these combinations with repeti-

. · (n + k - 1) F I 11 b' . . h . . f h 1 tlons 1s k . or examp e, a com mations Wit repetltlons o t e e ements 

1, 2, 3 taken 2 at a time are (1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3). 



1.13 ARITHMETIC AND ALGEBRA 19 

Definition 4. By permutations of n different elements taken k at a time is meant 
all possible ordered arrangements consisting of k different elements chosen from the n 
given elements. 

Theorem 5. The number of all permutations of n different elements taken k 
at a time is 

n! 
Pnfk = n(n - I) ... (n - k + 1) = --­

(n - k)! 

Example 4. All permutations of the three elements 1, 2, 3 taken 2 at a time are 
(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2). Their number is 6 = 3!/(3 - 2)!. 

REMARK 4. The permutations with repetitions of n different elements taken k 
at a time are all possible ordered arrangements consisting of k elements chosen from 
the n given elements such that each element can be repeated any number of times. 
The number of these permutations with repetitions is nk. 

For example, all permutations with repetition of the elements 1, 2 taken 2 at a time 
are (1, 1), (2, 2), (I, 2), (2, I). 

1.13. Binomial Theorem 

Theorem 1. Let n be a natural number and Iet a, b be real or complex numbers. 
Then thefollowing (Newton's)formula holds: 

(a ± bt = f (± 1)k (n) a"-kbk = a" ± (n) a"- 1b + (n) a"- 2 b2 + ... +(±I)" b". 
k=O k 1 2 

In particular 

1. (a ± b)2 = a2 ± 2ab + b2 ; 

2. (a ± b)3 = a 3 ± 3a2 b + 3ab2 ± b3 • 

REMARK 1. The binomial coefficients (:) can be readily determined by means 

of Pascal's triangle: 

n I 
0 

2 
3 
4 
5 

Binomial coefficients 

2 
3 3 

4 6 4 
5 IO 10 

1 
5 1 
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REMARK 2. The case where n is not a natural nurober is treated in Theorem 
15.5.3. 

1.14. Polynomials 

Definition 1. Let n be a natural nurober and Iet a0 , a 1, •.• , an be real or coroplex 
numbers. The function P(x) which may be defined for all (real or coroplex) numbers 
x by the formula 

(1) 

is called a polynomial (in one variable x with real, or complex, coefficients). Besides 
the terro polynomial the expression rational integral function is also used. The 
numbers a0 , a 1, ••• , an are called the coefficients of the polynomial P(x). 

Definition 2. Two polynomials P(x) and Q(x) are equal [in syrobols, P(x) = Q(x) 
or, more precisely, P(x) = Q(x)] if, for every nurober a, the equality P(a) = Q(a) 
holds. 

Definition 3. The highest power of the variable x with a non-zero coefficient in 
the expression (1) is called the degree of the polynomial P(x). If a0 =I= 0 in (1), then 
P(x) has degree n. (See also Theorem 1.) 

Definition 4. The polynomial, all the coefficients of which are equal to zero, is 
called a zero polynomial. A zero polynomial has no degree. If P(x) is a zero poly­
nomial, we write P(x) = 0 or, roore precisely, P(x) = 0. Otherwise, we write P(x) =I= 0 
or P(x) $ 0. 

Theorem 1. Two polynomials are equal if and only if their difference is a zero 

polynomial, i.e. if the coefficients of the corresponding powers of the variable x 

are identical. 

Theorem 2. The sum and the difference of two polynomials of degrees m and n 

are polynomials of degree less than or equal to the number roax (m, n) (or zero 
polynomials). 

Theorem 3. The product of two polynomials of degrees m and n is a polynomial 

of degree m + n. 

Theorem 4. The product of non-zero polynomials is a non-zero polynomial. 

Theorem 5. The quotient of two polynomials need not always be a polynomial. 

How to procced in dividing a polynoroial by another polynomial is shown in 
Example 1. 
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Example 1. 

(x 3 - 2x2 + x - 1): (x 2 - 3x + 2) = x + 1 (partial quotient) 
x 3 - 3x2 + 2x 

x2 - x- 1 
x 2 - 3x + 2 

2x - 3 (remainder). 

Hence, x 3 - 2x2 + x - 1 = (x 2 - 3x + 2)(x + 1) + 2x - 3. 

21 

DefinitionS. lf the remainder on dividing a polynomial P(x) by a polynomial Q(x) 
(Q(x) $ 0) equals zero, then the polynomial P(x) is said tobe divisible by the poly­
nomial Q(x); Q(x) is called a divisor of the polynomial P(x). 

An important result concerning the process of dividing is contained in 

Theorem 6. For every two polynomials P(x) and Q(x) $ 0, there exist uniquely 
determined polynomials S(x) and R(x), such that 

1. P(x) = Q(x) S(x) + R(x); 

2. R(x) is either a zero polynomial or a polynomial of lower degree than the 
polynomial Q(x). 

Definition 6. A common divisor, with highest possible degree, of the polynomials 
P(x) and Q(x) is called the greatest common divisor of the polynomials P(x) and 
Q(x); the polynomials P(x) and Q(x) are said tobe relatively prime if their greatest 
common divisor has degree zero. 

Theorem 7 (Euclidean Algorithm). The greatest common divisor of two (non­
zero) polynomials P(x) and Q(x) can be found in the following way: 

(i) in accordance with Theorem 6, divide P(x) by the polynomial Q(x), i.e. P(x) = 
= Q(x) S1(x) + R 1(x) (where R 1(x) is the remainder); 

(ii) divide Q(x) by the polynomial R 1(x), i.e. Q(x) = R1(x) Sz{x) + Rix), then 
R 1(x) by the polynomial R 2(x), i.e. R 1(x) = Rz(x) S3(x) + R3(x) etc., the last 
remainder Rk(x) =F 0 is the required greatest common divisor. 

Definition 7. The number IX (in general complex) is called a zero of the polynomial 
n n 

P(x) = L aixn-l (or a root of this polynomial) if P(a) = L aian-i = 0. 
i=O i=O 

Theorem 8 (The Fundamental Theorem of Algebra). Every polynomial of 
degree n ~ 1 has at least one zero. 

Theorem 9. lf a polynomial P(x) has a zero IX, then P(x) is divisible by the linear 
polynomial x - IX and vice versa. [ x - IX is a so-called linear factor of the polyno­
mial P(x).] 
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Theorem 10 (TheFactorisation of a Polynomial into Linear Factors). Every poly-

" nomial P(x) = L a 1x"- 1, n ~ 1, can be uniquely written as a product of linear 
i=O 

factors: 

P(x) = a0(x- cx 1)k• (x- cx2Y2 ••• (x - cx,)k', k 1 + k 2 + ... + k, = n. 

The numbers cx1 , ••• , cx, are a ll distinct zeros of the polynomial P(x ). [ cx 1 is called 
a k 1-fold zero, ... , cx, a k,-fold zero of the polynomial P(x). If ki = 1, cx1 is called 
a simple zero of P(x).J 

Theorem 11. cx is a k-fold zero of a polynomial P(x) if and only if it is also a 
zero of the first, the second, ... , the (k - 1)-th derivatives of the polynomial P(x), 
but is not a zero of its k-th derivative: 

P(cx) = P'(cx) = ... = p<k-ll(cx) = 0, p<k>(cx) =ft 0. 

(For the derivative, see § 11.5.) 

Example 2. Let us consider the polynomial P(x) = x3 - 3x2 + 4. We get P'(x) = 

= 3x2 - 6x, P"(x) = 6x - 6, P"'(x) = 6. lt is easy to check that P(2) = 0, 
P'(2) = 0, P"(2) =ft 0. Thus IX = 2 is a double zero of the polynomial P(x). Indeed, 
P(x) = (x - 2)2 (x + 1). 

Theorem 12 (Polynomials with Real Coefficients). 
n 

(i) If the polynomial P(x) = 2: a 1x"- 1 with real coefficients a 1 has a k-fold zero 
i=O 

IX = a + ib, it has also the k-fold zero iX = a - ib. 

(ii) A polynomial P(x) can be uniqu"ely factorised into linear and quadratic 
polynomials with real coefficients: 

P(x) = a0(x - IXS1 ••• (x - IX1)' 1 (x2 + p 1x + qd• ... (x 2 + p1x + qi)"1 , 

where r1 + ... + r 1 + 2s1 + ... + 2si = n and p~ - 4qk < 0 (k = 1, 2, ... ,j), 
so that x 2 + pkx + qk has no real zeros (cf. §13.3, p. 457.) 

REMARK 1 (Ilorner's Method). Horner's method is used: 

(i) to find the value P(a) ofa polynomial P(x) and its derivatives at a given point a; 
(ii) to divide a polynomial P(x) by a linear polynomial x - a; 
(iii) to transform a polynomial P(x) by a substitution y = x - a. 

Let P(x) = a0x" + ... + a,.; Iet a be a real or complex number. We then construct 
the following (Horner's) scheme: 

a" 
abn-1 

jb,. = P(a) 
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Write all coefficients (zero coefiicients included) in the first row, leaving for a mo­
ment the second row open; in the third row under the number a 0 write a 0 again, 
then, under a 1 , write aa 0 in the second row and b1 = a 1 + aa 0 in the third row. 
Similarly, under a2 , write ab 1 and b2 = a2 + ab 1 in the second and third rows 
respectively, etc. The last number bn is then the value P(a). Moreover P(x) = (x - a) . 
. (a 0 x"- 1 + b1x"- 2 + ... + bn_ 1) + bn so that the third row determines the quo­
tient and the remainder on dividing the polynomial P(x) by the linear polynomial 
x- a. 

Applying Horner's scheme for a number a to the polynomial a0x"- 1 + b1xn- 2 + 
+ ... + bn_ 1 , we get, as the last number in the scheme, cn_ 1 = P'(a)/1! Continuing 
in this way, we get P"(a)/2! ... , p<nl(a)fn!, successively. The following Example 3 
illustrates the procedure. 

Example 3. P(x) = 5x4 + 10x3 + x- 1; a = -2. 

1 5 10 o -1 
~-~-----~~~io--=- o -o---2-------

_ 2 II 5 0 0 1 -[~-P( -=--2) 
-10 20 -40 

---=2
1
-----5 --=-~-~-- ---~r- -c-~---39-=-~-;-~ -P,-( -----c2)--

2 I 5 20 [60 = -h P" ( - 2) 
- =10 

---2 -~---5- r-_::jo -~p~-- -------· 
--=-21 [5 = :h p<4 l( -2) ____ ---- ---------

Further, by Taylor's formula for a polynomial of degree n (see § 11.10, p. 396), 

P(x) = P(a) + _!_ P'(a) (x - a) + ... + _!_ p<nl(a) (x - at 
1! n! 

so that we have in our example 

P(x) = -3- 39(x + 2) + 60(x + 2)2 - 30(x + 2)3 + 5(x + 2)4 . 

By the substitution y = x + 2, P(x) is transformed into the polynomial 

5y4 - 30y3 + 60y2 - 39y - 3. 

From the third row of Horner's scheme we get 

P(x) = (x + 2)(5x3 + 1) - 3 . 
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1.15. Vectors in Algebra 

Definition 1. Let n be a fixed natural number. Then, by an n-component (n-coordi­
nate) complex vector (n-vector for short) a = (a 1 , a2 , ••• , an) we understand in 
algebra an ordered n-tuple of complex numbers a 1, a2 , •• • , an. [Besides a = (a 1, a2 , ••• 

. . . , an) also the notation a(ah a2 , •• • , an) is used.J All these n-component vectors 
(i.e. the set of all ordered n-tuples of complex numbers) form a so-called n-dimen­
sional vector space V" (over the complex numbers). 

The vectors a = (a 1, •. • , an), b = (b 1 , •. • , bn) are said to be equal if and only if 
a 1 = b1o a2 = b2 , •. • , an = bn. 

REMARK I. In the same way as for complex vectors one can define n-component 
real vectors (real n-vectors); their components, i.e. the numbers a 1, • •• , an being real 
numbers. In the following text all concepts and theorems formulated for complex 
vectors are valid also for real vectors. 

Addition and multiplication by a (scalar) number of n-component vectors of V" is 
performed in accordance with the following definition: 

Definition 2. I. The sum of the vectors a = (a 1, ••• ,an) and b = (b 1 , ••• , bn) is 
the vector a + b = (a 1 + b1, ••• , an + bn). 

2. The product of the vector a = (a 1, • •• , an) and the number c is the vector ca = 
= ( ca 10 ••• , can)· 

REMARK 2. We write - a instead of ( -1) a; thus -a = ( -a 1, •• • , -an)· 

Example 1. The sum of the vectors a = (1, 0, -2) and b = (3, 2, 0) is a + b = 
= (4, 2, -2); also 3a = (3, 0, -6). 

Theorem 1. For the Operations on vectors introduced in Definition 2, the fol­
lowing rules hold: 

I. a+b=b+a, a+(b+c)=(a+b)+c; 
2. there exists a vector [the so-called zero vector 0 = (0, ... , 0)] suchthat a + 0 = 

= a; 
3. for every a = (a 1, ••• , an) and b = (b 1, ••• , bn) there exists a vector x such 

that a + X = b; X = b - a = (b 1 - a 1 , ••• , bn - an) ; 
4. c(a+b) =ca+cb; 
5. (c + d) a = ca + da; 
6. c(da) = (cd) a; Oa = 0, cO = 0; 
7. the equality ca = 0 holds if and only if c = 0 or a = 0; 
8. -(ca)=(-c)a=c(-a). 

Definition 3. We say that the vectors a!o ... , ak of Vn are linearly dependent if 
there exist complex numbers c~o ... , ck, which are not all zero, such that c1 a1 + 
+ c2 a2 + ... + ckak = 0. 
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If the vectors at> 0 0 0' ak are not linearly dependent, we say that they are linearly 

independento 

Example2. Thevectorsa = (1, -1,0),b = (0,-2,1), c = (2,4, -3)are1inearly 
dependent, for 2a + (- 3) b + ( -1) c = 00 The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), 
e 3 = (0, 0, 1) are linearly independento 

Definition 4. A vector a E V,. is said to be a linear combination of the vectors 

a1, 0 00, ak of Vn if complex numbers d 1 , 0 00, dk exist suchthat 

Theorem 2. Vectors a1 , o 0 0' aP of Vn are linearly dependent if and only if at least 

one of them can be expressed as a linear combination of the otherso 

Example 3. The vectors a 1 = (3, 1, 2), a2 = (-1, 0, 2), a 3 = (7, 2, 2) are linearly 
dependent, for 2a1 - a2 - a3 = Oo From this equation it follows that 

so that each of them is a linear combination of the other twoo 

Definition 5. We say that a system { a1 , 0 0 0' ak} of vectors of Vn has the rank h 

if there are h linearly independent vectors among the vectors o1 , 0 0 0' ak but any h + 1 
vectors of a 1 , o 0 0, ak are always linearly dependento (Then h is the maximal number 
of linearly independent vectors of the given systemo) 

Example 4. The rank of the system { a, b, c} of the vectors of Example 2 is equal 
to two, for a, b are linearly independent while a, b, c are linearly dependent. 

Theorem 3. Every system of n-component vectors is of rank h ~ n. 

Theorem 4. The rank of a system of n-component vectors does not change if 

1. we change the order of the vectors in the system; 

2. we multiply one of the vectors of the system by a non-zero number; 

3. we add to one of the vectors a linear combination of the remaining vectors; 

4. we drop a vector which is a linear combination of the remaining vectors of the 

system. 

REMARK 3. Theorem 4 is useful in determining the rank of a given system of vec­
torso In practice, we can find the rank also by determining the rank of the matrix 
whose rows are the vectors of the given system (see Remark 1.16.2 and Example 
1.16.2 Oll p. 27)0 

REMARK 4. On vectors in three-dimensional space (scalar product, vector product, 
etc.) see also Chap. 7. 
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1.16. Matrices 

Definition 1. A reetangular array A of mn real or complex numbers a 11 , a 12 , ... , amn 

arranged in m rows and n columns is called an m by n matrix: 

If m = n, we call A a square matrix of order n, or an n-rowed square matrix. The 
elements a 11 , a22 , a33 , • •• of the matrix A form its principal diagonal, the elements 
a 1m a2 ,n-l• a3 ,n_ 2 , ... of A form its secondary diagonal. The matrix, all the elements 
of which are equal to zero, is called a zero matrix. 

Definition 2. The rank of a matrix is the rank of the system of all vectors formed 
by the rows of the matrix (see Definition 1.15.5, p. 25). _(Cf. Theorem 2.) 

Thus, a matrix A is of rank h if there are h linearly independent rows among its 
rows, every futher row of the matrix being a linear combination of these h rows. 

Example 1. The matrix 

[~: =t _!] 
is of rank 2, for the system of the vectors a = (1, -1, 0), b = (0, -2, 1), c = 

= (2, 4, -3) isofrank 2 (Example 1.15.4, p. 25). 

Theorem 1. For the rank h of an m by n matrix A, the inequality 

h ~ min (m, n) 
holds. 

Definition 3. The matrix 

formed from the matrix A by a transposition of its elements with respect to the 
principal diagonal (i.e. by an interchange of its rows and columns) is called the trans­

pose of the matrix A and is an n by m matrix. The notation AT is also used. 

Theorem 2. The rank of a matrix A and that of its Iranspose A' are equal. 
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Theorem 3. The rank of a matrix does not change if 

1. we change the order of the rows of the matrix; 

2. we multiply one of the rows by a non-zero number; 

3. we add to one of the rows a linear combination of the remaining rows; 

4. we drop a row of the matrix which is a linear combination of the remaining 
rows of the matrix. 

Thus, if we apply one of these operations, to a matrix, then the resulting matrix has 
the same rank as the original matrix. 

REMARK 1. According to Theorem 2 we can apply the operations of Theorem 3 
also to the columns without affecting the rank of the given matrix. 

Theorem 4. The matrix 

(1) 

where b11 b22 •.• bkk # 0 and where all elements below the principal diagonal are 
equal to zero, is of rank k. 

REMARK 2. Theorems 3 and 4 can be used in practice to determine the rank of 
a given matrix: By means of the operations 1-4 of Theorem 3 and by permutation 
of the columns we transform the given matrix to a matrix of the same rank and of the 
form (1) and then apply Theorem 4. 

Example 2. 

[ 
I, 0, 2, 3] 

A = - 2, I, 0, - I . 
-1, I, 2, 2 
-I,2,6, 7 

The third row is the sum of the first and second rows; if we drop it, we get the matrix 

[ 
1, 0, 2, 3] 

A1 = .,.2, 1, 0, -1 . 
-1, 2, 6, 7 

Applying operations 2 and 3 we can get a matrix in which all elements of the first 
column of the matrix except the first are zero: First, we add twice the first row to 
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the second row and then we add the first to the third row. We thus obtain the matrix 

[ 
1, 0, 2, 3] 

A2 == 0, 1, 4, 5 . 
0, 2, 8, 10 

Now we adjust the second column so as to get zero below the second element: We 
subtract twice the second row from the third row and thus obtain 

[ 
1, 0, 2, 3] 

A3 = 0, 1, 4, 5 . 
0, 0, 0, 0 

In accordance with Theorem 3 we can drop the last row ofthis matrix. Wegetamatrix 
the rank of which is 2, according to Theorem 4. Hence the rank of A is also 2. 

Definition 4. The determinant of order k (see Definition 1.17.1, p. 29) formed 
by the elements in the intersections of arbitrary k rows and k columns of a matrix 

is called a minor of order k of the matrix A [I ~ k ~ min (m, n)]. 

Theorem 5. A matrix A is of rank h if and only if there exists a minor of A of 
order h different from zero, any minor of A of order higher than h being equal 
to zero. 

Example 3. Consider the matrix 

[ 
1, 0, 2, 

A = -2, 1, 0, 
-1, 2, 6, 

All its minors of order 3, namely 
-n-

1, 0, 2 
-2, 1, 0 ' 
-1, 2, 6 

1, 0, 3 
-2, 1, -1 
-1, 2, 7 

1, 2, 3 
-2, 0, -1 

I -1, 6, 7 

are equal to zero, while the minor of order 2, 

Hence the rank of A is 2, in accordance with Example 2. 

0, 2, 
1, 0, 
2, 6, 

REMARK 3. For further results on matrices see § 1.25, p. 49. 
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1.17. Determinants 

Definition 1. The determinant of order n of a square matrix 

is defined as the number 

where the symbol I indicates the sum of aii terms for aii possible permutations 
(k 1, k2 , • •• , kn) of the numbers 1, 2, ... , n, the integer r being the nurober of inver­
sions (Definition 1.12.2, p. 17) in the permutation (kl> k2 , ••• , kn); we write 

A= (1) 

Example 1. 

since the permutations (1, 2), and (2, 1) of the numbers 1, 2 have no inversions and 
1 inversion, respectively. 

Theorem 1. The value of a determinant remains unaltered if its columns and rows 
are interchanged: 

au, a12' ... , aln au, a21• ... , anl 
a21• a22• a2n a 12• azz, ... , an2 

0 ••• 0 •••••• 0 ••• 0 0. 0 ••• 0 ••••••• 

anl• an2• ... , ann alm azm ... , ann 

Hence, all properties of determinants expressed in the following text for rows hold 
also for columns and vice versa. 

Theorem 2. The value of a determinant is unaltered if, to one of its rows, a linear 
combination of the remaining rows is added. 

Theorem 3. lf one of the rows is a linear combination of the remaining rows, 
then the value of the determinant is zero. 
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Theorem 4. The value of the determinant changes its sign if we interchange two 
of its rows. 

Definition 2. The determinant 

... , al,J-1• al,J+1• •·•• a1n 
· .. , al,J-1• a2,J+l> ... , a2n 

Aii = a1-1,1> ai-1,2• •··• ai-1,J-1• ai-1,J+l> •··• ai-1,n , (2) 
ai+1,1• al+1,2• ···• ai+1,J-1• ai+1,J+1• •.. , ai+1,n 

•.. , ann 

originating from the determinant A by omitting the i-th row and j-th column is 
called the minor of order n - 1 of the determinant A betonging to the element ali. 

The cofactor AiJ of the element aii in the determinant Ais defined as the minor AiJ 
equipped with the sign (- 1 )I+ i; thus, A 11 = ( -1 )1 + i Aii. 

Theorem 5 (The Expansion of a Determinant According to the i-th Row). For 
the determinant (1) the following expansion holds: 

A = ailAil + ai2Ai2 + ... + ainAin = 

= ( -1)i+l a;1Ai1 + ( -1)1+ 2 a;2A12 + · ·· + ( -1)1+" ainAin · 

Theorem 6. For i =I= j, 

Theorem 7 (The Addition Rule). The relation 

a1 + bl> atz• 

a2 + bz, Gzz, 

... , a1, 

az, 
a12• ... , a ln 

Gzz, ... , Gzn 

• • • • • • • • 0 0 0 ••• 

an, an2• ... , ann 

holds, and similarly for other columns. 

bl, a12• ... , aln 

+ 
bz, Gzz, ... , Gzn 

••••••••••• 0 •• 

bn, an2• ... , ann 

Theorem 8 (The Multiplication of a Determinant by a Number). The relation 

=C 

holds, and similarly for other columns. 
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In other words: We multiply a determinant by a number c if we multiply by 
this number all the elements of a row or of a column. 

Theorem 9 (The Multiplication of Determinants). The relation 

au, al2• ... , aln bu, b12, ... , bln cll, C12• Cln 
a2l> a22• ... , a2n b2l• b22• b2n c2l, C22• ... , C2n 
. . . . . . . . . . . . . . . • • • • • • 0 •• 0 0 •••• •• 0. 0 0 0. 0 ••• 0 • 

anl> an2• ... , a •• bnl• bn2• ... , bnn c.t> Cn2• . .. , cnn 

holds, where 

REMARK 1 (Evaluation of a determinant). 

1. 

2. Sarrus's rule for the evaluation of a determinant of the third order: 

= aua22a33 + a21a32a13 + a31a12a23 -

- a13a22a31 - a23a32a11 - a33a12a21 • 

3. The evaluation of a determinant of order n for n ~ 3 can be reduced, according 
to Theorem 5, to the evaluation of a determinant of order n - 1. First, it is often 
advantageaus to arrange the original determinant by means ofTheorem 2 or Theorem 
8 in order to get, in a certain row or column, as many zeros as possible. Then, we 
expand the determinant according to this row or column (Theorem 5). 



32 SURVEY OF APPLICABLE MATHEMATICS 1.18 

Example 2. 

1, -1, 2, 4 1, -1, 2, 2 1, -1, 2, 2 
0, 1, -1, 2 

=2 
0, 1, -1, 1 

=2 
0, 1, -1, 1 

3, -1, 2, 0 3, -1, 2, 0 3, -1, 2, 0 
-1, 0, 3, 2 -1, 0, 3, 1 0, -1, 5, 3 

~{ 
1, -1, 1 -1, 2, 2 -1, 2, 2 -1, 2, 

n~ -1, 2, 0 -0 -1, 2, 0 + 3 1, -1, 1 -0 1, -1, 
-1, 5, 3 -1, 5, 3 -1, 5, 3 -1, 2, 

1, -1, 1 -1, 2, 2 
=2 -1, 2, 0 +6 1, -1, 1 = 48. 

-1, 5, 3 -1, 5, 3 

We proceeded in the above evaluation as follows: First, a common factor 2 was 
removed from the last column; then we added the first row to the last row, finally, 
we expanded the determinant according to the first column. 

1.18. Systems of Linear Equations 

(a) Definition and Properties of Systems of Linear Equations 

Definition 1. By a system of m linear equations in n unknowns x 1 , x2 , •.• , x. 
we understand the system 

a11x 1 + a12x 2 + ... + a1nxn = b,, 
a21X1 + anXz + · · · + aznXn = hz' 

(a 11 , ... , am., b1 , .. • , bm being given real or complex numbers). 

(I) 

By a solution of the system (I) we mean any ordered n-tuple of (real or complex) 
numbers (~ 1 , ~ 2 , ... , ~n), i.e. an n-component vector suchthat if ~1> ... , ~. are sub­
stituted for the unknowns x 1, .. • , x., then all the equations of the system (1) are 
satisfied. Two systems of linear equations (in the same number of unknowns x 1, ••• , xn) 
are said to be equivalent systems of linear equations if every solution of the first 
system is also a solution of the second system and vice versa. The matrix 
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is called the matrix of the system (1). The matrix 

[

au, al2• ... , atn• b1] 
8 = ~~~·. ·a·2·2:. ·. ·.-: .~~~~:. ~~ 

aml• am2• ... , amn> bm 

is the so-called augmented matrix of the system (1). 

Theorem 1 (Theorem of Frobenius). The system (1) is solvable if and only if the 
rank of the matrix of the system is equal to the rank of the augmented matrix of 
the system. 

Theorem 2. The system of m homogeneous equations in n unknowns 

(2) 

has always the (trivial) zero solution 0 = (0, 0, ... , 0). 

Theorem 3. If the system (2) has a solution ' = (~ 1 , ••• , ~11), then it has also the 
solution IX' = (o:e 1, ... , o:en), where a is an arbitrary real or complex number. 

If the vectors '<t> = (e~l)' ... , e~l)), ... , '<k> = (eik>, ... , e~k>) are solutions of the 
system (2), then every linear combination of theform o:1,<1> + o:2 ,<2 > + ... + IXk'<k> 
(see Definition 1.15.4) is also a solution of the system (2). 

Theorem 4. If the rank of the matrix of the system (2) of homogeneous equations 
is h, then the system (2) has n - h linearly independent solutions [in the sense 
of linear independence of vectors (see D<:finition 1.15.3)] and every solution of the 
system (2) is a linear combination of these n - h solutions. 

In particular, if h = n, then the system has only the trivial solution 0 = (0, ... , 0). 
If m = n in (2), then the system has a nontrivial solution if and only if the deter­
minant of the system is zero. 

Theorem 5. Let the rank of the matrix of the system (1) be h, Iet '1 = (11 1, ... , '1n) 
be a solution of the system (1) and Iet '(1>, '<2 >, ... , '<n-h> be n - h linearly inde­
pendent solutions of the system (2). Then every solution of the system (1) is the sum 
of a soiution o:1,<1> + ... + 1Xn-h'<n-h> of the homogeneous system (2) and the solu­
tion '1 of the system (1); thus, the form of every solution of the system (1) is o:1 '<t> + 
+ ... + IX11 _h,<n-h> + q, where lXI> ••• , 1X11 -h are real or complex numbers. 

(b) Solution of Systems of Linear Equations without the Use of 

Determinants 

Theorem 6. The augmented matrix 8 of the system (1) can be transformed by 
the operations 1-4 of Theorem 1.16.3, p. 27 (see Example 1.16.2, p. 27), to the 
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matrix C which has only zeros below the principal diagonal. The system of the 
equations in n unknowns whose augmented matrix is the matrix C is equivalent 
to the system (1). In this way, the solution of the system (1) is transformed to the 
solution of a system which can be easily solved. 

Example 1. 

(a) x- 2y + 3z = 2' [[, -2, 3, 

-~l 3x- y+ Z= 0, 8= 3, -1, 1, 
3x + 4y- 7z = -6, 3, 4, -7, 

5y- 8z = -6; 0, 5, -8, -6 

The matrix 8 can be arranged as follows: The fourth row is a linear combination 
of the second and third rows and therefore can be omitted; also the third row is 
a linear combination of the first and second rows (namely, it is the difference of twice 
the second row and three times the first row) and thus can also be omitted. It is 
sufficient to consider the matrix 

[ I, -2, 3, 2]. 
3, -1, 1, 0 

Here, we subtract three times the first row from the second one and get the matrix 

Thus, we solve the system 

c = [1, -2, 3, 2]. 
0, 5, -8, -6 

x- 2y + 3z = 2, 
5y- 8z = -6. 

We get y = t(8z - 6), x = !(z - 2). Hence, we can choose an arbitrary (complex) 
number for z. The system has an infinite number of solutions x = -3-(cx - 2), y = 

= t(8cx - 6), z = cx ( cx being arbitrary). 

(b) 

From the matrix 

x- 2y + 3z = 2, 
3x - y + 19z = 0 , 
3x + 4y - 7z = 1 , 

3y- 6z = -6. 

8 = 3, -1, 19, 0 [ 
1, -2, 3, 2 J 
3, 4, -7, 1 
0, 3, -6, -6 
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we get successively 

[ 1, -2, 3, 2] [1, -2, 
0, 5, 10, -6 0, 5, 
0, 10, -16, -5 ' 0, 10, 
0, 3, - 6, -6 0, 1, 

3, 
10, 

-16, 
- 2, 

2] [1, -6 0, 
-5 ' 0, 
-2 0, 

[ 

1, -2, 3, 
c = 0, 5, 10, 

0, 0, -36, 
0, 0, 0, 

-~] 7 . 

71 

To get the solution we solve the system 

x- 2y + 3z = 2, 
Sy + 10z = -6, 

- 36z = 7, 
0 = 71; 

-2, 3, 
5, 10, 
0, -36, 7 ' 
0, 

-~] 
5, 1 

35 

however, this system has no solution, for the last equation cannot be satisfied. Hence, 
the given system is not solvable. 

REMARK 1. When rearranging the matrix 8 of Theorem 6 it is sometimes advan­
tageous to interchange two columns. This can be done, provided neither of them 
is the last column; however, we must then interchange the unknowns in the resulting 
system corresponding to the interchanged columns. The procedure is obvious from 
Example 2. 

Example 2. 

3x + y + 3z = 2, [ 3, 1, 3, 2] 
-x + 3z = 3, 8 = -1, 0, 3, 3 ; 
4x - z = 0. 4, 0, -1, 0 

we interchange the first and second columns: 

[ 
1, 3, 3, 2] 
0, -1, 3, 3 ' 
0, 4, -1, 0 

[
1, 3, 3, 2] 

c = 0, -1, 3, 3 • 
0, 0, 11, 12 

The solution to be found is then the solution of the system 

y + 3x + 3z = 2, 
x + 3z = 3, 

llz = 12. 
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(c) Solution of Systems of Linear Equations by Means of Determinants 

Theorem 7 (Cramer's Rule). The system of n equations in n unknowns 

(3) 

with a non-zero determinant of the system 

D= #: 0' 
anl• ... , ann 

has a unique solution (x1, ... , xn), where x1 = D 1/ D; here, D 1 is the determinant 
obtained by replacing the i-th column of D by the column of elements forming 
the right-hand sides of equations (3). 

Example 3. 

3x1 - 2x2 + x3 = 1 ' 
Xt + x2- x3 = -2' 

2x 1 - 3x3 = 0. 

3, -2, 1 1, -2, 1 
D= 1, 1, -1 -13:;60; 1 -2, 1, -1 9 

Xt = -13 -13· 
2, 0, -3 0, 0, -3 

3, 1, 1 3, -2, 1 
1 1, -2, -1 23 1 1, 1, -2 6 

x2 = -13 -13· x3 = -13 -13· 
2, 0, -3 ,2, 0, 0 

Theorem 8 (The System of m Equations in n Unknowns). Let the matrix of a system 
and the augmented matrix of the system have the same rank h. Solution: In the 
matrix, we find a mincr Dh =I= 0 of order h. In the h equations of the given system (I) 
containing the elements of the determinant Dh, we leave on the left-hand side those 
unknowns whose coefficients belang to Dh. We choose arbitrary valuesfor the remain­
ing unknowns, transfer them to the right-hand side and solve this system of h equa­
tions in h unknowns by Cramer's Rule. We can always proceed this way, both for 
homogeneaus and non-homogeneaus systems. 

Example 4. 

(a) 3x1 - 2x2 + x 3 - x4 = 
-x1 + 3x3 + x 4 = 

x 2 + 3x3 + 2x4 = 

2' 
-1' 

3. 
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The matrix of the system and the augmented matrix have rank 3, 

3, -2, 1 
-1, 0, 3 = -16. 

0, 1, 3 

Transform the system to the form 

3x1 - 2x2 + x 3 = 2 + x4 , 
--x 1 + 3x3 = -1- x4 , 

x 2 + 3x3 = 3 - 2x4 . 

X1 = -/6 -1 - X4, 0, 3 = -/6 -1, 0, 3 + 
II 2 + x4 , -2, 1 [ 2, -2, 1 

3 - 2x4, 1, 3 3, 1, 3 

1, -2, 1 ] 
+ x4 -1, 0, 3 = - 1

1
6 [ -31 + 2x4], 

-2, 1, 3. 

3, 2+ x4, 
x2 = 1 

-16 -1, -1- x4, 3 
0, 3- 2x4, 3 

3, -2, 2+ x4 
x3 = 1 

-16 -1, 0, -1- x4 
0, 1, 3 - 2x4 

(x4 is arbitrary). 

(b) The system of two homogeneaus equations in three unknowns 

is as follows. 

a 11x 1 + a 12x 2 + a 13x 3 = 0, 
a21x1 + a22x2 + a23x3 = 0 

If the rank of the matrix of the system is 2, then the solution is 

37 

REMARK 2. On the numerical solution of systems of linear equations see Chap. 30. 

1.19. Algebraic Equations of Higher Degree. 
General Properties 

Definition 1. An equation 

(1) 
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where a0 , a 1, •.. , a. are real or complex numbers, is called an algebraic equation 

of degree n. 

REMARK 1. On the concept of a root, its multiplicity and theorems on the 
number of roots see § 1.14. 

Theorem 1 (Properties of Roots). The roots x 1, x 2 , ••• , x. of the equation 

satisfy the relations 

n 

al = - (xl + Xz + ... + xn) = -I X;' 
i=l 

n 

Oz = XJXz + xlx3 + ... + Xn-1Xn = I X;Xj' 
i,j= 1 
i<j 

n 

a 3 = - (x 1x2x3 + x1x2x4 + ... + x._ 2x._ 1x.) = I X;x1xk, 
i,j,k= 1 

REMARK 2. The expressions 

n 

Yl =LX;, 
i= 1 

i<j<k 

n 

Yz = L X;Xj, ••• , Yn = X1X2 • •• Xn 
i,j= 1 
i<j 

are called elementary symmetric functions of the variables x 1 , x 2 , ••• , x •. 

REMARK 3. On the numerical solution of algebraic equations see Chap. 31. 

Definition 2. The resultant of two algebraic equations 

aoxm + a1xm- 1 + ... + am = 0, 
b0x" + b1x"- 1 + ... + b. = 0, 

is defined as the determinant 

(2) 

(3) 
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Theorem 2. The equations (3) haue a common root if and only if their resultant 
is equal to zero. 

1.20. Quadratic, Cubic and Biquadratic Equations 

(a) A quadratic equation is of the form 

(a) ax2 + bx + c = 0 (a =F- 0) or 
(b) x 2 + px + q = 0 (reduced form) 

Definition 1. The discriminant of the equation (a) is the number D = b2 - 4ac 
and that of the equation (b) is the number D = p2 - 4q. 

Theorem 1. 

For D =F- 0, the equation has two distinct roots; 
for D = 0, the equation has one double root. 

If the coefficients of the equation are real, tlzel! 

for D > 0, it has two distinct real roots; 
for D < 0, it has two complex conjugate roots; 
for D = 0, it has only one real (double) root. 

The solution can be found: 

1. by factorization into linear factors: 

ax2 + bx + c = a(x - x 1)(x - x 2 ) or x 2 + px + q = (x - x 1) (x - x 2 ), 

a(x 1 + x 2) = -b, x 1 + x 2 = -p, 
ax1x2 = c X 1X 2 = q 

[e.g. x 2 - 5x + 6 = 0, (x - 2)(x - 3) = 0, x 1 = 2, x 2 = 3]; 

2. in the case of the equation ax2 + bx + c = 0 by the formula 

_ -b ± J(b 2 - 4ac). 
X1,2- , 

2a 

3. in the case of the equation x 2 + px + q = 0 by the formula 

(b} A cubic equation is of the form 

ax3 + bx2 + cx + d = 0 , a =F- 0 . (1) 
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Theorem 2. By the substitution x = y - bf3a and dividing by a, the equation (1) 
becomes 

where 
y3 + 3py + 2q = 0' 

3 _ 3ac- b2 

P- 3a2 

2b3 bc d 
2q=---+-. 

27a 3 3a 2 a 

(2) 

Definition 2. The discriminant of the equation (2) is the number D = - p3 - q2 • 

Theorem 3. 

For D =F 0, the equation (2) has three distinct roots; 

for D = 0, the equation (2) has either a double root (if p 3 = - q2 =F 0) or a triple 
zero root (if p = q = 0). 

If the coefficients of the equation (2) are real, then 

for D ~ 0, it has three real roots which are distinct if D > 0; 
for D < 0, it has one real and two complex conjugate roots. 

Solution (see also Chap. 31): 

1. By factorization into linear factors: 

(x 1, x 2 , x 3 are the roots); 

c 
x 1x 2 + x 1x 3 + x 2x 3 = -, 

a 

d 

a 

[e.g. x3 + 5x2 + 6x = 0; x(x2 + 5x + 6) = x(x + 2) (x + 3); the roots are x 1 = 0, 
x 2 = -2, x3 = -3]. 

2. The algebraic solution (Tartaglia's or Cardan's Formulae). The roots y 1 , Jl, 
y 3 of equation (2) are 

where 

here we choose the cube roots (see § 1.21, p. 42) so that uv = - p. This method is 
not suitable if (2) has real coefficients and D > 0, since the real roots y1, y2 , y 3 are 
expressed in terms of roots of complex numbers (the irreducible case). 

3. The trigonometric solution. Let the coefficients p, q of the equation (2) be 
real and different from zero. Denote the roots by y1 , y2 , y 3 • Put r = e JiPI· where 
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TABLE 1.1 

p<O 
-~--~------.--------- ~~- p>O 

q 
cos (/) =- * 

r3 

q 
cosh rp = 3 r 

sinh <p = ~ 
r 
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Check 

-~~---- -------1 

rp 
y 1 = -2r cos-

3 

(/) 
y 1 = -2r cosh-

3 

y 2 = 2r cos ( 60°-- ~) y 2 = r cosh ~ + 

y 1 = -2r sinh ?_ 
3 

. (/) 
y 2 = rsmh- + 

3 

+i.J(3)rsinh~ I 
3 

+ i .J(3) r cosh ?_ y 1 + y 2 + y 3 = 0 
3 

y 3 = 2r cos ( 60° + ~) y 3 = r cosh ~ -
- i .J(3) r sinh ~ 

3 

. (/) 

I y 3 = r smh J-

- i .J(3) r cosh ?_ 
3 

* rp is in the interval (0°, 90°), r = e .JIPI (see above). 

e = 1 if q > 0 and e = - 1 if q < 0. Then the roots can be determined by means of 

the trigonometric or hyperbolic functions according to Table l.l. 

If q = 0 in equation (2), then the equation has the common factor y and can be 

solved easily. 

If p = 0 in equation (2), then (2) is a binomial equation (see § 1.21, p. 42). 

(c) A biquadratic (or quartic) equation has the form: 

ax4 + bx3 + cx 2 + dx + e = 0 , a # 0 . (3) 

Theorem 4. By the substitution x = y - b/4a and dividing by a, the equation (5) 
becomes 

where 

3b2 c 
p= --+-, 

8a2 a 

Solution: 

Y4 + mi + qy + r = 0 

b3 bc d 
q=---+-, 

8a3 2a 2 a 

1. By factorization into linear factors: 

(4) 



42 SURVEY OF APPLICABLE MATHEMATICS 1.21 

b 
xl + x2 + x3 + x4 = - -; 

a 

c 
x 1x2 + x 1x 3 + x 1x4 + x2x3 + x2x4 + x 3x4 = -; 

a 

d e 
X1X2X3X4 = - • 

a a 

2. The algebraic solution. The roots y 1, y 2 , y 3 , y4 of the equation (4) are 

Yt = -Jz1 + .jz2 + .jz3, Yl = -Jz1 - -Jz2 - -Jz3, 

Y3 = -.jzl + -Jz2 - .jz3, Y4 = -.jzl - -Jz2 + -Jz3, 

where z 1 , z2 , z 3 are the roots of the equation (the reducing cubic) 

here, the roots .jz1, .jz2, .jz3 should be chosen (see § 1.21) suchthat 

REMARK 1. This method is not suitable for numerical solution (see Chap. 31). 

1.21. Binomial Equations 

Definition 1. An equation of the form 

x"-oc=O, 

where a is a non-zeroreal or complex number, is called a binomial equation. 

(I) 

Definition 2. The roots of equation ( 1) are said to be the n-th roots of the number oc 
and are denoted in the theory of algebraic equations by the symbol ':j oc; thus, in this 
case (in contrast to § 1.8, p. 12) V oc stands for any of the n roots of the equation (1). 

Theorem 1. Equation (1) has n simple roots xl> •.. , Xn given by 

n I( ) ( cp + 2krr: • . cp + 2krr:) (k 0 1 1) xk+ 1 = :y r cos n + 1 sm n = , , ... , n - , 

where oc = r(cos cp + i sin cp) is the trigonometric form of the number oc, ~ (r) > 0. 

REMARK 1. By means of Theorem 1 we easily find all the n-th roots of any complex 
number. 
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Example 1. (a) x3 - 2 = 0. First, 2 = 2(cos 0 + i sin 0). Hence 

x 1 = V(2)(cos 0 + i sin 0) = V(2) = 1·260, 

x 2 = ~/(2) (cos ~7t + i sin j1t) = ~/(2) (- ~ + i 1.-), 
x3 = V(2) (cos ~7t + i sin ~1t) = ~/(2) (- ~- i ~3). 

(b) x4 + 1 = 0. Wehave -1 = cos 1t + i sin 1t. Hence 

X 1 = cosi7t + isini7t = ~2 (1 + i), 
2 

X2 = cos i7t + i sin i7t = ~2 ( -1 + i) , 
2 

x3 = cos i-7t + i sin i-7t = ~2 ( -1 - i) , 
2 

X4 = cos i7t + i sin i7t = ~2 (1 - i) . 
2 

43 

Fig. l.Sb. 

REMARK 2. The roots of the equation xn - ct = 0 ( ct =F 0) form, in the Argand 
diagram, the vertices of an n-sided regular polygon inscribed in the circle with centre 
at the origin and radius z/jaj > 0. Fig. 1.5 illustrates the roots of the equations 
x 3 - 2 = 0, x4 + 1 = 0. One sees from the figure that the n-th roots can easily be 
constructed geometrically. 

1.22. Reciprocal Equations 

Definition 1. By a reciprocal equation we understand an equation of the form 
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where (a) a 1 = a"_ 1 (i = 0, 1, ... , n) (positively reciprocal equation) or 
(b) a1 = -a,._ 1 (i = 0, 1, ... , n) (negatively reciprocal equation). 

Theorem 1. Every positively reciprocal equation of odd degree and every nega­
tively reciprocal equation of even degree has the root -1. 

Theorem 2. Every negatively reciprocal equation has the root + 1. 

Theorem 3. Reducing a reciprocal equation by linear factors of theform x - 1, 
x + 1, we get a positively reciprocal equation of even degree 

which, if divided by xm, becomes 

ao (xm + :m) + al (xm-l + Xm
1_1 ) + ... + am-l (x + ~-) + am = 0. 

By the Substitution x + 1/x = y, all binomials can be expressedas poiynomials in y; 
hence we get an equation of degree m in y which in some cases can then be easiiy 
solved. 

Example 1. The equation x 6 + x 5 - 5x4 + 5x2 - x - I = 0 is a negatively 
reciprocai equation of even degree; thus it has the roots ~1 = -I, ~2 = + 1. Dividing 
by (x + I) (x - I), we get a positively reciprocal equation of even degree 

x4 + x3 - 4x2 + x + I = 0 , i.e. ( x 2 + : 2 ) + ( x + ~) - 4 = 0 . 

By the substitution x + 1/x = y, we transform the equation into the form y 2 + y -
- 6 = 0 (since x 2 + I/x2 = (x + Ijx)Z - 2) with roots y 1 = 2, y 2 = -3. Hence, 
the remaining four roots of the original equation are the roots of the quadratic 
equations 

1 I 
X+-= 2, X+-= -3. 

X X 

1.23. The Concept of a Set and the Concept of a Mapping 

A set is a collection of certain objects, called the elements of the set. A set is com­
pietely determined by its elements. Thus, if the sets A, B consist of the same elements, 
we say that they are equal and write A = B. 

Examples of sets: 

(a) the set of all even numbers; 
(b) the set of all points on the circumference of a given circle; 
(c) the set ofthe numbers 1, 2, 3 [we denote it by either {1, 2, 3} or (I, 2, 3)]. 
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The empty (or void) set (denoted by 0) contains no eleroents at all. For exarople, 
the set of all even nurobers greater than 0 and less than 2 is eropty. 

lf x is an eleroent of the set M, we write x E M; if x is not an eleroent of this set, 
then we write either x tt M or x non E M. 

Definition 1. The set A is called a subset of the set B (in syrobols, A c B) if every 
eleroent x of the set A is also an eleroent of the set B, i.e. if x E A ~ x E B. 

REMARK 1. For the sets A, B the equality A = B holds if and only if both A c B 
and B c A hold. 

Definition 2. The union (or sum) of the sets A, B (in syrobols, Au BorA + B) 
is the set of those eleroents which belong to at least one of the sets. [Siroilarly, for 
a greater ( even infinite) nurober of sets.] 

Definition 3. The intersection (or product) oj the sets A, B (in syrobols, An Bor 
A . B or AB) is the set of eleroents belonging siroultaneously to both A and B. 
(Similarly, for a greater (even infinite) nurober of sets.) If A n B = 0, we say that A 
and B are disjoint sets (they have no cororoon eleroent}. 

Definition 4. The difference (or relative complement) of the sets A, B (in syrobols, 
A -'- B or A - B or A ' B) is the set of those eleroents of A which do not belong 
toB. 

Example 1. If Ais the set ofreal nurobers x satisfying 1 ~ x ~ 10 (i.e. A = [1, 10]) 
and if, siroilarly B = [5, 15], then A u B = [1, 15], A n B = [5, 10], A -'- B = 
= [1, 5). If C = [I, 2], then C c A, C n B = 0. 

Definition 5. The set of all ordered pairs (x, y), where x E A, y E B, is called the 
cartesian product of the sets A, B (denoted by A x B). 

y 
2 

8 

1 

A X 
Fig. 1.6. 0 1 2 3 4 

Example 2. If A = [2, 4], B = [1, 2], then A x Bis the set of the ordered pairs 
(x, y ), where 2 ~ x ~ 4, 1 ~ y ~ 2. lf weillustrate (Fig. 1.6) the sets A and B in the 
plane of the coordinate axes x, y as the intervals [2, 4] ofthex axis and as [1, 2] of the 
y axis, respectively, then A x B is represented by the reetangle with the vertices 
(2, 1), (2, 2), (4, 1), (4, 2). 
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REMARK 2. Let A" be a system of sets with the index Ot: runmng through a set M. 
Then the union and intersection of all the sets A" are denoted by the symbols U A" 

IZEM 
and n A", respectively. If M is the set of the natural numbers, then the union and 

aeM oo oo 

intersection of the sets A1 , A 2 , A 3 , ... are often denoted by U Ai and n Ai, respec-
n i=l i=l 

tively. Similarly, we write U Ak instead of A1 u A 2 u ... u An and correspondingly 
k= 1 

for the intersection. 

Theorem 1 (De Morgan's Formulae). The relations 

n ( B u AIZ) = B u ( n AIZ) ; u ( B n AIZ) = B n ( u AIZ) ; 
IZEM IZEM <ZEM IZEM 

B -'- U A" = n ( B -'- A") ; B ..:.. n A" = U ( B ..:.. A") 
a.eM cxeM aeM a:eM 

hold. 

Definition 6. A mapping f of a set A into a set B is a rule which assigns to every 
element x E A adefinite element y E B (uniquely determined by the element x). The 
element y is denoted by the symbol f(x) and is called the image of the element x. 
The element x is said tobe the original or inverse image of the element f(x). The set 
Ais called the domain of the mapping f. 

Definition 7. The mapping f of Definition 6 is a mapping of the set A onto the 

set B if, for every y E B, there exists at least one x E A such that y = f(x). 

Definition 8. The mapping f is said to be one-to-one, if x 1 #- x 2 => f(x 1) #- f(x 2 ). 

Definition 9. Let f be a one-to-one mapping of a set A onto a set B. The mapping 
f- 1 which assigns to every y E B the element f- 1(y) = x E A suchthat f(x) = y, 
is called the inverse mapping to f. 

Example 3. (a) Let A be the set of the real numbers. For x E A, putf(x) = x 2 • 

Thenf is a mapping (not one-to-one) of the set A into the set A (not a mapping of A 
onto A); f is a mapping of the set A onto the set B = [0, oo) ( onto the set of all real 
non-negative numbers). 

(b) Let N be the set of the integers. For x E N, put f(x) = x + 5. Then f is a one­
to-one mapping of the set N onto N. For the inverse mapping f- 1 to f, f- 1(y) = 

= y- 5 holds. 

REMARK 3. Besides the term "mapping" the terms transformation, correspond­

ence, operation, operator, map, functional, function are also used, in cases where 
the sets A, B are in some way specialized. 

REMARK 4. On the concept of a function of one real variable x see § 11.1. This 
function is usually denoted by f(x), in contrast to mere f as in Definition 6. [In 
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theoretical considerations, it is often more advantageaus to write only f instead of 
f(x), for there can be no misunderstanding as to whether f(x) is a function or the 
value of the function at the point x.J 

1.24. Groups, Rings, Division Rings, Fields 

Definition 1. A group is a non-empty set Gin which multiplication is determined 
in some way, i.e. a rule is given which assigns to each ordered pair a, b of Ga unique 
element c = ab E G, their product. Moreover, the multiplication satisfies the fol­
lowing rules (Iaws, axioms): 

1. (ab) c = a(bc) (associative law). 

2. Foreach two elements a, b E G there exist elements x, y E G suchthat ax = b 
and ya = b. 

REMARK 1. The axioms 1, 2 immediately imply that there is a unique identity 
element e in the group G such that ea = ae = a for every a E G. Furthermore, for 
each element a E G, there exists a unique inverse a - 1 of a suchthat aa - 1 = a - 1 a = e. 

Definition 2. A group is called abelian, or commutative, if, for every two of its 
elements a, b, the relation ab = ba holds. 

REMARK 2. If G is an abelian group, then we frequently use additive notation, i.e. 
we write a + b instead of ab. The identity element is denoted by 0 (zero element); 
the inverse of a is denoted by - a. 

Example 1. (a) The set of all non-zerorational numbers is, with respect to multi­
plication, an abelian group; the number 1 is its identity element. 

(b) The set of all integers is an abelian group with respect to addition; the number 0 
is its identity element, the number - a is the inverse of the number a. 

(c) The set of all regular matrices of order n is a (non-commutative) group with 
respect to matrix multiplication (see Definition 1.25.3, p. 49). 

Definition 3. By a ring (more exactly an associative ring) is meant a non-empty 
set R, in which addition and multiplication are determined in some way, i.e. rules 
are given which assign to each ordered pair a, b E R a unique element a + b E R 
(their sum) and a unique element abER (their product). Moreover, this addition 
and multiplication satisfy the following rules (Iaws, axioms): 

1. The set R is, with respect to addition, an abelian group, i.e. for every three 
elements the relations (a + b) + c = a + (b + c) and a + b = b + a hold and 
there exists an element x such that a + x = b (the zero element is denoted by 0). 
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2. Multiplication is associative and is distributive with respect to addition, i.e. 
for every three elements a, b, c e R 

(ab) c = a(bc), 

(a + b) c = ac + bc, a(b + c) = ab + ac. 
holds. 

REMARK 3. In a ring R, the relation aO = Oa = 0 holds for every element a E R. 
In R, non-zero elements a, b may exist suchthat their product is zero: ab = 0. Such 
elements are said to be zero-divisors. If there is an element e in R such that ae = 

= ea = a for every a ER, we say that R is a ring with identity. If an identity ele­
ment exists in R, then it is uniquely determined. 

Definition 4. A ring R is called a commutative ring if, for each a, b E R, the rela­
tion ab = ba holds. 

Example 2. (a) The set of all integers is a (commutative) ring with identity with 
respect to addition and multiplication. 

(b) The set of all even numbers is a ( commutative) ring without identity with respect 
to addition and multiplication. 

(c) The set of all square matrices of ordern is a (non-commutative) ring with zero­
divisors with respect to matrix addition and multiplication {see Theorem 1.25.3, 
p. 50). 

Definition 5. A division ring (skew field or s.jield) Dis a ring with identity e =F 0 
such that, for every a E D, a =F 0, there exists an inverse a - 1 e D such that aa - 1 

= a- 1a = e. If, moreover, the ring is commutative, then it is called afield. 

REMARK 4. The identity element e of the division ring D is usually denoted by 1. 
A division ring has no zero-divisors: If the product of two elements of a division 
ring is equal to zero, then at least one of the elements is zero. In a division ring, to 
any non-zero element there corresponds a unique inverse. The set of all non-zero 
elements of a division ring is a group with respect to multiplication. 

Example 3. (a) The set of all rational numbers* is a field (the so-called field of 
rational numbers). 

(b) The set of all real numbers* is a field {the so-called field of real numbers). 

(c) The set of all coroplex numbers* is a field (the so-called field of complex 
numbers). 

• With operations of addition and multiplication defined in the usual way. 
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1.25. Matrices ( continued). Operations on Matrices 

REMARK 1. The elements of the matrices under consideration - unless otherwise 

stated - will always be real or complex numbers. 

Definition 1. The matrix aA obtained from a matrix A by multiplication of all 

its elements by a number a is called the (scalar) product of the matrix A and the 

number a: 

Definition 2. The sum A + B of two m by n matrices A, Bis the m by n matrix 

whose elements are the sums of the corresponding elements: 

Theorem 1. The scalar multiplication and addition of m by n matrices satisfy 

the following rules: 

1. A + (B + C) = {A + B) + C. 
2. A + B = B + A. 
3. A + 0 = A, where 

[0, ... , 0] 
0 = ...... . 

0, ... , 0 

is the so-called zero-matrix. 

4. For two matrices A, B there exists a matrix X such that A + X = B; it is the 

matrix X= B + ( -1) A = B-A. 

5. a(A + B) = aA +aB; (a + ß) A = aA + ßA. 

Definition 3. The product AB of an m by n matrix A and an n by p matrix B 

is the m by p matrix C defined as follows: If 

[a11, ... , a1n] [b11, ... , b1']' [cu, ... , Ctp] 
A = . . . . . . . . . . . , B = . . . . . . . . . . . , then C = . . . . . . . . . . , 

aml• • • ., amn bn1, • · ., bnp Cml• • • ., Cmp 

where cii = ailbli + a 12b21 + ... + a1"b"1 (i = 1, 2, ... , m; j = 1, 2, ... , p). {In 

words: The rows of the matrix Aare multiplied by the columns of the matrix B. The 

number of columns of the first matrix must be equal to the number of rows of the 

second.) 
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Theorem 2. The multiplication of matrices A, B, C satisfies the relations 

I. (AB) C = A(SC), 
2. (A + S)C =AC+ SC, A(B + C) = AB+ AC, 

if the sums and products of the matrices considered are defined (i.e. if the matrices 
A, 8, C are of prescribed type). 

REMARK 2. In the following text, we restriet ourselves to square matrices of 
order n, i.e. to n by n matrices. 

Theorem 3. The set of all square matrices of order n whose elements are real or 
complex numbers constitutes a ring with respect to matrix addition and multi­
plication (see 1.24, p. 47), the so-called ring of square real or complex matrices. 
For n > 1, this ring is non-commutative (i.e., in general, AB =F BA); it has an 
identity element - the identity matrix 

[
1, 0, ... , 0] 

I= ~· .. 1:.~·.·:.0 . 
0, 0, ... , 1 

Furthermore, this ring has zero-divisors, i.e. there are pairs of non-zero matrices 
A, 8 such that their product is the zero matrix. 

Definition 4. A square matrix A = (aij) of ordern is said tobe regular or non­
singular if its determinant jaiij is different from zero (i.e. if Ais of rank n ); a matrix 
which is not regular is called singular. 

Theorem 4. The determinant of the matrix AB - the product of square matrices 
A, 8 of the same order - is equal to the product of the determinants of the matrices 
A, 8. 

Theorem 5. The product of regular matrices of the same order is again a regular 
matrix. 

Definition 5. The inverse of a square matrix A of order n is a square matrix A - 1 

of order n such that AA - 1 = A - 1 A = 1., where I is the identity matrix. 

Theorem 6. The inverse A- 1 of a square matrix A exists if and only if A is 
regular. If 

where A is the determinant of the matrix A and Aii is the cofactor belanging to the 
element a 11 in the determinant A (see Definition 1.17.2, p. 30). 
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REMARK 3 (A System of Linear Equations in Matrix Form). Let 

(I) 

be a system of n equations in n unknowns. Put 

[ ]. [x1] [b1] au, a12• ... , a1n b 
A = . . . . . . . . . . . . . . . ' X = ~2 ' b = :2 • 

an1• an2• · · ., ann .. X b 
n n 

Then the system of equations (I) can be rewritten in the matrixform 

Ax = b. (2) 

If the determinant of the system is non-zero, then the matrix A is regular, and thus, 
its inverse A - 1 exists. Multiplying (2) by this matrix A- 1, we get 

(3) 

If the inverse A- 1 of the matrix Ais known, then we can, in accordance with (3), 
immediately write down the solution ofthe system (I) (see also Chap. 30). 

Theorem 7. The inverse of the product AB of regular matrices A, B is equal to 
the product of the inverses of the matrices A and B taken in reverse order: 
(ABtl = B-1 A-1. 

REMARK 4. In what follows, A' denotes the transpose of the matrix A (see Defini­
tion l.l6.3, p. 26). 

Theorem 8. The transpose of the product AB of two matrices A, B is equal to 
the product of the transposes of the matrices A and B taken in the reverse 
order: (AB)' = B' A'. Furthermore ( A + B)' = A' + B'. 

Definition 6. A matrix is called symmetric or skew-symmetric respectively, if 
A = A', or A = - A', i.e. if ai1 = a1i, or ai1 = -a1i, for i, j = I, 2, ... , n, respect­
ively. 

REMARK 5. The diagonal elements of a skew-symmetric matrix are zero. 

Theorem 9 (A matrix expressed as a sum of a symmetric and a skew-symmetric 
matrix). A matrix A is a sum of the symmetric matrix !(A + A') and the skew­
symmetric matrix t(A- A'); hence A = t(A + A') + t(A- A'). 

Theorem 10. The product of two symmetric matrices A, B is a symmetric matrix 
i/ and only if the matrices commute, i.e. if AB = BA. 
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Theorem 11. The rank of a skew-symmetric matrix is always an even number. 

Definition 7. A matrix A is called orthogonal if AA' = I, i.e. if A' = A - 1• 

Theorem 12. Let A = \ai~~. be an orthogonal matrix of order n. Then the rela-
tions 

n n 

L, a;1 = 1 , L, aiiakJ = 0 (i =F k) (4) 
}= 1 j= 1 

hold. In words: In an orthogonal matrix, the sum of the products of the elements 
of an arbitrary row and of the corresponding elements of another row is zero and 
the sum of the squares of the elements of an arbitrary row is unity. 

A similar statement holds for the columns: 

n n 

L,aJi = 1, L,a1iaik = 0 (i =F k). (5) 
j=1 j=l 

Conversely, if the elements of a matrix A = (aij) satisfy (4) or (5), then A is ortho­
gonal. 

Example 1. The rotation of the reetangular axes in a plane through an angle a: is 
expressed by the following equations (cf. Theorem 5.13.3, p. 186): 

x' = x cos a: + y sin a: , 

y' = - x sin a: + y cos a: . 

The matrix of this transformation, i.e. the matrix 

[ c?s a:, sin cx J 
- sm cx, cos a: 

is orthogonal, as can easily be checked using Theorem 12. 

Theorem 13. The determinant of an orthogonal matrix is equal to 1 or to -1. 

Theorem 14. The product of orthogonal matrices is an orthogonal matrix. 

Theorem 15. The inverse of an orthogonal matrix is an orthogonal matrix. 

Definition 8. The (complex) conjugate A of a matrix A (whose elements are com-
plex numbers) is the matrix obtained from A by replacing every element aiJ of A 
by its conjugate ali. 

Theorem 16. The relations 

hold. 

cxA + ßB = äA + pä ; AB = AB ; 

k = (A)' ; A- 1 = (At 1 • 
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Definition 9. A matrix Ais called Hermitian, or skew-Hermitian, if 

A = A' , or A = - A' , respectively . 

Definition 10. A matrix A such that 

AA' = I , i.e. A' = A - 1 , 

is called unitary. 

Theorem 17. A matrix A = ( aij) of order n is unitary if and only if the rela­
tions 

or 

n 

L aiiä11 = 1, 
}=1 

n 

L a1ßkJ = 0 (i =F k) 
j=l 

n n 

L a11ä11 = 1, L a11ä1k = 0 {i =F k) 
J=l }=1 

(6) 

(7) 

hold (cf. Theorem 12). 

Theorem 18. The product of unitary matrices is a unitary matrix. 

Theorem 19. The inverse of a unitary matrix is again unitary. 

Theorem 20. The absolute value of the determinant of a unitary matrix is 1. 

Definition 11. By the trace of the square matrix 

is meant the sum a11 + a22 + ... + ann of the diagonal elements of the matrix. 

1.26. Matrices Partitioned into Blocks and Operations on Them; 
Triangular and Diagonal Matrices 

Definition 1 (A Matrix Partitioned into Blocks). Let A be an m by n matrix. 
Divide it into parts by drawing lines between certain rows and certain columns. 
These parts (so-called blocks) are again matrices and the matrix A is formed from 
these blocks which constitute its elements. We say that the matrix Ais partitioned 
into blocks. 

Example 1. 

[ 1, 4, 2, 3] 
A = 0, 1, 2, 3 . 

1, -1, 0, 1 
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Thus, for example, 

where the individual blocks are the matrices 

A =[1,4], 11 0, 1 

A21 = [1, -1], 

A12 = [2, 3], 
2, 3 

A22 = [ 0, 1 J. 

1.26 

Theorem 1 (Multiplication by a Scalar). Let a matrix A be partitioned into 
blocks Aij: 

(1) 

Let a be a real or complex number. Then 

aA = [~~.1.1: .~~~~: .·.-:· .. a.~~n]. 
aAm1 , aAm2 , •.• , aAmn 

Theorem 2 (Addition). Let the matrix 

be partitioned into blocks of the sametype as the matrix (1). Then 

A + B = [~·1·1·~ .. ~1.1:.:·.·~.~.1~-~.~1·n]· 
Am1 + ßml• • · ., Amn + Bmn 

Theorem 3 (Product). Let two matrices C, D be partitioned into blocks 

in such a way that the number of columns of the matrix Cii is equal to the number 
of rows of the matrix Dik (i = 1, ... , m; k = 1, ... , p). Then 

[ 
f 11 , ... , Flp] 

CD= ........... , 

Fml• · .. , fmp 
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Hence: The blocks of the matrix CD are the sums of the products of the blocks 
forming the elements of the rows of the matrix C and the blocks forming the elements 
of the columns of the matrix D. 

REMARK 1. The products CilDlk• Ci2 D2k, ... are defined, since, according to our 
assumption, the number of columns of the matrix Cii equals the number of rows 
of the matrix Dik· 

Example 2. The relation 

holds, where the upper indices indicate the type of the corresponding matrices. 

Definition 2. A matrix A partitioned into square blocks of the form 

where the symbols 0 denote zero matrices (and which are, for the sake of brevity, 
omitted in the formulation of the following Theorem 4), is called the matrix decom­
posed into diagonal blocks. 

Theorem 4. The sum and the product of matrices decomposed into diagonal 
blocks (where corresponding blocks have the same order) is a matrix decomposed 
into diagonal blocks; these blocks are sums, or products, of the corresponding blocks 
of the given matrices, respectively: 

Definition 3. An upper triangular matrix is a square matrix of the form 

where the elements below the principal diagonal are zero. 
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Theorem 5. The sum and the product of upper triangular matrices of the same 
order is againan upper triangular matrix. The determinant of an upper triangular 
matrix is equal to the product of the elements in the principal diagonal. 

Definition 4. A diagonal matrix is a square matrix of the form 

Theorem 6. The sum (product) of diagonal matrices of the same order is again 
a diagonal matrix; the elements of its principal diagonal are the sums (products) 
of the corresponding diagonal elements of the given matrices. 

1.27. J.-matrices, Equivalence of J.-matrices 

Definition 1. A Ä-matrix A(Ä) is a square matrix whose elements are polynomials 
in the variable Ä with real or complex coefficients. 

REMARK 1. Addition and multiplication of A.-matrices and the rank of a A.-matrix 
are defined in the same way as in §§ 1.25 and 1.16, pp. 49 and 26. 

Example 1. The matrix 

[ 3 - Ä, I + .A.J 
1, 5- A. 

is a Ä-matrix. Its rank is 2, for its determinant is a non-zero polynomial {3 - Ä) • 
. {5 - Ä) - (Ä + 1) '=f= 0. However, if we substitute for A. a particular numerical 
value, then we obtain another matrix (no Ionger the original Ä.-matrix) whose rank 
can be smaller. For example, if Ä = 2, we get a matrix of rank 1. 

REMARK 2. Ä.-matrices include also ordinary matrices as a particular case where 
the elements are polynomials of zero degree or zero polynomials. 

Definition 2. By an elementary Iransformation of a given Ä-matrix A(Ä) we under-
stand one of the following rearrangements of the matrix: 

1. an interchange of two rows or two columns of the matrix; 
2. multiplication of a row or a column by a non-zero number; 
3. addition of a row, or a column, multiplied by a polynomial cp(.A.) to another 

row, or column, respectively. 

Definition 3 (The Equivalence of A.-matrices). A .A.-matrix A(A.) is said to be equi­
valent to a Ä.-matrix: B(.A.) if the matrix B(.A.) can be obtained from A(A.) by a finite 
number of elementary transformations. In this case, we write A(A.) "' B(.A.). 



1.27 ARITHMETIC AND ALGEBRA 57 

Theorem 1 • .Ä-matrices A(l), B{l) of order n are equivalent if and only if there 
exist ).-matrices C(l), D{l) of order n such that their determinants are non-zero 
(real or complex) numbers and 

S(Jc) = C(Jc) A(Jc) D(Jc) . 

Theorem 2. Equivalent .Ä-matrices have the same rank (the converse does not 
hold - see Theorem 6). 

Theorem 3. Two matrices A, 8 of the same order whose elements are real or 
complex numbers are equivalent if and only if they have the same rank. 

Theorem 4. A .Ä-matrix A(Jc) of order n is equivalent to one and only one of the 
.Ä-matrices of the form 

[ 

E1(Jc), 0, 0, ... , 0 l 
0, E2 (Jc), 0, ... , 0 

~· ..... ~· ..... ~~~~) ... ·. ·.·: .~... ' 
0, 0, 0, ... , En(.~.) 

(1) 

where the polynomials Ei(Jc) are either zero polynomials or have the coefficient 
of the highest power of .Ä equal to 1, and the polynomial Ei+l(Jc) is divisible by the 
polynomial Ei Je) (j = 1, 2, ... , n - 1). If the rank of A(Jc) is h, then E1(Jc) E2 (Jc) ... 
... Eh(Jc) ;EO, Eh+l(Jc) = Eh+l(Jc) = ... = En(Jc) =: 0. 

Definition 4. The polynomials E 1{Jc), ... , En(Jc) are called invariant factors of the 
matrix A(Jc); the form (1) is called the rational canonical form of the matrix A(A.). 

Example 2. Rearrangements transforming the matrix of Example 1 to the rational 
canonical form reduce the given matrix successively to the following matrices: 

[ 3 - .Ä, 1 + "'] [ 1, 5 - .ÄJ [ 1, 5 - Je J 
1, 5 - .Ä "' 3 - Ä, 1 + .Ä "' 0, (1 +Je)+ (5 - Jc)( -3 +Je) = 

[ 1, 5 - Ä J [ 1, 0 J [ 1, 0 J 
= 0, -Jc2 + 9Jc- 14 "' 0, -Jc2 + 9A.- 14 "' 0, Ä2 - 9A. + 14 . 

First, we interchanged the rows; then we added the first row multiplied by -(3 - A.) 
to the second one; then we added to the second column the first one multiplied by 
.Ä - 5 and, finally, we multiplied the second row by the number -1. Thus, the in­
variant factors of the matrix are the polynomials E1(A.) = 1, E2 (Jc) = Jc2 - 9A. + 14. 

Theorem 5. The greatest common divisor DlJc) (the so-called i-th determinant 
divisor) of all the i-rowed minors of a matrix A(Jc) satisfies the relation 
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where Ei).) are the invariant factors of A(A.) and c is a non-zero real or complex 
number. 

Theorem 6. Two A.-matrices A(A.), B(A.) of the same order are equivalent if and 
only if they have the same invariant factors. 

Definition 5 (Elementary Divisors of a A.-matrix). Let a matrix A(A.) have the 
invariant factors E1(A.), ... , En(A.). We can factorize each of these polynomials in the 
variable A. into the product of powers of distinct linear factors {A. - rx)k. Then every 
such power of a linear factor (A. - rx)k is called an elementary divisor of the matrix 
A(A.). The elementary divisors of the matrix A(A.) form the so-called system of ele­
mentary divisors of the matrix A(A.) (see Examples 3- 5). 

Example 3. Let a matrix A(A.) of order 5 have the invariant factors E 1(A.) = 1, 
E2(A.) = A., E3(A.) = A.(A. + 1)2, E4 (A.) = A.2(A. + 1)2 , E5(A.) = 0. Then the system 
of its elementary divisors is A., A., A. 2 , ( A. + 1 )2 , ( A. + 1 ) 2 • 

Example 4. The matrix of Example 2 has the elementary divisors A. - 2, A. - 7. 

Theorem 7. The invariant factors of a given matrix are uniquely determined 
by the order, rank and system of the elementary divisors. 

Example 5. Let us determine invariant factors of a matrix A(A.) of order 5 and rank 
4 ifthe system ofits elementary divisors is A.- 1, A.- 1, (A.- 1)2 , (A. + 1)2 • 

In order to findtheinvariant factors, let us use Theorem 4. Since h = 4, we have 
E5(A.) = 0. Now E1(A.) EiA.) E3(A.) E4 (A.) = (A.- I) (A.- 1) {A.- 1)2 (A. + 1)2. Since 
E 1(A.), E2(A.), E3(A.) are divisors of EiA.), we get immediately (using Definition 5) 
E4 (A.) = (A.- 1)2 (A. + 1)2 • Now E1(A.) E2(A.) E3(A.) = (A.- 1) (A.- 1), E1(A.), E2(A.) 
are divisors of E3(A.). Hence, E3(A.) = A. - 1. Similarly, we find that E2(A.) = A. - 1, 
and, finally, E1{A.) = 1. 

Theorem 8. Two A.-matrices A(A.), B(A.) of order n are equivalent if and only if 
they have the same rank and the same system of elementary divisors. 

Theorem 9. Let a A.-matrix A(A.) be partitioned into diagonal blocks: 

Then the system of elementary divisors of the matrix A(A.) is the collection of the 
systems of all elementary divisors of the diagonal blocks, i.e. of the A.-matrices 
Att(A.), • • •• Ann(A.). 
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Definition 1. We define two square matrices A, 8 of order n, the elements of which 
are real or complex numbers, to be similar if a regular matrix P of order n exists, 
the elements of which are real or complex numbers respectively, for which the rela~ 
tion 

8 = p- 1 AP 
holds. 

Definition 2. By the characteristic matrix of a square matrix A, we understand 
the A.~matrix A.l - A, where I is the identity matrix (p. 50). Thus, if 

[

alt• at2• ... , atn] 

A = ~~~·. ·a·2·2:. ·.·.·•. ·a·2·n , 

anl> an2• ... , ann 

then 

[
A.- alt> - at2• ... , - aln] 

Je/ _ A = .. ~.~~~· .. Je.~ .~~2.'. ~·.·: .. . ~.~~n • 

- ant• - an2• · · ., A. - ann 

Definition 3. The determinant of the matrix XI - A is said to be the character~ 
istic polynomial of the matrix A. Its zeros are called the eigenvalues (or character~ 
istic values or characteristic numbers) of the matrix A. 

Example 1. The characteristic polynomial of the matrix 

[ 1, 2] 
.-1, 1 

is 

l.A.-1 -21 f(A.) = I: A. _ I = (). - 1) (A. - I) + 2 = A.2 - 2A. + 3 ; 

its zeros 1 ± i .J2 are the eigenvalues of the given matrix. (On numerical methods for 
evaluation of eigenvalues see Chap. 30.) 

Theorem 1. The eigenvalues of an upper triangular matrix 

[
au, al2• ... , atn] 

A = 0, a22• · .. , a2n 
............... 
0, 0, ... , ann 
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are equal to the elements in the principal diagonal, i.e. to the numbers a 11 , a22 , •.. 

Theorem 2. If the characteristic polynomial of a matrix A of ordern has n simple 
zeros oc 1 , ••• , ocn, then the system of elementary divisors of the characteristic 
matrix ).1/ - A is A - oc 1 , •.• , A - ocn. 

Theorem 3. The product of all elementary divisors of the characteristic matrix 
.A.I - A of a given matrix Ais equal to the characteristic polynomial of the matrix A. 

Theorem 4. Two matrices A, B of the same order are similar if and only if their 
characteristic matrices .A.I - A, Ä./ - B are equivalent, i.e. if they have the same 
elementary divisors. 

Theorem 5. Similar matrices have the same characteristic polynomial, and thus 
also the same eigenva lues. 

Theorem 6. Similar matrices have the same traces (see Definition 1.25.11, 
p. 53). 

Definition 4. By a Jordan block (of order k) is meant a matrix of order k of the 
form 

[

(2, 1, 0, ... , 0, 0] 

~·. -~·. ~: .... :·. ~:. ~ ' 
0, 0, 0, ... , (2, 1 
0, 0, 0, ... , 0, (2 

(1) 

where e is a real or complex number. 

A matrix decomposed into diagonal blocks (see Definition 1.26.2) which are 
Jordan blocks is called a Jordan matrix. 

Theorem 7. The characteristic matrix of the Jordan block (I) has the single 
elementary divisor (.A. - eY. Hence, using Theorem 1.27.9, one can determine the 
system of elementary divisors of the characteristic matrix of a given Jordan 
matrix. 

Example 2. The matrix 

[1, 0, 0] 
A = 0, 2, 1 

0, 0, 2 

is a Jordan matrix; its Jordan blocks are the matrices [1] and [ ~: ~ J Hence, the 

elementary divisors of the characteristic matrix .A.I - Aare Ä. - 1, (.A. - 2)Z. 



1.28 ARITHMETIC AND ALGEBRA 61 

Theorem 8. Every square matrix A of order n is similar to a Jordan matrix of 
order n; if A is similar to two Jordan matrices, then these matrices differ only in 
the order of arrangement of their diagonal blocks. 

REMARK 1. The following two examples indicate the method if determining (at 
least theoretically) a Jordanmatrix which is similar to a given matrix A. 

Example 3. Let 

[ 
1, 2, 0] 

A = 0, 2, 0 . 
-2, -2, -1 

The characteristic polynomial is 

A. - 1, -2, 0 
0, A. - 2, 0 = (A. - 1) (A. + 1) (A. - 2) ; 

'2, 2, A. + 1 

this polynomial has simple zeros 1, -1, 2, and therefore, by Theorem 2, the system of 
elementary divisors of the characteristic matrix is A. - 1, A. + 1, A. - 2. According 
to Theorem 4, the characteristic matrix of the required Jordan matrix 8 has the same 
system of elementary divisors; hence we can find this Jordanmatrix 8 by Theorem 7. 
The matrix 8 is decomposed into three Jordanblocks of order I corresponding to the 
elementary divisors {A.- 1), {A. + 1), (A.- 2). Hence 

Example 4. Let 

[ 1, 0, 0] 
8 = 0, -1, 0 . 

0, 0, 2 

[ 
3, I, 

A = -7, -2, 
-2, -1, 

-3] 9 . 
4 

The characteristic polynomial is 

I A.- 3, 

1
7, 
2, 

-1, 3 
A. + 2, -9 
1, A. - 4 

= (A. - 1){A. - 2)2 • 

Since it does not have simple zeros, Theorem 2 cannot be applied. We therefore 
first determine invariant factors E1().), E2().), E3().) of the matrix Al- A. Since 
their product is equal to the product of all the elementary divisors, Theorem 3 
shows that it is equal to ().- 1) ().- 2)2. Hence either E3 ().) = ().- 1) ().- 2)2, 
E2().) = E1().) = 1, or E3().) = (). -1) (.X- 2), E2(.X) =.X- 2,E1(.X) = 1 [see Ex­
ample 1.27.5, p. 58].Now, E1(.X)E2(.X) is the greatest common divisorof all minors of 
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[ 
il - 3, 

Al - A = 7, 
2, 

-1, 

il + 2, 
1, 

3 ] -9 
Ä.-4 

1.29 

0 f h . . ,-l, 3 I il 1 Th E ( ,) b 1 neo t ese mmors ts 1, il _ 4 = - + . us, 2 11. cannot e equa to 

A. - 2, for A. - 2 is not a factor of the binomial A. - 1. So E2(il) = 1 and the system 
of elementary divisors of the matrix XI - A consists of the polynomials il - 1, 
(,1. - 2)2 • The corresponding Jordan matrix is therefore 

[ 1, 0, 0] 
0, 2, 1 . 
0, 0, 2 

Alternative method: By elementary transformations (Definition 1.27.2, p. 56), 
we bring the matrix )../ - A to the rational canonical form and then, by Theorem 
1.27.9, we determine its elementary divisors. 

Theorem 9. The eigenvalues of a Hermitian matrix are real numbers. 

Theorem 10. Let A be a symmetric matrix whose elements are real numbers. 
Then its eigenvalues are real numbers. 

Theorem 11. Let A be a Hermitian matrix. Then there exists a unitary matrix 
U such that the matrix u- 1 AU is diagonal (and real). u- 1 AU is the Jordan form 
of the matrix A. 

Theorem 12. Let A be a symmetric matrix the elements of which are real num­
bers. Then there exists a real orthogonal matrix P such that the matrix p- 1 AP is 
diagonal. p- 1 AP is the Jordan form of the matrix A. 

REMARK 2. A method for finding the matrix P of Theorem 12 is given in Example 
1.29.3, p. 65. 

Theorem 13. Let U be a unitary matrix. Then there exists a unitary matrix V 
such that v- 1 UV is diagonal and the absolute value of each of its elements in the 
principal diagonal is 1. v- 1UV is the Jordanform of the matrix u. 

1.29. Quadratic and Hermitian Forms 

Definition 1. A quadratic form in n variables x 1, x 2 , •.• , xn is a polynomial of 
the form 

f(x1, ... , xn) = allxi + 2a12x1x2 + ... + 2alnx1xn + 
+ a22x~ + 2a 23x 2x 3 + ... + 2a 2nx2xn + 
+ .................................. + annx;. 
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n 

f(x 1 , •.• , xn) = L aiixixi (aii = ai;), 
i,j= 1 
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(1) 

where aii arereal or complex numbers. In the case, where the aii are real, we say that 

the form f(xu ... , xn) is real. 

Definition 2. The symmetric matrix of order n 

A = r ~~~:. ~.~.~: .·.·:·. -~~.:J 
a.u an2• ... , ann 

is called the matrix of the quadraticform (1), its rank being the rank of the quadra­

tic form (1). 

Definition 3 (Linear Mapping). The mapping 

briefly 

Y1 = q11X1 + q12Xz + ·· · + qlnxn' 
Yz = qz1X1 + qzzXz + · · · + qznXn, 

n 

Y; = Lqiixi (i = 1,2, ... ,n) 
j=1 

(2) 

where q ii are fixed real or complex num bers, assigns to every ordered n-tuple (i.e. 

n-component vector) x = (x 1 , ..• , xn) an ordered n-tuple (i.e. n-component vector) 

y = (y1 , •.• , Yn) and is called the linear mapping (of the n-dimensional vector space 

vn into itself). 

The matrix 

is called the matrix of the linear mapping (2). The mapping (2) is said to be regular 

if the matrix Q is regular. 

Theorem 1. Jf the mapping (2) is regular, then there exists an inverse linear map-
n 

ping X;= L PiiYi (i = 1, ... , n), whose matrixPisinverse to the matrix Q. 
j=1 

n n 

Theorem 2. The composition of two linear mappings z; = L riiy1, Y; = L s;ixl 
j= 1 j= 1 
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n 

with matrices R, S is a linear mapping z; = L t;ixi with matrix T = RS. lf both 
j=l 

mappings are regular, then the composite mapping is also regular. 

Definition 4. If in a quadratic form f(x 1, • •• , xn) we substitute for the variables 
x 1, •• • , xn the variables y 1, ... , Yn by means of a linear mapping 

n 

x,=LPiiYi (i= 1,2, ... ,n), (3) 
j=l 

we say that we apply the linear substitution (3) to f(x 1 , • •• , xn)· If the mapping (3) 
is regular, then the corresponding linear substitution is said to be regular. If the 
numbers Pii are real, then the Substitution (3) is real. 

REMARK 1 (Matrix Notationfor Linear Mappings and Quadratic Forms). If we 

donntc by x tho n by I matrix [ :: ] and by y tho matrix [ :: ] , thon tho linear map-

ping ( 3) can be written in the matrix form x = Py, where P is the matrix ( of order n) 
of the mapping (3). Similarly, the quadratic form (1) can be written in the matrix 
form, f(xl> ... , xn) = x' Ax where x' = [ Xl, x2, . .. , xn]• 

Example 1. In matrix notation, the form x~ - 4x 1x2 + 2x~ is written 

'[ 1, -2] h [x1] x _ 2, 2 x, w ere x = x
2 

, 

since 

n 

Theorem 3. A quadratic form f(x 1, .. • , xn) = L a,ixixi with matrix A is trans­
l,i=1 

formed by a linear substitution (3) (i.e. by a substitution x = Py) into theform 

n 

g(yl> . .. , Yn) = (Py)' A(Py) = y'(P' AP) Y = L b,jY;Yi 
l,j= 1 

with matrix 8 = P' AP, where P is the matrix of the linear substitulion (3). 

REMARK 2. Square matrices A, 8 of order n are said to be congruent if there 
exists a regular matrix P such that 8 = P' AP. 
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Theorem 4. The quadratic form g(y1, ••• , Yn) obtained from a form f(xl> ... , x") 
n 

by a regular linear substitution x 1 = L PiiYJ (i = 1, ... , n) has the same rank 
}=1 

as the form f(x 1, ••• , x"). 

Theorem 5. For every (for every real) quadratic form f(xl> .. . , x") of rank h 
there exists a regular linear Substitution (3) [ a real regular linear substitution (3)] 
which transforms the form f(x 1 , ... , x") into the form 

( ) 2 2 2 
g Y1• .. '' Yn = C1Y1 + CzY2 + • ·· + CnYn • 

where c1, ... , cn are complex (real) numbers, precisely h of which are non-zero. 

Example 2. A method of finding such a substitution will be shown in the follow­
ing example: Let f(x 1 , x 2 , x3) = x 1x 2 + 4x2x 3 - 2x1x3 • Since the form does not 
contain the square of any variable, we transform it, first, by the regular linear sub­
stitution x 1 = z 1 + z2 , x 2 = z1 - z2 , x3 = z3 into ihe form h(z1, z2 , z3) = 
= zi - z~ + 2z1z3 - 6z2 z3 • This can be rewritten in the form h(z1o z2 , z3) = 
= (z 1 + z3) 2 - z; - z~ - 6z2 z3 • We then apply the regularlinear transformation 
t 1 = z1 + z 3 ,t2 = z2 ,t3 = z3 thusobtainingtheformk(t1ot2 ,t3) = ti- t~- t;­
- 6t2 t3 = ti - (t 2 + 3t;;)2 + 9t; - t; which, by means of the regular linear sub­
stitution y 1 = t1, y 2 = t2 + 3t3 , y 3 = t3 is transformed into the form g(yl> y 2 , y 3) = 
= Yi - y~ + sy; as required. By combining the applied substitutions, we find that 
f(x 1 , x 2 , x3) is transformed into this final form by the regular linear Substitution 

X1 = Y1 + Y2 - 4y3, X2 = Y1 - Y2 + 2YJ, X3 = Y3· 

Theorem 6. For every real quadratic form f(x 1 , ... , xn) with a matrix A, there 
exists a (real) regular linear substitution (3) with an orthogonal matrix P which 
transforms the form f into the form 

( ) 2 2 2 
g Y = OC1Y1 + CC2Yz + .. · + cc.y" , (4) 

where a: 1 , ... , a:., are the eigenvalues of the matrix A (and are real - see Theorem 
1.28.10, p. 62). 

3 

Example 3. The problern is to find a transformation x 1 = L p,iYi (i = 1, 2, 3) 
}=1 

with an orthogonal matrix P = (Pij) which brings the given quadratic form 
f(x 1 , x 2 , x3 ) = 2xi + x~ - 4x1x 2 - 4x2x 3 into the form g(y 1, y 2 , y 3) given by {4). 
The matrix ofthe formf(xl> x2 , x3) is 

[ 
2, 

A = (aij) = -2, 
0, 

-2, 0] 
1, -20 ; 

-2, 



66 SURVEY OF APPLICABLE MATHEMATICS 1.29 

its eigenvalues, i.e. the roots of the equation 

A.- 2, 2, 0 
2, A.- 1, 2 = 0 
0, 2, A. 

3 

are 1, -2, 4. According to Theorem 6, there exists a transformation x 1 = L p11yJ 
j=l 

with an orthogonal matrix P = (Pii) which brings the form f(x 1, x 2 , x 3) into the 
form g(y1, y 2 , y3) = y~ -2y~ + 4y~. The matrix P (and, thus, the required trans­
formation) can be found as follows: If we denote by 8 = (bij) the matrix ofthe form 
g(yt, Y2• Y3), i.e. 

[1, 0, 0] 
8 = 0, -2, 0 ' 

0, 0, 4 

tben, by Theorem 3, 8 = P' AP. Since P is orthogonal, i.e. by Definition 1.25.7, 
P' = p-t, the equality 6 = P' AP can be written in the form PB = AP. This means 

3 3 

that L a11p1k = L piibilc (i, k = 1, 2, 3). In our problem, we thus get the following 
1=1 j=l 

equations: 

(a) 2pu - 2P2t = Pu , (b) 2Pt2- 2p22 = -2Pt2, 
-2Pu + P2t - 2P3t = P21, -2Pu + P22 - 2p23 = -2P22, 

- 2P2t = P3t; - 2p22 = -2p32; 

(c) 2Pt3 - 2p23 = 4p13, 
-2Pt3 + P23 - 2p33 = 4p23, 

- 2P23 = 4p33 · 

These are three systems of homogeneous equations, each of them being of rank 2. 
Solving, for example, the system a) we can confine ourselves to the first and third 
equations from which there follows 

1
-2. o I I o. 1 I 

1
1. - 2l 2 1 2 Pu : P21 : P3t = -2, -1 : -1, 0 : O, -2 = : : - . 

Since p~1 + p~ 1 + p~ 1 = 1 (see Theorem 1.25.12, p. 52), we get 

P _ ±2 _ +Z p - +~ p - +Z 
11- .J(22 + 12 + 22)- -3"• 21- -~· 31- ~· 

Similarly, we find that Pu = ±!, P22 = ±i, P32 = ±i, Pt3 = ±i, P23 = +1, 
p33 = ±t. Thus, the matrix P can be chosen as follows: 

[ t. t. i] 
p = t. t. -t . 

-t. i. t 
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Theorem 7 (Sylvester's Law of Inertia). Any real quadratic form f(xh ... , xn) 
of rank h can be transformed by a real regular linear substitution into the form 

g(yl> ... , Yn) = Yi + Y~ + ... + Y;,- Y;,+l- ... - Y;,+s2 (s1 + S2 = h). (5) 

The substitution transforming f(x 1, ... , xn) into the form (5) is not unique; however, 
the number s1 of positive signs as well as the number s2 = h - s1 of the nega­
tive sings in the resulting form is always the same. 

Definition 5. The number s1 - s2 in Theorem 7 is called the signature of theform 
f(x1, ... , xn)• 

Theorem 8. A real quadratic form f(x 1, .. . , xn) can be transformed by a real 
regular linear substitution into a form g(y1, .. . , Yn) if and only if both forms 
haue the same rank and signature. 

Definition 6. Let f(x 1, .. . , xn) be a real quadratic form. 

(a) The form f(x 1, ... , xn) is called positive ( or negative) definite if, for every non­
zero n-tuple ( a1 , •.• , an) of real numbers a1, ••• , an (briefly: for any real non-zero 
n-tuple), the number f(a 1, ... , an) is positive (or negative). 

(b) The form f(xh ... , xn) is called positive (or negative) semidefinite if, for every 
non-zero real n-tuple ( a1, ... , an), the inequality f( a1 , ... , an) ;?; 0 [ or f( a 1 , ... , an) ~ 
~ OJ holds and at the sametime there exist non-zeroreal n-tuples (ß1, ... , ßn) such 
that f(ß1, ... , ßn) = 0. 

( c) The form f(x 1 , ... , xn) is said to be indefinite if there are non-zero real n-tuples 
(a1 , ... , an) and (ß1 , ... , ßn) suchthat f(a1 , ... , an)> 0 and f(ß1, ... , ßn) < 0. 

REMARK 3. The matrix of a positive, or negative, definite quadratic form is called 
positive ( or negative) definite. In the following theorems, some conditions for a sym­
metric matrix to be positive definite are introduced. 

Theorem 9. Let f(x 1, ... , xn) be a real quadratic form of rank h and signature s. 

1. f(x 1, ... , xn) is positive (or negative) definite if and only if h = n and s = n 
( or s = - n ); the form can be transformed by a real regular linear Substitution 
into a sum of positive (or negative) squares of alln variables. 

2. f(x 1, ... , xn) is positive (or negative) semidefinite if and only if h < n and 
s = h ( or s = - h ). 

3. f(x1, ... , xn) is indefinite if -h < s < h. 

REMARK 4. If a form f(x 1, ••• , xn) is positive definite, or semidefinite, then the 
form - f(x 1, ... , xn) is obviously negative definite, or semidefinite, respectively. 
Therefore, we can restriet our consideration to positive definite or positive semi­
definite forms. 
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Theorem 10. Let f(x 1, . .. , xn) be a real quadratic form and let A be its matrix. 

The form f(x 1, .. . , xn) is positive definite, or semidefinite, if and only if all the 

eigenvalues of the matrix Aare positive, or non-negative, respectively. 

Theorem 11. Areal quadratic form f(x 1 , •• • , xn) with a matrix 

is positive definite if and only if all the principal minors 

of the matrix Aare positive. 

au, a12• al3 
a21• azz, a23 

a31• a32• a33 
' ... ' 

Example 4. The form a 11xi + 2a 12x 1x 2 + a 22x~ is positive definite if and only 
if a11 > 0, a 11 a22 - af 2 > 0; it is semidefinite if a 11a22 - ai 2 = 0; it is indefinite, 
if a 11 a 22 - ai 2 < 0. 

Definition 7. A Hermitian (quadratic) form in n variables x1, ... , X 11 is a poly­
nomial of the form 

II 

f(x 1 , x 1 , ••• , xn) = L aux,xi, aii = ä1 ; (i,j = 1, ... , n), (6) 
i,J = 1 

where the bar indicates a conjugate complex number. The matrix 

of a Hermitian form is a Hermitian matrix, i.e. A = A' holds. 

Theorem 12. A Hermitian form with a matrix A is transformed by a linear sub­

stitution X;= LPiiYi into the Hermitian form with the matrix 8 = P'AP. 

REMARK 5. Matrices A, 8 are said to be conjunctive (Hermitian congruent) if 
there exists a regular matrix P suchthat 8 = P'AP. 

Theorem 13. If (cx1 , ••• ,an) is an arbitrary n-tuple of real or complex numbers 

and if f(x 1 , •• • , x .. ) is a Hermitian form, then the number f(rx 1, •.. , an) is real. 

REMARK 6. In the same way as for real quadratic forms, we define the rank and 
signature of a Hermitian form, and also positive (negative) definite, semidefinite and 
indefinite Hermitian forms (see Definitions 2, 5 and 6). Theorems formulated for real 
quadratic forms hold also for Hermitian forms; in such formulation, instead of real 
regular linear substitutions we have complex regularlinear substitutions and in The­
orem 6 we must replace "orthogonal matrix P" by "unitary matrix P". 



2. TRIGONOMETRie AND INVERSE 
TRIGONOMETRie FUNCTIONS. 

HYPERBOLle AND INVERSE HYPERBOLIC 
FUNeTIONS 

By V ACLA V VILHELM 

References: [26], [43], [56], [59], [68], [103], [125], [126], [135], [185]. 

2.1. Measurement of Angles (Measurement by Degr~es 
and eircular Measure) 

Iftheoretical problems are under consideration, angles arenot measured in degrees, 
but in radians ( circular measure ): The magnitude of an angle IX is given by the length l 
of the arc, intercepted by the arms of the angle IX on the unit circle with centre at the 
vertex of the angle (Fig. 2.1). We shall denote the magnitude of the angle IX in cir­
cular measure again by IX; sometimes, instead of IX, the notation arc IX0 is employed, 
IX0 denoting the magnitude of the angle IX expressed in degrees (in the sexagesimal 
system). 

Fig. 2.1. 

Theorem 1. The relationship between circular measure and degrees is 

Example 1. The angle of 90° is in circular measure 

IX = _n_ . 90° = -!n . 
180° 
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Definition 1. The angle fl, whose circular measure is 1, is called the radian; its 
magnitude measured in degrees (in the sexagesimal system) is 

In centesimal measure, 

(}8 = 4008/2n = 63·661 9778 (grades). 

In particular, 

360° = 2n' 180° = n' 90° = !n' 60° = !n' 45° = !n' 30° = an. 

2.2. Definition of Trigonometrie Fundions 

Definition 1. The trigonometric functions of an angle oc in the interva1 [0, 2n) 
are defined by means of a unit circle or (for acute angles) by means of a right angled 
triangle (Fig. 2.2) as follows: 

,....., 
sin oc =AB ,....., 
cos oc = OA 

tan cx = sin cxfcos oc, oc i' !n, }n 

cot oc = cos IX/sin IX, IX # 0, n 

sec cx = 1/cos oc, oc # !n, i-n 
cosec oc = 1/sin cx, oc # 0, n 

(for 0 < cx < !n, sin cx = ajc), 
(for 0 < oc < !n, cos oc = bfc), 
(for 0 < oc < !n, tan IX = CD = afb), 
(for 0 < oc < !n, cot oc = EF = bfa), 
(for 0 < oc < !n, secoc = cfb), 
(for 0 < IX < !n, cosec oc = cja). 

Fig. 2.2. 

,....., ("-.J 

Here, AB is the directed length of the segmen t AB, i.e. AB > 0 if AB is in the same 
direction and AB < 0 if AB is in the opposite direction to the positive direction 
ofthe y-axis. The other 1engths are used with a similar meaning (for examp1e DA > 0 
if OA is in the same direction as the positive direction of the x-axis). 

Further we define: 

Definition 2. 

sin (2kn + oc) = sin oc, cos (2k7t + oc) = cos oc, 

tan (k7t + oc) = tan oc, cot (kn + a) = cot oc 

(1) 
(2) 
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for an arbitrary integer k. In this way, the functions sin cx and cos cx are defined for 
all real cx, the function tan cx for all real cx different from !1t + k1t and the function 
cot cx for all real cx different from k1t. 

REMARK 1. The functions sin cx and cos cx are periodic functions with period 27t; 
the functions tan cx and cot cx are periodic functions with period 1t. 

REMARK 2. In the case where an angle is measured in radians, instead of cx we 
often write the letter x as is usual in the case of functions, where the letter x stands 
for the independent variable; we thus speak about the functions sin x, cos x, tan x, 
cot x. 

2.3. Behaviour of Trigonometrie Funetions. Their Fundamental 
Properties 

REMARK 1. In Fig. 2.3, x denotes the angle measured in radians; the figure repre­
sents the graph ofthe functions sin x, cos x, tan x, cot x for x in the interval [ -7t, 21t ]. 

Fundamental properties: 

1. 

2. 

- 1 ~ sin IX ~ 1 , 
- 1 ~ COS IX ~ 1 , 
-oo <tancx< +oo, 
- oo < cot IX < + oo . 

sin (-IX) = 
cos ( -cx) = 
tan ( -cx) = 
cot ( -cx) = 

-sin IX; 

cos cx ; 
-tan cx; 
-cot cx. 

2.4. Relations Among Trigonometrie Functions of the Same Angle 

1. 

sin2 cx + cos2 cx = 1 ; 
sin cx 

tan cx = --, 
cos cx 

COS IX 
cotcx = --. , 

sm cx 

1 
seccx = --, 

cos cx 

2 1 1 +tan cx=--, 
cos2 cx 

1 
cosec IX = -- , 

sin cx 

1 
1 + cot2 cx = -- . 

sin2 cx 
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Signs of trigonometric functions in individual quadrants 

Function 
I 

Quadrant 

I I II I III I IV 

sin or: + + - -

cos a + - - + 
--

tan or: + - + -

--------

cot or: + - + -

X 
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T ABLE 2.2 Values of trigonometric functions for some special angles 

Degrees oo 30° 45° 60° 90° 120° 135° 150° 

Radians 0 !7t t7t t7t t7t t7t t7t i1t 

sin ac 0 1 t y'2 t y'3 
I 

1 
I 

t y'3 tv'2 .1. 
2 2 

cos ac 1 t y'3 tv'2 1 0 -t -fy'2 -fy'3 2 

tan ac 0 t y'3 1 y'3 -y'3 -1 -tv'3 

cot ac y'3 1 t y'3 0 -tv'3 -1 -y'3 

Degrees I 180° 210° 225° 240° 270° 300° 315° 330° 

Radians 
I 

1t i1t t7t 47t -fx f7t Jx 1617t 
I 

sin ac 0 1 -fy'2 -tv'3 -1 1-t y'3 -tv'2 -t -2 

cos ac -1 -fy'3 -ty'2 1 0 .1. tv'2 fy'3 -2 2 

tan ac 0 t y'3 1 y'3 -y'3 -1 -tv'3 

cot ac y'3 1 tv'3 0 -tv'3 -1 -y'3 

TABLE 2.3 Reduction of trigonometricfunctions to the first quadrant 

Function p = 90° ± ac P= 180° ± ac P= 270° ± ac P = 360° ± ac 

I 
sin P + cos ac =f sin ac - cos ac ± sin ac 

cos p =f sin ac - cos cx ± sin ac + cos ac 

tan P =f cot ac ± tanac =f cot ac ± tan ac 

cot p =f tan ac ± cot ac =f tan ac ± cot ac 
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. ltan ocl 1 . 
!sm ocj = .J(1 - cos2 IX) = 

.J(1 + tan2 oc) .j(1 + cot2 IX) ' 

I I '(1 . 2 ) 1 lcot o:l 
COS OC = ...; - Sln OC = ; 

.J(1 + tan2 oc) .J(1 + cot2 oc) 

ltan oc = lsin ocl = .j(1 - cos2 oc) = _1_; 
I .J(1 - sin2 IX) jcos lXI lcot al 

1 
taniX = --; 

cot IX 

1 
cotoc = --. 

tan a 

2.5 

REMARK 1. The absolute value must be used in relations 2, since, for example, 
sin 30° = .J(1 - cos2 30°), but sin 270° = -.J(1 - cos2 270°). For a definite oc 
we have sin IX = ..j(1 - cos2 a) or sin oc = -..)(1 - cos2 a) according to the sign 
of sin IX in the corresponding quadrant (Table 2.1 ). 

Similarly for the other formulae in which the absolute values occur. 

1. 

2.5. The Addition Formulae, the Multiple-angle and Half -angle 
Formulae 

sin (IX ± ß) = sin oc cos ß ± cos oc sin ß ; 

cos(IX ± ß) = cos oc cos ß + sin oc sin ß; 

( ß) tan oc ± tan ß 
tan IX ± = ; 

1 + tan a tan ß 

( ß) cot IX cot ß + 1 
cot IX+ = . 

- cot ß ± cot a 

2. sin niX, cos na, for n a natural number can be determined by De Moivre's 
theorem (Theorem 1.6.6, p. 11), 

3. 

cos niX + i sin niX = (cos IX + i sin oc)" = ± (n) cosk a (i sin oc)n-k. 
k=O k 

sin 2a = 2 sin oc cos IX ; sin 3a = 3 sin oc - 4 sin 3 IX ; 

sin niX = n sin oc cosn-l IX - (;) sin3 a: cosn- 31X + (~) sin5 IX cosn-s IX - .... 



2.5 

4. 

5. 

6. 

7. 

8. 

TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 

cos 2a = cos2 a - siu2 a ; cos 3a = 4 cos3 a - 3 cos a ; 

cos na = cosn ct - (;) siu2 a cosn- 2 a + (:) siu4 a cosn- 4 a - .... 

2 tau a 
tau 2a = ----,-----

1 - tau2 a' 
3 3 tau a - tau 3 a 

tau a = ------
1 - 3 tau2 a 

2 cot2 a - 1 
cot a = ----

2 cot a 
3 cot3 IX - 3 cot IX 

cot a = --~----
3 cot2 a - 1 

lsiu ~~ = v'[1(1 - cos a)] ; tau-= · I <XI J1 _ cos ct 
2 1 + cos ct' 

a - cos a siu IX 
tau-=-----

2 siu a + cos ()( 

l
cos ~2 ~ = v'[!(l + cos a)] ; /cot ~~ = Jl + cos IX; 

2 1 - cos a 

a 1 + cos a siu a 
cot- = = ----

2 siu a 1 - cos cc 

siu oc = 
2 tau !a 

+ tau2 !a' 

1 - tau2 !a cos C( = ____ ___::._ 
1 + tau2 !a • 

75 
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2.6. Sum, Differenee, Produet of Trigonometrie Funetions, Powers 
of Trigonometrie Funetions 

1. 

2. 

3. 

. ·p 2 .1X+ß IX-ß smiX + sm = sm--cos--; 
2 2 

. ·p 2 IX+ß.IX-ß smiX- sm = cos--sm--; 
2 2 

IX+ß IX-ß 
COS IX + COS ß = 2 COS -- COS -- ; 

2 2 

ß 2 .1X+ß.IX-ß 
cosiX- cos =- sm--sm--; 

2 2 

sin (IX + ß) 
tan IX ± tan ß = - ; 

COS IX COS ß 

sin (ß + IX) 
cot IX + cot ß = - · 

- sin IX sin ß ' 

COS (IX + ß) 
tan IX ± cot ß = ± . . 

cos cx sm ß 

sin IX sin ß = ![cos (IX - ß) - cos (IX + ß)] ; 

cos cx cos ß = t[ cos (IX - ß) + cos (cx + ß)] ; 

sin cx cos ß = ![sin (IX - ß) + sin (IX + ß)] ; 

ß tan IX + tan ß ß cot IX + cot ß 
tan cx tan = ; cot IX cot = ; 

cot IX + cot ß tan cx + tan ß 

ß tan cx + cot ß 
tan IX cot = . 

tan ß + cot a 

sin2 a = !(1 - cos 2a) ; sin3 a = !(3 sin a - sin 31X) ; 

cos2 a = !(1 + cos 21X); cos3 IX = i(cos 31X + 3 cos IX); 

sin4 a = i(cos 41X - 4 cos 2a + 3); cos4 a = l(cos 41X + 4 cos 2a + 3). 

REMARK 1. Higher powers can be found by De Moivre's theorem (see relations 2, 
3 and 4 of the previous § 2.5). 
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2. 7. Trigonometrie Sums 

Theorem 1. For an arbitrary real oc, an arbitrary real x =F 2kn (k being an integer) 
and for n a natural number we have 

. . 2 . sin tnx . 1 ( 1) sm x + sm x + ... + sm nx = -. -- sm z n + x ; 
sm!x 

sin tnx 
cos x + cos 2x + . .. + cos nx = -. -- cos !( n + 1) x ; 

sm!x 

f sin (oc + jx) = si~ !nx sin [ oc + -!(n + 1) x]; 
i=l sm !x 

n • sin tnx I cos (oc + Jx) = -.-- cos [oc + t(n + 1) x]. 
i=l sm tx 

2.8. Trigonometrie Equations 

Trigonometrie equations are equations in the unknown x of the form 

f(cos x, sin x, tan x, cot x, x) = 0. (1) 

A trigonometric equation can be solved either by employing numerical methods 
(see Chap. 31), or, in some simple cases, by rearranging the equation using suit­
able formulae, to contain only one trigonometric function; then we solve the equa­
tion for this function. 

Example 1. sin x - cos2 x + ! = 0; we rearrange the equation by means of the 
relation cos2 x = 1 - sin2 x and put y = sin x. We thus obtain the equation y2 + 
+ y - i = 0 with the roots y 1 = t. y 2 = -l There is no real solution correspond­
ing to the root y 2 (since lsin xl ~ 1); the root y1 = ! gives the solutions x = in + 
+ 2krr, x = i-n + 2kn (k being any integer). 

Example 2. a cos x + b sin x = c (ab =F 0). We put a = r cos A., b = r sin A., 
r > 0. Then tan A. = bfa, r = afcos A. = bfsin A.. The angle A. is determined to 
within an integral multiple of 2n. The equation is transformed into the form 
r cos x cos A. + r sin x sin A. = c, i.e. cos (x - A.) = cfr. We get, in general, two 
values for x - A. which are determined to within an integral multiple of 2n (provided, 
of course, that jcfrl ~ 1). 

REMARK 1. If relation ( 1) is satisfied for all real x for which the expression * 
f(cos x, sin x, tan x, cot x, x) has a meaning, then it is called a trigonometric 
identity. 

• Other angles y, z, . . . may also be contained in this expression. 



78 SURVEY OF APPLICABLE MATHEMATICS 

Example 3. Let us decide whether the relation 

sin x + sin y x + y 
------"- = tan --
cos X+ COS y 2 

is a trigonometric identity. 

2.9 

(2) 

We try to arrange the left-hand side in the form tan 1-(x + y). Applying formulae 1 

of § 2.6 (p. 76) we get the left-hand side in the form 

2 sin t(x + y) cos t(x - y) .1.( ) 
--..:::-'.----'~--=-~----'---!_ = tau 2 x + y · 
2cost(x + y)cosf(x- y) ' 

this means that the relation (2) is a trigonometric identity. 

2.9. Plane Trigonometry 

(a) Right-angled Triangle (Fig. 2.4a) 

REMARK 1. In this section the following symbols for the elements of a right­

angled triangle will be used: a, b enclose the right angle, c is the hypotenuse; A, B, C 

are the vertices opposite to the sides a, b, c, respectively; tX, ß, 90° are the interior 

angles corresponding to the vertices A, B, C, respectively; h is the altitude; P-the area. 

TABLE 2.4 

Formulaefor determining the remaining elements of a right-angled triangle if two elements are given 
--~----~-1 

I 
The other elements of the triangle 

I 
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(b} General (Scalene) Triangle (Fig. 2.4b) 

REMARK 2. In this section the following symbols for the elements of a triangle 
will be used: a, b, c are the sides; A, B, C the vertices opposite to the sides a, b, c, 
respectively; cx, ß, y the interior angles corresponding to the vertices A, B, C, res­
pectively; r is the radius of the inscribed circle; R the radius of the circumscribed 
circle; ha, hb, hc are the altitudes corresponding to the vertices A, B, C or to the sides 
a, b, c, respectively, P the area and s = -!(a + b + c). 

c 

.a , 
Fig. 2.4a. c b A 

Theorem 1. Fundamental relations: 

I. ----:_ = --!?--- = ~ ( = 2R) (the Sine Theorem). 
sm cx sm ß sm y 

3. a + b = tan !( cx + ß) 
a - b tan -!-( cx -- ß) 

(the Cosine Theorem). 

(the Tangent Theorem). 

Theorem 2. Further relations: 

4. a = b cos y + c cos ß. 

5. 

6. 

a + b _ cos -!-( cx - ß) . a - b sin t( cx - ß) 
---~c~ - cos i(cx + ß)' -c- = sin !(cx + ß) 

sin ~ = J(s - b)(s - c); cos ~ = Js(s - a). 
2 bc 2 bc 

(X p 
7. tan- = · 

2 s(s - a)' 
cx r 

tan- = --. 
2 s- a 

a sm y 
8. tan cx = ----'-

b - a cos y 

Fig. 2.4b. 
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(X ß y 
9. r = s tan- tan- tan-. 

2 2 2 

10. a = 2R sin tX ; R = a bc . 
4P 

11. h., = b sin y = c sin ß ; __!_ : __!_ : __!_ = a : b : c ; _!_ + __!_ + __!_ = !. . 
h., hb hc h., hb hc r 

12. s = 4R cos ~ cos ~ cos ! . 
2 2 2 

13. The length of the median corresponding to the side c: 

tc = h/[2(a 2 + b2)- c2] = !J[a2 + b2 + 2ab cos y]; 

t; + t; + t: = i(a2 + b2 + c2). 

14. The length of the bisector of the angle y: 

u = 2J[abs(s- c)] = J[ab[(a + b)2 - c2]] = 2abcos!y. 
Y a+b a+b a+b 

15. The radius of the circumscribed circle: 

R=-a-. 
2 sin tX 

16. The radius of the inscribed circle: 

r = 4R sin ~ sin ~ sin! = abc = J(s - a)(s - b) (s - c). 
2 2 2 4Rs s 

17. The area of the triangle: 

P .1. b . 2 sin ß sin y 2 tX ß Y 2R:z · · ß · = 2 a sm y = a . = r cot - cot - cot - = sm tX sm sm y , 
2 sm tX 2 2 2 

P = J[s(s - a) (s - b)(s - c)] (Heron's Formula). 

Theorem 3. Solution of a general triangle: 

1. Given the elements a, ß, y (ß + y < 180°): 

cx = 180o - (ß + y) ; b = a ~in ß ; 
Slll tX 

2. Given the elements a, b, y: 

a sin y 
C=--. 

sin tX 

a-b 
!( cx + ß) = 90° - !y ; tan !( tX - ß) = -- cot !y ; 

a + b 

2.9 
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hence we determine the angles cx, ß: 

a = Ha + ß) + -Ha - ß) ; ß = -Ha + ß) - -Ha - ß) ; 
c = J(a 2 + b2 - 2ab cos y). 

An alternative method: 

a sin y . 
tan cx = ----'-

b - a cos y' 
ß b sin y 

tan = -------'--
a - b cos y 

a sin y a - b cos y 
c=--= . 

sin cx cos ß 

3. Given the elements a, b, cx: 

. ß b sin cx 
Sill = --; y = 180° - ( a + ß) ; 

a 

a sin y 
C=--· . ' P =!ab sin y. 

sm cx 

If a > b, then ß < 90° and there exists a single solution. 

If a = b, there exists a single solution for cx < 90°. 
If a < b (and, cx < 90°, of course), then 

81 

1 o for b sin cx < a there exist two solutions (there are two angles ß, satisfying the 

relation ß2 = 180° - ß1); 

2° for b sin cx = a there exists a single solution (ß = 90°) ; 
3° there is no solution for b sin a > a. 

A 

Fig. 2.5. p 

4. Given the elements a, b, c: 

If the sum of any two sides is greater than the third side then a single solution 
exists and is given by 

b2 + c2 - a2 cx p 
cos oc = , tan - = , 

2bc 2 s(s - a) 
P = y'[s(s - a)(s - b)(s - c)] 

and similarly for the angles ß, y. 

Example 1. The problern is to find the distance x of an inaccessible point A from 
a straight road p (see Fig. 2.5). 
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On the road, the points B, C have been chosen, the distance a between them de­
termined and the angles ABC= ß, ACB = y measured. By Theorem 2 (formula 17), 
the area P of the triangle t-,ABC is 

p = a2 sin ß sin y rx = 1800 _ (ß + y). 
2 sin rx ' 

In addition, P = fax. Hence x = a sin ß sin yfsin rx. 

2.10. Spherical Trigonometry 

(a) Great Circle on a Sphere; Spherical (Euler's) Triangle 

Definition 1. By a great circle on a given sphere we mean any circle lying on this 
sphere, whose centre coincides with the centre of the sphere. Through two points A, B 
on a sphere, which do not lie on the same diameter, one and only one great circle can 
be drawn; the smaller of the two arcs cut off by the points A, B on this circle has 
the shortest length d of all the curves on the given sphere joining the points A, B. 
This number d is called the spherical distance of the points A, B. The spherical 
distance of opposite points on a sphere equals the semi-circumference of a great 
circle. 

Definition 2 (Spherical Triangle). Let A, B, C be three points on a sphere which 

do not lie on the same great circle. If we draw the three arcs AB, AC, Bc of the great 
circles which do not intersect except at the points A, B, C, the spherical surface splits 
into two spherical triangles with vertices A, B, C. If we choose, in particular, the arcs 

AB, AC, BC to be of lengths equal to the spherical distances of their end points 
A, B, C, then the smaller of the two spherical triangles obtained (i.e. the one lying 
inside the trihedral angle formed by the half-lines OA, OB, OC emanating from the 
centre 0 of the sphere, see Fig. 2.6) is called an Euler triangle. 

REMARK 1. In what follows we deal only with Euler triangles; moreover, we 
choose (except in Theorem 3) the radius of the sphere r = 1. 

Definition 3. The lengths a, b, c of the corresponding arcs Bc, Ac, AB of the great 
circles are called the sides of the spherical triangle t-, ABC. Thus, they are determined 
by the angles BOC, AOC, AOB of the half-lines OA, OB, OC and are measured 
in radians or in degrees (Fig. 2.6). 

Definition 4. The interior angles of the faces of the trihedral OABC are called 
the angles a, ß, y of the spherical triangle ,6.ABC. They are measured in radians or 
in degrees (Fig. 2.6). 



2.10 TRIGONOMETRIC AND HYPERBOLle FUNCTIONS 83 

REMARK 2. The half-lines joining the centre of the sphere with the vertices of the 
spherical triangle l::,.ABC form the basic trihedral OABC. The so-called polar 
trihedra l OA' B' C' has its edges normal to the faces of the basic trihedral and defines 
on the sphere an Euter spherical triangle l::,.A'B'C', which is polar to L:::,.ABC. The 
sides of the polar triangle are a = 180° - a:, b = 180° - ß, c = 180° - 1; its angles 
are a: = 180° - a, ß = 180° - b, 1 = 180° - c. Thus, substituting the Supplements 
of the angles for the sides and the supplements of the sides for the angles in any 
formula, we get a new formula. 

Fig. 2.6. 

Fundamental properties of spherical triangles: 

Theorem 1. The sides and the angles of an Euler triangle are less than 180° 
(less than n). 

Theorem 2. The sum of the angles a:, ß, 1 of a spherical triangle is always greater 
than 180°. 

Definition 5. The number 

is called the spherical excess of a spherical triangle. 

Theorem 3. The area of a spherical triangle is 

where r is the radius of the sphere and 8° the excess of the triangle expressed in 
degrees. 
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(b) Right-angled Spherical Triangle 

REMARK 3. In this section, c denotes the hypotenuse, a, b the sides "enclosing" 
the right angle and cx, ß the angles opposite to the sides a, b, respectively (Fig. 2.7). 

Theorem 4 (Napier's Rule). We ascribe the hypotenuse c, the angles a, ß and the 
complements of the sides 90° - a, 90° - b to the vertices of a pentagon in the order 
indicated in Fig. 2.8. Then, the cosine of an arbitrary element equals the product 

8 

0 a 
~ 

0 

c b Fig.2.7. Fig. 2.8. 
c 

of the sines of the two opposite elements or the product of the cotangents of the two 
adjacent elements. In this way, we obtain the formulae 

1. cos c = cos a cos b , 2. cos c = cot a cot ß , 
3. cos a = cos a sin ß , 4. cos ß = sin a cos b , 

5. sin a = sin cxsin c, 6. sin b = sin ßsin c, 

7. cos a = tan b cot c , 8. cos ß = tan a cot c , 

9. sin a = tan b cot ß , 10. sin b = tan a cot a . 

TheoremS. Spherical excess: 

e a b 
tan - = tan - tan - . 

2 2 2 

Theorem 6. The solution of a right-angled spherical triangle (Table 2.5): 

TABLE 2.5 

Given Number in parentheses denotes 

elements the corresponding formula 
ofTheorem 4 

a, b I c (1), IX (10), ß (9) 

a,c b (1), IX (5), ß (8) 

a,IX b (10), c (5), ß (3) 
a,ß b (9), c (8), IX (3) 
c, IX a (5), b (7), ß (2) 

IX,ß a (3), b (4), c (2) 
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(c) General (Oblique) Spherical Triangle 

REMARK 4. Let us denote the sides of the triangle ,0, ABC by a, b, c and the angles 
corresponding to the vertices A, B, C by oc, ß, y, respectively (Fig. 2.9). 

Theorem 7. Fundamental formulae for an Euler triangle: 

sin a sin b sin c 
1. --=--=--

sin oc sin ß sin y 
(the Sine Theorem). 

c 

c fJ 
A 8 Fig. 2.9. c 

2. cos a = cos b cos c + sin b sin c cos IX (the Cosine Theorem for the sides). 

3. cos oc = -cos ß cos y + sin ß sin y cos a (the Cosine Theoremfor the angles). 

4. (a) cos a sin b = sin a cos b cos y + sin c cos IX; 
(b) cot a sin b = sin y cot IX + cos y cos b . 

5. (a) cos oc sin ß = sin y cos a - sin IX cos ß cos c; 
(b) cot oc sin ß = sin c cot a - cos c cos ß . 

Theorem 8. Further formulae for an Euler triangle: 

6. tan t(a + b) = cos t(IX - ß) tan tc. 
cos t(oc + ß) 

7. tant(a- b) = sin!(oc- ß)tan!c. 
sin !(IX + ß) 

8. tan !(IX + ß) = cos t(a - b) cotty. 
cos 1-(a + b) 

9. tan t(IX - ß) = s~n t(a - b) cotfy. 
sm t(a + b) 

10. cos t(oc + ß) cos fc = cos t(a + b) sin ty. 

11. sin t(IX + ß) cos tc = cos !(a - b) cos fy. 

12. cos t(oc - ß) sin tc = sin t(a + b) sin 1-Y. 

13. sin t(oc - ß) sin tc = sin !(a - b) cos fy. 
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In formulae 14 and 15 the notation 

s = 1-(a + b + c), s1 = s - a, s2 = s - b, s3 = s - c, 

u =-!(IX + ß + Y), at = a- IX, a2 = a- ß, 0"3 = u- Y 

is used. 

a 1 Jcos a 1 cos a2 cos a3 14. cot- = --
2 cos a 1 -cos a 

IX 1 Jsin s1 sin s2 sin s3 15. tan - = -- . 
2 sin s1 sin s 

2.11 

Theorem 9. The solution of a general spherical triangle is shown in Table 2.6. 

Given 
elements 

a, b, y 

oc, ß, c 

a, b, c 

oc, ß, y 
a, b, oc* 
oc, ß, a** 

TABLE 2.6 

Number in parentheses denotes the corresponding 
formula of Theorems 7 and 8 

oc: ß (8), oc ~ ß (9), c (e. g. 10 or 12) 

a+b a-b 
-- (6), -- (7), y (e.g. 11 or 12) 

2 2 
oc (15), similarly ß and )' 
a (14), similarly b and c 
ß (l), y (9), c (7) 
b (1), c (7), y (9) 

2.11. Inverse Trigonometrie Functions 

Inverse trigonometric functions are the functions arcsin x ( or sin- 1 x ), arccos x 
(cos- 1 x), arctanx (tan- 1 x), arccotx (coC 1 x), which areinverse (see §11.1, 
p. 362) to the trigonometric functions. 

REMARK 1. In this section, the angles are expressed in circular measure. 

* lf sin b sin oc > sin a, then no solution exists. If sin b sin oc = sin a there is a single solution 
(the triangle is right-angled). If sin b sin oc < sin a, it is necessary to distinguish two cases: 1° if a 
is nearer to 90° than b, then there exists one solution (ß and b are of the same kind, i.e. both 
either acute or obtuse); 2° if b is nearer to 90° than a, then there are two solutions or no solution 
according to whether a and oc are of the same or of different kinds, acute or obtuse, respectively. 

** The discussion of this case can be obtained from the discussion of the case* by substi­
tuting throughout the sides a, b, c for the angles oc, ß, y and vice versa. 
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Definition 1. The function y = arcsin x is inverse to the function x = sin y 
( -tn ~ y ~ tn); it is defined for x in the interval [ -1, 1]. Thus: If -1 ~ 
~ x ~ 1, then arcsin x is the unique angle y in the range [ -!n, !n] suchthat 
sin y = x.* 

Definition 2. The function y = arccos x is inverse to the function x = cos y 
(0 ~ y ~ n); it is defined for x in the interval [ -1, 1]. Thus: If -1 ~ x ~ 1, then 
arccos x is the unique angle y in the range [0, 1t] such that cos y = x. 

Definition 3. The function y = arctan x is inverse to the function x = tan y 
( -!n < y < tn); it is defined for all realx. Thus, if x isareal number, then arctan x 
is the unique angle y in the range ( -tn, tn) suchthat tan y = x. 

Definition 4. The function y = arccot x is inverse to the function x = cot y 
{0 < y < n); it is defined for all real x. Thus, if x isareal number, then arccot x is 
the unique angle y in the range (0, n) such that cot y = x. (The range ( -tn, !n) is 
sometimes used.) 

1 }( 

Fig. 2.10. 

REMARK 2. The graphs of the functions arcsin x, arccos x, arctan x, arccot x are 
illustrated in Fig. 2.10 and 2.11. 

Theorem 1. The. values of the inverse trigonometric functions at some special 

points: 

arcsin 0 = 0, arcsin ! = in, arcsin 1 = !n, arcsin ( -1) = -tn; 

*) In English Iiterature this function is more usually called the principal value of arcsin x, 
the general function arcsin x being the (multi-valued) function inverse to x = sin y, and similarly 
for the other inverse functions. 
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areeos 0 = -!n , areeos -! = tn , areeos 1 = 0 , areeos (- 1) = n ; 

aretau 0 = 0, aretau 1 = in, lim aretau x = !n, lim aretau x = - -!n ; 
x-+ + oo x--oo 

areeot 0 = -!n , arecot 1 = in , lim areeot x = 0 , lim arceot x = n . 
x-+ + oo x~-oo ,, 

---~+-" ~--------·· ------arccot x----------- -- ....... 
................. 

arctan x 

.............. 

.............. ,I n 
-~,2 -----

> ' ... , 

.......... 
',, 

---------
0 x=1 ·x 

~ -~ --·-------------

Fig. 2.1 I. 

Theorem 2. Fundamental formulae and relations among inverse trigonometric 
functions (if the domain of validity is not mentioned, then the formula holds for 
all x): 

1. aresiu (siu x) = x (jxj ~ -!n), areeos (eos x) = x (0 ~ x ~ n). 

2. siu (aresiu x) = x, eos (arecos x) = x (lxl ~ 1). 

3. aretau (tau x) = x (/xl < !n), areeot (eot x) = x (0 < x < n). 
4. tau ( aretau x) = x. 
5. eot (areeot x) = x. 

6. aresin x + arccos x = -!n (lx / ~ 1) . 

7. aretau x + arceot x = -!n. 
8. aresiu ( -x) = -aresiu x (lx/ ~ 1). 

9. areeos ( -x) = n - areeos x (/x/ ~ 1). 

10. aretau ( -x) = - aretau x. 
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11. areeot ( -x) = 1t - areeot x . 

12. aresin x = aretan x (lxl < 1). 
~(1 - x 2 ) 

13. areeos x = areeot x (!xl < 1). 
~(1 - xz) 

14. aretan x = aresin x . 
~(1 + x 2 ) 

X 
15. areeot x = areeos -------=-

~(1 + x 2 ) 

1 
16. aretan x = areeot- (x > 0). 

X 

17. aresin x = areeos ~(l - x2), areeos x = aresin .j(1 - x2) (0 ~ x ~ 1). 

18. aresin x + aresin y = 
= aresiu [x ~(1- y 2 ) + y ~(1- x2)] (xy ~ Oor x2 + y2 ~ 1), 

= n- aresin [x ~(1- y 2 ) + y ~(1- x2)] (x > 0, y > 0 aud x 2 + y 2 > 1), 

= -n - aresin [x ~(1- y2) + y ~(1- x2)] (x < 0, y < 0 and x2 + y2 > 1). 

19. aresirr x - aresin y = 
= aresirr [x ~(1 - y 2)- y ~(1 - x2)] (xy ~ 0 or x 2 + y 2 ~ 1), 

= 1t - aresin [x -v/(1 - y 2)- y ~(1- x2)] (x > 0, y < 0 aud x2 + y 2 > 1), 

= -n- aresiu[x~(1-y2)-y~(1-x2)] (x<0,y>Oaudx 2 +y2 > 1). 

20. areeos x + areeos y = areeos [xy - ~(1 - x 2 ) ~(1 - y2)] (x + y ~ 0), 

= 2n- areeos [xy- ~(1 - x 2 ) ~(1 - y 2)] (x + y < 0). 

21. areeos x- areeos y = -areeos [xy + .j(1 - x 2 ) ~(1 - y2)] (x ~ y), 

= areeos [xy + ~(1 - x 2) .j(1 - y 2)] (x < y). 

X+ y ( 22. aretau x + aretau y = aretau x y < 1) , 
1- xy 

x+y 
= 1t + aretan ( x y > 1, x > 0) , 

1 - xy 

x+y 
= - 1t + aretau ( x y > 1, x < 0) . 

1 - xy 

x-y 
23. aretau x - aretau y = aretan (xy > -1), 

1 + xy 
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x-y = 1t + aretau (xy < -1, x > 0), 
1 + xy 

x-y 
-n + aretau (xy < -1, x < 0). 

1 + xy 

2.12. Hyperbolle Functions 

Definition 1. The functions siuh x (hyperbolic sine), eosh x (hyperbolic cosine) 
aud tauh x (hyperbolic tangent) are defiued for allreal x as follows: 

I 
I 
\cosh X 

I 
I 
I 
I 
I 
I 
I 
I 

\ 
I 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

' ' ' ' ... , 

siuh x = !(ex - e-x), eosh x = t(ex + e-x), 

e"' - e-x siuh x 
tanhx = = --. 

e" + e-x cosh x 

y : 
y \ 

I 
I 

I 
I 

I \coth X 

.......... _ 1 ",'' 
-~' 

-1 

Fig. 2.12a. 
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Fig. 2.l2b. 
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For x =f. 0, the function coth x (hyperbolic cotangent) is defined by the relation 

ex+e-x I 
cothx = = ---. 

ex- e-x tanh X 

Further, the following functions are defined 

sech x = _I_ (hyperbolic secant) 
cosh x 

cosech x = ___ I_ for x =f. 0 (hyperbolic cosecant). 
smh x 

Fig. 2.13. 

REMARK 1. The behaviour of the hyperbolic functions can be seen in Fig. 2.12a,b. 

REMARK 2. The hyperbolic functions stand in a similar relation to an equiangular 
hyperbola with semi-axis of length 1 as do the trigonometric functions to a unit 
circle; the independentvariable (argument) x ~ 0 derrotes the area of the hyperbolic 
sector (the shaded area in Fig. 2.13). Here, 

"'"' ,....., ,....._ 
sinh x = BD, cosh x = OB, tanh x =AC. 

Theorem 1. Relations between hyperbolic functions: 

1. cosh 2 x - sinh 2 x = 1 , 

2. cosh x + sinh x = ex , 

coshx- sinhx = e-"". 

3. sinh ( -x) = -sinh x, 

cosh ( -x) = cosh x, 

tanh ( -x) = -tanh x, 

coth ( -x) = -coth x. 
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4. jsinh xj = ~(cosh2 x - 1) = jtanh xj 
~(1 - tanh2 x) 

5. cosh x = J(sinh2 x + 1) = jcoth xj 
J(coth2 x - 1) 

sinh x 
6. tanh x = ------ . 

.J(sinh2 x + 1) 

7. sinh (x ± y) = sinh x cosh y ± cosh x sinh y, 

cosh (x ± y) = cosh x cosh y ± sinh x sinh y, 

1 

.J(coth2 x - 1) 

1 

J(1 - tanh2 x) 

h ( ) tanh x ± tanh y h ( ) 1 ± coth x coth y tan x ± y = , cot x ± y = . 
1 ± tanh x tanh y coth x ± coth y 

8. sinh 2x = 2 sinh x cosh x, cosh 2x = sinh2 x + cosh2 x, 

2 tanh x 
tanh 2x = -----

1 + tanh2 x' 
h 2 1 + coth2 x 

cot x = 
2 coth x 

9. De Moivre's Theorem: (cosh x ± sinh xt = cosh nx ± sinh nx. 

10 . } . h 2 . h X + y h X =F y • Sill 1 X ± 8111 y = Sill --- COS -- , 
2 2 

x+y x-y 
cosh x + cosh y = 2 cosh -- cosh -- , 

2 2 

cosh x - cosh y = 2 sinh x + y sinh x - Y , 
2 2 

sinh (x + y) 
tanh x ± tanh y = - . 

cosh x cosh y 

2.13 

11. Relations between hyperbolic and trigonometric functions (see Remark 
20.4.4): 

sin ix = i sinh x , cos ix = cosh x , 

tan ix = i tanh x , cot ix = - i coth x . 

2.13. Inverse Hyperbolic Functions 

Inverse hyperbolic functions are the functions arsinh x (sinh - 1 x), arcosh x 
( cosh- 1 x ), artanh x ( tanh- 1 x ), arcoth x ( coth - 1 x) which are inverse ( see 11.1, 
p. 400) to the hyperbolic functions. 
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Definition 1. The function y = arsinh x is inverse to the function x = sinh y; 

it is defined for all real x. Thus: If x is a real number, then arsinh x is the unique 
number y such that sinh y = x. 

Definition 2. The function y = arcosh x is inverse to the function x = cosh y 
considered only in the interval [0, oo ); it is defined for every x in the interval 
[1, oo ). Thus: If 1 ~ x < + oo, then arcosh x is the unique number y in the inter­
val [0, oo) suchthat cosh y = x.*) 

Fig. 2.14a. 

Fig. 2.14b. 
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Definition 3. The function y = artanh x is inverse to the function x = tanh y; 

it is defined for all x in the interval ( -1, 1). Thus: If -1 < x < 1, then artanh x 
is the unique number y such that tanh y = x. 

*) In English Iiterature the function arcosh x is more usually defined as the two-valued 
function inverse to x = cosh y. 
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Definition 4. The function y = arcoth x is inverse to the function x = coth y; 

it is defined for all x satisfying lxl > 1. Thus: If lxl > I, then arcoth x is the uni­
que number y such that coth y = x. 

REMARK I. The graphs of the inverse hyperbolic functions are illustrated in Fig. 
2.I4a,b. 

Theorem 1. Inverse hyperbolic functions expressed by means of logarithms: 

arsinh x =In [x + -J(x2 + I)], arcosh x =In [x + -J(x2 - I)] (x;?; I), 

l+x x+l 
artanh x = 1 In-- (lxl < I), arcoth x = 1-In -- (lxl > I). 

1-x x-1 

Theorem 2. Relations between the inverse hyperbolic functions: 

I. arsinh x = artanh x , iarsinh xl = arcosh -J(x 2 + 1). 
-J(x 2 + 1) 

2. artanh x = arsinh x (lxl < 1), 
-J(I - x2) 

I 
= arcoth- (lxl <I, x # 0). 

X 

3. arsinh x ± arsinh y = arsinh [ x -J(l + y 2 ) ± y -J(l + x2)], 

larcosh x ± arcosh Yl = arcosh [xy ± -J[(x 2 - I) (y 2 - l)]] 

(x ;?; I, y ;?; 1) , 

x+y 
artanh x ± artanh y = artanh - (lxJ < 1, IYI < 1). 

1 ± xy 



3. SOME FORMULAE (AREAS CIRCUMFERENCES, 
VOLUMES, SURFACES, CENTROIDS, MOMENTS 

OF INERTIA) 

ßy VACLAV VILHELM 

References: [26], [28], [68]. 

3.1. Area, Circumference, Centroid and Moments of Inertia 
of Plane Figures 

REMARK 1. For the calculation of areas and circumferences of plane figures by 

means of integrals see § 14.9. 

(a) The Triangle (Fig. 3.1). Consider a triangle ABC, denoting its sides by a, b, c, 
interior angles by IX, ß, y, altitudes by ha, hb, hc, radius of the inscribed circle by r, 
radius of the circumscribed circle by R, area by P, semi-perimeter by s = !( a + b + c ), 
medians by ta, tb, tc, centroid by T. The following relations hold: 

c 

Fig. 3.1. 
A 

= .J[s(s- a)(s- b)(s- c)J (Heron'sformula), 

abc 2 2 • . ß . 
= - = R Sill IX Sill Sill 'l' ' 

4R 

= rs = r2 cot ~ cot ~ cot _r , 
2 2 2 

=!ab sin y. 

(1) 

(2) 

(3) 

(4) 

(5) 



96 SURVEY OF APPLICABLE MATHEMATICS 3.1 

If x 1, y 1 ; x 2 , y2 ; x3 , y 3 are the coordinates ofthe vertices A, B, C of a triangle in a 
cartesian coordinate system, then 

(6) 

the minus sign relates to the case where the determinant is negative. 

The coordinates of the centroid T (the point of intersection of the medians 
tg, tb, tc) are 

(7) 

The moment of inertia about a median axis o, i.e. an axis through the centroid 
parallel to the side c, or about the side c is 

10 = 316ch~, or Ic = /2ch~, respectively. (8) 

The area of a right-angled triangle ABC with hypotenuse c (hence, y = 90°) is 

P = }:ab = !a 2 tan ß = l-c2 sin 2oc. (9) 

REMARK 2. For trigonometric formulae concerning a triangle see § 2.9, p. 78. 

(b) The Quadrilateral (Fig. 3.2). Consider a quadeilateral with sides a, b, c, d 
and with vertices A, B, C, D (the sides intersecting only at the vertices). Let u10 u2 be 
its diagonals, cp the angle between them, and h1, h2., the altitudes of the triangles 

c 

D 

ABD, BDC, dropped from the points A, C, respectively. Then the area P ofthe quadri­
Iateral is 

P = }u 1u2 sin qJ = t{h 1 + h2 ) u2 (10) 

(if the quadeilateral is not convex, then u2 in (10) is the inner diagonal). 

If the vertices of a convex quadrilaterallie on a circle then the area of the quadri­
lateral is 

P = ~[(s - a) (s - b)(s - c)(s - d)] 

where s = t(a + b + c + d). 

(11) 
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A trapezium (Fig. 3.3a) is a (convex) quadrilateral two opposite sides of which 
are parallel. The area Pis given by the formulae (10), (11) and 

P = t(a + c) h. (12) 

The centroid T lies on the segment MN, where M, N, are the mid-points of the 
sides a, c, respectively, at distance ha = h(a + 2c)/[3(a + c)] from the side a. 

Fig. 3.3a. Fig. 3.3b. 

The moments of inertia of an isosceles trapezium of altitude h about the median 
axes ol> o2 (Fig. 3.3b) are 

_ h 3(a 2 + 4ac + c2) • _ h(a4 - c4 ) 
/01 - > /Ol - ' (13) 

36(a + c) 48(a - c) 

A parallelogram (Fig. 3.4) is a quadrilateral the opposite sides of which are 
parallel and, consequently, of the same length. If y = 90°, we get a reetangle or 
a square. The area P of a parallelogram is given by formulae (10), (11), {12) (where 
a = c, b = d) and 

P =ab sin y. 

A rhombus is a parallelogram with a = b. Then, q> = 90° and 

P = a2 siny = tu 1u2 • 

A square is a rhombus with y = 90°. 

(14) 

{15) 

The centroid T of a parallelogram lies at the point of intersection of the diagonals. 

Fig. 3.4. 

The moment of inertia of a parallelogram about the diagonal u 1 is 

I 1 3·3 1p2·2 
,.1 = 48u1u2 sm q> = 24 u2 sm q>. (16) 

The moment of inertia of a reetangle with sides a, b about a median axis o 
parallel to the side a is 

{17) 
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(c) The Polygon. The area can be determined by dividing the polygon into simple 
figures, for example into triangles (see Fig. 3.5a). 

A regular polygon (Fig. 3.5b) has all its sides and all its angles equal. Let n be the 
number of sides, a their common length, o: = 360°/n the centrat angle, r the radius 
of the inscribed circle, R the radius of the circumscribed circle, P the area, C the 

Fig. 3.5a. Fig. 3.5b. 

circumference of the regular polygon. 'fhen 

P = !nar = !na 2 cot ~ = nr2 tan ~ = !nR2 sin o: , 
2 2 

(18) 

. 0: 0: 
C = na = 2nR sm - = 2nr tan - . 

2 2 
(19) 

TABLE 3.1 

Calculation of the elements of regular polygons 

p p p R a a R r 
n -

R2 -;I - - - - -
a2 a R r r R 

-~·-

I 
3 0·433 0 1·299 0 5·196 2 0·577 4 1·732 1 3·464 1 2·000 0 0·500 0 
4 1·000 0 2·000 0 4·000 0 0·707 1 1·414 2 2·000 0 1-414 2 0·707 1 
5 1·720 5 2-3776 3·632 7 0·850 7 1·1756 1·453 1 1·236 1 0·809 0 

I 6 2·598 1 2·598 1 3-4641 1·000 0 1·000 0 1·154 7 1·154 7 0·866 0 
7 3·633 9 2·736 4 3-371 0 1·152 4 0·867 8 0·963 1 1-1099 I 0·901 0 
8 4·828 4 2-828 4 3·313 7 1-306 6 0·765 4 0·828 4 1·082 4 0·923 9 
9 6·181 8 2-892 5 3·275 7 1-461 9 0·684 0 0·727 9 1·064 2 0·939 7 

10 7-694 2 2·938 9 3·249 2 ' 1-618 0 0·618 0 0·649 8 1·051 5 0·951 1 
12 11-1962 3·000 0 3·215 4 1·931 9 0·5176 0·535 9 1·035 3 0·965 9 
15 17·642 4 3·050 5 3·188 3 2-4049 0·415 8 0·425 1 1·022 3 0·978 I 
16 20·109 4 3·061 5 3·182 6 2·562 9 0·390 2 0·397 8 1·0196 0·980 8 
20 31·568 8 3·090 2 3·167 7 3·196 2 0·312 9 0·316 8 1·012 5 0·987 7 
24 45·574 5 3·105 8 3·159 7 3-830 6 0·2611 0·263 3 1-008 6 0·991 4 
32 81·225 4 3·121 4 3·151 7 5·1 01 1 0·196 0 0·197 0 1·004 8 0·995 2 

I 

48 183·084 6 3·132 6 3·146 1 7·644 9 

I 
0·130 8 0·131 1 1·002 1 0·997 9 

64 325-687 5 3·136 5 3·144 1 10·190 0 0·098 1 0·098 3 1-001 2 0·998 8 

______ I_ ' 
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The centroid of a regular polygon of n vertices is at its centre, the moment of 
inertia about an arbitrary axis o passing through the centre is 

(20) 

(d) The Circle. Let r denote the radius, d the diameter, P the area and C the circ­
umference of the circle. Then 

P = nr2 = -!nd2 = !Cd~ 0·785 4d2 ; 

C = 2nr = nd ~ 3·141 59d. 

The centroid of a circle is at its centre. 

The moment of inertia about an axis o passing through the centre is 

(21) 

(22) 

(23) 

REMARK 3. For the measurement of angles and for conversion of angles measured 
in degrees into radians and vice versa, see § 2.1, p. 69. 

The length l of a circular arc of radius r, corresponding to the central angle tX 

(Fig. 3.6): 

l = r arc tX (arc a denotes the magnitude of the angle tX in radians), (24) 

l = nra ~ 0·017 453ra (the angle in degrees), (25) 
180 

1 ~ -J( t2 + 136 h2) . (26) 

Fig. 3.6. 

A segment of a circle (Fig. 3.6, the shaded area). Let r be the radius, l the length of 
the arc, t the length of the chord, a the central angle (in degrees), h the altitude of 
the segment, P the area of the segment. Then 

t = 2 -J(2hr - h2 ) = 2r sin ~ , 
2 

t (X 
h =- tan-, 

2 4 
(27) 
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p = !r2 ( nct. - sin oc) = -![lr - t(r - h)]. 
180 

3.1 

(28) 

The centroid T lies on the bisector o1 of the central angle (Fig. 3.6); its distance 
from the centre S is 

-- 4r sin3 !ct. 
TS = 1 . • 

3(1sonct. - sm ct.) 
(29) 

The moments of inertia about the axes o1 , o2 (Fig. 3.6) are 

10 , = } 8 r"" G~ -8 sin ct. + sin 2ct.), 102 = 116 r 4 (;~- sin 2ct.). (30) 

A sector of a circle (Fig. 3. 7). The area 

2 
p = nr oc = l.rl 

360 2 ' 
(31) 

where oc stands for the magnitude of the central angle in degrees. 

The centroid T lies on the bisector o1 of the central angle; its distance from the 
centre S (Fig. 3.7) is 

I 

Fig. 3.7. 

TS = 240r sin !oc . 
nct. 

'o 1 

Fig. 3.8. 

The moments of inertia about the axes o1, o2 (Fig. 3.7) are 

I = i-r4 ( noc - sin oc) , 
01 180 

Io 2 = -gr - + sm oc • 14 (mx . ) 
180 

(32) 

(33) 
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An annulus (Fig. 3.8). Let r be the radius of the inner circle, R the radius of the 
outer circle, Q = 1-(r + R), m = R - r, and P the area. Then 

(34) 

The centroid lies at the centre S. 

The moment of inertia about the median axis o1 is 

(35) 

A sector of an annulus (with central angle rx in degrees, see Fig. 3.8, the shaded 
area). The area Pis given by 

(36) 

The centroid T lies on the bisector o1 of the centrat angle; its distance from the 
centre S is 

-T 4 R3 - r 3 sin ta s =- --. 
3 R2 - r 2 - 1-na 180 

The moments of inertia about the axes o1, o2 (Fig. 3.8) are 

A 8 

Fig. 3.9. 

(37) 

(e) The Ellipse (Fig. 3.9). Let SA = a be the semi-major axis, SC= b the 
semi-minor axis, e = .j(a2 - b2 )/a the eccentricity of the ellipse, C its circumfer­
ence, P its area. The following relations hold: 

P = nab, 

C = 4aE(e, !n) 

(39) 

(40) 

where E(e, 1-n) = f~12 .j(l - e2 sin2 cp) dcp is the so-called complete elliptic integral 
of the second kind (see § 13.12). The following approximate formulae hold for the 
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circumference of an ellipse: 

64 - 3/4 
C ~ n[1·5(a + b)- v'(ab)], C ~ n(a + b) , a-b 

where l = --. 
64 - 16/2 a + b 

(41) 

The circumference of an ellipse with semi-axes a, b can be calculated by using 
Table 3.2. The circumference Cis given by the formula C = ak. 

The centroid of an ellipse lies at the centre S. 

The moments of inertia about the axes a, b are as follows: 

(42) 

An elliptic sector (Fig. 3.9, the shaded area) has the area 

P = ab arccos :_ . 
a 

(43) 

REMARK 4. For further properties of the ellipse see §§ 4.2 and 5.10. 

TABLE 3.2 

~-~.,-----k-~~-~-- -: ----~-- - -- ~- --

1--a--7-----~~-~ ---1--a-c-----

0·00 
01 
02 
03 
04 
05 
06 
07 
08 
09 

0·10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

14·000 o o-20 4·202 o ,I 
21s 6 [I 
235 6 1 

253 1 I 

0·40 
41 
42 
43 

001 1 
003 7 
007 8 
013 1 
019 4 
026 7 
034 8 
043 8 
053 5 
064 0 i 

075 2 'lt 
087 0 ! 
099 4 I 

112 5 11 

126 1 )I 
140 3 ! 

1ss o 11 

170 211 
185 9 

I 

21 
22 
23 
24 
25 
26 
27 
28 
29 

0·30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

271 0 44 

289 z I 4s 
307 8 I 46 
326 8 il 47 
346 2 I 48 
365 9 49 
385 9 i 0·50 

406 21 51 
426 9 I 52 
447 9 l 53 
469 2 II 54 
49o s [I 55 

512 6 II 56 
534 7 i 57 

I 
557 1 i 1 58 
579 7 il 59 

4·602 6 
625 8 
649 2 
672 8 
696 6 
7207 
745 0 

769 5 I 
794 2 i 

819 1 1
1 

s44 2 1 

869 5 ' 
895 0 i 
920 7 
946 6 
972 6 
998 8 

5·025 2 
051 8 
078 5 

k 11 ~ 1 k 

b 

a 

----------~~---T-~-
o-6o I 5·1 05 4 I 0·80 I 5·672 3 

61 I 132411 s1 1020 
62 I 159 6 I 82 I 731 7 
63 187 o ; ) 83 1 761 5 

214 5 •_1 ]· 84 1 791 5 64 
65 
66 
67 
68 
69 

0·70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

242 I i 85 I 821 5 

269 9 11 86 I 851 6 
297 8 l i 87 881 9 
325 9 :j 88 I 912 2 
354 l 11 89 

1

, 942 6 
382 4 .; 0·90 973 2 

410 8 Ii 91 6·003 8 
4394 ,, 92 0345 
468 1 11 93 o65 3 

496 9 ~~~ 94 096 2 
525 8 I 95 127 I 

I 
5549 I 96 1ss2 
5841 ,I 97 1893 
613411 98 2205 
642 8 :I 99 251 8 

!' I :I 
----------------'-------------'----
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(f) The Hyperbola (Fig. 3.10). Let OA = a be the semi-major axis, OC = 

= b be the semi-minor axis, e = .J(a2 + b2)Ja the eccentricity. 

A segment MBN of the hyperbola (Fig. 3.10, the shaded area) has the area 

P = xy - ab In(:?: + ~·) = xy - ab arcosh ~. (44) 
a b a 

01 

~=d 

Fig. 3.10. 

f---.....:..;...~o.~.R 
'-..... 

Fig. 3.11. 

REMARK 5. For further properties of the hyperbola see § 4.3, 5.11. 

(g) The Parabola (Fig. 3.11). The area of a segment MVN of the parabola 
( the shaded area) is 

P = tav sin ()(; (45) 

it is thus equal to two-thirds of the area of the parallelogram KLMN. 

The length I of an arc MVR of a parabola is 

(46) 

the following relaiion holds approximately (for small hjc): 

(47) 

The centroid T of a parabolic segment MVR (Fig. 3.11) lies on the axis o1 of the 
parabola; its distance from the vertex V is 

(48) 
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The moments of inertia of a parabolic segment MVR about the axes o1, o2 

(Fig. 3.11) are 

(49) 

REMARK 6. For further properties of the parabola see § 4.4, 5.12. 

3.2. Volume, Surface, Centroid and Moments of lnertia of Solids 

REMARK 1. For the calculation of volumes and surfaces of solids by means of 
integrals see § 14.9. 

REMARK 2. In the following text, V always denotes the volume, S the total and Q 
the lateral area * of the surface of the respective solids. 

(a) The Prism (Fig. 3.12). Let a be the length of the lateral edge or the slant 
height, h the height of the prism (i.e. the distance between the planes of the upper 
and lower bases ), P the area of the base, N the area of the normal section ( the plane 
section which is perpendicular to the lateral edges ). Then 

V=Ph=Na, 

Q = CNa , S = 2P + CNa 

where C N is the circumference of the normal section. 

Fig. 3.12. 

(1) 

(2) 

The centroid lies at the mid-point of the segment connecting the centroids of the 
two bases of the prism. 

A truncated triangular prism (i.e. cut off by a plane non-parallel to the plane of 
the base; Fig. 3.13), whose lateral edges are of lengths a, b, c, has the volume 

V= -!N(a + b + c). (3) 

A parallelepiped is a prism, the base of which is a parallelogram. 

* i.e. area of the slant faces or of the curved surface. 
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A right parallelepiped (ioeo a right prism, the base of which is a reetangle 
or a square ), whose edges are of lengths a, b, c, has the volume 

V= abc (4) 
and the surface area 

S = 2(ab + ac + bc) o (5) 

Fig. 3.130 Fig. 3ol4o 

The moment of inertia about the median axis o which is parallel to the edge c is 

A cube is a right parallelepiped whose edges are of the same length a; the volume 
and surface are given by 

(6) 

(b) The Pyramid (Figo 3ol4)o Let h be the height of the pyramid (the distance 
of the apex H from the plane of the base ), P the area of the baseo Then 

V= tPh o (7) 

The centroid lies on the segment connecting the apex and the centroid of the 
base; its distance from the base is !ho 

A triangular pyramid with one vertex at the origin of the cartesian coordinate 
system, the other three vertices being (x;, y;, z;) (i = 1, 2, 3), has the volume equal 
to one-sixth of the absolute value of the determinant 

xl> Yt> zl 
D = Xz, Jl, z2 , i.eo V= i!Dlo 

x3, YJ• Z3 

A regular pyramid (ioeo a pyramid whose base is a regular polygon, and whose 
altitude passes through the centre of the base )o The lateral area 

Q =!Cl (8) 

where C is the circumference of the base and l the length of the perpendicular 
from the apex to ( any) of the edges of the base. 
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Afrustum of a pyramid (Fig. 3.15) (the bases lie in parallel planes). Let P 1, P2 

be the areas of the bases and h the height (the distance between the two bases). 
Then 

(9) 

If a frustum of a pyramid is regular, then the lateral area is 

(10) 

where Cl> C2 are the circumferences of the bases and 1 is the altitude of the trapezoid 
formed by an (arbitrary) lateral face. 

Fig. 3.15. Fig. 3.16a. Fig. 3.16b. 

REMARK 3. (a) A dihedral angle (Fig. 3.16a) (the base is a reetangle with sides 
a, b, one pair of opposite slant faces is formed by two congruent isosceles triangles, 
the other pair by two congruent isosceles trapezia). The volume: 

(11) 

The centroid lies on the segment connecting the centre of the upper edge a 1 and 
the centre of the base; its distance from the base is 

h(a + a 1) 
z= . 

2(2a + a 1) 
(12) 

(b) An obelisk (Fig. 3.16b) (the bases are rectangles with sides a, band al> b1, the 
opposite slant faces make the same angle with the base, bvt they do not intersect 
at one point). The volume 

(13) 

The centroid lies on the segment connecting the centres of the two bases; its 
distance from the lower base is 

h a(b + b1) + a 1(b + 3b1) 
Z=- . 

2 a(2b + b 1) + a 1(b + 2b1) 
(14) 

(c) The Cylinder (Fig. 3.17). Let h be the height, l the length of the 
side, P the area of the base, N the area of the normal section (plane section per-
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pendicular to the sides) of the cylinder. Then, the volume V and the lateral area Q 
of the cylinder are given by: 

V= Ph = NI, Q = Cph = CNl, (15) 

where C p, and C N• are the circumferences of the base, and of the normal section, 
respectively. 

The centroid lies at the mid-point of the segment connecting the centroids of 
upper and Iower bases of the cylinder. 

A right circular cylinder. The base is a circle of radius r, lying in a plane which is 
perpendicular to the side of the cylinder, h is the height. Then 

V= 1tr2h, Q = 21trh, 

S = 21tr(r + h) . (16) 

The moment of inertia about the axis of revolution o is 

(17) 

A truncated right circular cylinder (Fig. 3.18). Let h1 be the shortest and h2 the 
Iongest side of the cylinder. Then 

V 2 hl + h2 - 1tr - 2 ' 

(18) 

Fig. 3.17. Fig. 3.18. Fig. 3.19. 

A segment of a right circular cylinder - a cylindrical angle (Fig. 3.19). Using 
the notation of Fig. 3.19, we have 

V= ~[a(3r2 - a2 ) + 3r2(b- r)a] = hr3 (sina- !sin3 a- cccosa), 
3b b 

2rh 
Q = b [(b - r) a + a] , (19) 
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with the angle oc measured in radians (0 < oc ~ 1t). For oc = !1t, we have a = b = r 
and 

(20) 

A hollow right circular cylinder - a tube (Fig. 3.20). Let r be the inner radius, 
R the outer radius, a = R - r the thickness, (] = t(r + R) the mean radius, h the 
height. Then 

V= 1t(R2 - r2) h = 1tah(2R - a) = 1tah(2r + a) = 21t{!ah. (21) 

The moment of inertia about the axis of revolution o is 

(22) 

(d) The Cone (Fig. 3.21). Let h be the height, P the area of the base. Then 

V= }Ph. (23) 

The centroid lies on the segment connecting the apex and the centroid of the 
base; its distance from the base is !h. 

A right circular cone. lts base is a circle of radius r, and the line passing through 
the apex and through the centre of the base ( the axis of the cone) is perpendicular to 
the plane of the base; Iet h be the height. Then 

V= -!-1tr2h, Q = 1trl, S = 1tr(r + l) 

where l = .J(r2 + h2 ) is the Iength of the side of the cone. 

I 
Fig. 3.20. Fig. 3.21. 

The moment of inertia about the axis of revolution o is 

(24) 

(25) 

A frustum of a right circular cone (Fig. 3.22). Using the notation of Fig. 3.22, 
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we have 

V= -!rth(R2 + Rr + r2), Q = rt(R + r) a (26) 

where a = .J[h2 + (R - r)2 ] is the length of the side of the frustum. 

The centroid lies on the axis of revolution o; its distance from the lower base 
(of radius R) is 

Fig. 3.22. 

z = h(R2 + 2Rr + 3r2). 

4(R2 + Rr + r2 ) 

0 

Fig. 3.23. 

The moment of inertia about the axis of revolution o is 

(e) The Sphere. lf r is the radius of the sphere, then 

V= !rtr3 ~ 4·188 8r3 , S = 4rtr2 ~ 12·566r2 • 

Fig. 3.24. Fig. 3.25. 

(27) 

(28) 

(29) 

The moment of inertia about the axis o passing through the centre of the sphere 

I 8 s 
o = l51tr . 

A sector of a sphere (Fig. 3.23). Using the notation of Fig. 3.23, we have 

V= jrtr2h, S = rtr(2h + e). 

(30) 

(31) 
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A segment of a sphere (Fig. 3.24). Using the notation of Fig. 3.24, we have 

V= 1;1th(3e2 + h2 ) = j-1th 2(3r - h), 

S = 21trh + 1t(!2 , Q = 21trh . 

A spherical layer (Fig. 3.25). Using the notation of Fig. 3.25, we have 

v = 1;1th(3e~ + 3ei + h2 ) , 

S = 1t(2rh + ei + eD , Q = 21trh . 

3.2 

(32} 

(33} 

A spherical ring is the part of a spherical layer, obtained by removing from it an in­
scribed frustum of a cone (or a cylinder). If a is the length of the side of the inscribed 
frustum of cone (or of the cylinder), then the volume V of the spherical ring is 

(f) The Ellipsoid with semi-axes a, b, c has the lateral area 

where 
c qJ = arccos-
a 

(34) 

and F(k, qJ), E(k, ({)) are the elliptic integrals ofthe first and second kinds (see § 13.12, 
p. 552). 

The volume of an ellipsoid 

V= !1tabc. (36) 

A prolate spheroid is formed when an ellipse with semi-axes a, b (a > b) is rotated 
around its major axis; its surface is 

(37) 

An oblate spheroid is formed when an ellipse with semi-axes a, b (a > b) is rotated 
around the minor axis; its surface is 

S = 27t (a2 + b2 ln 1 + e)' e = ..J(a2 - b2). 
2e 1 - e a 

The moment of inertia of a spheroid about the semi-axis a is 

la = 1851tab4. 

(38) 

(39) 
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(g) Tbe Paraboloid of Revolution (Fig. 3.26). Thevolume bounded by a para­
boloid of revolution and by a plane perpendicular to its axis at distance h from the 
vertex 0 (the radius of the base being r) is 

(40) 
the lateral area is 

(41) 

The centroid lies on the axis of revolution o; its distance from the vertex 0 of the 
paraboloid is th. 

The moment of inertia about the axis o is 

(42) 

IO 

Fig. 3.26. Fig. 3.27. Fig. 3.28. 

(h) The Torus (annuloid, ring) (Fig. 3.27) is formed by rotation of a circle k 
of radius r, with centre Karound the axis o, lying in the plane of the circle at distance 
R (R > r) from the centre K. 

V= 2n2Rr2 :::::: 19·739Rr2 , 

S = 4n2Rr:::::: 39·478Rr. 

The moment of inertia of a torus about the axis of revolution o is 

(43) 

(44) 

(45) 

(i) The Cask (Fig. 3.28). The diameter of the upper and lower bases is d, the dia­
meter of the central section is D, the height is h. 

Fora circular shape (ABC being an arc of a circle) 

Fora parabolic shape (ABC being an arc of a parabola) 

V::::i~ h(8D2 +4Dd+3d2 ). 
60 

(46) 

(47) 



4. PLANE CURVES AND CONSTRUCTIONS 

By KAREL DRABEK 

References: [6], [118], [143], [155], [162], [187]. 

4.1. The Circle 

A circle (for the definition see § 5.9) with centre S and radius r will be denoted 
by k(S, r). 

By the construction of a circle we mean the determination of its centre and 
radius from certain given conditions ( with the help of fundamental theorems of plane 
geometry). 

Theorem 1. The circle is axially symmetrical about any line passing through 
its centre S (and called a diameter) and, hence, it is radially symmetrical about 
its centre S (Fig. 4.1). 

Fig. 4.1. 

Theorem 2. The tangent at a point of a circle is perpendicular to the line con­
necting this point and the centre of the given circle; consequently, all the normals 
of a circle pass through the centre of the circle. 

Theorem 3. The tangents at the points of intersection of a circle and a diameter 
are parallel. 
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In what follows the term diameter will normally be used in the sense of a so-called 
bounded diameter, i.e. the segment determined by the points of intersection of the 
diameter and the circle ( ellipse, hyperbola, etc.), or its length. 

Definition 1. The diameter of a circle parallel to the tangents at the end points 
of a given diameter is called the conjugate diameter to the original diameter. 

Hence, conjugate diameters of a circle are perpendicular. 

A 

k 

D 

Fig. 4.2. Fig. 4.3. 

Construction 1 of the tangents to a circle k(S, r) from an external point P (i.e. 
from a point whose distance from the centre S of the circle k is d > r): the circle 
constructed on the diameter PS, the so-called Thalet's circle, meets the given circle 
k at two points T, T' (Fig. 4.2) which are the points of contact of the tangents t = PT, 
t' = PT' from the given point P. 

t 

Fig. 4.4. 

Definition 2. The construction of a segment equal in length to the circumference 
of a circle, or of a circular arc, is called the rectification of the circle, or of the cir­
cular arc, respectively. 

In practice, i.e. using a ruler and a pair of compasses, these constructions for a circle 
are only approximate. 

Construction 2 (Kochaiiski's rectification of a circle (Fig. 4.3)). At the point B of 
a diameter AB we construct the tangent t and determine the point C of intersection 
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oft and of the other arm of the angle BSC = 30°. On CB produced we find the 
point D such that CD = 3r. Then AD ~ nr. 

Since the error reaches only 1 mm for r ~ 17 m, it need not be taken into account 
in our constructions. 

Construction 3 (Sobotka's rectification of a circular arc AB (Fig. 4.4)). We deter­
mine the point C on the half-line AS such that AC = 3r. The line CB meets the tan-

gent t constructed at the point A of the circle k at a point D. Then AD ~ AB. 
This construction is very accurate for arcs corresponding to angles qy ~ 30°. 

For example, for qJ = 30° we getan error of I mm for r ~ 2·5 m. Therefore, greater 
arcs are divided into parts in order to rectify arcs ce>rresponding to angles qJ ~ 30° 
with sufficient accuracy. 

By an inverse construction we can wind a given segment onto a circle or transfer 
an arc of a circle onto another circle (Fig. 4.4). 

4.2. The Ellipse 

For the definition of the ellipse see § 5.10 (p. 183). Wederrote the foci by F 1, F 2 

(Fig. 4.5); the line connecting a point of the ellipse and a focus is called a focal 
radius. 

Fig. 4.5. 

Theorem 1. The ellipse is a curve symmetrical about the axis connecting bothfoci 
(the major axis) and about the perpendicular bisector of the segment F1F2 (the 
minor axis) and hence it is radially symmetrical about the point S of intersection 
of the axes of the ellipse (the centre of the ellipse). 
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The points A1 , A 2 of the ellipse on the major axis are called the major vertices, 
the points B1, B 2 on the minor axis the minor vertices. The length A 1S = A 2 S = a is 
called the semi-major axis, and the length B 1S = B 2S = b the semi-minor axis. 
Let the length F 1S = F 2 S = ae, so that the ratio F 1SjA 1S = e. Then e is called 
the eccentricity of the ellipse. 

Theorem 2. Between the lengtlts a, b and the eccentricity e, the relation a 2e2 = 
= a 2 - b2 holds. 

Fig. 4.6. Fig. 4.7. 

Construction 1 of points of an ellipse with semi-axes a, b by means of its definition 
(Fig. 4.5): We determine the major and minor vertices ofthe ellipse and, by Theorem 2, 
we determine the foci F 1 , F 2 on the major axis. We choose an arbitrary point L be­

tween the points F 1 , F2 and describe circles of radii A 1L, aboutone focus and A 2L 

about the other. The points of intersection M, M' of these circles kl> k 2 are points 
of the ellipse. By an interchange of the foci as centres of the constructed circles, 
we get two further points M 1 , M~ of the ellipse. This construction is not accurate 
in the vicinity of the major vertices A 1 , A2 • 

Construction 2 of points of an ellipse with given semi-axes using affinity with a circle 
(Fig. 4.6): Let the (vertex) circles ka, kb with centres at the point S and radii a, b 
be cut by a radius from the point S at the points I, 2. The line through the point 1 
parallel to the minor axis and the line through the point 2 parallel to the major axis 
intersect at a point M of the ellipse. The construction is always accurate, for the aux­
iliary lines intersect at right angles. 

Construction 3 of an ellipse with given semi-axes a, b (Fig. 4.7). 

(a) By means of the difference of the semi-axes: If the segment U 1 V1 = a - b is 
moved along two perpendicular lines, then the point M (exterior to the segment 
U 1 V1) describes the ellipse with semi-axes MU 1 = a, MV1 = b. 
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(b) By means of the sum of the semi-axes: If the segment U 2 V2 = a + b is moved 
along two perpendicular lines, then the point M (interior to the segment U 2 V2 ) 

describes the ellipse with semi-axes MU 2 = a, MV2 = b. 

This construction is often used to determine the length of one of the semi-axes, 
given the other semi-axis, the position of the axes and a point of the ellipse. 

Theorem 3. The tangent, or the normal, at a given point of an ellipse bisects 
the angle between the focal radii which contains, or does not contain, a major 
vertex of the ellipse, respectively. 

Construction 4 of the tangent and normal at a point M of an ellipse using the ciclres 
ka, kb, ka+b (Fig. 4.6): The required tangent is the line connecting the point M of the 
ellipse and the point of intersection 3 ( or 4) of the tangent constructed at the point 1 
( or 2) of the circle ka ( or kb) and the major ( or the minor) axis of the ellipse. The nor­
mal to the ellipse at the point M joins the point M and the point 5 which is the point 
of intersection of the half line SI and the circle ka+ro ( of centre S and radius a + b ). 

The following theorems are important for the construction of tangents from an 
external point of an ellipse and for some constructions of the ellipse (Fig. 4.5). 

Theorem 4. The locus of points Q which are reflections of one focus of an ellipse 
in its tangents is the circle q having its centre at the other focus and radius 2a. 

b) 

Fig.4.8. 

Theorem 5. The locus of the feet P of perpendicular lines dropped from the foci 
of an ellipse to its tangents is the vertex circle ka(S, a ). 

Theorem 6. The locus of the centres of circles tauehing the circle q2(F2 , 2a) and 
passing through its internal point F 1 is the ellipse with foci F 1, F 2 and with its 
major axis of length 2a. 
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Theorem 7. Let the vertex of a right angle move along the circle ka(S, a) so that 
one of its arms passes through an internal point F 1 of the circle ka; then the other 

arm is a tangent to the ellipse withfocus F 1> centre Sand semi-major axis of length a. 

Construction 5 of tangents to an ellipse from an external point R: 

(a) By means of the circle q1 (Fig. 4.8a): We determine the points of intersection 
Q1, Q2 of the circles k(R, RF2 ) and q1(F1, 2a). The perpendicular bisectors of the 
segments Q1F 2 , Q2F 2 are the tangents t 1, t2 from the point R to the ellipse. The 

aJ b) 

Fig. 4.9. 

points of contact Tl> T2 are the points of intersection of the tangents t 1, t2 and the 
lines connecting the points Q1 , Q2 and the focus F 1 (i.e. the focus about which the 
circle q 1 is described). 

(b) By means of the vertex circle ka(S, a) (Fig. 4.8b): We determine the points 
of intersection P 1, P2 of the circle ka and the Thalet circle drawn on the diameter 
RF 2 • The lines connecting P 1 and P 2 and the point Rare tangents t 1, t2 of the el­
lipse. The points of contact T1, T2 are the points of intersection of the tangents 
t 1, t2 and the lines through the focus F 1 parallel to SP1, SP2 , respectively. 

Construction 6 of tangents to an ellipse, which are parallel to a given direction s: 

(a) By means of the circle q2 (Fig. 4.9a): The line k through the point F 1 perpendi­
cular to the direction s intersects the circle q2(F2 , 2a) at points Ql> Q2 ; the perpen­
dicular bisectors of the segments Q1 F I> Q2F 1 are the required tangents t 1, t 2 • 

(b) By means of the vertex circle ka (Fig. 4.9b): The line k through the point F 1 

perpendicular to the direction s intersects the circle ka{S, a) at points P 1, P 2 : then 
the required tangents tt> t2 pass through P 1, P 2 and areparallel to the direction s. 
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The line connecting the points of contact T1, T2 of the parallel tangents t 1 , t2 

passes through the centre S of the ellipse and is called the conjugate diameter to the 
direction s. Tangents to an ellipseparallel to a given direction a always exist. 

Construction 7 (the Rytz construction) of the axes of an ellipse given by conjugate 
diameters M 1M2 , N1N2 : On the perpendicular erected to one of the diameters, 
say M 1M2 , at the centre S (Fig. 4.10), we draw the segment SR = M 1S, join the 
points R and N 1 and describe a circle through the centre of the ellipse about the 

Fig. 4.10. Fig. 4.11. 

point 0 as centre, where 0 is the mid-point of RN 1 • This circle intersects the line RN 1 

.n two points U, Vthrough which the required axes pass (the major axis lies always 
within the acute angle made by the given conjugate diameters ). Furthermore, a = 
=RU= N 1 V, b = RV= N 1U. 

Construction 8 of the centres of curvature at the vertices of an ellipse: 

(a) A perpendicular dropped from the vertex R ofthe reetangle SA1RB1 (Fig.4.lla) 
to its diagonal A 1B 1 intersects the major, or minor axis at the centre of curvature 
corresponding to the major, or minor vertex of the ellipse, respectively. 

(b) The line connecting the points of intersection 1 and 2 of the circles k 1(A2 , b) 
kz(B 1 , a) intersects the major, or minor axis at the required centres of curvature 
(Fig. 4.1lb). 

The circle with its centre at a centre of curvature constructed as above, which passes 
through the corresponding vertex (the osculating circle of the vertex) approximates 
to the given ellipse in the neighbourhood of the vertex. 
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4.3. The Hyperbola 

For the definition of the hyperbola see § 5.11 (p. 184). We denote the foci by F 1> F 2 

(Fig. 4.12); by afocal radius, denoted by r 1, r2 , weshall again mean alineconnec­
ting a point of the hyperbola and a focus. 

Theorem 1. The hyperbola is a curve symmetrical about the axis connecting both 
foci (the major axis) and about their perpendicular bisector (the minor axis) and 

Fig. 4.12. 

hence it is radially symmetrical about the point S of intersection of the axes of the 
hyperbola (the centre of the hyperbola). 

The points A1 , A 2 of the hyperbola on the major axis are called the major vertices. 
The length A 1 S = A 2 S = a is called the semi-major axis. Let the length F 1 S = 
= F 2S = ae, so that the ratio F 1S/A 1S = e. Then e is called the eccentricity of the 
hyperbola. 

Construction 1 of points of a hyperbola given by the semi-major axis and focal 
distance ae (Fig. 4.12): We chose an arbitrary point Loutside the segment F 1F2 and 
describe circles of radii A 1L about one focus and A 2L about the other. The points 
of intersection M, M' of these circles are points of the hyperbola. Interchanging 
the foci as centres of the constructed circles, we get two further points M 1, M~ of 
the hyperbola. 

From Construction 1, it is evident that the points of a hyperbola lie on two bran­
ches. The points of one branch satisfy the relation r1 - r2 = 2a w!lile the points 
of the other branch satisfy r2 - r 1 = 2a. All points of a hyperbola (excepting the 
major vertices) lie outside the strip bounded by the lines a 1, a 2 parallel to the minor 
axis and passing through the points A1, A 2 • 
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Theorem 2. The tangent, or the normal, at a point of a hyperbola bisects the 
angle between thefocal radii which contains, or does not contain, the major vertices 
respectively. 

The following theorems are important for the construction of tangents from an 
external point of a hyperbola (i.e. from a point for which the absolute value of the 
difference of the focal radii is less than 2a) and for some constructions of the 
hyperbola (Fig. 4.12): 

I 
I 
I 
I 

I 
I 
I 

bJ 

Fig. 4.13. 

Theorem 3. The locus of points Q which are rejlections of onefocus of a hyperbola 
in its tangents is the circle q having its centre at the other focus and radius equal 
to the length of the major axis 2a. 

Theorem 4. The locus of the feet P of perpendicular lines dropped from the foci 
of a hyperbola to its tangents is the (vertex) circle ka(S, a). 

Theorem 5. The locus of the centres of circles touching the circle q2(F 2 , 2a) and 
passing through the external point F 1 of the circle is the hyperbola with foci F 1, F 2 

and with its major axis of length 2a. 

Theorem 6. Let the vertex of a right angle move along the circle ka(S, a) so that 
one of its arms passes through an external point F 1 of the circle k0 ; then the other 
arm is a tangent to the hyperbola withfocus F 1 and vertex circle k0 (S, a). 

Construction 2 of tangents to a hyperbola from an external point R (Fig. 4.13a,b): 

(a) By means of the circle q: We determine the points of intersection Q1, Q2 of the 
circles k(R, RF2) and q1(F1, 2a). The perpendicular bisectors of the segments Q1F 2 , 

Q2F 2 are the tangents t 1, t2 from the point R to the hyperbola. The points of contact 
T1 , T]. are the points of intersection of the tangents t 1 , t2 and the lines connecting 
the points Q1, Q2 and the focus F 1 (about which the circle q1 is described). 
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(b) By meansofthe vertex circle ka: We determine the points ofintersection Pl>P2 

of the Thalet circle k drawn on the diameter RF 2 and the vertex circle ka. The lines 
connecting P 1 and P2 and the pointRare tangents t 1, t2 ofthe hyperbola. The points 
of contact Tl> T2 are the points of intersection of the tangents t1, t2 and the lines 
through the focus F 1 parallel to SP 1, SP 2 • 

When constructing the tangents from the centre Sofa hyperbola, we obtain the 
points of contact on these tangents a., an as points at infinity. We usually extend 
the locus defining the hyperbola to include these points. 

Fig. 4.14. 

Definition 1. The tangents a 1, an from the centre S to a hyperbola are called the 
asymptotes; their directions "a., "an which determine the points of the hyperbola 
at infinity are called the directions of the asymptotes. 

Construction 3 of tangents parallel to a given direction s: 

( a) By means of the circle q 2 (Fig. 4.14a): The line k through the point F 1 per­
pendicular to the direction s intersects the circle qiF2 , 2a) at points Q1, Q2 ; the 
perpendicular bisectors of the segments Q 1 F 1> Q2F 1 are the required tangents t 1> 

t2 which areparallel tos. 

(b) By means of the vertex circle ka (Fig. 4.14b): The line k through the point F 1 

perpendicular to the direction s intersects the circle ka(S, a) at points Pl> P2 through 
which pass the required tangents t 1, t2 which areparallel tos. 

The line connecting the points of contact T1 , T2 of parallel tangents tl> t 2 passes 
through the centre Sofahyperbola and is called the conjugate diameter to the direc­

tion s. 
If qJ is the acute angle between an asymptote and the major axis of a hyperbola, 

and if t/1 is the acute angle between the direction s and the major axis, then tangents 
parallel to the given direction s exist only for t/1 > qJ. 
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The following theorems can be advantageously used when constructing a hyperbola: 

Theorem 7. The segments on an arbitrary secant of a hyperbola (intersecting 
the asymptotes) between the points of the hyperbola and the asymptotes are equal. 
In particular: The point of contact of a tangent to a hyperbola bisects its segment 
between the asymptotes. 

Theorem 8. The parallelograms formed by the asymptotes of a hyperbola and 
by the lines constructed through points of the hyperbola parallel to the asymptotes 
are of a constant area. In particular: The triangles formed by the asymptotes and 
the tangents of a hyperbola are of a constant area. 

By means of variable parallelograms of constant area we can construct points of 
a hyperbola with given asymptotes. Further, by means of variable triangles of constant 
area we can construct tangents to a hyperbola with given asymptotes; in particular 
the vertex tangent and the vertex of the hyperbola can be determined. 

Theorem 9. The perpendicular drawn to an asymptote of a hyperbola at the point 
of intersection of the asymptote and a vertex tangent intersects the major axis of the 
hyperbola at the centre of curvature of the vertex. 

4.4. The Parabola 

For the definition ofthe parabola see § 5.12 (p. 185).The focus will be denoted by F, 
the directrix by f (Fig. 4.15). The point F does not lie on the line f. 

0 

\, 
11 Ia r Fig. 4.15. 

If M is a point of the parabola, then M F = r 1 is one of the focal radii of the point 
M; as the second (focal) radius the line through the point M perpendicular to the 
directrix f is to be understood. 

The point A of the parabola bisecting the distance of the focus F from the directrix 
f (this distance is called the parameter) is said to be the vertex of the parabola; the 
tangent a at the point A is called the vertex tangent. 
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Theorem 1. The parabola is a curve symmetrical about the axis, i.e. the line 

perpendicular to the directrix through the focus F. 

Construction 1 of points of the parabola given by a focus F and a directrix f: 
Through an arbitrary point L on AF produced we construct the line r parallel to the 
directrix f. If G is the point of intersection of the axis o and the directrix J, then the 
points of intersection of the circle k(F, GL) and the line r are points M, M' of the 
parabola. 

k 

0 

u\· 

\ 
I 

\ 
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-- t2- T2 ... 
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Fig. 4.16. 

F 
0 

b) 

Theorem 2. The tangent, or the normal, at a point of the parabola bisects the 

angle between the focal radii in which the vertex of the parabola lies, or does not 

lie, respectively. 

Theorem 3. The locus of points Q which are reflections of the focus F of the para­

bola in its tangents is the directrix f. 

Theorem 4. The locus of the feet P of perpendicular lines dropped from the focus 

F of the parabola to its tangents is the vertex tangent a. 

Theorem 5. The locus of centres of the circles, tauehing a line f and passing 

through a point F ( which does not lie on f) is a parabola with focus F and direc­

trix f. 

Theorem 6. Let the vertex of a right angle move along a straight line a so that 

one of its arms passes through a point F ( which does not lie on a ); then the other 

arm is a tangent to the parabola with focus Fand vertex tangent a. 

Construction 2 of tangents to a parabola from an external point R whose distance 
from the focus F is greater than the distance from the directrix f: 

(a) By means of the directrixf (Fig. 4.16a): The circle k(R, RF) intersects the direc­
trix f at the points Q1 , Q2 ; the perpendicular bisectors of the segments Q 1F, Q2F 
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are the required tangents t 1 , t2 • The points of contact T1 , T2 are the points of inter­
section of the tangents tl> t2 and the lines through Q1, Q2 parallel to the axis of the 
parabola. 

(b) By means of the vertex tangent a (Fig. 4.16b): The circle on the diameter RF 
intersects the vertex tangent a at the points P 1> P 2 through which pass the required 
tangents t 1 = RP1, t2 = RP2 • The points of contact should be determined as in (a); 
consequently, the construction (b) is not convenient in this case. 

Fig. 4.17. 

Construction 3 of the tangent parallel to a given direction s (Fig. 4.17): A perpen­
dicular k from the focus F to the given direction s intersects the vertex tangent a 
at the point P and the directrix f at the point Q. The tangent t II s passes through 
the point P (perpendicularly to FQ) and its point of contact T is the point of inter­
section of the tangent t and the line through Q parallel to the axis of the parabola. 

Definition 1. The distance between the point of contact T and the point of inter­
section of a tangent, or a normal, of the parabola and its axis is called the length of 
the tangent, or the length of the normal, briefly the tangent, or the normal, respective­
ly. The reetangular projection of the tangent, or the normal, onto the axis of the 
parabola is called the sub-tangent, or the sub-normal, respectively. 

Theorem 7. A sub-tangent is bisected by the vertex. A sub-normal is of constant 
length equal to the parameter. The segment which is the sum of the sub-tangent 
and the sub-normal is bisected by the focus. 

Theorem 8. The line connecting the point of intersection of two tangents to a para­
bola and the midpoint of the corresponding chord of contact is parallel to the axis 
of the parabola (and is called a diameter of the parabola). 

From this theorem, it follows that all diameters of a parabola are parallel. 

Theorem 9. The circle circumscribed about a triangle formed by three tangents 
to a parabola passes through its focus. 

Theorem 10. The radius of curvature at the vertex of a parabola is equal to the 
parameter. 
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Construction 4 of a parabola given by two tangents t 1, t 2 with points of contact 
Tt. T2 : We determine (Fig. 4.18) the diameter p of the parabola by means of the 
point of intersection R of the tangents t 1 , t2 and the mid-point U of the chord T1 T2 • 

Denote by 1, 2 the points of intersection of the lines through the points T1 , T2 parallel 
to the diameter p and a line r (arbitrarily chosen) through the point R, respectively. 
The diagonals 1 T1, 2T2 of the constructed trapezium 12T1 T2 meet at a point T of the 
parabola; the tangenttat Tis parallel to r. 

Fig. 4.18. 

In particular: If r l.. p, we get the vertex A and the vertex tangent a. If r II T1 T2 

(then the trapezium becomes a parallelogram) we get a tangent t' parallel to the 
chord T1 T2 whose point of contact T' bisects the segment RU. 

4.5. Parabolas and Hyperbolas of Higher Degree 
(Power Curves) 

Definition 1. A curve given by the equation 

(1) 

is called apower curve ( a being constant, n rational, x positive, in general). For n > 1, 
we get the so-called parabolas of higher degree, for n < -1 we get the hyperbolas 
of higher degree. 

If Jnl e (0, 1) and a > 0, in general, we can write (interchanging the role of the 

coordinates) 

x = by 1'", i.e. x = bym, where b = a-1/n, m = 1/n > 1 or < -1. (2) 

Theorem 1. A tangent t (at a given point P(x0 , y0)) cuts off on the y-axis an inter­
cept equal to (1 - n) y0 • The length of a sub-tangent s: on the x-axis, or s: on the 
y-axis, is Jx 0 fnl, or jny0 j, respectively. 
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Theorem 2a. The tangent to the parabola (1), or (2), at the origin 0 is the x-axis, 
or y-axis, respectively. 

Theorem 2b. The asymptotes of the hyperbola (1) are the x-axis and y-axis. 

Theorem 3. The length of an arc of the parabola (1) from the point 0 to the 
point P(x0 , y0) is given by the integral 

fixol 
s = 

0 
..)(1 + a2 n2x 2n- 2 ) dx, 

which can be expressed in an elementary way if 1/(2n - 2) or 1/(2n - 2) + ! is 
an integer. 

Theorem 4. The area bounded by a parabola of a higher degree, by the x-axis 
and by the ordinate of a point with abscissa x 0 is given by P = lx0 y 0 l/(n + 1). 

Construction 1 ofpoints ofthe cubica1 parabola y = ax3 (Fig. 4.19a), or ofpoints 
of the semicubical parabola y2 = ax3 (Fig. 4.19b) passing through a given point 
P(x0 , y 0): We divide the coordinates x 0 , y 0 ofthe point P(x0 , y 0 ) into an equal num­
ber of parts of the same length. If M is the foot of a perpendicular dropped from the 
point P to the x-axis, we describe a semicircle on M P and erect perpendiculars to 
the x-axis at the points of subdivision of the segment OM. 

y 

aJ bJ 

Fig. 4.19. 

(a) Points of the cubical parabola: The circles with the centre M passing through 
the points of subdivision of the ordinate MP meet the semicircle on MP at points 
which we project rectangularly back onto MP. The lines connecting these projections 
and the origin 0 intersect the perpendiculars constructed at the points of subdivision 
of the segment OM at points of a cubical parabola. 

(b) Points of the semicubical (Neil's) parabola: We project the points of Sub­
division of the ordinate y 0 parallel to the x-axis onto the semicircle on MP; we turn 
the points of intersection obtained in this way back onto the segment MP by circles 
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with centre M. The lines connecting the points so obtained and the origin 0 inter­
sect the perpendiculars at the points of subdivision of the segment OM at points 
of a setricubical parabola. 

4.6. The Cyclic Curves 

Definition 1. By rolling a curve h (the generafing curve or moving polhode), 

without slipping, along a fixed curve p (the basic curve or fixed polhode) each point 
of a plane moving with the curve h describes a curve called a trochoid. 

Theorem 1. The fixed polhode is the locus of points which are instantaneous 

centres of rotation for the respective stages of the motion. The moving polhode is 

the locus of points which become instantaneous centres of rotation du ring the motion. 

Both polhodes always tauch, at a point which is an instantaneous centre of rota­

tion. 

Theorem 2. The normal at a point of a trochoid passes through the instantaneous 

centre of rotation. 

In what follows we consider only the cases in which both polhodes are circles, 
or one of them is a circle and the other a straight line. 

(a) The cycloid s 

Definition 2. By rolling a circle h along a straight line p without slipping, each 
point of the circle describes a simple (general, normal) cycloid. If the original posi­
tion of the generating point coinciding with the point of contact of the circle h and 
the straight line p is the origin 0 and the straight line p is the x-axis, then 

x = r(t - sin t) , y = r( 1 - cos t) (1) 

are parametric equations of this simple cycloid; here, r is the radius of the generating 
circle h and t is the angle through which the rolling circle has turned at any instant. 

Construction 1 of points of a simple cycloid (Fig. 4.20). We divide the circumference 
of the circle h and its rectified length on the tangent p at the point A into the same 

numberof equalparts(thereare 12inFig.4.20). Consequently,Ai = AI, f2 =I II, .... 
Perpendiculars constructed through the points on the straight line p determine on the 
line through the point H parallel to the straight line p (i.e. on the path of the point H) 
the centres H 1, H 2 , ••• of circles h1, h2 , •••• Lines through the points of subdivision 
1, 2, 3, ... of the circle h, parallel to the straight line p, meet the circles h1, h2 , ••• at 
the points A1 , A 2 , ••• of the cycloid. 
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Theorem 3. The normal to a simple cycloid at a given point passes through the 
corresponding point of contact of the generating circle h on the given straight line p 
(i.e. through the instantaneous centre of rotation). The tangent to a simple cycloid 
at a given point passes through the point of the circle h which is diametrically 
opposite to the instantaneous centre of rotation. 

p VI VII VIII IX 

Fig. 4.20. 

Theorem 4. The length of a normal is 

n = 12r sin ~I = .j(2ry) . 

Theorem 5. The radius of curvature at a point other than the cuspidal point 
of a simple cycloid is 

R = 14r sin ~~ = 2.j(2ry) = 2n; 

thus, at the vertex 
R = 4r. 

Theorem 6. The length of arc (on a single branch) of a simple cycloid measured 
from the cuspidal point to the point P(x, y) is 

s = 4r(l- cos~); 

thus, the length of the entire branch is 

s = 8r. 

Theorem 7. The area boun.ded by the x-axis and by a branch of a simple cycloid is 

P = 3nr2 • 
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Definition 3. lf a circle h rolls along a fixed straight line p, without slipping, an 
internal or external point moving with the circle h describes a curtate, or a prolate, 
cycloid, respectively. 

Theorem 8. If t is the angle through which the generating circle h has rolled and 
if d ~ r is the distance between the moving point P and the centre H of the circle h, 
the parametric equations of the curtate, or prolate, cycloid traced out by P are 
given by the equations 

x = rt - d sin t , y = r - d cos t . (2) 

Construction 2 of points of a curtate, or a prolate, cycloid (Fig. 4.21): We attach 
to the generating circle h a concentric circle h' of radius r' = HB < r or h" of radius 
r" = HC > r, respectively. Then, on the appropriate radius of an instantaneous 
position of the generating circle hk with centre Hk (k = 1, 2, ... ) we determine the 
position of the circle h~, or hZ, and, consequently, get the point Bk, or C" of a curtate 
or prolate cycloid respectively. 

Theorem 9. The normal at a point of a curtate (prolate) cycloid passes through 
the point of contact of an instantaneous position of the generating circle h and the 
straight line p. 

VIII IX X XI 

Fig. 4.21. 

Theorem 10. The radius of curvature at the points of a minimum or a maximum 
of a curtate (prolate) cycloid is 

R = (r- d)2 
d 

or R = (r + d)2 
, respectively. 

d 

A simple cycloid has an infinite number of cuspidal points, a curtate cycloid has 

X 
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an infinite nurober of points of inflexion and a prolate cycloid an infinite nurober 
of double points (so-called nodes). 

(b) Tbe epicycloids and bypocycloids 

Definition 4. If a generating circle h of radius r rolls along the exterior, or the 
interior circumference of a fixed circle p of radius f, then each point of the circle h 

describes a simple (general, normal) epicycloid, or hypocycloid, respectively. 

Theorem 11. The equations 

( - ) _ f + r 
x = r ± r cos t + r cos ---=-- t , ( - ) . . f + r y = r ± r sm t - r sm -=-- t (3) 

r r 

are parametric equations of a simple epicycloid (the upper sign) or hypocycloid 

(the lower sign). 

Fig. 4.22. 

If .A. = rfr is an integer, then .A. derrotes the nurober of branches of the curve formed 
by a single rotation of the circle h around the circle p. If .A. = pfq isarational number, 
then the curve consists of p branches which are formed by q rotations of the circle h 
around the circle p. For an irrational .A., the curve contains an infinite nurober of 
branches. 

Construction 3 of points of a simple epicycloid, or hypocycloid: We divide the 
circumference of the circle h into a certain nurober of equal parts (Fig. 4.22a,b ), to 
give the points A, 1, 2, .... 



4.6 PLANE CURVES AND CONSTRUCTIONS 131 

On the circle p we determine an arc whose Iength is equal to the circumference 
of the circle h, and divide it by points A, I, Il, ... into an equal number of parts of the 
same Iength as those on h. We describe concentric circles through the points J, 2, ... 
about the centre P of the circle p and find the points H 1, H 2 , ••• of intersection of the 
radii PI, Pli, ... with the circle described about P through the centre H ofthe circle h. 
Then the circle h 1(H 1 , r) meets the circle k 1(P, P 1) at a point A 1 of a simple epicyc­
loid, or hypocycloid, respectively, etc. 

Theorem 12. The radius of curvature at a point (other than a cuspidal point) 

of a simple epicycloid, or hypocycloid, is 

R = 14r(r ± r) sin ftl ; 
f ± 2r 2r 

the length of arc (on the same branch)from the point t = 0 to a point t is 

Sr(r ± r) . 2 ft 
S= Sill-

f 4r 

(r < f is assumed for the hypocycloid). In particular: The radius of curvature at a 
vertex is 

and the length of one branch is 

R = !4r(r ± r)l 
f ± 2r 

8r(r ± r) 
s = . 

f 

Here the positive sign holds for an epicycloid, the negative sign for a hypocycloid. 

Definition 5. The curve described by an internal, or an external, point rotating 
with the generating circle h is called a curtate, or a prolate, epicycloid (hypocycloid), 

res pecti vel y. 

Theorem 13. If d ~ r is the distance between the generating point and the centre H 

of the circle h, then 

( - ) d f + r ( ) . d . f + r x = r ± r cos t + cos -=- t , y = f ± r sm t - sm -=- t 
r r 

are parametric equations of the curves of Definition 5 (the upper signs refer to an 

epicycloid, the lower ones to a hypocycloid). 

For the construction of points of a curtate or a prolate epicycloid (hypocycloid) 
we employ again the concentric circle h', or h", attached to the circle h, as in Construc­
tion 2 above. 
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Example 1. If i' = r, d > r, we get a prolate epicycloid (the limaron of Pascal) 
of parametric equations (Fig. 4.23) 

x = 2r cos t - d cos 2t , 

y = 2r sin t - d sin 2t , 

whose equation in reetangular cartesian coordinates (by elimination of the para­
meter t and trimslation of the origin to the point ( d, 0)) is 

(x2 + y2 + 2dx)2 = 4r2(x2 + y2). 

y 

X 

Fig. 4.23. 

Example 2. For r = tf, the equations of a simple hypocycloid are 

X = i' COS t , y = 0 ; 

hence, it is a segment of length 2i' on the x-axis. 
The equations of a curtate hypocycloid are 

x = G + d) cos t , y = (i - d) sin t ; 

hence it is an ellipse with a semi-major axis of length r + d on the x-axis and a semi­
minor axis of length r - d on the y-axis. 

Example 3. For r = i' (Fig. 4.23) the parametric equations of a (simple) epicycloid 
(the cardioid) are 

x = r(2 cos t - cos 2t) , y = r(2 sin t - sin 2t) . 
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If the origin of cartesian coordinates is at the centre of the fixed curve and the cuspidal 
point lies on the x-axis, then we get the equation of the curve in the form 

(x2 + y2)2- 6r2(x2 + y2) + 8r3x- 3r4 = 0; 

if the origin is at the double point (and the x-axis is the axis of symmetry), then we 
get the equation 

The equation of the cardioid in polar coordinates is 

p = 2r(I- coscp). 

A cardioid can also be obtained as an orthogonal pedal curve (see Definition 
9.10.1, p. 303) of a circle forapole on the circle. 

Example 4. For r = tf (Fig. 4.24), the parametric equations of a simple epicyc­
loid (the nephroid) are 

x = r(3 cos t - cos 3t), y = r(3 sin t - sin 3t) ; 

the equation of the curve in cartesian Coordinates is 

y 

X 

Fig. 4.24. 

Example 5. For r = tr (Fig. 4.25), the parametric equations of a (simple) hypo­
cycloid (Steiner's hypocycloid) are 

x = r(2 cos t + cos 2t), 

y = r(2 sin t - sin 2t) ; 
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the equation of the curve in cartesian coordinates is 

(x 2 + y2) 2 + 8rx(3y2 - x 2 ) + 18r2(x2 + y 2) - 27r4 = 0. 

Example 6. For r = tf, the parametric equations of a (simple) hypocycloid (the 

astroid, Fig. 4.26) are 

x = r(3 cos t + cos 3t) , y = r(3 sin t - sin 3t) ; 

y y 

X 

Fig. 4.25. Fig. 4.26. 

the equation of the curve in cartesian coordinates is 

x2/3 + y2/3 = ( 4r )2/3 . 

For the curves given in the above examples we can use Theorem 12 to determine 

the radius of curvature at any point or the length of an arc, in particular the radius 

of curvature at a vertex or the length of a brauch. 

(c) The involute of a circle 

Definition 6. Any point of a plane rotating with a straight line h, rolling on a fixed 

circle p, describes an involute of a circle. 

Theorem 14. For a fixed circle p(O, r) and a generafing point A(r + d, 0) the 

parametric equations of the involute are 

x = (r + d) cos t + rt sin t , y = (r + d) sin t - rt cos t , 

where t is the angle between the x-axis and the radius of the circle p perpendicular 

to the position of the straight line h. 

Definition 7. For d = 0, the (simple, general, normal) circular involute is generated, 

for d > 0 (the generating point and the circle p are on opposite sides of the straight 
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line h) a curtate involute is generated, for d < 0 (the generating point and the circle p 
lie on the same side ofthe straight line h) we get a prolate involute. 

Construction 4 of points of a (simple) circular involute (Fig. 4.27): We divide the 
circumferenc~ of the given circle p into a certain number of equal parts (for example, 
into 12) by the points A, I, 2, .. . ; we rectify the arc corresponding to one part and 
then we determine on the tangent to the circle p at every point of Subdivision the 

Fig. 4.27. 

point at a distance equal to the length of the corresponding number of arcs: at the 
point 1 at a distance of one arc, at the point 2 of two arcs, etc. 

Theorem 15. The normals to a circular involute are tangents to the fixed circle 
p which is therefore an involute of the given curve (see Definition 9.8.3, p. 297) (and 
consequently, the locus of centres of curvature). 

Theorem 16. For the radius of curvature of a circular involute we have 

R = rt, 

and for its length of arc 

s = !rt2 • 

Example 7. For d = -r, a prolate involute, the spiral of Arehirnedes (see § 4.7, 
Fig. 4.29) is generated; its parametric equations are 

x = rt sin t , y = - rt cos t ; 

the equation in polar coordinates is 

{} = r<p. 
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(d) Construction of centres of curvature of cyclic curves 

Construction 5 at a point M which is not a vertex of the curve (Fig. 4.28): The 
centre of curvature SM lies on the normal n = SM. We construct a perpendicular k 

through the point S to the normal n and find the point of intersection 1 of the lines k, 

MH. Then SM is the intersection of n and lP. 

/ 

n 

p 
Fig. 4.28. 

Construction 6 of the centre of curvature at a vertex A of the curve (i.e. at a point 
lying on PH) (Fig. 4.28): Using Construction 5, we construct the centre of curvature 
SM for an arbitrary point M of the curve. We determine the point of intersection 2 
of k and MA, and then SA is the intersection of 2SM and HP. 

4. 7. Spirals 

Definition 1. A curve generated by a point moving uniformly along a polar radius 
rotating uniformly around its pole is called a spiral of Arehirnedes (Fig. 4.29). 

Construction 1 of pointsofaspiral of Arehirnedes (Fig. 4.29): After one revolution, 
the distance of the moving point M from the origin 0 is equal to r0 • We divide the 
angle 2n and the segment r0 (in the figure, r0 = OM12) into n (say, 12) equal parts. 
Starting at the origin 0, we successively mark off segments of lengths r0 Jn, 2r0 fn, ... 
on the corresponding polar radii. The end points of the segments are points of a spiral 
of Archimedes. 

Theorem 1. The equation of a spiral of Arehirnedes in polar coordinates is 

ro e =- ({J = aqJ 
2n 

(where r0 , and hence a = r0J2n, is a given constant). 
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The acute angle between a tangent to the curve and the polar radius at the point 
of contact increases with the polar radius and converges to the value !1t. 

Theorem 2. The length of a polar sub-normal sn is constant and equal to a. 
(The polar sub-normal is the segment between the poleand the point N of intersection 
of the normal n at the point M under consideration with the perpendicular constructed 
at the pole 0 to the polar radius.) 

y 

Fig. 4.29. 

At a given point of a spiral of Arehirnedes we eonstruet its normal and tangent 
by using Theorem 2. 

The segment OT = s,, where Tis the point of interseetion of the tangent tat a point 
M of the eurve and a perpendieular eonstrueted at the pole to the polar radius of the 
point, is ealled a polar sub-tangent. Thus, for a spiral of Arehirnedes the equation 

(!2 (!2 
s, =- =- = Q(/)2 

Sn a 

holds. 

Construction 2 of the eentre of curvature at a point of a spiral of Arehirnedes 
(Fig. 4.29): The perpendieular k1 eonstrueted at the point M to its polar radius, meets 
the perpendieular k 2 eonstrueted at the point N to the normal n, at a point P. The 
centre of eurvature SM is the interseetion of n and PO. 

Definition 2. The are of a spiral of Arehirnedes for whieh 2(n - I) 1t ~ fP < 2n1t, 
is ealled the n-th coil of the curve. 

Theorem 3. The individual coils of a spiral of Arehirnedes are equidistant 
curves. 
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Since the motion of a generating point on the polar radius can be accomplished 
in two directions, a spiral of Arehirnedes has two branches symmetrical about the 
x-axis. 

Definition 3. A curve for which (in polar coordinates) the product of the length of 
the polar radius and the argument is constant, is called a hyperbolic spiral or recipro­
cal spiral (Fig. 4.30). 

X 

Fig. 4.30. 

Theorem 4. The equation of a hyperbolic spiral in polar Coordinates is 

(! = ~ (where a is constant). 
qJ 

If a < 0, then also qJ < 0 and we get the second branch (not illustrated in the 
figure) which is symmetrical to the first one about the x-axis. 

Theorem S. The straight line y = a is an asymptote of the hyperbolic spiral; 
the pole 0 is an asymptotic point. 

Theorem 6. For a hyperbolic spiral, the length of the polar sub-tangent s, is 
constant and equal to a. 

Construction 3 of points and of tangents to a hyperbolic spiral (Fig. 4.30): By 
Theorem 6, the end points of polar sub-tangents lie on the circle k( 0, a). The point V 
of the circle k, where the polar radius makes with the axis an angle qJ = 1 (in circular 
measure) is also a point of the hyperbolic spiral. On an (arbitrary) radius OM0 we 
find a point M of the hyperbolic spiral and the tangent in the following way: We 
connect the point of intersection M 1 of the tangent t0 to the circle k at the 
point M0 and the evolute e of the point Vof the circle k, with the point M 2 of the 
polar sub-tangent and thus get a tangent t to the hyperbolic spiral, which meets the 
polar radius OM0 at the point of contact M. 
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Definition 4. A curve making a constant angle with the polar radii at its points 
is called a logarithmic (equiangular, logistic) spiral (Fig. 4.31). It can also be 
characterized as the curve whose length of arc between a fixed and a variable point 
is proportional to the polar radius of the latter point. 

Theorem 7. The equation of a logarithmic spiral in polar coordinates is 

Fig. 4.31. 

where a, b > 0 are constant, <p is the angle (in radians) between the polar radius 

and the polar axis and e is the base of natural logarithms. 

Theorem 8. If the angles <p form an arithmetic progression, then the correspond­

ing polar radii e form a geometric progression. 

Theorem 9. The pole 0 is an asymptotic point of a logarithmic spiral. For 

<p = 0, eo = a. 

Construction 4 of points of a logarithmic spiral (Fig. 4.31): We divide the angle 27t 
into n (say, 12) equal angles (Fig. 4.31) and calculate two adjacent polar radii eo = a, 
e1 = aeb<nfG>. The triangles OM0M 1, OM1M 2 , ••• are similar. We describe circles 
k0 , k 1 with radii e0 , e1 about the pole 0 and mark on them the points M 0 , I, 2, ... , 
and XII, M 1 , II, ... , determined by the polar radii. Then, the line through the point 
M 1 parallel to the line joining 1, II meets the polar radius Q2 at the point M 2 ofthe 
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logarithmic spiral, the line through the point M 2 parallel to the line joining 2, III 
meets the polar radius {!3 at the point M 3, etc. Similarly, the point N 1 of the polar 
radius corresponding to the angle cp = -i-n can be obtained as the point of inter­
section of the polar radius and the straight line through the point M 0 drawn parallel 
to the line joining XII, 11, etc. 

Theorem 10. The tangent at a point of a logarithmic spiral makes with its polar 
radius an angle 8 satisfying tan 8 = Ijb. Fora p6lar sub-tangent, or sub-normal, 
the relations 

(! 
s, = b ' sn = be 

hold, respectively. 

Construction 5 of the tangent at a point of a logarithmic spiral (Fig. 4.32): On the 
polar radius OM we determine the point Q suchthat OQ = 1. On the perpendicular 
through the point 0 to the polar radius OM we determine the point R such that 
OR = 1/b (the sense of OR being suchthat a rotation from OR to OM is positive). 
The angle OQR is equal to 8 and hence the line parallel to QR through the point M 
is the required tangent t at the point M of the logarithmic spiral. Other tangents at 
points of a logarithmic spiral can be constructed by translation of the constant angle 
8 so obtained (see Definition 4 and Theorem 10). 

n 

X 

Fig. 4.32. 

Theorem 11. The radius of curvature at a point of a logarithmic spiral is 

and it is equal to the length of the polar normal. The centre of curvature lies at the 
point of intersection of the normal and the perpendicular through the point 0 to the 
polar radius of the point. 
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Definition 5. Curves satisfying the polar equation 

are called sinusoidal spirals. 

Theorem 12. By a rotation of the coordinate system through an angle <p = 
(i1l"/m)- <p the equation of a sinusoidal spiral becomes 

(!m = am cos mt/1 0 

Theorem 13. For rational m, sinusoidal spirals are algebraie eurves; for ir­
rational m, they are transeendental eurves. 

Exam~Ie 1. For special values of m, we get the following sinusoidal spirals: 

(a) m = 1; (! = a cos cp, the sinusoidal spiral is a circle given by the equation 
x 2 + y2 = ax; 

(b) m = 2; (! 2 = a2 cos 2cp, the sinusoidal spiral is a lemniseate of Bernoulli 
satisfying the equation (x2 + y 2 ) 2 = a2(x2 - y 2 ) (see § 4.11); 

(c) m = -1; (! = afcos cp, the sinusoidal spiral is a straight line given by the 
equation x = a; 

(d) m = -2; (! 2 = a2 fcos 2cp, the sinusoidal spiral is a reetangular hyperbola 
satisfying the equation x 2 - y 2 = a2 ; 

( e) m = t; (! = a cos2 fcp, the sinusoidal spiralis a cardioid given by the equation 
(! = 2r(1 + cos cp), which can be obtained by use of the relation 2 cos2 tcp = 1 + 
+ cos cp on putting a = 4r. 

(f) m = -t; (! = afcos2 tcp, the sinusoidal spiral is a parabola satisfying the 
equation y 2 = 4a( a - x ). 

4.8. The Clothoid (Corno Spiral) 

Definition 1. A curve whose radius of curvature R at a point M is inversely pro­
portional to the length s of the arc between this point and a fixed point 0 is called 
the clothoid or Cornu Spiral (Fig. 4.33). 

Theorem 1. The intrinsie equation of a clothoid (see Definition 9.4.3 and Remark 
9.4.10, pp. 280, 281) is 

Theorem 2. Parametrie equations of a clothoid with the are s as a parameter 
are given by the Fresnel integrals (§ 13.12) 

x = cos -- ds , y = sin -- ds . f• 82 f' 82 

o 2a2 o 2a2 
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If the angle cp = 1;s2/a2 of the tangent at the point under consideration is taken 
as a parameter, then the equations are of the form 

a f"' cos cp d a f"' sin cp d X=- -- cp, y=- -- cp . 
.j2 0 .jcp J2 0 Jcp 

If cp = 1;1tt2, then the parametric equations have the form 

x = a .j1t cos- dt , y = a .j1t sin- dt . Jf 1tt2 f' 1tt2 

0 2 0 2 

Fig. 4.33. 

Theorem 3. A clothoid is symmetrical about the point 0 which is a point of 
in.flexion and it touches the x-axis at this point. 

Theorem 4. The points (-!-a .j1t, !a .j1t), ( -ta J1t, --!-a .j1t) are asymptotic points 
for a clothoid. 

Theorem 5. The tangents of a clothoid at points for which 

s2 
- = k1t (k = 0, 1, 2, ... ) 
2a2 
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are parallel to the x-axis, and tangents at the points for which 

s2 2k + 1 
- = 11: (k = 0, 1, 2, ... ) 
2a 2 2 

are parallel to the y-axis. 

Theorem 6. For the angle qJ made by a tangent to the curve and the x-axis, 
Theorem 2 and Definition 1 yield 

s 
qJ=-. 

2R 

Theorem 7. The following relations hold between the quantities a, s, R, qJ (in 
circular measure): 

(a) a = -J(sR) = - 8 - = R .j(2({)); 
../(2({)) 

(b) 
a2 

s = - = 2qJR = a .j(2qJ) ; 
R 

a 2 s a (c) R = - = - = -- · 
s 2(/) ../(2({))' 

(d) s s2 a2 
qJ=---=-

2R- 2a2 2R2 • 

For practical use, the Fresnel integrals are tabulated. The constant a is the para­
meter determining the relative magnitude of the curve. If, for example, a = 200, then 
all the longitudinal values of the corresponding clothoid aredouble the values for the 
parameter a = 100. 

4.9. The Exponential Curve 

Definition 1. The curve whose equation in cartesian coordinates is 

where a > 0, b > 0, c are constants, is called the exponential curve. 
For b = e, we get 

cx ( } } y) y = ae or x = ~ n ~ . 
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Theorem 1. The curves y = abc", y = ab-c" are symmetrical about the y-axis. 
Both curves have only positive ordinates y and pass through the point A(O, a). 
The x-axis is their common asymptote. 

Theorem 2. Three points P(x, y), P 1(x 1, y 1), Pz(x2 , y 2 ) of the curve satisfy the 
following relation: 

Fig. 4.34. 

\ X 

\y•ab-• 
\ 

\ 
\ 

' ' ' ' ' ' 

Q ---------------------------- "------~ p 

n 

Construction 1 of points of the curve (Fig. 4.34): The ordinates y form a geometric 
progression if the abscissae x form an arithmetic progression. Hence we construct 
the points A(O, a) and B(abc, 0), and then draw successive perpendicuiars BC ..LAB, 
CD ..L BC, . .. ; the segments OA, OB, OC, ... are now the ordinates of the points 
whose abscissae are x = 0, I, 2, .... By a reverse procedure we obtain the points 
of the curve for x = -I, -2, ... . 

Theorem 3. The sub-tangent of an exponential curve y = aec" (with respect to 
the x-axis) has the constant value 

I 
s, = 

c 

For the sub-normal we have s" = cy2• The length of the tangentist = J(y2 + 1/c2), 

and of the normal is n = y J(c2y 2 + 1). 
Fora curve y = abc", the sub-tangent isst = -1/(c In b). 

Theorem 4. The radius of curvature R of an exponential curve is given by the 
expression 

For the pointfor which y = J(2)/2c, the radius R is minimaland equal to 3 J(3)/2c. 
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Construction 2 of the radius of curvature of the curve y = abcx at a point M (Fig. 
4.34): Since yjt = (sn + s,)JR, we construct on the perpendicular through the point M 
to the x-axis, the point P such that MP = (sn + s,). The tangent t and the perpen­
dicular to the y-axis at the point P meet at the point Q; then R = MQ = MSM. 

4.10. The Catenaries (Chainettes) 

(a) The generat catenary 

Definition 1. A curve satisfying the equation 

is called a general catenary (Fig. 4.35). 

X 
y = a cosh­

a 

A heavy homogeneaus perfectly flexible cable suspended by two points assumes 
the form of a general catenary. 

21 
y ·I 

' 
_J-:~""':":.~-~-

X 

Fig. 4.35. 

Theorem 1. A general catenary is symmetrical about the y-axis, an which it 
has its vertex A at a distance afrom the origin 0; the value a is called the parameter 
of the catenary. 

Theorem 2. A general catenary and the parabola y = a + x 2J2a have three­
point contact at the vertex A(O, a). Also an ellipse with centre S(O, 4a), major axis 
of length 6a on the y-axis and semi-minor axis a ,J3 has three-point contact with 
the general catenary at the common vertex A. 
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Theorem 3. By a translation of the origin of the coordinate system to the point 
of Suspension M 1 ( with the abscissa - m in the original system) the equation of 
a general catenary becomes 

( x-m m) y = a cosh -a- - cosh -:; . 

Theorem 4. The angle -r between a tangent and the x-axis satisjies (in the original 
system) 

tan -r = sinh ~ = ! .J(y2 - a2 ) , cos -r = ~ . 
a a y 

Construction 1 of the tangent and the normal at a point M of a general catenary 
(Fig. 4.35): The circle on the ordinate MP of the point M and the circular arc about 
the point M, or P, of radius r = a intersect at the points N, or T, respectively. 
The point Tis a point ofthe tangent, the point N is a point ofthe normal at the given 
point M. 

Theorem 5. The arc s of a general catenary (measured from its vertex; A) is 

s = a sinh ~ = .J(y2 - a2 ) = a tan -r ; 
a 

thus it is proportional to the tangent of the angle made by the tangent at the end 
point of the arc with the x-axis. 

According to Construction 1, the arc of Theorem 5 is equal to the segment MT= 
= OQ (where Q is the point of the x-axis for which AQ = YM); thus the arc is 
equal to the (rectangular) projection of the ordinate YM of the point M onto the 
tangent. 

Theorem 6. The radius of curvature R and the length n of the corresponding 

normal are equal: 

x y 2 a 
R = n = a cosh2 - = - = -- . 

a a cos2 -r 

For the vertex, R = a. 

Theorem 7. The area enclosed by the x-axis, the y-axis, the arc of a general 
catenary and the ordinate of a given point is given by 

P = a2 sinh ~ = as . 
a 

Example 1. The determination of the parameter a and the position of the axes, 
given the length of the cable 2s, the horizontal distance between the points of suspen­
sion 21 and the difference of the heights 2b (Fig. 4.35). 
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To solve the problern we use the relations 

l 
a =-. 

u 

Putting c = (Ijl) .J(s2 - b2 ), we determine u from the equation sinh u = cu (for 
example, by using the tables of the function e(u) = sinh uju) and hence the para­
meter a. 

Then, the distance of the x-axis from the centre of the segment joining the points 
of suspension is 

h = s coth u. 

The displacement of the y-axis in the direction of the lower point of suspension is 
() = av, where tanh v = bfs. 

The angles between the tangents at the points of suspension M 1 , M 2 and the 
x-axis are tan rxi = sinh xda (i = 1, 2), where x1, x 2 are the abscissae of the given 
points of suspension. 

Theorem 8. The involute of a catenary, called the tractrix, has the equation 

I ts tangent is of a constant length a. 

The points of a general catenary can be constructed using tables of the hyperbolic 
cosine. 

(b) The catenary of constant strength 

Definition 2. The curve satisfying the equation 

eY!a cos ~ = 1 , i.e. y = - a ln cos ~ , 
a a 

where a > 0 and where x satisfies the inequalities 

11: 11: 
a(4k- 1)- < x < a(4k + 1)- (k an integer), 2 . 2 

is called a catenary of constant strength. 

A heavy perfectly flexible and inelastic cable whose cross-section varies in such 
a manner that its resistance to breakage is constant, assumes, after being suspended, 
the form of a catenary of constant strength (Fig. 4.36). 
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Theorem 9. A catenary of constant strength consists of an infinite number of 
congruent branches, touching the x-axis at the points x = 2k1ta and having the 
straight lines x = a(4k ± 1) Tt/2 (k an integer) as asymptotes. 

Theorem 10. The angle -r between a tangentat a point of a catenary of constant 
strength and the x-axis is proportional to the abscissa of the point of contact: 

X 
't" = -. 

a 

y 

Fig. 4.36. 

Jna 
2 

2na 51fa x 
2 

Theorem 11. The radius of curvature at a point of the curve under consideration is 

a a 
R=--=--; 

X COS 't" 
cos-

a 

thus, since R cos -r = a, the reetangular projection of the radius of curvature on 
the y-axis is constant. 

Theorem 12. For an arc s of a catenary of constant strength the relation 

s=alntan(~+~)· 
2a 4 

holds. 

Theorem 13. The area enclosed by a branch of a catenary of constant strength, 
by both asymptotes and by the x-axis is 

P = 1ta2 ln 2. 
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4.11. Examples of Some Algebraic Curves 

Example 1 (The cissoid of Diocles; Fig. 4.37). We construct the tangent t II y to 
the circle k of diameter a, with the centre on the x-axis and passing through the origin 
0. We draw lines through 0 intersecting k at the points J, 2, . .. , and tat the points 
1', 2', .... On every such line, we mark the point whose distance from the origin is 

Fig. 4.37. 

equal to the length of the segment determined by the points of intersection of tbe 
line with the circle and the tangent, i.e. OC1 = 11', OC2 = 22', .... Then C1, C2 , ••• 

are the points of a cissoid of Diocles. 

The equation of the curve in polar coordinates is 

. sin2 cp e = a sm cp tan cp = a -- , 
cos cp 

and in cartesian Coordinates 

The parametric equations are 
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A cissoid of Diocles is an algebraic curve of the third degree. The tangent t ( of 
equation x = a) to the circle k is an asymptote of the curve. 

A cissoid of Diocles is the orthogonal pedal curve of a parabola for a pole at the 
vertex of the parabola. 

Example 2 (The folium of Descartes, Fig. 4.38). A cissoid of the ellipse x 2 - xy 

+ y2 + a(x + y) = 0, a > 0, with regard to the straight line x + y + a = 0 for 

1 

Fig. 4.38. Fig. 4.39. 

the pole 0 is called the folium of Descartes. The equation of this curve in cartesian 
Coordinates is 

x3 + y3 - 3axy = 0, 

and in polar Coordinates 

3a sin ({J cos ({J 
(!- . 

- sin3 ({J + cos3 ({J ' 

the parametric equations are 

3at 
X=--, 

1 + t3 

3at2 
y=--. 

1 + t 3 

A folium of Descartes is a curve of the third degree symmetrical about the straight 
line y = x; at the point 0, it has a node with the x-axis and y-axis as tangents; at the 
point A(fa, fa ), it has a vertex; the straight Iine x + y + a = 0 is its asymptote. 

Construction 1 ofpoints of a folium ofDescartes: We draw a line through the pole 0 
to meet the tangent constructed at the vertex A at the point 1. On this Iine we de-
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termine the point 1' suchthat Al = Al'; we then construct the harmonic point M to the 
point 1 with regard to 0 and 1' (i.e. the cross-ratio ( 0, 1', 1, M) = -1). The point M 
is a point of the folium of Descartes. 

Example 3 (The strophoid; Fig. 4.39). We intersect the pencil of circles having 
the x-axis as a common tangent, with the common point of contact at the origin, by 
the diameters drawn through the point A(a, 0). The end points of the diameters lie 
on a (straight) strophoid, whose equation in polar coordinates is 

and in cartesian Coordinates is 

the parametric equations are 

cos 2qJ e=a--, 
cos qJ 

( a- x) or y2 = x 2 -- ; 
a+x 

The curve is symmetrical about the x-axis, it has a node with the tangents y = ± x 
at the origin 0 and the straight line x + a = 0 is its asymptote. 

Construction 2 of the normal and tangentat a point Mofa strophoid: The per­
pendicular bisector of the segment OM intersects the line through the point Aper­
pendicular to AM at the point N of the normal n; having obtained the normal, the 
tangent at M can be determined. 

Example 4 (The lemniscate of Bernoulli; Fig.4.40). This curveis a reetangular pedal 
curve of the reetangular hyperbola x 2 - y2 = a2 • Its equation is 

or in the polar form 

Its parametric equations are 

The vertices A1, A 2 of the reetangular hyperbola are the vertices ofthe lemniscate, 
at the point 0 there isadouble point (of infiexion) with the tangents y = ±x (which 
are the asymptotes of the hyperbola). 

The lemniscate of Bernoulli is one of the Cassinian ovals, i.e. its points have 
a constant product (equal to ta2 ) oftheir distances from two fixed points (±!a ~2, 0). 
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Construction 3 of points of a lemniscate of Bernoulli: We intersect the circle with 
centre 0 and radius ta ../2 by a line, for example, from the vertex Al> at the points 
C1, C2 • Then r1 = A1C1, r2 = A1C2 are the focal radii of a point ofthe lemniscate 
of Bernoulli. 

The polar form shows that <p is restricted to the intervals (- !n, !n ), (!n, ;in), and 
thus the curve lies within the right angles made by the tangents at the point 0, con­
taining the x-axis. 

Fig. 4.40. 
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A lemniscate of Bernoulli has two axes of symmetry and, hence, it is radially sym­
metrical about their point of intersection. At the points whose coordinates are 
(±*ay'6, ±~aJ2), i.e. for which cp = ±1r, ~. t1l' and f2 = !J2, the tangents areparallel 
to the x-axis. 

The angle between a tangent and the polar axis is equal to ±tn + 3<p, the angle 
between anormal and the polar axis is equal to 3<p, and the angle between anormal 
and the polar radius is equal to 2<p. 

Example 5 (The conchoid of Nicomedes; Fig. 4.41). We intersect a fixcd straight 
line x = a by a pencil of straight lines with vertex (pole) at 0. On each line of the 
pencil we mark off segments of a constant length b on both sides of the point of 
intersection with the fixed straight line. The end points of the segments lie on a con­
choid of Nicomedes whose equation in polar coordinates is 

and in reetangular Coordinates is 

a 
(!=--±b, 

cos <p 
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A conchoid of Nicomedes consists of two branches; it is symmetrical about the 
x-axis, and the straight line x = a is its asymptote. If b > a, then a branch has a node 
at 0; if b = a, then it has a cusp at 0; if b < a, then 0 is an isolated point. 

The normals of all conchoids corresponding to the points of a given polar radius 
pass through a point N which is the point of intersection of the perpendicular to the 
polar radius at the pole 0 with the line parallel to the x-axis through the point of 
intersection P of the polar radius and the straight line x = a. 
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I I Fig. 4.41. 

Example 6 (The conchoid of a circle; Fig. 4.42). We intersect the circle e = a cos cp 
by a pencil of straight lines with the vertex (pole) at 0 and mark off segments of 
a constant length b on both sides from the point of intersection of a straight line of 
the pencil and the circle. The end points of the segments lie on a conchoid of the 
circle whose equation in polar coordinates is 

e = a cos cp ± b , 

and in reetangular Coordinates is 

The conchoid of a circle (the limaron of Pascal) is symmetrical about the x-axis, 
and has a double point at the pole 0. (For b < a the double point is a node, for 
b = a it is a cuspidal point ( the curve is a cardioid) and for b > a it is an isolated 
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point.) The equations of the tangents at the pole are 

x)(a 2 - b2 ) ± by = 0; 

the equation of the double tangent is 

I 
I 
I 
I 
\ 

b2 
X+-= 0; 

4a 
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Fig. 4.42. 

the points of contact have the ordinates 

y = ±b)(4a2 - b2). 

4a 
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X 

4.11 

The normals of all conchoids corresponding to the points of a given polar radius 
pass through a point N which is the point of intersection of the perpendicular erected 
to the polar radius at the pole 0 and the fixed circle. 
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4.12. The Sine Curves 

To express periodical phenomena that repeat, without change, after a certain time, 
we use the sine functions. The least value of the constant, which, being added to the 
argument, does not change the value of the function, is called a primitive period. 

Example 1. y = sin x (Fig. 4.43). The primitive period is 2n, the zero points 
0, ± 1t, ± 27t, ... are points of inflexion of the curve and the tangents at these points 
make an angle of ±i1t with the x-axis. 
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Fig. 4.43. 
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Fig. 4.44. 
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Example 2. y = sin (x + c). The graph can be obtained from the graph of 
Example 1 (Fig. 4.43) by a translation through a distance - c in the direction of the 
x-axis. 

Example 3. y = a sin x (Fig. 4.43). The graph can be obtained from the graph 
of Example 1 by multiplying the ordinates y by a. 
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Example 4. y = sin bx (Fig. 4.44). The primitive period is 21t/b and the zero 
points (of inßexion) are x = ±k1t/b (k = 0, 1, 2, ... ). The tangents at these points 
have the direction of the hypotenuse of the right-angled triangle one side of which 
is on the x-axis and is of unit length, the other side being of length b. The graph can 
be obtained from the graph of Example 1 by a change of the x-coordinates in the 
ratio 1/b. The coefficient b indicates the number of waves coming into the length 21r 
and is called the circular (angular) frequency. 

Example 5. y = a sin bx (Fig. 4.44). The graph can be obtained from the graph 
of Example 4 by multiplying the ordinates y by a. 

Example 6. y = a sin (bx + c). The graph can be obtained from the graph of 
Example 5 (Fig. 4.44) by a translation through a distance - c f b in the positive 
direction of the x-axis. By this function, so-called simple harmonic motion is 
given. The notation 

y = a sin (mt + cp) (I) 

is often used, with amplitude a > 0, circular frequency m and phase displacement 
cp (lcpl < 1t). The period is T = 21tfm; the frequency is n = !m/1t = 1fT. 

Equation (1) can be put in the form 

y = a 1 sin mt + a 2 cos wt , (2) 

where a 1 = a cos cp, a2 = a sin cp. Conversely, if the form (2) is given, we get (1) 
by putting 

where 

a = .J(a~ + an' cp = arctan a2 + k1t' 
a1 

k = 0 for a 1 > 0 , 

k = 1 for a 1 < 0, a2 > 0, 

k = -1 for a 1 < 0, a 2 < 0. 

4.13. Tbe Curves of Oscillations 

(a) Undamped (continuous) oscillations 

(cx) Free undamped oscillations are accomplished by a particleofmass m,on which 
a force Cy proportional to the displacement y from an equilibrium position is exerted; 
in dynamics, C is called the spring constant. The motion is given by the following 
differential equation: 

.. c 0 y+-y= . 
m 
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The solution is (see §17.13 and equation (4.12.1)) 

y = a sin ( ro0 t + qJ) , (I) 

where ro0 = .J(Cfm) and a, qJ are constants given by the initial conditions of the 
motion. 

The composition of two harmonic motions 

I. IDENTICAL CIRCULAR FREQUENCIES ro 

a sin (rot + qJ1) + b sin (rot + qJ2 ) = A 1 sin rot + A2 cos rot = A sin (rot + ({J), 

where 

A 
tan qJ = ~. 

At 

In particular, for equal amplitudes b = a we get 

where 

(2) 

{3) 

Thus, in the case of equal frequencies the sum is a harmonic motion of the same 
frequency. 

II. IDENTICAL AMPLITUDES, DIFFERENT FREQUENCIES 

{4) 

(ß) Forced undamped (continuous) oscillation is the motion of a particle of 
mass m under a periodically varying force P sin rot in addition to the force Cy. 
This motion satisfies the differential equation 

.. c p. 
y + - y = - sm rot . 

m m 
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The solution is (see § 17.14): 

y = Ysin wt + a sin (w 0 t + cp) (w =I w0 ) 

where w0 = J(Cfm), a, cp are constants given by the initial conditions and 

For w = w0 (the case of resonance), 

y = - _!_ t cos w0 t + a sin ( w0 t + cp) • 
2mw0 

4.13 

(5) 

(6) 

(7) 

As a rule, m, w 0 , P are fixed constants. The dependence of Y on w expressed in ( 6) 
is illustrated in Fig. 4.45 (the resonance curve). 

y 

PlmtJ; 

0 1 

Fig. 4.45 

(b) Damped oscillations. The motion is retarded by a force F proportional 
to the velocity (F = - ky). 

(a.) Free damped oscillations. The differential equation of the motion is 

ji + 2by + w~y = 0 (8) 
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where w0 = .J(C/m), b = k/(2m). The solution depends on the roots ofthe auxiliary 
equation (cf. § 17.13) 

a2 + 2ba + w~ = 0 . 

1. If b = w0 , then a 1 = az = -wo. The general solution is 

y 

t 

Fig. 4.46. 

lf, for t = 0, the initial conditions are y = a, y = 0, then the solution is 

y = ae-ro01(1 + w0 t). 

This is the case of critical damping. For t ~ + ro we have y ~ 0 (Fig. 4.46). 

2. If b > w0 , then the roots 

a 1 = -b + .J(b2 - w~), a2 = -b- .J(b2 - w~) 

are real and distinct. The generat solution is 

if for t = 0, 
y=a, y=O, 

then 

(9) 

This case is referred to as supercritical damping (Fig. 4.47). The motions 1, 2 are 
called aperiodic. 

3. If b < w0 , then, writing 
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the general solution is 

y = e-bt(C1 COS ro1 t + C2 sin Wtt) o 

lf, for t = 0, the initial conditions are y = a, y = 0, then 

y 

Figo 4.470 

4ol3 

t 

(cf. equation (4.12.2)). Here, the period T = 2rt/w1 is Ionger than in the case of an 
undamped oscillation. The ratio of the displacements y1 , y 2 at instants t 1, t 1 + Tis 

Yt = e2"b/m, ; 
Yz 

its natural logarithm 8 = 2rtb/w1 = bT is called the logarithmic decrement of the 
motion. 

The zero points ofthe curve (10) are obtained for tn = (nrt - cp)fw1, the vertices for 

t = arctan (w1/b)- ({J + n1t = + Aw1 e-btn 
n ' Yn - I( 2 b2) ' 

(J)l " (J)l + 
The curve (10) can be constructed (Fig. 4.48) by means of the enveloping curves 

Yt = Ae-b' and ji1 = -Ae-b' 

(see Construction 4.901) and by the curve 

Yz = sin (w 1t + cp), 

using the proportion 

1 : Yt = Yz: Y o 
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(ß) Forced damped oscillations. The differential equation is 

.. 2b. 2 p . Y + Y + c.o0 y = - sm c.ot 
m 

(11) 

(the notation as in equation (8)). The general solution (provided equation (9) has 
complex roots) is 

y = A1 sin rot+ A2 cos c.ot + e-b'(C1 cos c.o1 t + C2 sin c.o1t) = 

= A sin (rot+ cp) + e-h'(C1 cos c.o 1 t + C2 sin c.o1 t) (12) 

y 

/ 

(cf. (4.12.2)). Here 

(.01 = -J(c.o~ - b2 ). 

_ .. - .. -\- 21( 
----·· \ .. -·· ' 

Fig. 4.48. 

' ',,, 
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Since b > 0, the second term of (12) becomes negligible, after a certain time, with 
regard to the first one, so that the motion is characterized only by the first term with 
the amplitude A. The magnitude of this amplitude depends on w (P, m, w0 , b are 
constants) and is illustrated in Fig. 4.49 (the resonance curve). The case w = w0 

is said to give resonance. For small b ( b ~ w0) A attains its maximum for w ~ w0 

(more precisely, if w~ > 2b2 , for w = .j(w~ - 2b2)). The first and second terms of 
the oscillation (12) are often called the steady-state and transient oscillations, respec­
tively. 

A 

0 o·s 1'0 1'5 

Fig. 4.49. 

4.14. Growth Curves 

Definition 1. A solution x = F(t) of the differential equation 

dx = f(x) 
dt 

2'0 

(1) 

is called the law of growth which is assigned to any phenomenon observed to satisfy 
the equation. 

We make the following assumptions: 

(a) the necessary parameters involved in f(x) have been established for the 
phenomenon under consideration on the basis of statistical data; 
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(b) the growth of the quantity x in time t takes place without any external inter­
vention; 

( c) the initial condition t = 0, x = x0 holds. 

Example 1. If f(x) = m = const., the solution of the differential equation (1) is 

x = mt + x0 (2) 

and the growth curve is the straight line of gradient tan at: = m; this line passes 
through the point (0, x0). 

Example 2. If f(x) = ax + b, a :1: 0, the solution is 

b ( b)ot x = - ~ + x 0 + ~ e (3) 

and the 1aw of growth is given by the exponential curve passing through the point 
(0, x0). 

If b = 0, x0 :1: 0, the law (3) assumes the fo:m (Fig. 4.50) 

x = x0e01 , or (writing c = -a when a < 0) x = x0e-ct (4) 

lf b :1: 0, x0 = 0, the law (3) takes the form (Fig. 4.51) 

x = A(e01 - 1) or x = A(1 - e-ct), 

where c = - a (if a < 0) and A = b/a or A = b/c, respectively. 

'X 
I 
i 
I 

0 

Fig. 4.50. Fig. 4.51. 

(5) 

In Fig. 4.51 the auxiliary curve x = Ae-c 1 is also shown. The line x = A = b/c 
is the asymptote of the second of curves (5) and it determines the Iimit of the evolu­
tion. 

Example 3. Ifj(x) = m + ax - bx2 = b(x - x 2) (x1 - x), a > 0, b > 0, m > 0 
so that x 10 x 2 are the roots of the quadratic equation f(x) = 0, then the general 
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solution of equation ( 1) is 

X- X2 = e(xt-X2)(bt+c) t c = cons . (6) 
X1- X 

The solution can be written in the form 

{7) 

or 
X 1 + X X - Xz X 1 - X 

x = 2 + 1 tanh 2 (bt + c) . 
2 2 2 

(8) 

The straight lines x = x 1, x = x 2 are the asymptotes of integral curves (6). The 
ordinate of the point of infiexion of the curve is ~ = t(x1 + x 2); the abscissa r of 
this point satisfies b-r + c = 0. Using the given initial condition x = x0 , we get 

r = In Xt - Xo. 

b(x 1 - x 2) Xo - Xz 

By translation of the origin to the point of infiexion (by means of the equations 
X = x - ~. T = t - r) equation (8) assumes the form 

X = x 1 - X3 tanh x 1 - x 2 bT. 
2 2 

The gradient of the tangent at the point of infiexion is 

tan C( = ~ (x 1 - x2 ) 2 • 

4 

(9) 

Hence the law of growth in this case takes the form of a hyperbolic tangent, some­
times called a logistic curve. The curve is symmetrical about the point of inflexion 
and its graphlies within the strip bounded by the asymptotes x = x 1, x = x 2 • 

Example 4. lf, in Example 3, m = 0, then the solution of equation (1) is called 
Robertson's law of growth. Heref(x) = x(a - bx). The given initial condition t = 0, 
x = x 0 yields the solution 

a a - bx 
x = , where C = 0 

b(l + Ce-at) bx0 
(10) 

Using the Coordinates ~ = af2b, r = (1/a) ln [(a - bx0)Jbx0 ] of the point of in­
fiexion we get the form 

a a a 
x = - + - tanh - ( t - r) ; 

2b 2b 2 
(11) 
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on translating the origin we get 

X = !: tanh ~ T. 
2b 2 

(12) 

The asymptotes are x = afb, x = 0; the gradient of the tangent at the point of 
inflexion is 

a2 
tan cx =-. 

4b 

IX 

j(xJ 01------'T=----~-1 

Fig. 4.52. 

t 

In Fig. 4.52 Robertson's law of growth together with the parabolaf(x) = ax - bx2 

and the determination of the Coordinates ofthe point of inflexion is illustrated; the 
curve is constructed in the Coordinates T, X. The curve 

dX a 2 

dT 4b cosh2 tar' 

(also illustrated), shows the speed of growth. 

4.15. Some Approximate Constructions 

Construction 1 of the tangenttat a given point Tof a curve k (Fig. 4.53): We draw 
secants through the point T meeting the curve in the points ... , -2, -1, I, 2, . .. 
near T, and an arbitrary straight line q (not passing through T) in the points ... , -2', 
-1', 1', 2', .. .. Now, on the secants corresponding to the points J, 2, ... we determine 
the points at the distances Tl, T2, ... from 1', 2', ... on one side of the straight line q; 
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in a similar manner, we determine the points on the secants corresponding to -1, 
-2, ... on the other side of q. Thesepoints determine the curve s intersecting the 
straight line q at the point 0'. The tangent t is then the line O'T. 

Construction 2 of the point of contact T of a tangent t constructed (by means of 
a ruler) from a point R to a curve k {Fig. 4.54): From the point R we construct a pencil 
of secants, which intersect the curve k in the neighbourhood of the required point T 

Fig. 4.53. 

R 

k 

Fig. 4.54. Fig. 4.55. 

in pairs of points -1, + 1; -2, + 2; . . . . On parallel lines drawn through these 
points we mark off points at distances equal to the length of the corresponding 
chords; on one side of the curve for the points marked by + and on the other side 
for the points marked by -. If we join those points, the resulting curve s intersects 
the tangent t (and thus, also the curve k) at the point of contact T of the tangent t. 

Construction 3 of anormal n from a point R to a curve k (Fig. 4.55): From the 
point R we describe concentric circles, each intersecting the curve at two points 
-1, +1; -2, +2; ... in the neighbourhood of the foot N of the required normal. 
The curve s constructed in the same way as in Construction 2 intersects the curve k 
at the foot N of the required normal n from the point R. 



5. PLANE ANALYTIC GEOMETRY 

By MILOSLAV ZELENKA 

References: [9], [12], [20], [22], [27], [46], [55], [59], [62], [98], [101], [103], [117], [145], 
[150], [156], [162], [165], [175], [186]. 

5.1. Coordinates of a Point on a Straight Line and in a Plane. 
Distance between Two Points 

Definition 1. Let us divide a straight line p by a point 0 into two half-lines + p and 
- p (Fig. 5.1). Let us choose on p a unit of length. The coordinate x of a point M 
is defined to be the distance of the point M from the point 0 prefixed by a sign, plus 
or minus (the so-called directed distance) according as M belongs to + p or - p, 
respectively. We write M(x). 

REMARK 1. The position of a point M on a line p is uniquely determined by the 
coordinate x (and vice versa). We say that a coordinate system has been introduced 
on the line p. The point 0 is called tbe origin of the coordinate system. 

Fig. 5.1. -4 -3 -2 -1 0 1 2 ·3 4 p 
N(-2) 0 I 11(~'6-1 • 

Theorem 1. The distance d between two points A(x1) and B(x2 ) on a line is equal 
to 

(I) 

REMARK 2. In a similar way, a coordinate system can be introduced in a plane 
(Fig. 5.2): We select units of length on two intersecting lines, called axes of coordinates; 
the intersection of the lines is taken as the origin on each of them; we denote it by 0 
and call it the origin of the coordinate system in the plane. A point M in the plane 
is then uniquely determined by its coordinates x, y (see Fig. 5.2), and vice versa. 

If the axes x, y are mutually perpendicular, the coordinate system is called rectan­
gular. As in the case of Coordinates on a line, the coordinate x or y gives the direc­
ted distance of the point M(x, y) from the coordinate axis y or x, respectively. 
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A reetangular system in which both axes have the same unit oflength is called cartesian. 
Throughout this chapter - unless otherwise stated - we use the cartesian coordinate 
system. 

The plane is divided by the coordinate axes into four parts called the quadrants 
(Fig. 5.2). 

y 

II. /. 

Nf2, 1} 
----- ------ .. --~,1' 

-2 1 2 3 X 

II/. IV. Fig. 5.2. 

Theorem 2. The distance between two points A(x1, y 1) and B(x2 , y 2) in a cartesian 
coordinate system is equal to 

(2) 

REMARK 3. In § 7.1, the concept of a three-dimensional (real) vector is introduced. 
Similarly, a two-dimensional vector a with two components al> a 2 can be defined; 
the notation a(al> a2) or a = (a 1, a2) is used. As in the case of three-dimensional 
vectors, two-dimensional vectors can also be represented by directed line segments. 
If two-dimensional vectors are used in problems of analytical geometry in a plane, 
they are, of course, represented by directed segments lying in thtt plane. 

A two-dimensional vector represented by a directed line segment in a plane xy is 
often considered as a special case of a three-dimensional vector, the third component 
of which is zero (although this is not written explicitly). Then we can, without any 
alterations, apply the definitions and theorems of Chap. 7 concerning Operations on 
vectors in three-dimensional space. For example, the formula 

for the scalar product of two vectors a(a 1 , a2) and b{b1, b2) holds. 

The number .j(a~ + an is called the length (or magnitude) of the vector a and 
is denoted by either Iai or a. 
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5.2. Division of a Line Segment in a Given Ratio. Area of a Triangle 
and Polygon 

Theorem 1. An arbitrary point M(x, y) on the line segment with the end points 
M 1(x1, y 1) and M 2(x2, y 2) can be represented in vector form by 

{1) 

where m, m1 and m2 are the radius vectors of the points M, M 1 and M 2, respectively, 
or in coordinate form by 

(0 ~ t ~ 1). 

x = x 1 + t(x2 - x 1), 

Y = Y1 + t(y2 - Yt) (2) 

Ifthe pointM(x,y) divides the line segmentM1M2 in theratio M 1M :M2M = ,t < 0, 
then, putting t = --t/(1 - -t), we obtain 

X1 - Ä.x2 Y1 - Ä.Jl 
X= 1-,t 'y= 1-). {3) 

If ,t = -1, M is the midpoint of the line segment M 1M2 , and formulae (3) become 

Xt + x2 
X= 2 ' 

y = Yt + Y2 
2 

(4) 

Theorem 2. The area of a polygon with vertices A1(x1, y1), A2(x2, Y2), .. . , 
... , An(xn, Yn) occuring in that order, is 

p = ! I X1, X21 + I X 2 , X31 + ... + I Xn, X1 I 
Yt• Y2 Y2• Y3 Yn• Yt 

(5) 

In particular, the area of the triangle with vertices A1(x1, y 1), A2(x2, y2) and 

A3(x3, YJ) is 

xl, Y~o 1 
P =! X2, Y2• 1 

X3, Y3• 1 

5.3. The Equation of a Curve as the Locus of a Point 

(6) 

Definition 1. The equation of a curve is the name given to the relation (equation) 
which is satisfied by the Coordinates x, y of all the points lying on the given curve 
(and only those points). 
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In order to obtain the equation of a curve as a locus of a point having a given 
property, we proceed as follows: 

1. we choose an arbitrary point M of the curve and denote its Coordinates by 
(x, y); 

2. we express the required property of points on the locus by an equation between 
x and y; 

3. we arrange the equation in a simpler form, if possible, at the sametime expressing 
all the quantities involved in terms of x, y and the given elements (constants). 

Example 1. Let us o btain the equation of the locus of the point in a plane, which is 
always at a distance d = 3 from the point S( -2, 1). 

Thus, 

1. 

2. 

M(x, y); 

.J[(x + 2)2 + (y - 1)2] = 3 ; 

(1) 

(2) 

3. we square equation {2) and obtain the equation (x + 2)2 + (y - 1)2 = 9, 
which needs no further rearrangement; it is the equation of a circle. 

5.4. The Gradient, Intercept, General and Vector Forms of the Equation 
of a Straight Line. Parametrie Equations of a Straight Line. Equation 
of the Straight Line through Two Given Points. The Point of Intersection 

of Two Straight Lines. Equation of a Pencil of Lines 

y = kx + q (the gradientform of the equation of a straight line) ; (1) 
X y 
- + - = 1 (p "I= 0, q "I= 0) (the interceptform of the equation of a straight line) ; 
p q 

ax + by + c = 0 (a 2 + b2 > 0) (the general equation of a straight line) ; 

m = m1 + ta ( a =f:. 0) (the vector equation of a straight line); 

X = X 1 + a 1 t } ( h . · ,I' • h z· ) t e parametnc equatwns OJ a strazg t zne . 
Y = Y1 + a2t 

{2) 

(3) 

(4) 

(5) 

The geometrical meaning of the constants involved in these equations can be seen 
from Fig. 5.3, 5.4, 5.5, 5.6; k = tan cp is the so-called slope (or gradient) of the line. 
For k = 0 the line is parallel to the x-axis. For q = 0 the line passes through the 
origin. The equation ofthe y-axis or a line parallel to the y-axis (i.e. if cp = !1t) cannot 
be written in the form ( 1 ). 

The numbers, p, q, in equation (2) (which may be positive or negative) are the 
so-called intercepts on the axes. A straight line which passes through the origin or is 
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parallel to a coordinate axis cannot bt: written in the form (2). The constants a, bin 
equation (3) determine the vector n(a, b) perpendicular to the line (3). If a = 0, 
the line is parallel to the x-axis; if b = 0, it is parallel to the y-axis. The third 
parameter c is related to the distance of the line from the origin (see § 5.6); if 
c = 0, the line passes through the origin. 

\ 
\ 
\ 
\ 

ax+by=O\ 
\ 

\ 
\ 

\ 
\ 

Fig. 5.5. 

X 

Fig. 5.4. 

X 

Fig. 5.6. 

The line (4) passes through the point M1(x1, y1), the radius vector of which is 
denoted by m1 ; its direction is determined by the vector a(a 1, a2 ) and t is a var­
iable parameter (- oo < t < + oo ). To each particular value of t there corres­
ponds a particular point M(x, y) whose radius vector is m (Fig. 5.6). The vector 
equation is, in fact, a more concise version of the parametric equations (5). 

Example 1. The straight line given by the parametric equations 

is to be expressed in the form (3). 

X= 3 + 2t, 

y = 1- 3t 

Eliminating t from the parametric equations we obtain the required relation be­
tween x and y: adding three times the first equation to twice the second we obtain 

3x + 2y = 11, 
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i.e. 
3x + 2y - 11 = 0 . 

Example 2. Find the equation of the straight line whose segment AB, intercepted 
by the positive semi-axes x and y, is bisected by the point P(4, 3). 

Similarity of the triangles PCB and AOB (Fig. 5.7) implies that p = 8, q = 6 and 
thus, by (2) the required equation is 

y 

X y 
-+-=1. 
8 6 

Fig. 5.7. 

Theorem 1. The equation of the straight line passing through two given points 

A(x1, y 1) and B(x2 , y 2) is 

x- x 1 Y- Y1 

Xz - X1 Yz - Y1 

i.e. 

y - Y1 = Yz - Y1 (x - xl). 
Xz- xl 

If x 2 = x1 , or y2 = y1, then the equation of the straight line is x = X1o or y = y1, 

respectively. 

Example 3. The line passing through the points A( -1, 5), B(3, 7) has the equation 

7-5 
y - 5 = -- (x + I), i.e. x - 2y + 11 = 0. 

3 + 1 

The line passing through the points A(3, 3), B(3, 8) has, of course, the equation x = 3 
( and is a line parallel to the y-axis ). 

Theorem 2. The point of intersection P(x0 , y 0 ) of two intersecting straight lines 

given by equations a1x + b1y + c1 = 0 and a 2x + b2 y + c2 = 0 can be found 



5.4 PLANE ANALYTIC GEOMETRY 

by solving these equations simultaneously; hence, 

provided that I a ~> bb 1 I :;C 0 . 
a2, 2 

If I ::: ~: l = 0, the lines areparallel or they coincide. 

173 

(6) 

Definition 1. The set of straight lines in a plane, all of which pass through one 
point S, is called a pencil of lines. The point S is called the centre ( or vertex) of the 
pencil of lines. 

Theorem 3. The straight lines belonging to the pencil with centre S(x0 , y 0 ) have 

as their equation either 

(7) 

or 
(7') 

where k; (i = 1, 2) is a variable parameter; to each line of the pencil, there corre· 

sponds a unique value of k 1 or k 2 , and conversely. 

Theorem 4. The straight lines betonging to the pcncil determined by the inter· 

secting lines 

have as their equations: 

A.1(a 1x + b1y + c1) + A.2 (a 2x + b2y + c2) = 0, (8) 

where A.; (i = 1, 2) are variable parameters not simultaneously equal to zero; 

to each line of the pencil there corresponds a unique ratio A.tf,).2 or }'1/).1, and 

conversely. 

Definition 2. Equations (7), (7') or (8) are called the equations of a pencil of lines. 

Example 4. Let us find the equation of the straight line which passes through the 
point of intersection of the Jines 

2x - y + 3 = 0, x + 3y - 1 = 0 

and through the point P(2, 1). 

The equation of the line will be, by (8), of the form 

..1.1(2x - y + 3) + A.2(x + 3y- 1) = 0. (9) 
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The point P(2, 1) must lie on the line (9) and hence 

-"1(2. 2 - 1 + 3) + -"i2 + 3. 1 - 1) = 0' 

6Äl + 4Ä2 = 0; 

5.5 

(10) 

in order to satisfy equation (10), it suffices to put Ä1 = 2, Ä2 = -3. Then, by (9) 
the required equation is 

2(2x - y + 3) - 3(x + 3y - 1) = 0, i.e. x - lly + 9 = 0. 

Check: We can calculate the Coordinates of Q, the point of intersection of the two 
lines (by Theorem 2) and then verify that the points P and Q satisfy the equation x -
- lly + 9 = 0. 

5.5. Directed (Oriented) Straight Line. Direction Cosines. The Angle 
between Two Straight Lines 

Definition 1. A straight line p is said to be directed ( or oriented), if, for every pair 
of points A, B ( A =1- B) on this line, one can decide by means of a given rule, whether A 
lies before B (notation A-< B) or Blies before A (while the relations A -< Band B -< C 
together imply A -< C). We say that on p the so-called positive sense and negative 
sense of orientation are given. lt is customary to mark the direction (orientation) 
of a line in diagrams by an arrow showing its positive sense. 

In a similar way, a directed half-line and directed line segment are defined. In 
the case of a directed half-line we speak of its initial point; in the case of a directed 
line segment we speak of its initial and end points. If we choose a point 0 on a directed 
line, we divide it into the so-called positive part (positive half-line) + p and the 
negative part (negative half-line) - p by this point. 

Definition 2. If A(a 1 , a 2) and B(b1, b2) are two points on a directed line p suchthat 
A lies before B, then the expressions 

and 

are called the direction cosines of the directed line p; we derrote them by cos oc1, 

cos oc2 • (The unit-vector with components cos oc1 , cos oc2 lies on the line p.) 

Theorem 1. The expressions introduced in Definition 2 and denoted by cos oc1 , 

cos oc2 are cosines of the undirected angles oc 1, oc2 (0 ~ ocl> oc2 ~ 180°) between the 
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positive part of the line p and the positive parts of the coordinate axes x and y, 
respectively. 

Example 1. Let us choose the points A(1, 2) and B(O, -1) on the straight line 
y = 3x - 1 (Fig. 5.8); if this line is directed from A toB then its direction cosines are 

0- 1 -1 
cos al = J[(o - 1)2 + ( -1 - 2)2] = Jw , 

-1-2 

y'10 

The corresponding direction angles are 

Theorem 2. lf q> is the acute angle between the lines y = k 1x + q1 and y = 
= k 2x + q2 then 

tan q> = I k1 - k 2 1 (k1 i= - _!_ ; see Theorem 4) . 
1 + ktk2 k2 

(1) 

Fig. 5.8. 

lf the lines are given in theform a 1x + b1y + c1 = 0 and a2x + b2 y + c2 = 0, 
then 

(1') 

Theorem 3. The condition for the straight lines of Theorem 2 to be parallel is 
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Theorem 4. The conditionfor the straight lines of Theorem 2 tobe perpendicular 
is 

Example 2. Let us determine the angles between the following straight lines: 
a) y = 3x- 1, y = -x + 7; b) 2x + 3y- 5 = 0, 3x- 2y + 1 = 0; c) y = 

= 2x + 3, 4x - 2y + 1 = 0. 

Solution: a) k1 = 3, k 2 = -1. Thus, tan cp = -4/(1 - 3) = 2, cp == 63°26'. 
b) a 1a 2 + b1b2 = 2. 3 - 3. 2 = 0; the lines are perpendicular. c) First, we put 
the equations of both lines in the same form: 2x - y + 3 = 0, 4x - 2y + 1 = 0. 
Clearly, a1 b2 - a2b1 = 2. ( -2) - ( -1). 4 = 0; the lines are parallel. 

REMARK 1. The equation of any line perpendicular to the straight line 

(2) 

can be written in the form 

(3) 

(since, the coefficients of the variables x and y in equations (2) and (3) satisfy the 
conditions of Theorem 4, namely a 1b1 + b1( -a1) = 0). 

Example 3. Find the equation of the line p passing through the point P(1, 4) and 
perpendicular to the line 

2x + 3y + 5 = 0. 

By (3), the equation of the line p can be written in the form 

3x - 2y + c2 = 0 . 

(4) 

(5) 

Substituting the coordinates 1 and 4 of the point P for x and y respectively into (5), 
we obtain 

3 . 1 - 2 . 4 + c2 = 0 , 

i.e. c2 = 5 and thus the equation of the line p is 

3x- 2y + 5 = 0. 

Example 4. Find the equation of the straight line which passes through the point 
of intersection of the lines 

X- 2y + 3 = 0, 

3x + 5y- 2 = 0 
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and which is perpendicular to the line 

4x+y-7=0. 

By (5.4.8), p. 173, the equation of the required line is of the form 

A. 1(x - 2y + 3) + A.2(3x + 5y - 2) = 0, 
i.e. 

(A.l + 3A.l) X+ ( -2Al + 5A.2) Y + (3A.l - 2A.2) = 0 · 

The condition for the lines (6) and (7) tobe perpendicular is, by Theorem 4, 

4(A.l + 3A.2) + ( -2A.l + 5A.2) = 0, 
i.e. 

177 

(6) 

(7) 

Hence, it suffices to choose A.2 = 2, A. 1 = -17. Substituting these values into (7), 
we obtain the required equation in the form 

-llx + 44y - 55 = 0 , 
i.e. 

X- 4y + 5 = 0. 

5.6. The Normal Equation of a Straight Line. Distance of a Point from 
a Straight Line. The Equations of the Bisectors of the Angles between 

Two Straight Lines 

Definition 1. The equation 

a b c ----X+ y + = 0, (1) ±-)(a2 + b2) ±.J(a2 + b2) ±.J(a2 + b2) 

where a, b, c are three arbitrary numbers ( a2 + b2 > 0) and the sign of the denomi­
nators is the opposite ofthat ofthe number c, is called the normal equation of a straight 
line. 

The geometrical meanings of the coefficients are: 

1. ( a , b ) is a unit-vector perpendicular to the straight ±.J(a2 + b2) ±-)(a2 + b2) 
line (directed from the origin of coordinates to the Iine); 

2., c I is the length d of the perpendicular from the origin to the ±-)(a2 + b2) 
straight line. 
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Denoting the direction cosines of the above-mentioned vector by cos IX and cos p, 
(a:, ß are the magnitudes of the angles which it makes with the positive parts of the 
axes x, y; see Theorem 5.5.1, p. 174), then 

a b 
COS IX = , COS ß = , 

±.J(a2 + b2) ±.J(a2 + b2) 

and the equation (1) can be rewritten in the form 

X COS IX + y COS ß - d = 0 . 

Theorem 1. The distance d of a point A(x0 , y 0) from a straight line ax + by + 
+ c = 0 is given by 

(2) 

Theorem 2. The equations of the bisectors of the angles between the two straight 
lines a 1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are 

a1x + b1y + c1 + a2x + b2y + c2 = 0 
.J(a~ + bD .J(a~ + bD 

(3) 

and 

a1x + b1y + c1 _ a2x + b2 y + c2 = 0 . 

.J(a~ + bD .J(a~ + b~) 
(3') 

REMARK 1. In order to decide which of the two bisectors (3), (3') passing through 
a given vertex of a triangle is the internal bisector of the angle, it is sufficient to find 
which one meets the opposite side of the triangle. 

5. 7. Polar Coordinates 

The position of a point M may be determined by polar coordinates (!, cp: the CO­

ordinate(! is the distance ofthe point M from the origin (or pole) 0, the coordinate cp 
is the directed angle between the segment OM and a fixed half-line p (with initial 

Q ,.,,,"' 
..,..,'i1 

/fps/ 
." Fig. 5.9. 

0 p 

point 0) called the polar semi-axis (or initial-line (Fig. 5.9.)). Here (! ~ 0, 0 ~ cp < 
< 27t. lt is necessary to restriet the coordinates e and cp in some way in order to 
establish a one-to-one correspondence between the points of a plane and the pairs 
of numbers ((!, cp) (with the exception of the pole), and we choose this particular 
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way. However, sometimes <p is not restricted to this, or even any interval (and 
occasionally even (! < 0 is used, especially in the equations of spirals etc.). 

The relations between the cartesian and polar coordinates in the case where the 
pole is at the origin of the cartesian system and the polar semi-axis coincides with 
the positive part of the x-axis are: 

x = (! cos <p , y = (! sin <p ; (1) 
converse1y 

(! = J(x2 + y2), 

<p = arctan ~ for X> 0, y > 0; 
X 

<p = -!7t for X= 0, y > 0; 

<p = 1t + arctan E for x < 0, y arbitrary ; (1') 
X 

<p = }7t for X= 0, y < 0; 

<p = 27t + arctan E for X> 0, y < 0. 
X 

Example 1. The point M, the cartesian coordinates of which are (- 2, 1 ), has polar 
coordinates (J5, 2·68) (the angle being measured in radians ). The point N, the polar 
coordinates of which are (4, j1t), has cartesian Coordinates (2, -2 J3) (Fig. 5.10). 

Fig. 5.10. 
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The equation of a curve in polar coordinates is - as in the case of cartesian Co­
ordinates - a relation which is satisfied by the coordinates of all the points of the 
curve (and only those points). The equations of some curves have a particularly 
simple form in polar coordinates. 
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Example 2. The cartesian equation of the circle whose centre is at the origin and 
whose radius is 7 is x 2 + y2 = 49. If the coordinates are changed to polars using 
(1), the equation, after a small simplification, takes the form Q = 7, which is the equa­
tion of the same circle. (This is obvious geometrically.) 

Example 3. If we choose as pole the focus of an ellipse, hyperbola, or parabola, 
and if that part of the focal axis of symmetry which does not contain the nearer 
vertex, be chosen as polar semi-axis, then all these curves have an equation of the 
form: 

Q = p ' 
1 - e cos cp 

(2) 

where e is the eccentricity (see §§ 5.10, 5.11, 5.12) and 2p is the Iatus rectum (i.e. the 
focal chord perpendicular to the focal axis of symmetry). In the case of the ellipse 
and hyperbola, p = b2 / a; in the case of the parabola, e = 1. 

5.8. Parametrie Equations of a Curve in a Plane 

The equations x = x(t), y = y(t), where t is a variable parameter, are called the 
parametric equations of a curve. 

Here x(t), y(t) are, as a rule, differentiable functions of t within an interval I. If t 
ranges over this interval, the point M(x, y) moves along the curve. See Chap. 9. 

X 

Fig. 5.11. 

Example 1. a) The equations x = 5 cos t, y = 3 sin t for 0 ;:;:; t < 21t are the para­
metric equations of an ellipse, the axes of which coincide with the coordinate axes, 
the lengths of the semi-axes being a = 5, b = 3 (Fig. 5.11). 

b) If we eliminate t from these equations, we obtain the equation of the ellipse in 
cartesian coordinates (see §5.10): 

X - = cos t, 
5 

~ = sin t; 
3 
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hence 

i.e. 

Gr + Gr = cos2 t + sin2 t = 1 • 

xz y2 
-+-=1. 
25 9 

REMARK 1. Some curves can only be expressed in a simple form parametrically, 
( either we cannot eliminate t from the parametric equations or it is inconvenient to do 
so; for example, in the case of a cycloid x = t - sin t, y = 1 - cos t); some curves 
can be expressed simply in both ways. Obviously, we use whichever form is more con­
venient. 

5.9. The Circle (sec also § 4.1, p. 112) 

Definition 1. A circle is the locus of a point X(x, y) in a plane which moves so 
that its distance from a fixed point - the centre S - is constant. 

Theorem 1. The equation of the circle, whose centre in cartesian coordinates is 

S(x0 , y0) and whose radius is r, is 

(1) 

Example 1. The circle with centre S(- 2, 1) and radius r = 3 has the equation 

(x + 2)2 + (y - 1)2 = 9. 

If we remove the brackets in equation ( 1 ), we obtain an equation of the form 

x 2 + y 2 + mx + ny + p = 0. (2) 

If we want to obtain an equation of the form (1) from equation (2), we "complete 
the squares" on the left-hand side of equation (2) and obtain 

( m)z ( n)z mz nz 
X + 2 + y + l = 4+ 4 - p • (3) 

Comparing this with equation (1) we can sec that the expression on the right-hand 
side of equation (3) must be positive in order to get a real circle; also ( -!m, -tn) 
are the Coordinates of the centre of this circle. 

Theorem 2. The parametric equations of a circle are 

x = x 0 + r cos t , 

y = y0 + r sin t, 
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where the point S(x0 , y 0) is the centre, r is the radius, (x, y) are the coordinates 

of a general point X an the circle and t (0 ~ t < 2tt) is a variable parameter, the 

geometrical sign(ficance of which is that it is the angle formed by the half-line SX 

and the positive semi-axis +x. 

Theorem 3. The equation of a circle of radius a in polar coordinates is Q = a, 

if S coincides with 0 (see Example 5.7.2,p. 180), and Q = 2a cos <p ( -!tt < <p ~ 1tt), 
if S lies an the polar semi-axis and the circle passes through the pole. 

Example 2. Find the coordinates of the points of intersection P 1 , P 2 of the line 

4x- 3y + 4 = 0 {4) 

with the circle whose centre is at the point (2, 4) and whose radius r is 5. 
The equation of the circle is, by {I), 

(x - 2)2 + (y - 4)2 = 25 . (5) 

The coordinates ofthe common points ofthe line and the circle satisfy simultaneously 
equations {4) and (5); hence, they are given by solving the equations (4) and (5). 
From (4), it follows that 

y = 4(x + I). 

Substituting ( 6) in ( 5), we obtain the quadratic equation 

25(x2 - 4x + 4) = 225 , 
i.e. 

x2 - 4x- 5 = 0, 

{6) 

for the X-coordinates of the points of intersection, the roots of this equation being 

x 1 = 5, x 2 = -I . (7) 

The corresponding values for y 1, Y2 are found by substituting (7) into (6) (not into 

(5)!): 
Y1 = 8, Y2 = 0. 

The required points of intersection are P 1(5, 8), Pi -I, 0). 

REMARK 1. The problern of finding the points of intersection of a straight line 
and a circle reduces therefore to the solution of a quadratic equation. If this equation 
possesses two real roots, or a double root, or two conjugate complex roots, then the 
straight line is a secant ( chord) of the circle, or a tangent to the circle, or it does not 
intersect the circle at all, respectively. 

We proceed in the same way (and the same conclusion holds) when finding the 
points of intersection of a straight line and other conics. The only exceptions are the 
lines parallel to the axis of a parabola and to the asymptotes of a hyperbola. 
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5.10. The Ellipse (see also § 4.2, p. 114) 

Definition 1. An ellipse is the locus of a point X(x, y) which moves in a plane such 
that the sum of its distances from two fixed points F 1(xto y1) and F 2(x2 , y2) - the 
foci - is equal to a constant which is usually denoted by 2a if the foci both lie on 
the x-axis. 

y 

X 

Fig. 5.12. 

Clearly F 1 F 2 < 2a (i.e. F 1 F 2 = 2ae where e is some positive number less than 
unity). 

Definition 2. The number e is called the eccentricity of the ellipse. 

Theorem 1. The standard equation of an ellipse (for the case where the axes 
of the ellipse coincide with the coordinate axes, the foci lying on the x-axis 
(Fig. 5.12)) is 

(1) 

where b2 = a 2(1 - e2 ). 

In fact a is the length of the semi-major axis and b the length of the semi-minor 
axis of the ellipse. 

REMARK 1. lf the axes of an ellipse are parallel to the cooordinate axes and if the 
centre is at the point S(x0 , y0 ), then (1) becomes 

(x - x0 )2 + (y - Yo)2 = 1 . 
a2 b2 

(1') 

REMARK 2. If the foci lie on the y-axis the sum of the focal distances is denoted 
by 2b, F 1F 2 = 2be and a is now defined by a2 = b2(1 - e2). The equation is the 
same as (1). 

For the equation of an ellipse in polar Coordinates see Example 5.7.3, p. 180; 
for parametric equations of an ellipse see Example 5.8.1, p. 180. 
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5.11. The Hyperbola (see also§ 4.3, p. 119) 

Definition 1. A hyperbola is the Iocus of a point X(x, y) which moves in a plane 
such that the difference of its distances from two fixed points F 1(x1> y 1) and 
F 2(x2 , y2) - the foci - is in absolute value equal to a constant which is usually 
denoted by 2a if the foci both lie on the x-axis. 

Clearly F 1F2 > 2a (i.e. F 1F 2 = 2ae where e is some number greater than unity). 

Definition 2. The number e is called the eccentricity of the hyperbola. 

Fig. 5.13. 

Theorem 1. The standard equation of a hyperbola (for the case where the axes 
of the hyperbola coincide with the coordinate axes, the foci lying on the x-axis 

(Fig. 5.13)) is 

(I) 

where b2 = a2(e2 - 1). 
In fact a is the Iength of the (real) semi-major axis and b the length of the (imaginary) 

semi-minor axis of the hyperbola. 

REMARK 1. If the foci lie on the y-axis the absolute value of the difference of the 
focal distances is denoted by 2b, F 1 F 2 = 2be and a is now defined by a 2 = b2 ( e2 - 1 ). 
Equation (1) becomes 

(1') 

REMARK 2. lf the axes of the hyperbola are parallel to the coordinate axes and the 
centreis at the point S(x0 , y0 ), then (1) and (1') become 

(1 ") 
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Theorem 2. The lines y = ±bxfa are the asymptotes of the hyperbolas (I) and 
(I'). Their equations can be combined thus: 

REMARK 3. If a = b the hyperbola is called rectangular; its equation is x2 - y2 = 

= a2 (or y 2 - x 2 = a2), the equations of its asymptotes being y = ±x. 

REMARK 4. The hyperbolas x 2 fa 2 - y 2 fb 2 = 1 and y2 fb 2 - x 2 fa 2 = I are called 
conjugate. They have the same asymptotes; the first of these hyperbolas has real 
points of intersection with the x-axis, the second one with the y-axis. 

5.12. The Parabola (see also§ 4.4, p. 122) 

Definition 1. A parabola is the locus of a point X(x, y) in a plane, equidistant 
from a fixed point F(xl> y 1) - the focus - and from a fixed line d - the directrix. 

Theorem 1. The parabola whose vertex is at the origin of the coordinate system 
(Fig. 5.I4) and whose axis coincides with the x-axis, or y-axis, has the cartesian 
equation 

y 2 = 2px , or x 2 = 2py , respectively . (I) 

Fig. 5.14. 

Theorem 2. The parabola y 2 = 2px has the focus F(!p, 0), and the directrix 
x = -!p. The parabola x 2 = 2py has the focus F1(0, tP) and the directrix y = 

= -tp. 
(In the English Iiterature the standardform ofthe equation of a parabola is generally 

taken as y2 = 4ax, so that the focus is (a, 0) and the directrix is x = -a.) 
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REMARK 1. If the axis of the parabola is parallel to the x-axis, or to the y-ax1s 
and its vertex is at the point V(x0 , y0), equations (I) become 

(y - y0) 2 = 2p(x - x 0), or (x - x0) 2 = 2p(y - y 0), respectively . (2) 

5.13. Congruent Transformations of Cartesian Coordinates in a Plane 

We assume that all the different cartesian coordinate systems considered in this 
paragraph have the same unit of length. 

Theorem 1. Any change from one cartesian coordinate system to another can 

be performed by one translation and one rotation provided that both systems have 

the same orientation (i.e. both are right-handed or both left-handed). 

Theorem 2. The transformation of the coordinates of a point X when passing 

from the cartesian system ( 0; x, y) to the similarly oriented cartesian system 

( 0'; x', y'), in which the axes x', y', are parallel to the axes x, y, respectively, is 

given by the formulae: 

x' = x- m, (I) 

y' = Y- n' 

where (m, n) are the coordinates of the new origin 0' in the original system 

(O;x,y). 

Conversely: 

x = x' + m, 

y = y' + n. (1') 

Theorem 3. The Iransformation of the coordinates of a point X when passing 

from the cartesian system ( 0; x, y) to the similarly oriented cartesian system 

( 0; x', y') which is obtained from ( 0; x, y) by a rotation about the common origin 

through an angle IX, is given by theformulae: 

x' = x cos IX + y sin IX, (2) 

y' = -xsin IX+ ycosiX. 

Conversely: 

x = x' cos IX - y' sin IX , 

y = x' sin oc + y' cos IX • (2') 

Theorem 4. In any change from a cartesian coordinate system ( 0; x, y) to a simi­

larly oriented cartesian coordinate system (0'; x', y') the Coordinatesare trans-
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formed according to the formulae: 

Conversely: 

x' = x cos o: + y sin o: - m' , 

y' = - x sin o: + y cos o: - n' 0 

x = x' cos o: - y' sin o: + m , 

y = x' sin o: + y' cos o: + n 0 

187 

(3) 

(3') 

The numbers m, n are the Coordinates of the origin 0' in the system ( 0; x, y), 

m' = m cos o: + n sin o:, n' = - m sin o: + n cos o:, and oc is the angle of rotation of 
the coordinate axeso 

REMARK 1. The determinant consisting of the coefficients of x, y in equations (2) 
or (3) equals unityo This fact is characteristic of congruent transformations of carte­
sian coordinates in a plane; it is also a sufficient condition for the equations (2) or 
(3) tobe solvable in x, y (to give the inverse transformations (2') and (3'); the deriva­
tion of (1') from (1) is obvious). 

REMARK 2. Equations (1), (2), (3) represent the relationship between the coordin­
ates of a fixed point in a plane with respect to two different coordinate systems; but 
they may also be interpreted as showing the relationship between the coordinates 
of two different points in a plane with respect to the same coordinate system. 

5.14. Homogeneous Coordinates 

Definition 1. The three ordered numbers (~0 , ~ 1 , ~2) (~0 i= 0) are called the 
reetangular homogeneous coordinates of a point M in a plane, if ~d~o = x, ~2g0 = 
= y, where (x, y) are the cartesian coordinates of the point M. We write M(~0 , e1, ~2). 
[The coordinate ~0 is frequently placed last in the group of these numbers viz. 

(~1• ~2• ~o)J. 

Theorem 1. If we use homogeneaus coordinates then the equations of algebraic 

curves in a plane are homogeneous. 

Example 1. If we transform the cartesian equation of a line ax + by + c = 0 by 
means of the formulae in Definition 1, we obtain the linear homogeneaus equation: 

(1) 

REMARK 1. In contrast to the case of the general equation of a line in cartesian 
Coordinates, the numbers a and bin equation (I) may both be equal to zero, so that 
the equation can be of the form 
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this is the equation of the so-called line at infinity (im proper line), by which the plane 
has been extended due to the introduction of homogeneous Coordinates. 

Example 2. The equation of an ellipse 

(x - x) 2 + (y - .YY = 1 
az bz 

[ whose centre is at the point (x, y)] becomes, on substitution of homogeneous 
Coordinates and after some simplification: 

(a2~~ + b2~D e~ + b2~~e~ + a2~~e~- 2b2~0~1eoe1 - 2a2~o~zeoez = 
= a2b2~~e~; 

this is a homogeneous equation of the second degree in the variables eo. e 1• ez. 

5.15. General Equation of a Conic 

Theorem 1. The general equation of a curve of the second degree in cartesian 
coordinates is 

(1) 

this equation may represent an ellipse (a circle as a special case), a hyperbola, 
a parabola, a pair of straight lines (which may coincide), a point, or it may not 
be satisfied by any (real) point at all. 

Dafinition 1. Let us form two determinants from the coefficients of equation (I): 

au, al2• a13 au, a12 

LI = a12 , a2z, a23 , t5 = 
al3• a23• a33 a12, azz 

the number LI is called the discriminant ofthe conic section (1), t5 - the discriminant 
of the quadratic members. 

Theorem 2. The curves of the second degree can be classified in terms of LI and b, 
as shown in Tab. 5.1, p. 189. 

Theorem 3. By means of a rotation of the coordinate system through an angle cp 
it is possible to make the axes (or the axis) of a regular conic parallel to the 
coordinate axes; the angle cp can be found from the relation 

2atz tan 2cp = _ ____::..::___ 

lf a11 = a22 we can choose cp = !n (see Example 5.17.1, p. 193). 

(2) 
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TABLE 5.1 

Regular (non-singular) conic sections Singular conic sections 

(L1 * 0) (L1 = 0) 

c5 > 0 an ellipse (real or imaginary) two imaginary lines with a real point of 
intersection 

c5<0 a hyperbola two intersecting lines 

c5 = 0 a parabola two parallel lines (real or imaginary, 
different or coincident) 

Theorem 4. If the position of a regular conic is such that its axes are parallel 
to the coordinate axes ( or its axis is parallel to one of the coordinate axes), then 
its equation does not contain the term involving xy, i.e. a 12 = 0 (and conversely). 
The nature of the conic can then be determined as follows: 

a) a 11a22 > 0 - an ellipse (a circle if a11 = a22), 

b) a 11 a22 < 0 - a hyperbola (a reetangular hyperbola if a 11 = -a22), 

c) a 11a22 = 0 - a parabola. 

REMARK 1. In the case mentioned in Theorem 4, i.e. when the equation does not 
contain any xy term, we can easily find the type of the conic section and at the same 
time find its centre (or vertex) and semi-axes by the method of "completing the 
squares", as in the case ofthe circle (Equation (5.9.3), p. 181). 

5.16. Affine and Projective Transformations 

Definition 1. The affine (position) ratio of a point M on a straight line with 
respect to two base points P, Q of the line is the ratio of the distances of the point M 
from the two points P, Q; if M is an inner point of the line-segment PQ, the ratio is 
negative, if it is an external point, the ratio is positive. We use the notation 

(PQM) = PM (M =!= Q). 
QM 

Definition 2. The cross ratio of Jourpoints P, Q, M,N on a line (the order in which 
they are written is important) is the quotient of the affine ratios of the points M and N 



190 SURVEY OF APPLICABLE MATHEMA TICS 5.16 

with respect toP and Q. We write 

(PQMN) = {!>QM) =PM. QN (Mt= Q, Nt= P). 
(PQN) QM PN 

Definition 3. By an affine transformation of a plane we mean a transformation 
which carries the point M(x, y) into the point M'(x', y') according to the equations 

where 

x' = a 1x + b1y + c1 , 

y' = a2x + b2 y + c2 

(1) 

Theorem 1. An affine transformation preserves the affine ratio of a point on 

a line with respect to any two points on the line; the line at infinity is transformed 
into itself (i.e. parallelism is preserved). 

Theorem 2. An affine transformation of a plane into which a homogeneaus 
coordinate system is introduced, is given by the equations: 

where 

~~ = ao~o' 

~~ = al~O + bl~l + C1~2, 
~; = az~o + b2~1 + Cz~z, 

a 0 , 0, 0 
a 1 , b1 , c1 t= 0. 

az, bz, Cz 

(2) 

Theorem 3. Every congruent transformation is a particular case of an affine 

transformation. 

Theorem 4. By an affine transformation, a con ic section is transformed into 

a conic section of the same type, i.e. an ellipse into an ellipse, a hyperbola into 

a hyperbola and a parabola into a parabola. 

Definition 4. By a projective transformation of a plane we mean a transformation 

which carries the point M(x, y) into the point M'(x', y') according to the equations: 

x' a11X + a12Y + a13 

a31 x + a32y + a 33 

y I a21X + azzY + a23 (3) 
a31X + a32y + a33 
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au, 012• a13 

a21> a22• a23 =I= 0. 
a31• a32• a33 
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Theorem 5. A projective transformation preserves the cross ratio of any Jour 
points on a line. 

Theorem 6. A projective transformation of a plane into which a homogeneaus 
coordinate system is introduced is given by the equations: 

where 

e~ = aueo + a12e1 + a13e2' 

e~ = Ozteo + Ozzel + 023e2, 

e; = a31eo + a32el + a33e2. 

1 alt• 012• a13 
Ozt• Ozz, a23 =I= 0 · 
a3I• a32• a33 

(4) 

Theorem 7. Every affine transformation is a particular case of a projective 
transformation. 

Theorem 8. By a projective transformation a regular conic section is transformed 
into a regular conic section (not necessarily of the same type), a singular conic 
section is transformed into a singular conic section (of the same type in the pro­
jective sense; i.e. the properties of being real, imaginary, distinct or coincident are 
preserved). 

REMARK 1. Since the determinants of the systems (1)-(4) aredifferent from zero, 
the undashed coordinates can be expressed by means of the dashed coordinates in 
each of the systems, i.e. there exists an inverse transformation for each of the trans­
formations under consideration. 

5.17. Pole, Polar, Centre, Conjugate Diametersand Tangentsofa Conic 
Section 

Definition 1. Ifthe cross ratio offour pointsA, B, C, Dis equal to -1, i.e. (ABCD)= 
= -1, we say that thesepointsform a harmonic set (range). 

Theorem 1. Let us consider a pencil of lines passing through a point P chosen 
in the plane of a regular conic, the individual lines intersecring the conic in pairs 
of points M 1 , N 1 ; M 2 , N 2 etc. (Fig. 5.15). Then, the locus of a point Qi, whichforms 
a harmonic set with the point P and the points Mi, Ni on every line of the pencil 
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(i.e. M,N ,PQ1) = -1), isastraight line p called the polar of the point P with respect 
to the conic. The point P is called the pole of the line p with respect to the conic. 

Theorem 2. The equation of the polar p of a point P(x0 , y 0 ) with respect to the 
regular conic 

(I) 

Q 

Fig. 3.15. 

is 

(auxo + auYo + a13) x + (a12Xo + a22Yo + a23) Y + (a13Xo + a23Yo + a33) = 0. 
(2) 

Theorem 3. The polar of a point T(x 0 , y0 ) of a regular conic with respect to this 
conic passes through the point T and is the tangent to the conic at this point. 
Its equation is 

XXo + YYo __ 1 
a2 b2 

for an ellipse whose equation is in standardform, 

XXo _ YYo __ 1 
a2 b2 

for a hyperbola whose equation is in standardform , 

YYo = p(x + x 0) for the parabola y2 = 2px . 

Theorem 4. The tangents from a point P to a regular conic (if they exist) pass 
through the points of intersection of the polar of P and the conic. 

Theorem 5. The mid-points of allparallel chords of a regular conic lie on a line. 

Definition 2. The line on which all the mid-points of parallel chords of a regular 
conic lie is called a diameter of the conic. 

Definition 3. The common direction of parallel chords of a regular conic is said 
to be conjugate to the direction of the diameter which passes through the mid-points 
of those chords. 

Theorem 6. a) All diameters of a parabola are parallel. 
b) All diameters of an ellipse (or hyperbola) pass through a com­

mon point called the centre of the ellipse (or hyperbola). 
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Theorem 7. The coordinates of the centre of the conic (1) are given by the solu­
tion of the equations: 

a 11 x + a 12y + a 13 = 0 , 

a12x + a22y + a 23 = 0; 
(3) 

(the left-hand sides of equations (3) are in fact half the partial derivatives of the 
left-hand side of equation (1) with respect to x and y, respectively.) 

Theorem 8. If the direction (s 1) is conjugate to the direction (s2) with respect 
to a regular central conic, then the direction (s2 ) is conjugate to the direction (s1) 

with respect to the same conic. Thus, such directions are called conjugate directions 
with respect to the conic. 

Definition 4. Two diameters of a regu1ar conic whose directions are conjugate with 
respect to this conic are said to be conjugate diameters of this conic. 

Definition 5. The two conjugate diameters of a central conic which are perpendi­
cular are called the axes of the conic. 

Theorem 9. The slopes k1 , k 2 of conjugate directions satisfy the relation 

i.e. 
b2 

for an ellipse whose equation is in standardform , 
a2 

for a hyperbola whose equation is in standardform. 

{4) 

Theorem 10. The equation of the diameter conjugate to the direction whose 
slope is k, is 

i.e. 
b2 

y = - - x for an ellipse whose equation is in standardform, 
a 2 k 

b2 
y = - x for a hyperbola whose equation is in standardform , 

a2 k 

y = !!._ for the parabola y 2 = 2px . 
k 

(5) 

Example 1. Let us investigate the curve of the second degree which is given by the 
equation 

3x2 - 2xy + 3y2 + 4x + 4y- 4 = 0 

and draw the tangents from the point P(3, 1) to it. 

(6) 
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Solution: Since 

either the curve (6) is an ellipse or it contains no real points (see Theorem 5.15.2). 
Further, from the formula (5.15.2) we can see that ({J = -l:1t; thus, sin ({J = cos ({J = 
= ! -J2 so that by successive substitution into equations (5.13.2') and from them 
into (6), we obtain the equation 

x'2 + 2y'2 + 2 -J(2) x' - 2 = 0, 

i.e. 

(x' + -J2)2 y'2 
"-------'---<-- + - = I . 

4 2 

Hence, ( 6) is the ellipse whose centre is at the point (- -J2, 0) and whose semi-axes a 

( of length 2) and b ( of length -J2) make an angle ({J = i1t with the coordinate axes. 
The Coordinates of the centre S are expressed in the transformed coordinates; its 
coordinates in the original system can be found, for instance, by equations (3): 

3x- y + 2 = 0, 

-x + 3y + 2 = 0; 

hence x 0 = -1, y0 = -1, and so S is the point ( -1, -1). 

y 

--
X 

Fig. 5.16. 

In order to find the equation of a tangent from the point P to the ellipse, we first 
find its polar; by (2) the equation of the polar is 5x + y + 2 = 0. The coordinates 
of the points of contact T1, T2 are given by the simultaneaus solution of this equation 
and equation ( 6): T1(0, - 2), T2(- 1

6
1, 1

8
1). Then, by means of the coordinates of 

P, T1 and T2 , we can easily find the equations of the tangent lines: x - y - 2 = 0, 
X - I3y + 10 = 0. 
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6.1. Coordinate Systems 

The position of an arbitrary point in three dimensional space is usually determined 
so that, to each point of the space an ordered triplet of real numbers ( called coordin­
ates) is assigned and conversely, to each ordered triplet of real numbers there cor­
responds a certain unique point of the space. 

Definition 1. Surfaces consisting of those points which have one particular co­
ordinate constant are called coordinate surfaces. 

Various coordinate systems can be established, the most important being: 

a) Reetangular coordinate system. This system is introduced in a manner 
similar to that for a reetangular coordinate system in a plane ( see Remark 5.1.2, 
p. 167): We choose three mutually perpendicular directed lines x, y, z in space passing 
through a common point 0 and three units of length, one on each line. The directed 
distances x, y, z (cf. Remark 5.1.2, p. 167) of an arbitrary point M from the planes 
yz, xz, xy respectively, are called the reetangular coordinates of the point M. We 
write M(x, y, z) to denote this. If the units of length are identical, the coordinates 
are called cartesian. In what follows we shall always be referring to these coordinates 
(unless otherwise stated). 

The point M 1(x, y, 0) is the orthogonal projection (top view) of the point M onto 
the plane xy, so that x, y are the cartesian coordinates of the projection of the 
point M in the system ( 0; x, y) in the sense of plane analytical geometry ( see Remark 
5.1.2, p. 167). The situation is similar for the point MiO, y, z) - front view of the 
point M- and for the point M 3(x, 0, z)- side view ofthe point M. 

The lines x, y, z are called the coordinate axes, the point 0 - the origin of the 
coordinate system, and the planes yz, xz, xy - the coordinate planes. 

Definition 2. If when viewed from an arbitrary point on the positive semi-axis + z, 
the positive semi-axis + x is carried by counter-clockwise rotation through a right 
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angle into the positive semi-axis + y, the coordinate system ( 0; x, y, z) is said tobe 
positively oriented (right-handed). Otherwise the system is said to be negatively 
oriented (left-handed) - see Fig. 6.la,b. 

Theorem 1. The coordinate surfaces in a cartesian coordinate system are planes 
parallel to the coordinate planes (perpendicular to the corresponding coordinate 
axes). 

!z z 

0 0 
+'Jf 

y 
TC X 

2 -2 
X 

aJ y 
bJ 

Fig. 6.1. 

b) Cylindrical (semi-polar) coordinate system. This system is determined 
by a coordinate plane xy into which polar coordinates e, qJ are introduced (seep. 178) 
and by a directed z-axis, passing through the pole of the system, perpendicular to 
the plane. An arbitrary point M is determined by an ordered triplet of numbers 
(!?, qJ, z), where e, qJ are the polar coordinates of the orthogonal projection M 1 of the 
point M onto the plane xy and z is the directed distance ofthe point M from the plane 
xy (see Fig. 6.2). 

Theorem 2. The coordinate surfaces in a cylindrical system are 

a) half-planes passing through the z-axis ( qJ = const.) ; 

b) cylinders of revolution with axis coinciding with the z-axis (e = const.; !? = 0 
corresponds to the z-axis) ; 

c) planes perpendicular to the z-axis (z = const.). 

c) Spherical (polar) coordinate system. This system is determined by a Co­
ordinate plane xy into which polar coordinates g, qJ are introduced ( see p. 178) 
and by a directed half-line, passing through the pole of the system perpendicular to 
the plane. The following coordinates determine the position of an arbitrary point M 
in this coordinate system: 

a) the distance r of the point M from the origin (pole) 0 of the system; 

b) the magnitude qJ of the angle between the half-line OM 1 and the positive semi­
axis +x, where M 1 is the orthogonal projection ofthe point M onto the plane xy; 

c) the magnitude 8 of the angle between the half-line OM and the positive semi­
axis + z ( the axes x, y, z are at the same time the axes of a cartesian coordinate 
system - the so-called adjoined system; see Fig. 6.3). 
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The coordinate r is never negative (r ~ 0), the coordinate cp ranges over the inter­
val [0, 21t), the coordinate 8 ranges over the interval [0, 1t]. (Sometimes the interval 
( -1t, 1t J is used for cp.) 

Theorem 3. The coordinate surfaces in a spherical system are 

a) spheres whose centres are at the pole of the system (r = const.); 
b) half-planes passing through the z-axis ( cp = const.); 
c) cones ( or half-cones, more precisely) of revolution, the vertices of which are 

at the pole and the axes of which coincide with the z-axis (8 = const.). 

z 
z 

H H 

z 

y y 

X 'H1 X 

Fig. 6.2. Fig. 6.3. 

In particular, r = 0 gives one point (the pole), 8 = -!-1t - the plane xy, 9 = 0, 
1t - the half-lines + z, - z, respectively. 

Theorem 4. The cartesian coordinates x, y, z, the cylindrical coordinates Q, cp, z 
and the spherical coordinates r, 8, cp of the same point satisfy the following 
relations: 

a) X = {! COS (/) , y = (! sin (/) , Z = Z , 

b) x = r sin 8 cos cp , y = r sin 8 sin cp , z = r cos 8 , 

REMARK 1. The correspondence between the sets of coordinates and the points 
themselves is one-to-one without exception, only in the case of a reetangular system. 
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lt is not so in the other two systems. All points on the z-axis are so-called singular 
points of those systems - the coordinate ({) may be chosen quite arbitrarily; however 
these points are uniquely determined by their remaining two coordinates. In calcula­
tions though, care is sometimes required. 

Theorem 5 (Transformation of a Cartesian Coordinate System). 

a) Translation. If x, y, z denote the coordinates in the original system, 
X, Y, Z - the coordinates of the same point in the new system, x 0 , y 0 , z0 - the 
Coordinates of the new origin in the original system, then 

X = X - x0 , Y = y - y0 , Z = z - z0 • 

b) Rotation and reflection. If the cosines of the angles formed by the new 
axes X, Y, Z and the original axes x, y, z are as shown in thefollowing scheme 

I 
X y 

I 
z 

X at a2 a3 

y bl b2 b3 

z Ct c2 c3 

then the following relations hold between the original and new Coordinates of the 
same point: 

Theorem 6. The cosines listed in the table above satisfy the relations: 

ai + ai + a~ = 1 , ai + bi + ci = 1 , 

bi + bi + b~ = 1 , ai + bi + ci = 1 , 

ci + ci + c~ = 1 ; a~ + b~ + ci = 1 ; 

a 1 b1 + a2b2 + a 3 b3 = 0, a 1a2 + b1b2 + c1c2 = 0, 

a 1c1 + a2c2 + a 3c3 = 0, a 1a 3 + b 1b3 + c1c3 = 0, 
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Theorem 7. 

at, a2, a3 
A = bt> b2 , b3 

cl, c2, c3 
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± 1 (the so-called determinant of the transformation), 

where the {upper} sign is valid according as the two systems have {the same} 
lower different 

orientations (see Definition 2). 

If the orientation of the two systems is the same, then each element of the deter­

minant above is equal to its complement (cofactor). In the case of different Orienta­

tions of the systems each element of the determinant of transformation is equal 

to minus its complement. 

6.2. Linear Concepts 

In § 6.2 we confine ourselves to relations expressed in cartesian coordinates. (For 
the meaning at any vector terminology mentioned see Chap. 7.) 

Theorem 1. The distance d between two points M 1(x 1 , Yt> z1), M 2(x 2 , y2 , z2) is 
equal to the length of the vector M 1M-;; i.e. 

where r 1 , r2 are radius vectors of the points M 1 , M 2 • 

Theorem 2. A point M lying on the line which joins the points M 1> M 2 is deter­

mined by the ratio .A. = M 1M/M2 M (cf. §5.2). If rl> r2 are the radius vectors of 

the points M 1 , M 2 , then the radius vector r of the point M # M2 is given by 

i.e. the coordinates x, y, z of the point Mare given by 

In particular, if M is the mid-point of the line segment, we have 

y = Y1 + Y2 
2 2 
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Theorem 3. The centroid (centre of mass - if the mass is uniformly distributed) 
of a triangle is given by 

Yt + Y2 + Y3 y= 
3 

where the rk (k = I, 2, 3) denote the radius vectors, and the xk> Yk• zk (k = 1, 2, 3) 
the Coordinates, of the vertices of the triangle. 

REMARK 1. The radius vector of the centre of mass of a system of particles 
Mk(rt) with masses mk (k = I, 2, ... , n) is given by 

Theorem 4. The volume V4 , of a tetrahedron with vertices Mk(xk, yk, zk) (k = 

= 1, 2, 3, 4) is given by 

Xto Yt· Zt, 1 
X2 - Xt, Y2 - Yt• Z2 - Zt 

X2, Y2• z2, 1 
±V4 = i X3 - Xt, Y3 - Yt• Z3 - Zt =! 

X3, Y3• z3, 1 
X4 - Xt, Y4- Yt• Z4 - Zt 

X4, Y4• Z4, I 

(Obviously the positive value of V4 is taken). 

REMARK 2. All the four points M k Iie in the same plane if and only if the above 
determinant is equal to zero. 

TheoremS. The equation of a plane can be written: 

a) ingeneralform:Ax + By + Cz + D = O(atleastoneofthenumbersA,B,C 
being non-zero ); 

b) in vector form: r. n + D = 0 
[the vector n = (A, B, C) is perpendicular to the plane, and is a so-called normal 
vector to the plane]; 

c) in normal form: x cos oc + y cos ß + z cos y - d = 0, i.e. r. n° - d = 0 
(d ~ 0 is the distance of the planefrom the origin; oc, ß, y are the magnitudes of the 
angles formed by that normal to the plane which is directed from the origin, and 
the coordinate axes; n° is the unit vector in the direction of the normal; if d = 0 
then the orientation of the normal is not uniquely determined); 
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d) in intercept form: 
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P q r 
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(p, q, rare the intercepts cut on the coordinate axes by the plane, due regard being 
paid to their orientation; forinstance p = -3 means that the plane cuts the negative 
semi-axis -x at a distance 3 from the origin, i.e. at the point ( -3, 0, 0)). 

REMARK 3. The equation of any plane can be written in the forms a), b), c) but 
it is impossible to write the equation of planes which are parallel to one of the co­
ordinate axes or which pass through the origin in the intercept form d). 

Theorem 6. The general equation of a plane can be turned into the normal form 
by dividing throughout by the number ±.j(A2 + B2 + C2). The sign in front of 
the root is the opposite ofthat of the constant term in the general equation. (The 
normal of the plane is thereby directed from the origin to the plane.) 

, Example 1. 2x- 3y- 6z + 21 = 01: [ -,J(22 + 32 + 62)] = -7, and so we 
obtain 

2 -3 -6 
- x + - y + - z - 3 = 0, i.e. 
-7 -7 -7 

-2 3 6 
-x+-y+-z-3=0. 

7 7 7 

To construct the given plane, first construct the vector 

n = 3no = 3(-~.~.~) = (-~.;. 178) 

whose initial point is at the origin, and then the plane which is perpendicular to, and 
which contains the terminal point of, n. 

Theorem 7. The general equation of a plane can be turned into the interceptform 
by dividing throughout by minus the constant term (i.e. by the nurober - D). 

Example2. 2x- 3y- 6z + 21 = 01 :(-21), 

X y Z 
--"2t+-+,=l. 
-2 7 2 

Theorem 8. The equation of the plane which is perpendicular to the vector 
a(a 11 a2 , a 3) and which passes through the point M(x1, Y1> z1), is 

a 1(x - x 1) + az(y - y 1) + a3(z - z1) = 0. 

Theorem 9. The equation of the plane containing the three non-collinear points 
Mk(xk, Yk• zk) (k = 1, 2, 3), is 

X, y, z, 1 

Xt, Yt· Zt, I 
= 0; 

X2, Y2• Z2, 1 
X3, Yl• Z3, 1 
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or, in vector form: 

([ a b c] is the mixed or triple scalar product of the vectors a, b, c; see Definition 
7.1.13, p. 230.) 

Theorem 10. The equation of the plane which contains the two points Mk(xk, yk, zk) 
(k = 1, 2), and which is parallel to the vector a(a 1 , a2 , a 3), is 

x - x 1, y - YI> z - z 1 

X2 - Xt, Y2 - Yt• Z2 - Zt = 0; 

or, in vector form: 

Theorem 11. The equation of the plane which contains the point M(xh y 1, z1) 

and which is parallel to the two vectors a(a 1 , a2 , a3), b(b1, b2 , b3) is 

= 0; 

or, in vector form: 

[ab (r- r 1)] = 0. 

Theorem 12. The distance of the point M(x~, y~, Zt) from the plane Ax + 
By + C z + D = 0 is equal to the absolute value of the result of substituting the 
coordinates of the point in the left-hand side of the normal equation of the plane, i.e. 

d = /Ax 1 + By 1 + Cz 1 + Dl· 
I ~(A2 + B2 + c2) 

Theorem 13. The angle between the two planes A 1x + B 1y + C1z + D1 = 0, 
A 2 x + B2 y + C2 z + D2 = 0 is equal to the angle between their nor;~als (which 
are represented by the vectors n1(A1, B1, C1), n2(A 2 , B2 , C2)). Thus considering 

0 ~ ({J ~ !1t, 

In particular, a necessary and sufficient condition for the two planes to be per­
pendicular is that 
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Further, since the normals to two parallel planes are parallel, we have the following 
theorem: 

Theorem 14. A necessary and sufficient condition for the two planes 

to be parallel is that 

REMARK 4. The equations of two parallel planes can, therefore, always be modified 
so that the coefficients of the variables are the same for both planes and the equations 
may differ only in the constant term. This is especially useful when calculating the 
distance between two parallel planes: 

Theorem 15. The distance d between the two parallel planes Ax + By + Cz + 
+ D 1 = 0, Ax + By + Cz + D2 = 0 is given by 

Example 3. The distance between the planes 4x - 2y - 4z + 11 = 0, -2x + 
+ y + 2z + 5 = 0 can be calculated by the foregoing formula thus: we first multi­
ply the second equation by the number -2. Then, A = 4, B = -2, C = -4, 
D1 = 11, D2 = -10 and so 

I -10 _ 11 I l-2ll 
d = J(16 + 4 + 16) = ~6~ = 3"5 . 

Definition 1. The set of all planes which pass through a fixed line or the set of all 
planes parallel to a particular plane is called an (axial) pencil of planes (sheaf of 

planes). 

REMARK 5. We often speak in geometry about points, lines and planes at infinity. 

Accordingly, in the preceding definition it is sufficient to refer to the set of allplanes 
which have a line in common (at infinity in the case of parallel planes). 

Theorem 16. The planes belanging to a pencil, two of whose members are the 

planes A 1x + B 1y + C1z + D 1 = 0 and A 2 x + B2 y + C2z + D1 = 0, have as 

their equations: 

where A. 1 , A.2 are variable parameters, at least one of them being non-zero; clearly, 

only their ratio is significant. 
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REMARK 6. The above equation is especially useful when solving problems in 
which the equation of a plane passing through the line of intersection of two given 
planes and satisfying some additional condition is to be found. 

Example 4. A plane is determined by the point M(2, -1, 3) and the line of inter­

section of the planes whose equations are 6x + 2y - z - 3 = 0, 3x + 4y - 2z -
- 2 = 0. Find its equation. 

Ifwe Substitute the coordinates ofthe given point into equation (I) which represents 

this particular pencil, we obtain the condition 4A. 1 - 6A.2 = 0 for A. 1 , A.2 • This condi­
tion will be satisfied, if we choose, for instance ). 1 = 3, A.2 = 2. The equation of the 
required plane is then 

3(6x + 2y - z - 3) + 2(3x + 4y - 2z - 2) = 0, 

i.e. 24x + 14y - 7z - 13 = 0. 

Theorem 17. The equations of the planes which bisect the ang les between two inter­

secting planes e1 = 0, e2 = 0 can be obtained if we add and subtract the normal 

equations of the two given planes: 

A 1x + B 1y + C1z + D 1 A 2 x + B2y + C2 z + D2 O 

vf(Ai + Bi + Ci) ± vf(A~ + B~ + CD = . 

Example 5. {?J = 2x - y - 2z + 3 = 0, lh = 3x + 2y + 6z - 1 = 0. The nor­
mal equations of these planes are 

_2x_--'-y_-_2_z_+_3 = 0 
-3 

d 3x + 2y + 6z - 1 
an = 0, 

7 

respectively. Adding both equations and simplifying we obtain 

5x - 13y - 32z + 24 = 0. 

Subtracting we obtain, similarly, 

23x - y + 4z + 18 = 0 . 

Definition 2. The set of allplanes which pass through a fixed point (see Remark 5) 
is called a bundle of planes (star of planes). 

Theorem 18. The planes belonging to a bundle, three of whose members are the 

planes A 1x + B 1y + C1z + D1 = 0, A 2x + B 2 y + C2 z + D2 = 0, A 3x + B 3y + 
+ C3z + D3 = 0, have as their equations: 

A.1(A1x + B1y + C1z + D1) +.A.2 (A 2x + B2 y + C2 z + D 2 ) + 

+ A.J{A3x + B3y + C3z + D3) = 0, 
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where A. 1 , A.2 , A.3 are variable parameters, at least one of them being non-zero; 
clearly, only their ratios are significant. 

REMARK 7. The relative positions of several planes can be decided by a detailed 
analysis of the solution of the system of linear equations which represent these 
planes (see § 1.18). 

The position of two points relative to each other with respect to a given plane can 
easily be decided on the basis of the result of substituting the coordinates of these 
points into the equation of the plane: 

Theorem 19. lf the results of substituting the coordinates of two points into the 
left-hand side of the general equation of a plane are of the same sign, then both 
points lie in the same half-space determined by the plane (i.e. on the same side of 
the plane); if they are of different sign, then the two points lie in different half-spaces 
(i.e. on different sides of the plane). (If the resuZt equals zero, the point lies in the 
plane, of course.) 

Theorem 20. The equations of a straight line: 

a) the general equations are 

A 1x + BtY + C1z + D1 = 0, 

A 2x + B2 y + C2z + D2 = 0 

provided that the two planes represented by these equations intersect, i.e. 

b) the vector equation is 

r = r 0 + ta 

where r 0 is the radius vector of a jixed point on the line, a - the direction of the 
line, i.e. a vector parallel to the given line, and t is a variable parameter; 

c) the parametric equations (merely a paraphrase of the vector equation): 

where (x0 , y 0 , z0) is ajixed point on the line, a = (a 1, a2 , a 3) - the direction vector 
of the line (ato a2 , a 3 are so-called direction parameters of the line); 

d) the reduced equations: 

x = mz + p , y = nz + q . 

The equations of lines parallel to the plane xy cannot be written in this form. These 
equations are a particular case of the general equations, the reference planes being 
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those planes which contain the line and its projection on the xz and yz planes res­
pectively. They are, however, also a particular case of the parametric equations, in 
which the coordinate z is chosen as the parameter, i.e. z = t. The point (p, q) is then 
the point of intersection of the given line and the plane xy. Choosing the coordinate 
x, or y, as the parameter we obtain the other pairs of reduced equations of the line -
provided that the line is not parallel to the plane yz, or xz, respectively. 

Theorem 21. The equation of a line determined by 

a) a point (x0 , y0 , z0) and a direction vector a = (a 1, a2 , a 3): 

in canonical form 

x - x 0 y - Yo z - z0 --- = --- = ---; 

in parametric form 

x - Xt -· y - Yt z - Zt 

X2- X1~ Y2 - Y1 Z2- Zt 

or (in parametricform) 

x = X1 + (x2 - x1) t, Y = Y1 + (Y2 - Yt) t, z = Zt + (z2 - z1) t. 

(2) 

(3) 

REMARK 8. Equations (2) can be obtained from the parametric equations (3) by 
eliminating the parameter. If zero occurs in the denominator of some of the above 
fractions we consider those equations which are involved as a mere formal notation 
and, as a rule, use another form of the equations. 

Theorem 22. The direction vector of a line is parallel to the vector product of the 
normal vectors of any two planes which contain the line, i.e. 

Example 6. Obtain the parametric equations of the line given by the general 
equations 

3x + 4y + 5z - 3 = 0, 

x - 2y - 3z + 4 = 0 . 

The direction vector of the line can be found by Theorem 22: 

I 
4. sl I s. 3l 

1
3. 4l al:a2:a3= -2,-3:-3,1:1,--2 = 

= ( -2): 14: ( -10) = 1 : ( -7): 5. 
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In order to find the parametric equations of this line we determine one of its points. 
We choose z0 = 0 say and find x0 , y0 , from the equations 

3x + 4y- 3 = 0, 

X- 2y + 4 = 0. 

We obtain x 0 = -I, y 0 = I·5. Thus, the required equations are 

X= -I + t, y = I·5- 1t, z = 5t. 

Theorem 23. The distance d of a point P(x0 , y0 , z 0 )from the line 

X - Xt y - Yt z - Zt 

is given by 

d = Iu x al ( ) ( ) Iai ' where u = Xo - Xto Yo - Yto Zo - Zt ' a = al, a2, a3 • 

Example 7. Find the distance of the point M(3, -I, 2) from the line 

x-2 y z+I 
--=-=--

2 1 -2 

Here, 

u = {1, -I, 3), a = (2, I, -2), U X a = (1-I, -31' 1-3, II, 11, -11) = 
I, 2 2, 2 2, 1 

= ( -1, 8, 3), 

Jux aJ = .J[(-I)2 + 82 + 32] = .J74, Iai = .J[22 + 12 + (-2)2] = 3; 

d = ..;74 = 2·867 .... 
3 

REMARK 9. In the same way, the distance between two parallellines can be cal­
culated: we choose a particular point on one of them and then find the distance 
of this point from the other line. 

Theorem 24. The distance d between two skew lines 1 p = r = r1 + at, 2 p = r = 

= r2 + bt' is given by 

d = l[(r2 - r1) abJI. 
Ia x bJ 

Example 8. Find the distance between the skew lines 

1 _x-1_y+2 z+3 
P=-----=--, 

2 2 -1 
2 _x-2 y+I z-I 
P=--=--=--. 

I -2 -2 
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Here r 1 = {1, -2, -3), r 2 = (2, -1, 1), a = (2, 2, -1), b = (1, -2, -2), and tbus 
r 2 - r 1 = (1, 1, 4), 

a x b = (I 2, - 1 I ' ~- 1' 21 ' 12, 21) = (- 6, 3, - 6) ' 
-2, -2 -2, 1 1, -2 

Ia x bl = 9, [(r2 - r 1)ab] = (r2 - r 1). (a x b) = -6 + 3 - 24 = -27. 

Hence 

d = l-271 = 3. 
9 

REMARK 10. Two lines 1p = r = r1 + at, 2 p = r = r2 + bt' lie in the sameplane 
if and only ifthe mixed product [(r2 - r1)ab] equals zero. lf, in addition, a is not 
parallel to b, then tbey intersect. 

Theorem 25. The angle between two lines is equal to the angle between their 
direction vectors a, b,. Thus considering 0 ~ <p ~ !'71", 

a. b a 1b1 + a 2 b2 + a 3 b3 

cos cp = ~ = ~(a~ + a~ + a~)-J(b~ + b~ + bD · 

Theorem 26. a) A necessary and sufficient condition for two straight lines whose 
direction vectors are a, b to be perpendicular is 

a. b = 0; i.e. a1b 1 + a2 b2 + a 3 b3 = 0. 

b) A necessary and sufficient condition for two straight lines whose direction 
vectors are a, b to be parallel is 

Theorem 27. The angle cp between a line and a plane is equal to the complement 
of the angle between the direction vector of the line and a normal vector to the 
plane; thus 

. -~ 
sm cp - Iai . lnl ' 

i.e. if r = r0 + at and Ax + By + Cz + D = 0 are the equations of the line and 
the plane, respectively, then 

. la 1A + a2B + a 3 CI 
sm cp = . 

~(a~ + a~ + a~) ~(A2 + B2 + C2 ) 

A necessary and sufficient conditionfor a line and a planetobe perpendicular is 

a ~ n; i.e. a 1 : a 2 : a 3 = A : B: C. 
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A necessary and suf.ficient condition for a line and a plane to be parallel is 

6.3. Quadrics (Surfaces of the Second Order) 

REMARK 1. In this section, a surface is defined as the locus of a point whose 
reetangular coordinates satisfy the equation F(x, y, z) = 0, where F is a function 
having continuous partial derivatives of at least the first order at every point. The 
points of a surface at which at least one of these partial derivatives differs from zero 
are called regular points ofthe surface, whereas the points at which all the firstpartial 
derivatives vanish are called singular points of the surface (for example the vertex 
of a cone). 

(Fora more detailed treatment see Chap. 9.) 

Theorem 1. The equation of the sphere with centre S(x0 , y0 , z0) and radius r is 

(x - x0) 2 + (y - y0) 2 + (z - z0) 2 = r1.. 

If we perform the operations indicated in this equation, we obtain the general 
equation of aspherein the form 

x 2 + y2 + z2 + mx + ny + pz + q = 0. 

lt should be noticed that the products xy, xz, yz do not occur and that the coeffi­
cients of the squared variables are all equal. 

The coordinates of the centre, and the radius, of a sphere given by the general 
equation can be found by completing the squares: 

x+- + y+- + z+- = -q. ( m)2 ( n)2 ( p)2 m 2 + n 2 + p2 
2 2 2 4 

Ifthe right-hand side oftbis modified equation isapositive number, then the generat 
equation represents the so-called real sphere with centre S( -tm, -tn, -!p) and 
radins r = .J[!{m2 + n2 + p2 ) - q]; if the right-hand side equals zero, then only 
one real point ( the centre of the sphere of zero radius) satisfies the general equation; 
if the right-hand side is a negative number, then no real point in space satisfies the 
general equation. (In this case we speak about a virtual sphere.) 

Theorem 2. The equation of the general ellipsoid with centre at the origin and the 
semi-axes a, b, c, coincident with the x, y and z axes, respectively, is 
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Particular cases are: 

a) a = b > c (an oblate spheroid; Fig. 6.4) ; 
b) a = b < c (aprolatespheroid;Fig.6.5); 
c) a = b = c (a sphere ofradius a). 

In cases a,) b) the z-axis is the axis of revolution. 

z 

Fig. 6.4. Fig. 6.5. 

Theorem 3. Hyperboloids with centre at the origin and semi-axes a, b, c coincident 
with the axes x, y, z, respectively are of two types: 

a) a hyperboloid of one sheet (Fig. 6.6), having the equation 

(a, b being its real semi-axes, and c its imaginary semi-axis), 

b) a hyperboloid of two sheets (Fig. 6.7), having the equation 

(a, b being its imaginary semi-axes, and c the real semi-axis). 

If, in either case, a = b, then the hyperboloid is a hyperboloid of revolution and 
the z-axis is the axis of revolution. 
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Theorem 4. On a hyperboloid of one sheet there exist two sets of straight lines. 
Every line of the first set intersects every line of the other set, while no two lines 
of the same set intersect. The equations of the two sets of lines on the hyperboloid 

are 

a) 

b) 

k1 (~ + D = k 2 ( 1 - ~), 

k 2 (~ - ~) = k 1 ( 1 + ~) ; 

k1 (~ + D = k 2 (1 + ~), 

k 2 (~ - ~) = k1 ( 1 - ~), 
where k1, k2 are arbitrary real numbers (not both equal to zero); clearly, only their 
ratio k1 : k 2 is significant. 

z 

Fig. 6.8. 
X 

Theorem 5. a) The equation of an elliptic paraboloid (Fig. 6.8) with vertex at the 
origin and whose planes of symmetry (the so-called principal sections) coincide 
with the planes x = 0, y = 0, is 

x2 y2 
z = - + -. pq > 0 . 

2p 2q 
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b) The equation of a hyperbolic paraboloid (Fig. 6.9) with vertex at the origin 
and whose planes of symmetry (principal sections) coincide with the planes x = 0, 
y = 0, is 

x2 y2 
z = - - -. pq > 0 . 

2p 2q 

If, in the case of an elliptic paraboloid, p = q, then the paraboloid is a surface of 
revolution and the z-axis is the axis of revolution. 

---r----- -- ·-_:----- ----;r----
1 -- ------1 / 

I 
I 

Fig. 6.9. 

y 

REMARK 2. If, in the equations of surfaces of Theorems 2 and 3, we replace x, y, z 
by x - x 0 , y - y0 , z - z0 respectively, we obtain the equations ofthe same surfaces 
with their centres translated to the point (x0 , y0 , z0 ) and their axes parallel to the 
coordinate axes. 

The same change in the equations of Theorem 5 gives the equations of paraboloids 
whose vertices are at the point (x0 , y0 , z0) and whose planes of symmetry areparallel 
to the planes x = 0, y = 0. 

In all these equations (after removing brackets) the products xy, xz, yz of the 
variables are missing. By similar re-arrangements as in the case of a sphere ( see p. 209) 
the position of the centre, or the vertex, as weil as the quantities a, b, c or p, q, can 
be found. 
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Theorem 6. On a hyperbolic paraboloid there exist two sets of straight lines. 
Every line of the first set intersects every line of the other set, while no two lines 
of the same set intersect. The equations of the two sets of lines on the hyperbolic 
paraboloid 

xz yz 
z = - - - (pq > 0) 

2p 2q 

are 

k( X y )-k 
2 J(2jpl) + J(2Jql) - 1 ' 

where k1o k2 are arbitrary real numbers (not both equal to zero); clearly only their 
ratio k 1 : k 2 is significant. 

Theorem 7. The equation of the quadric cone with vertex at the origin and whose 
directrix* is the ellipse 

in the plane z = c, is 

This cone is also the asymptotic cone of the two hyperboloids 

If a = b, the cone is a cone of revolution and the z-axis is the axis of revolution. 

Theorem 8. Quadric cylinders are of three types: 

a) elliptic: 

(its directrix is an ellipse of the same equation in the plane z = 0 and the generating 
lines areparallel to the z-axis; if a = b, the cylinder is a cylinder of revolution and 
the z-axis is the axis of revolution); 

• For the meaning of the term directrix, as used here, see Definition 6.4.4, p. 221. , 
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b) hyperbolic: 

(its directrix is a hyperbola of the same equation in the plane z = 0 and the gener­
ating lines areparallel to the z-axis); 

c) parabolic: 
y2 = 2px 

(its directrix is a parabola of the same equation in the plane z = 0 and the generat­
ing lines areparallel to the z-axis). 

Theorem 9. The general equation of a quadric is 

a 11x 2 + a 22 y 2 + a 33 z 2 + 2a 12xy + 2a 13xz + 2a23yz + 2a 14x + 2a24y + 

+ 2a 34z + a 44 = 0 ; 

it has Jour so-called orthogonal invariants (i.e. functions of its coefficients whose 
values do not alterunder translation or rotation of the coordinate system): 

a) the discriminant of the quadric 

A= 

au, a12• al3• a14 

a12• a22• a23• a24 

a13• a23• a33• a34 

a14• a24• a34• a44 

b) the minor A44 of the discriminant 

c) the quadratic invariant 

au, al2• a13 

A44 = a12• a22• a23 

a13• a23• a33 

I 2 = I all• a121 + I au, a131 + I a22• a23 1; 
al2• a22 al3• a33 a23• a33 

d) the linear invariant 

I 1 = a 11 + a22 + a33 · 

In addition, the above equation has two so-called semi-invariants whose values do 
not alter under rotation of the coordinate system: 

e) 
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TABLE 6.1 
Determination of the type of a quadric given by the generat equation in reetangular coordinates* 

I I ' I I 
Type of surface Transformed equation Canonical equation I I 

I I i 
I ·----

I 
I 

I A<O real ellipsoid I I xz yz z2 
' 

I I -+-+-= 1 I /2 > 0 a2 b2 c2 I I I 
/1A44 > 0 I 

I 

i 
I i 

I 

I 
I xz y2 z2 I 
I A>O virtual ellipsoid 

I I 12 > 0 -+-+-= -1 

I 

a2 b2 c2 

/1A44 > 0 

A=O virtual cone I xz y2 z2 
I 12 > 0 (real point) -+-+-=0 a2 b2 c2 I I /1A44 > 0 i 

! 
hyperboloid x2 y2 z2 

I A> 0; 
at least one ofonesheet -+---= 1 

A44 # ol 
k 1x 2 + kzy2 + k 3z 2 + a2 b2 c2 

ofthe num- I 

bers 12, A I +-=0 
/1A44 A44 I 
negative 

I 
A < 0, hyperboloid I x2 y2 z2 

I at least one of two sheets 
I 

-+---= -1 a2 b2 c2 I 
! 

1 ofthenum-
I 

I 
I 

I 
i 1 bers / 2 , 
i 
I I /1A44 : 

'negat::__ 

I 
A = 0, real cone x2 y2 z2 

I -+---=0 I at least one a2 b2 c2 

I ofthe num-
I bers / 2 , I 

I /1A44 

I 
negative 

* The entries of the first and second columns of Table 6.1 are necessary and sufficient con­
ditions for the type of the surface stated in the third column. This table thus replaces a number 
of theorems, e.g.: a necessary and sufficient condition for a quadric tobe a paraboloid is A * 0, 
A44 = 0; or, a necessary and sufficient condition for a quadric tobe degenerate is A = 0, A44 = 
= o, s3 = o. 
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TADLE 6.1 

I 
Type of surface Transformed equation Canonical equation 

A44 = ol 1 Ir · 
I 

x2 y2 A<O ' e Iphc para- I 

! 
boloid klxz + kzyz ± I 

-+--2z=O 
I p q 

I ±2J(-~)z=O ! 
I x2 y2 A ~ 0 A>O hyperbolic 

I paraboloid ----2z=0 
I 

p q 

I 
! 

xz Yz i 12 > 0 real elliptic 

I J1S3 < 0 cylinder 
I 

-+-=1 
I 

a2 b2 
I 

I 
I I lz > 0 virtual elliptic x2 y2 
I 

J1S3 > 0 cylinder I -+-=-1 
I a2 b2 
I 

I A44 = 0 12 > 0 two intersecting 
z z s3 

x2 yz 
I A= 0 S3 = 0 virtual planes k 1x+k2y+-=O -+-=0 

I 12 ~ 0 (a realline) Iz 
a2 b2 

I 
! 
I 
! 

I x2 y2 

I 
12 < 0 hyperbolic 
s 3 ~ o cylinder ---=1 

a2 b2 

I 
I 
I 

x2 y2 I 12 < 0 two intersec-
I 

s 3 = o ting real planes ---=0 
I I a2 b2 
I 

I A44 = 0 

-· 

s 3 ~ o parabolic 

k 1x 2 ± 2 J(- ~:)y= 0 

x 2 - 2py= 0 
I A=O cylinder 

12 = 0 

I S2 < 0 two parallel x 2 -a2 =0 

I 
real planes 

I A~:: S2 > 0 two parallel x 2 + a2 = 0 
12 = 0 virtual planes 2 Sz 

k 1x +-=0 
I s 3 = o /1 

S2 = 0 single plane x 2 = 0 
(two coinciding 
planes) 
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f) 
au, a12• a14 au, a13• a14 a22• a23• a24 

s3 = al2• a22' a24 + a13• a33> a34 + a23> a33, a34 

a14• a24• a44 a14• a34• a44 a24• a34• a44 

Using these invariants and semi-invariants, the type of a quadric given by the 

general equation introduced above can be determined (Table 6.1). It should be noticed 

that a general quadratic equation in three variables with real coefficients need not always 

represent an equation of a quadric in the proper sense, i.e. ellipsoids, hyperboloids, 

paraboloids, cones or cylinders. For example, the equation x 2 - y2 = 0 is satisfied 

by the points of two planes x - y = 0 and x + y = 0 (in this case, we speak about 

a degenerate quadric ); similarly there is no point in space satisfying the equation 

x 2 + y 2 + z2 = -1 andin this case we speak about a virtual quadric. 

Theorem 10. The coordinates of the centre of a quadric given by the general 

equation satisfy the system of linear equations 

a 11 x + a 12 y + a 13z + a 14 = 0, 
a 12x + a22 y + a 23z + a 24 = 0, 

a13x + a23Y + a33z + a34 = 0 · 

Depending upon the number of solutions of the above system, the quadric has no 

centre ( quadric without centre ), a single centre, an entire line of centres, or, finally, 

an entire plane of centres. (For a detailed analysis of the solution of a system of 

linear equations see § 1.18.) 

To convert the general equation of a quadric to the standard form (so-called 

canonical equation) used in Theorems 1, 2, 3, 5, 7 and 8, the so-called discriminating 

cubic is important. 

Definition 1. The equation k 3 - I 1 k 2 + I 2 k - A44 = 0 is called the discriminat­

ing cubic of the quadric. Its roots k1, k 2 , k3 are all real. 

Example 1. Determine the type and the canonical equation of the surface 2xy -

- 2xz + 2yz - 4x + 1 = 0 . 

0, 1, -1, -2 
0, 1, -11 

A= 
1, 0, 1' 0 

= 2 > 0; A44 = 1, 0, 1 -2 "# 0. 
-1, 1, 0, 0 
-2, 0, 0, 

-1, 1' 0 

It follows immediately (according to Table 6.1) that the surface is either a virtual 

ellipsoid or a hyperboloid of one sheet. Also, 

I o. 1 I l o. _ 1 I I o. 1 I 11=0; 12= 1,0 + -1, 0 + 1,0 =-3<0. 
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Thus, the given surface is a hyperboloid of one sheet. Solving the discriminating 
cubic 

k3 - 0. k 2 + (- 3). k - (- 2) = 0' 

i.e. 

k3 - 3k + 2 = 0' 

we find that the roots are k1 = k 2 = 1, k3 = -2. Further, since A/A44 = -1, the 
equation of the surface after translation and rotation of the coordinate system is 

i.e. 

Hence, it is a hyperboloid of revolution. Finally, Iet us find the position of the centre 
of the surface in the original coordinate system: 

y-z-2=0, 

X +z = 0, 

-x + y = 0. 

Solving these equations we obtain x = 1, y = 1, z = -1; these are the coordinates of 
the centre of the given surface. 

6.4. Surfaces of Revolution and Ruled Surfaces 

Definition 1. In this section a curve is defined as a ( one-parameter) set of points 
such that their reetangular coordinates satisfy equations of the form x = x(t), 
y = y(t), z = z(t), where x(t), y(t), z(t) are functions which are defined in a given 
domain (for example, in an interval J). These functions are assumed to possess, at 
every point of the domain considered, first derivatives which are not all zero. The 
above equations can be replaced by a single vector equation r = r(t). 

(For a more detailed treatment see Chap. 9.) 

REMARK 1. A curve is often given in space as the intersection of two surfaces (not 
having a common two-parameter part), for example z = f(x, y) and z = g(x, y), or 
F(x, y, z) = 0 and G(x, y, z) = 0. lt is usually possible, by a suitable choice of the 
parameter, to obtain the parametric equations of Definition 1. 

Definition 2. A surface generated by a curve rotating about a fixed straight line 
(axis of revolution) is called a surface of revolution. 
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Theorem 1. The equation of the surface generated by the rotation about the 
z-axis of the curve y = f(z) in the plane x = 0 is 

Theorem 2. The equation of the surface generated by the rotation about the z-axis 
of the curve f(y, z) = 0 (y ~ 0) in the plane x = 0 is 

Example 1. The equation ofthe torus (anchor-ring) generated by the circle x = 0, 
(y - a y + z2 = r2 (0 < r ~ a) rotating about the z-axis is 

(.j(x2 + yz) _ a)z + zz = rz, 

which can be put ( on removing the radicals) into the form 

REMARK 2. The condition y ~ 0 stated in Theorem 2 is usually not essential, since 
the equationf(y, z) = 0 can often be put into the form g(y2 , z) = 0. Then, the equ­
ation ofthe corresponding surface ofrevolution is g(x2 + y 2 , z) = 0. For example, the 
equation of the spheroid generated by the ellipse 

rotating about the z-axis is 

REMARK 3. In the general case, when the surface of revolution is generated by the 
curve x = x(t), y = y(t), z = z(t) rotating about the straight line 

X - x 0 = y - Yo = z - z0 

a b c 

we derive the equation of the surface in the following way: 

We write down the equations of the circle traced by a generat point of the rotating 
curve and then eliminate the parameter of this generat point from these equations. 
This circle is the intersection of the plane in which the general point moves (this 
plane being perpendicular to the axis of rotation) and a sphere whose centre is at 
a point on the axis of rotation - for example the point (x0 , y 0 , z0 ) - and passing 
through the general point of the rotating curve, as shown in Example 2. 
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Example 2. The line 

X = t --}2 , y = -t + t , Z = - 1 + t(2 + --}2) 

rotates about the axis 

X - 1 y - 1 Z + 1 
--=--=--

-1 

Derive the equation of the surface of revolution. 
1. The plane of rotation passes through the point M(t --)2,-! + t, - 1 + t(2 + --}2)) 

and is perpendicular to the vector (1, -1, 1). lts equation is 

X - y + Z - t(2 --/(2) + 1) + t = 0. 

2. The equation of the sphere with centre at the point S( 1, 1, - 1) passing through 

the point M is 

x 2 + y 2 + z 2 - 2x - 2y + 2z + ~ = (2 --)(2) + 1)2 t2 - t(2 --}(2) + 1). 

In order to e1iminate the parameter t we obtain an explicit expression for t from 

the first equation 

t(2 --/(2) + 1) = X - y + Z + t 

and substitute it into the second. On simplification we obtain 

2xy - 2xz + 2yz - 4x + 1 = 0 ; 

this is the equation of a hyperboloid of revolution of one sheet (see Example 6.3.1). 

Definition 3. A surface through every point of which it is possible to draw a straight 

line lying entirely on the surface is called a ruled surface. 

Particular examples of ruled surfaces are the (general) conical and (general) cylindri­

cal surfaces. 

Definition 4. The set of all straight lines passing through a fixed point V and inter­

secting a fixed curve c is called a (general) conical surface ( with the exception of the 

case when c is a straight line passing through the point V). The point Vis the vertex, 

the curve c is the directrix, the lines of the surface are the ruling (generating) lines, 

or generators. 

Definition 5. The aggregate of all straight lines parallel to a given direction (i.e. 

to a vector or a line) and intersecting a fixed curve c is called a (general) cylindrical 

surface. The curve c is the directrix, the lines ofthe surface are the ruling (generating) 

lines or generators. 
The equations of conical and cylindrical surfaces can be derived, for example, 

in the following way: express the directrix parametrically and obtain the equation 
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of the line joining the vertex (at infinity in the case of a cylinder) to a general point 
of the directrix. Then, eliminate from these equations the parameter of the general 
point. 

Example 3. A conical surface has directrix 

and its vertex is at the origin of the coordinate system. 
The parametric equations of the directrix can be written in the form x = r cos2 t, 

y = r sin t cos t, z = r sin t. A generalline of the surface is therefore 

X y Z 
---= =--
r cos2 t r sin t cos t r sin t 

and can be re-written in the form 

x sin t = y cos t , 

y = z cos t. 

The easiest way to eliminate the parameter is to express cos t and sin t in terms of 
x, y, z from the latter equations, and then to square and add, giving 

cos t = ~' 
z 

. y2 
smt =­

xz 

Hence we obtain, on simplification, the required equation of the surface: 

Theorem 3. a) The equation of the cylindrical surface whose directrix in the 
plane z = 0 isf(x, y) = 0 and whose ruling lines areparallel to the z-axis is 

f(x, y) = 0. 

b) Ij, in the equation of a surface, one of the variables is missing, then this equa­
tion represents a cylindrical surface such that the ruling lines are parallel to the 
axis which is denoted by the missing variable, and the equation of the directrix 
is identical with that of the given surface and lies in the coordinate plane perpen­
dicular to the ruling lines. 
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Example 4. The equation (x 2 + y2) 2 = a2(x 2 - y 2) is the equation of the cylin­
drical surface whose lines are parallel to the z-axis and whose directrix is the lemnis­
cate of Bernoulli (see § 4.11) in the plane xy. 

Theorem 4. The equation of a cylindrical surface whose ruling lines areparallel 
to the vector (a 1 , a 2 , a 3) can always be pul into theform 

Theorem 5. The equation of a conical surface with vertex V(x0 , y 0 , z0) can always 
be put into the form 

The equation of the conical surface derived in Example 3 can, for example, be 
written in the form 

More general ruled surfaces are usually determined by three directrices and by the 
condition that the surface is formed by lines intersecting all the directrices. The equa­
tions of such surfaces can be derived in a way similar tothat used in thecaseoftheequa­
tions of cylindrical and conical surfaces: express one of the directrices parametrically, 
project the other two from a general point of this directrix and obtain, in this way, 
the equations of two conical surfaces with a common vertex. From these equations, 
eliminate the parameter of the variable point of the first directrix and so obtain 
the required equation of the surface. 

In some ruled surfaces, one of the directrices may be a plane; the ruling lines are 
parallel to it. 

Definition 6. A ruled surface determined by three directrices which consist of 
a curve, a straight line and a plane, is called a conoid. 

Example 5. The conoid determined by the directrices: the curve c = (x = a cos t, 
y = a sin t, z = bt), the line p = (x = 0, y = 0) and the plane z = 0 is a so-called 
helicoid.) 

Through a general point of the directrix-curve we draw on the one band a plane 
parallel to the directrix-plane and on the other a plane containing the directrix-line. 
Eliminating the parameter, we obtain the required equation ofthe surface in the form 

z 
y=xtan-. 

b 
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Theorem 6. The equatiol'! of the circular conoid determined by the directrix-curve 
x = 0, y2 + z2 = r2 , the directrix-line z = 0, x = a and the directrix-plane y = 0 
is 

Theorem 7. The equation of Plücker's conoid determined by the directrix curve 
x 2 + y2 = rx, z = x tan oc, the directrix-line x = y = 0 and the directrix-plane 
z = 0 is 

Theorem 8. The equation of Küpper's conoid determined by the directrix-curve 
x 2 + y2 = rx, z = 0, the directrix-line x = y = 0 and the directrix-plane z = x is 

Theorem 9. The equation of the Montpellier conoid determined by the directrix­
circle y 2 + z 2 = r2 , x = 0 and two directrix-lines 1p = (y = z = 0), 2 p = (x = 
= a, z = b) is 
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A. VECTOR ALGEBRA 

By FRANTISEK I<EILA 

7.1. Vector Algebra; Scalar (Inner), Vector (Cross), Mixed and Tripie 
Products 

There is a great advantage in using vector calculus when solving various problems 
in applied mathematics. This advantage consists on the one hand in a special notation 
facilitating a very simple description of many relations which would otherwise be 
expressed by :owkward and incomprehensible formulae, on the other in the possibility 
of expressinr many laws and formulae in a form independent of the coordinate 
system. 

Convention 1. Throughout this chapter, by the term "vector" a three-component 
vector, i.e. a vector in three-dimensional space will be understood {for generat defini­
tion of a vector see § 1.15). 

Definition 1. Ordered triplets of real numbers for which 

a) equality: (a 11 a2, a3 ) = (b1 , b2, b3) if and only if a 1 = b11 a2 = b2, a 3 = b3 ; 

b) sum: (a 1 , a2, a 3) + {b1, b2, b3) = (a 1 + b1, a2 + b2, a3 + b3); 

c) product of a triple and a number: k(a 1, a2, a 3) = (ka 1, ka2, ka 3) are defined, 
are called vectors. We denote them usually by bold letters, i.e. a = (a1, a2 , a3) or 
a(a 1, a2 , a3). The numbers a 1 , a2 , a 3 are said tobe the components of the vector a. 

Definition 2. The vector (0, 0, 0) is called the zero vector or null vector,· we denote 
it by 0. 
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Definition 3. By the vector opposite to a vector a(a 1, a2 , a 3) we mean the vector 
(-a 1 , -a2 , -a3)anddenoteitby -a. 

Theorem 1. Vectors satisfy 

(i) the commutative law: a + b = b + a ; 
(ii) the associative law: (a + b) + c = a + (b + c); 
(iii) distributive laws: k(a + b) = ka + kb, (k1 + k2 ) a = k 1a + k 2 a, where 

k, k 1 , k 2 are numbers. 

For further properties ofvectors see § 1.15. 

Some quantities in physics (force, velocity etc.) are known tobe of vector character. 
They are customarily represented by directed segments, i.e. by a segment having 
a certain length and direction. In what follows, we assume that a fixed cartesian 
coordinate system in space has been chosen. In this system, we establish the 
above-mentioned representation of vectors by the following definition: 

Definition 4. Every ordered pair of points A(a 1 , a2 , a 3), B(b1 , b2 , b3) determines 
a vector (b 1 - a 1, b2 - a2 , b3 - a3). This vector is denoted by AB. By the arrow 
the direction of the vector is marked; Ais called the initial (starting) point, B the end 
(terminal) point of the vector AB. 

In figures a vector AB is illustrated by a segment AB with an arrow at the end point 
B (see Fig. 7.1). 

Convention 2. In the following text we shall use the term "vector" also for the 
graphical illustratio.t of a vector. 

Theorem 2. lf a point A(a 1, a2 , a3) and a vector u(ul> u2 , u3) are given, then there 
exists a unique point B such that AB = u. The coordinates of the point B are 
a1 + u 1, a2 + u2 , a3 + u3 • 

Theorem 3. Two vectors :AB, CD are equal if and only if the equations b1 - a 1 = 

= d1 - c1 , b2 - a2 = d2 - c2 , b3 - a 3 = d3 - c3 hold. 

z:J a 

Fig. 7.1. Fig. 7.2. 

REMARK 1. Theorem 3 states that a vector can be arbitrarily placed in space by 
a choice of its initial point. Its end point is then determined uniquely. We speak 
of so-called free vectors. 

A vector with its initial point at the origin and end point at the given point P is 
called the radius (position) vector of the point P. 
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Theorem 4. Let a, b be two vectors. Jf we place the vector b so that its initial 

point coincides with the end point of the vector a, then the vector c determined by 

the initial point of the vector a and by the end point of the vector b (and directed 

in this sense) equals the sum of the vectors a, b, i.e. c = a + b (see Fig. 7.2). 

Definition 5. By the length of a vector a(a 1, a2 , a 3 ) we understand the non-nega­

tive nurober -J(ai + a~ + a~); we denote it by Iai or a. A vector whose Iength equals 

unity is called a unit vector. 

REMARK 2. Instead of"the Iength ofa vector" the terms modulus, magnitude, norm 

or absolute value of a vector arealso used. The length of a vector is equal to the length 

of a segment representing the given vector. 

Theorem 5. For every non-zero vector a there exists a unit vector a0 conformably 

parallel to the vector a (Theorem 7). It is (uniquely) determined by the relation 

o a 
a = ~· 

(The notation a is often used for a unit vector.) 

Definition 6. The linearly independent vectors i(l, 0, 0), j(O, 1, 0), k(O, 0, I) 

(Fig. 7.3) are called principal or coordinate vectors. (For the concept of linear 

dependence and independence see Definition 1.15.3, p. 24.) 

z 

k 

Fig. 7.3. i j y 
X 

Theorem 6. Any Jour vectors are linearly dependent. Thus every vector 

a(a 1 , a2 , a3) can be expressedas a linear combination of three linearly independent 

vectors, in particular as a linear combination of the principal vectors i, j, k: 

Definition 7. Two linearly dependent vectors are called collinear (parallel); 

three linearly dependent vectors are called coplanar. 

Theorem 7. Two vectors a, b are linearly dependent (parallel) if and only if one 

of them is a multiple of the other, i.e. if there is a number k such that either a = kb 

or b = ka. In a graphical illustration, they are represented by two parallel seg­

ments (unless one of them is the zero vector) whose lengths satisfy Iai = ikllb/, or 

lbl = ikiial. If k > 0, the vectors a, bare said tobe conformably collinear (con-
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formably parallel); if k < 0, they are said tobe unconformably collinear (uncon­

formably parallel). 

Theorem 8. Coplanar vectors areparallel to a common plane (they can be placed 

in the same plane). 

Definition 8. The angle between two non-zero vectors a, bis the angle cp (0 ~ cp ~ 
~ 1t) between the directed segments representing both vectors. 

Definition 9. The scalar (inner, dot) product ( a . b or ab, in symbols) of vectors 
a(a 1, a2 , a 3), b(b1, b2 , b3) is the (scalar) number a 1b1 + a2 b2 + a 3b3 • 

Theorem 9. If a, b are non-zero vectors and cp the angle between them, then the 

following relation holds for their scalar product: 

a . b = JaJJbl cos cp • 

Example 1. 

i.i= 1, j.j = 1, k.k= 1, 

i.j=O, j.k=O, k.i=O; 

these results can easily be verified by Definition 9 or Theorem 9 (see Fig. 7.3). 

REMARK 3. Theorem 9 is very often used to compute the angle between two vectors 
which are given by their components. 

Example 2. For a(2, 1, 2), b(1, -1, 4) 

a.b 2.1+1.(-1)+2.4 9 1 

cos cp = JaJJbJ = J(22 + 12 + 22) J[1 2 + ( -1)2 + 42 ] = 3. J18 = J2' 

and thus cp = !1t. 

Theorem 10. Two non-zero vectors a, b are perpendicular if and only if 

a. b = 0. 

Theorem 11. The scalar product of vectors satisfies the relations: 

a) a. b = b. a; 

b) (a + b). c = a. c + b. c; 

c) a . a = JaJ 2 • 

REMARK 4. Instead of a . a we often write a2 . 

Definition 10. The angles which a non-zero vector makes with the principal vec­
tors (and thus with the coordinate axes) are called the direction angles and their 
cosines the direction cosines of the given vector. 
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Theorem 12. Denoting by oc, ß, y the direction angles of a non-zero vector 
a(a 1 , a2 , a3 ), the following relations hold for the direction cosines of the vector a: 

a) cos oc = ~~~ ; cos ß = 1:! ; cos y = 1:! ; 
b) cos2 oc + cos2 ß + cos2 y = 1. 

Definition 11. Three linearly independent vectors a, b, c with a common initial 
point determine a trihedral angle ( a, b, c). It is said to be positively oriented if the 
determinant of the Coordinates of the vectors (in the given order), i.e. the deter­
minant 

a 1 , a2 , a 3 

bl, b2, b3 
cl> c2, c3 

is positive. If it is negative, then we say that the trihedral angle is negatively oriented. 

Example 3. The trihedral angle defined by the vectors i, j, k (in the given order) 
is positively oriented, since 

1, 0, 0 
0, 1, 0 = 1 > 0. 
0, 0, 1 

Definition 12. The vector (cross, outer) product (a x b, or a A b, in symbols) 
of vectors a(al> a2 , a3 ), b(bl> b2, b3) is the vector 

Theorem 13. The vector product satisfies the relations: 

a) a x b = -(b x a); 
b) ka x b = k ( a x b) ; 
c) a x (b + c) = a x b + a x c. 

REMARK 5. Hence, the commutative law does not hold for the vector product. 

Theorem 14. The vector product of two linearly dependent vectors is the zero 
vector. 

Theorem 15. The vector product w = a x b of two linearly independent vectors 
a, b possesses the following properties: 

a) It is perpendicular to both given vectors a, b, i.e. w. a = 0, w. b = 0; 
b) its length is numerically equal to the area of the parallelogram of which the 

vectors a, b are concurrent sides: i.e. jwj = Jaj. Jbj. sin cp, where cp is the angle 
between the vectors a, b; 
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c) the trihedral angle (a, b, w) is positively oriented. 

Example 4. In view of Definition 12, or Theorem 15, the following relations can 
readily be established: 

(see Fig. 7.3). 

ixj=k, jxk=i, kx =j, 

ixi=O, jxj=O, kxk=O 

REMARK 6. The properties listed in Theorem 15 are sometimes used (in physics, 
for example) to define the vector product. 

Theorem 16. The vector product of vectors a, b can be written by means of the 
principal vectors in the form 

i, j, k 
a x b = a 1 , a 2 , a 3 

bl, hz, b3 I 

Definition 13. The mixed product or triple scalar product of three vectors a, b, c 
is the number a. (b x c), denoted by [abc] or abc. 

REMARK 7. The mixed product of three vectors is sometimes called also a tri­
vector. 

Theorem 17. The following relations hold for the mixed product of vectors 
a, b, c: 

al, az, a3 
[abc] = [bca] = [cab] = -[acb] = -[cba] = -[bac] = b1 , b2 , b3 

Theorem 18. The absolute value of the mixed product is equal to the volume of the 
parallelepiped oj which a, b, c are concurrent edges. 

Theorem 19. Three vectors a, b, c are coplanar if and only if 

[ abc] = 0. 

Definition 14. The vector a x (b x c) is said to be the triple vector product of 
vectors a, b, c (in the given order). 

Theorem 20. The triple vector product of vectors a, b, c can be expressed without 
using vector multiplication: a x (b x c) = (a. c) b - (a. b) c. 

REMARK 8. In general, a X (b X c) # (a X b) X c. 

Theorem 21. ( a x b) . ( c x d) = ( a . c) ( b . d) - ( b . c) ( a . d) ( the so-called 
Lagrange identity). 
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REMARK 9. In particular, Theorem 21 yields: (o x b)2 = a2b2 - (a. b)2 • 

Theorem 22. 
a . d, a . e, a . f 

[ abc J . [ def] = b . d, b . e, b . f 
c . d, c . e, c . f 

B. VECTOR ANALYSIS 

By KAREL REKTORYS 

231 

7 .2. Derivative of a Vector. Scalar and Vector Fields. Gradient, 
Divergence, Curl (Rotation). Operator V, Laplace Operator. 

Transformation to Cylindrical and Spherical Coordinates 

In physical and geometrical considerations we often have to deal with the case 
where the components of a vector are functions of a scalar variable t, 

(I) 

Thus, for every t of the domain under consideration we get, in general, a different 
vector; we speak about the vector field, or briefly about the vector a(t). The com­
ponents of a vector can also be functions of several variables. 

We define the derivative of a vector a (t). (The definition of partial derivatives, when 
the components of a are functions of several variables, follow in a similar way.) 

Derivative. of a vector a(t): 

da(t) . a(t + At) - a(t) 
a'(t) = - = hm = a~(t) i + a;(t) j + a;(t) k. (2) 

dt .i->o At 

Similarly 

a"(t) = lim a'(t + At) - a'(t) = a'~(t) i + a;(t) j + a~(t) k (3) 
.i->0 At 

etc. 

Theorem 1. 

( a . b )' = a' . b + a . b' , ( a . b )" = a" . b + 2a' . b' + a . b" , ( 4) 

( Q X b )' = 0 1 X b + Q X b' , ( Q X b )" = 0 11 X b + 2a' X b' + Q X b" . ( 5) 
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Example 1. If the length of a vector a(t) is constant and equal to k then from the 
equation 

the relation 

a'(t) a(t) + a(t) a'(t) = 2a'(t) a(t) = 0 

follows and thus (for every tat which the derivative a'(t) exists and a(t) =f 0, a'(t) =f 0) 

a'(t) .L a(t) . 

REMARK 1. A case of particular importance is that of the space curve described 
by the end-point of the radius vector 

r(s) = x(s) i + y(s) j + z(s) k; 

here s denotes the length of the curve, measured from a fixed point on the curve (see 
§ 9.2, p. 265). Then, the vector 

dr 
-= t 
ds 

(6) 

is a unit vector and is called the tangent (unit) vector ofthe curve under consideration. 
The unit vector 

dt 

ds 

l:f" 
is called the principal normal (unit) vector of the curve. The vector 

b=txn 

(7) 

(8) 

is called the binormal vector of this curve. The vectors t, n, bare mutually orthogonal 
and form the so-called moving trihedral of the curve (for more details see § 9.3). 

GRADIENT. By means of a function 

u = f(x, y, z), 

a scalar field is given in the region 0 in which the function is defined. The surfaces 
u = const. are the Ievel (equipotential) surfaces of this scalar field. 

Definition 1. The vector 

d ou . au . au k 
gra u=-1+-J+-ox ay az (9) 

is said to be the gradient of the given scalar field. 
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REMARK 2. Thus, the gradient of a scalar field is a vector. At a fixed point 

(x 0 , y 0 , z0) E 0, this vector is perpendicular to the Ievel surface passing through 

this point . 
An example of a scalar field is an electrostatic potential field. Its Ievel surfaces 

are called equipotential surfaces. The gradient defines the vector field characterizing 
(at every point) the intensity of the given elcctrostatic field. The curves tauehing 
this field at every point (i.e. curves such that the gradient at every point of a curve 
is a tangent vector of this curve) are called the lines of force. 

If a vector (vector field) a(x, y, z) is given in a region 0 and if there is a (univalent) 
function u = f(x, y, z) in 0 suchthat this vector is the gradient of the function u 

in 0, i.e. 
a(x, y, z) = grad u(x, y, z), (10) 

then this vector field is called potential (conservative) and u is the scalar poten­
tial. In a potential field the work clone by the force a = grad u along a curve c lying 
in 0 and connecting two points A, B of this field does not depend on the form of 
this curve. In particular, the work along a closed curve is zero: 

f grad u . ds = 0 
.,c 

(11) 

(see equation (7.3.4)); ds = i dx + j dy + k dz. 

Theorem 2. The relation 

du = grad u . ds (12) 
holds. 

Roughly speaking (replacing the increment by the differential): The increment 

of the potential along the path characterized by a small vector ds is given by the 

scalar product (12). 

REMARK 3. At a fixed point and for a fixed length ds of the vector ds the increment 
(differential, more precisely) of the potential u is (in accordance to Theorem 7.1.9) 
the greatest in the direction of the gradient. Thus, the gradient determines at every 

point the greatest descent in the field. 

Theorem 3. 

grad (u 1 + u 2 + ... + un) = grad u1 + grad u 2 + ... + grad un, (13) 

grad (uv) = u grad v + v grad u, (14) 

grad r = ~ = r (r is the radius vector of the point (x, y, z), r is the unit vector in 
r 

the direction of r), (15) 

gradf(u) = f'(u) grad u ; (16) 
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in particular 

1 1 r 
grad - = - - grad r = - -

r r 2 r 3 
(17) 

(field of force of a unit charge lying at the origin of the coordinate system); 

Jgrad uj = J[(~:Y + G:Y + (:;)]. (18) 

REMARK 4. For the gradient the following notation is used: 

grad u = Vu = (; ~ + j ~ + k ~) u , 
ax ay az 

(19) 

where 

\7 .a .a ka v=I-+J-+ -
ax ay az 

(20) 

is the so-called Hamitton nabla operator, often called "del". Formula (12) is then 
written in the form 

du= Vu. ds. (21) 

DIVERGENCE AND CURL OF A VECTOR FIELD. Consider a vector field given by the 
vector 

a(x, y, z) = a1(x, y, z) i + aix, y, z) j + aix, y, z) k (22) 

which is thus a vector function of a point (x, y, z). 

Definition 2. The divergence of the vector a is the scalar 

d. \7 aal oa2 oa3 
lV a = va = - + - + -. 

ax ay az 
{23) 

In English mathematical Iiterature it is more common to write V . a, rather than 
Va, for div a. 

REMARK 5. Let us consider a steady flow of fluid characterized (in a region 0) 
by a velocity vector a(x, y, z). The divergence of the vector a measures the (volume) 
quantity of fluid produced in a unit volume in unit time. 

For an incompressible fluid div a = 0. Such a vector field (i.e. a field for which 
div a = 0) is called solenoidal (sourceless). The flux of such a field through a closed 
surface equals zero; the quantity leaving the surface is the same as that entering it 
(see equation (7.3.7)). 
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Theorem 4. The following relations hold: 

div(a + b) = diva + divb, div(ua) = udiva + agradu, {24) 

d. 3 d' - 2 tv r = , 1v r = - , (25) 
r 

r 
where r = - (r is the radius vector of the point (x, y, z)). 

r 

Definition 3. The curl of a vector a is the vector 

cura= xa= --- •+ --- )+ ---1 V ( oa3 oa2) . (8a 1 oa3) . (8a2 8a 1) k 
oy az az ax ax ay 

i, j, k 

a a a 
(26) ax ay az I 

al, az, a3 

The symbol rot a is often used instead of curl a. 

REMARK 6. If a is the velocity of a fluid, then the direction of curl a indicates the 
direction of the axis about which the fluid rotates in a "small" neighbourhood of the 
point under consideration. The length of the vector ! curl a determines the speed of 
rotation (in circular measure ). 

Theorem 5. The following relations hold: 

curl (a + b) = curl a + curl b, curl (ua) = u curl a- a x grad u, (27) 

curl r = 0, curlf(r) r = 0 (r is the radius vector of the point (x, y, z)). (28) 

REMARK 7. The field in which curl a = 0 holds is called irrotational. A vector 
field constructed as the gradient of a scalar field u(x, y, z), is irrotational. Conversely, 
every irrotational field in a simply connected region can be represented as the gradient 
of a scalar field (and is thus a potential field). 

REMARK 8. The scalar product of the operator V with itself gives the so-called 
Laplacian operator Ll (delta): 

(29) 
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Theorem 6. The above-defined operations expressed in terms of 

a) cylindrical (polar) Coordinates x = (! cos <p, y = (! sin <p, z = z give 

d. 1 0 ( ) 1 8a"' 8az 
IV o = - - (2a 0 + -- + -, 

(2 8(2 (2 o<p oz 
(30) 

(31) 

the components of the vector grad u in the directions of (2, <p, z: 

8u 1 CU 8u 

0(2 ' (2 8<p oz 
(32) 

the components of the vector curl o in the directions of (!, <p, z: 

!_ 8az - 8a"' 8aQ - 8az !_ ~ (na ) - !_ 8aQ . 
' ' ~ tp ' (2 0(/J 8z oz 0(2 (2 8(2 (2 8<p 

(33) 

b) spherical coordinates x = r sin 8 cos <p, y = r sin 8 sin <p, z = r cos 8 give 

d. 1 0 ( 2 ) 1 8 ( . (l) 1 8atp tva=-- ra +--- a 8 Slll17 +---
r2 or T r sin 8 88 r Sill 8 8<p ' 

(34) 

(35) 

the components of the vector grad u in the directions of r, 8, <p: 

au 1 au 8u 
ar ' -; 88 ' r sin 8 8<p ; 

the components of the vector curl o in the directions of r, 8, <p: 

- -.1- [ 8aa.- ..!__ (aq> sin 8)]' - !_ [..!__ (ratp) - -.1- oa,J' 
r sm s 8<p oS r 8r sm 8 8<p 

- --- --(ra8) • [ 1 oa, 1 o J 
r 88 r 8r 

(36) 

Theorem 7 (Same Formulae for Calculation with the Operators V and A). 

1. V(uv) = grad (uv) = u grad v + v grad u, 

2. V(ua) = div (uo) = u div o + a grad u , 
3. V x (uo) = curl(uo) = u curlo- a x grad u, 
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4. V(a. b) = grad (a. b) = a x curl b + b x curl a + 

+ a 1 - + a2 - + a 3 - + b1 - + b2 - + b3 - , ( ob ob ob) ( oa oa oa) 
ox oy oz ox oy oz 

5. V( a x b) = div ( a x b) = b . curl a - a . curl b , 

6. V x (a x b) = curl(a x b) = adivb- bdiva + 

+ (bl oa + bz oa + b3 oa)- (al ob+ a2 ob+ a3 ob)' 
~ ~ fu ~ ~ fu 

7. V2 u = VVu = div grad u = Au , 

8. V x (Vu) = curlgradu = 0, 

9. V(Va) = grad div a = curl curl a + Aa, 

10. V(V x a) = div curl a = 0. 

Theorem 8 (Some Properfies of the Laplacian Operator). 

1. A(u + v) = Au + Av , A(uv) = u Av + v Au + 2 grad u. grad v, 

2. A(a + b) = Aa +Ab, Agradu = grad(Au), Acurla = curlAa, 

3. A !._ = 0. 
r 

REMARK 9. In accordance with the definition of the gradient of a scalar, the diver­

gence of a vector and the curl of a vector, we read, of course, 

Vu = grad u, Va = div a, V x a = curl a 

and not e.g. Vu = div u, for the operator "divergence" can be applied to a vector 

only, not to a scalar, etc. 

The formulae stated in Theorem 7 can often easily be formally deduced if we note 

that the operator V is given in vector form by (20); for example, 

= . = •-+)-+ -. •-+)-+ - = V2 v v (· o . o k o) (· o . o k o) 
ox oy oz ax ay az 

Similarly, also 

02 az 02 
=-+-+-=A. ox2 oy2 oz2 

V(ua) = (Vu). a + u Va = grad u. a + u div a. 

The last two expressions in formula 4 of Theorem 7 can be symbolically written as 
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where 

aV = a grad = (a 1i + a2 j + a 3 k). (; ~ + j ~ + k ~) = ax oy oz 
a a a 

= a 1 - + a2 - + a3 - , etc. ax ay az 

The corresponding expressions in formula 6 can be written in a similar way. 

7.3. Curvilinear and Surface Integrals of a Vector. Vector Notation 
for the Theorems of Stokes, Gauss and Green 

Let c be a sectionally smooth oriented curve in space (see §14.1). Denote t ds 
by ds, where s is arc-length and t the tangent unit vector at the point of the curve 
under consideration. We define 

(I) 

If c is a closed curve, we usually write 

fca. ds (2) 

(this is the circulation of the vector a along the closed curve c). 
If the vector a denotes a force, then integral (1) represents the work done by this 

force along the curve c. 

lf a = grad u, then 

f:a. ds = u(B)- u(A), (3) 

where A is the initial and B the end point of the curve. Thus, in a potential field the 
integral ( 1) depends on the initial and end points of the curve and not on the shape of the 
curve. In particular, the integral along a closed curve in a potential field a is equal to zero: 

(4) 

·lf a vector (vector field) a is irrotationa1 in a simply connected region 0, i.e. if 
curl a = 0 in 0, then the vector a can be expressed as the gradient of a scalar u 
(cf. Remark 7.2.7); the integral (1) does not depend on the shape of the curve but 
merely on its initial and end points; the integral along a closed curve is equal to zero. 



7.3 VECTOR CALCULUS 239 

In a similar way the surface integral of a vector a ( over a sectionally smooth oriented 
surface, with unit normal vector n) can be defined: 

(5) 

In vector notation some theorems of integral calculus (see § 14·8) can be written 
in a simple form: 

\ 

Fig. 7.4. 
,~c 

Fig. 7.5. 
I 

I. Stokes's Theorem: 

( 6) 

where S is a surface bounded by a curve c (Fig. 7.4); the orientation of the surface 
and the curve can be seen in Fig. 7.4 (see also Theorem 14.8.6). 

The physical interpretation of equation (6): The flux of the vector curl a through 
a surface S equals the circulation of the vector a along the bounding curve c of S. 

Example 1. Consider a two dimensional vector field (in the xy plane) given by the 
vector 

a = - yi + xj 

( at every point ( x, y) the vector a is perpendicular to the corresponding radius vector r 
of this point and its length is r (see Fig. 7.5)). Let c be the circle of radius r with centre 
at the origin, positively oriented with respect to its interior S. Thus, the normal n 
of the surface S is directed upwards (in the positive sense of the z-axis ). Evidently 

Sc a . ds = r . 21tr = 21tr2 • 

Further 
i, j, k 

curl a = 
a a a 

= 2k, 
' 

-
' ox ay oz 

-y, X, 0 
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and thus 

in accordance with ( 6). 

lf curl a = 0, then equation (6) yields ~c a. ds = 0 in accordance with (4). 

2. Gauss's Theorem: 

(7) 

where the integral on the right-hand side is the surface integral over a closed 

surface whose interior is V; dS = n dS, where n is the outward normal vector 

(see Theorem 14.8.5). 

Physical meaning: The flux of a vector a through a closed surface is equal to 
the volume integral of the divergence of the vector a. 

Similarly, the relations 

JJLgrad u dV = Jtu dS, Iffvcurl a dV - fta x dS (8) 

hold. 

REMARK 1. On the basis of the relations (7), (8), the operators grad, div, curl can 
be defined, without use of a special coordinate system: 

grad u = lim _!_ ff u dS , div a = lim _!_ ff a . dS, (9) 
V-+0 V s V-+0 V s 

curl a = - lim _!_ ff a x dS. (10) 
V-+0 V s 

3. Green's Theorems: 

JJL(grad u. grad v) dV + JII/ Av dV = JLu ~~ dS, (11) 

JJL(u Av- v Au) dV = JL (u ~~ - v ~:) dS, {12) 



7.3 VECfOR CALCULUS 241 

where n is the outward unit normal (see Theorem 14.8.9). If we put v = u in (11) 
and if, moreover, u is harmonic (~u = 0), then 

4. Let the point Q (x0 , y 0 , z0) be inside S, u be harmonic inside S, aufan 
continuously extensible on Sand r = J[(x - x 0 ) 2 + (y - YoY + (z - z0) 2]. Then 

ff [u ~ (!..) - !.. au] dS = - 41tu0 , 
s an r r an 

(14) 

where u0 is the value of the function u at the point Q. 



8. TENSOR CALCULUS 

By VACLAV VILHELM 

References: [16), [23), [35), [42), [64), [90), (114), [116), [128), [154), [157), [161), (166], 
[171), [174), [181). 

8.1. Contravariant and Covariant Coordinates of a Vector and their 
Transformation by a Change of the Coordinate System 

If eh e2 , e3 are three arbitrary non-coplanar vectors then they define a coordinate 
system (eh e2 , e3) in space in the sense that every vector a can be written uniquely 
in the form 

(1) 

where a 1, a2 , a 3 are real numbers. (We mention explicitly that a; does not denote 
the i-th power of a but a nurober a; with the upper index i.) 

Definition 1. The numbers a 1, a2 , a 3 are called the contravariant Coordinates 
of the vector a in the coordinate system ( e1, e2 , e 3). 

X 

f, 
I 

a3 

Example 1. Let us choose three mutually perpendicular unit vectors in space 
and denote them by e1 = i, e2 = j, e 3 = k (Fig. 8.1). If a is an arbitrary vector, 
then a = a 1 i + a2j + a3 k = a;ei (see Remark 2); the numbers al, a2 , a 3 are its 
contravariant coordinates in the coordinate system (i, j, k). 
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REMARK 1. From (1), a vector is obviously uniquely determined by its contra­
variant Coordinates in the given coordinate system. 

3 

REMARK 2. Equation (1) can be written in the form a = I aie;. It is customary 
i~1 

in tensor algebra to adopt the "summation convention" by which we omit the sum 
symbol I and write simply a = aie;. In this convention it is understood that whenever 
an index is repeated (as in a;e;) we sum over the values i = 1, 2, 3. Thus, aie; 

stands for the sum a 1e1 + a 2 e2 + a 3 e3 • In what follows weshall normally use this 
brief notation. 

If e~, e;, e; denote three other non-coplanar vectors in space, then 

e~ = e~e1 + eie2 + eie3 , 

e; = eie1 + e~e2 + e~e3 , 

e; = eje1 + e~e2 + e~e3 , 

briefly this may be written as 

e; = e{e1 (i = 1, 2, 3) , 

since j is a repeatable index. 

(2) 

Definition 2. The matrix A = ( ej) ( the upper index refers to the columns, the lower 
to the rows) is called the transformation matrix of the coordinate system ( e1, e2 , e3) 

to the coordinate system (e~, e;, e;). 

Theorem 1. The determinant of the transformation matrix is different from 

zero; hence we may write 

e; = J{ej (i = 1, 2, 3), 

where the matrix (fj) is the inverse of ( e;) (see Example 2). 

(3) 

Theorem 2 (Transformation of the Contravariant Coordinates of a Vector). If 

the contravariant coordinates of a vector a in the coordinate system ( e1 , e2 , e3) 

are a 1 , a 2 , a 3 and those in the coordinate system ( e~, e;, e;) are a' 1 , a' 2 , a' 3 , then 

the following relation holds between these coordinates: 

a,; = JJai, ai = eJa'i (i = I, 2, 3). (4) 
Here the matrix 

is the transpose A' of the transformation matrix A of the system ( e 1, e 2 , e3) to the 

system ( e~, e;, e;) and the matrix 
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is the inverse of the matrix A', i.e. 

3 

" i k k ( L. eJ; = bi briefly (5) 
i= 1 

where b~ = { 1 for k = j} (see Example 2). 
Ofork =Fj 

REMARK 3. b~ in Theorem 2 is known as the Kronecker delta. 

Theorem 3. Let the contravariant coordinates of vectors a and bin the coordinate 
system ( e 1, e 2 , e 3) be ai and bi, respectively. Then, for the scalar product a . b we 
have the relation 

3 3 

a . b = I I g iia i bi 
i=l j=l 

or briefly 

(6) 

where 

gii = e;.ei (i,j = 1,2,3) 

(see Example 2 below). 

Definition 3. The numbers 

(see Theorem 4) are called the covariant coordinates of the vector a in the coordinate 
system (e1 , e2 , e3) and are denoted by a 1 , a 2 , a 3 • Thus, a; = giiai. 

REMARK 4. Since the numbers a\ a2 , a 3 can be determined from the equations 
a; = g liai uniquely (because the determinant of the matrix (gij) is different from 
zero), a vector is, according to Remark 1, uniquely determined by its covariant 
coordinates in the given coordinate system. In the system (i, j, k) of Example 1, 
ai = ai. 

Theorem 4 (Transformation of the Covariant Coordinates of a Vector). If the 
covariant coordinates of a vector a in the coordinate system (e1, e2 , e 3) are a 1 , a 2 , a 3 

and those in the coordinate system ( e~, e;, e;) are a~, a;, a;, the the following 
relation holds between these coordinates: 

a~ = e{a i, a 1 = J{aj ; (7) 

the numbers e{,J( having the same meaning as in Theorem 2. 
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Consider the vector a, the contravariant coordinates of which in the coordinate 
( ) 1 2 3 · ; H 1( , , • ) system e 1, e2 , e2 are a , a , a , 1.e. a = a e;. ence, a = a e 1 cos 01: - e2 sm 01: + 

+ a 2(e~sina+e;cosa) + a 3 te; = (a 1 cosa+a2 sina)e~ + (-a1 sina + 
+ a2 cos a) e; + ta 3 e;. Thus, the contravariant coordinates of the vector a in the 
coordinate system (e~, e;, e;) are 

a' 1 = a 1 cos 01: + a2 sin 01:, 

a'2 = - a 1 sin 01: + a2 cos 01: , 

a'3 = ta3. 

The matrix of this transformation (see equation (4)) is 

[ 
cos 01:, sin 01:, 0] 

-sin 01:, cos 01:, 0 , 
0, 0, t 

which is the inverse of the matrix A' (see Theorem 2). 

The covariant coordinates of the vector a in the coordinate system (e1, e2 , e3) are 
(Theorem 3) a; = (e;. e1) ai = ojal = ai (i.e. the same as the contravariant coordin­
ates ), while the covariant Coordinates of the vector a in the coordinate system 
( I I ') I ( I ') tj tl I ( I ') lj 12 I ( I ') I} e 1,e2 ,e3 area 1 = e 1 . e1 a = a , a 2 = e2 .e1 a = a ,a3 = e 3 .e1 a = 

4 ' 3 ( • ' ' 0 l' • • ' ' ' ' 1 ' ' 4) = a stnce e;. e1 = 10r 1 =I= J, e 1 . e 1 = e2 • e2 = , e 3 • e 3 = . 
The scalar product a . a is (Theorem 5) 

a. a = aia; = (a 1) 2 + (a 2 ) 2 + (a 3) 2 = a,;a~ = (a 1 cos 01: + a2 sin 01:)2 + 

+ ( -a1 sin 01: + a2 cos a)l + ta3 • 2a3 • 

8.2. The Concept of a Tensor in Space 

Wehave shown in§ 1 that in every coordinate system, a vector is detennined by an 
ordered triplet of numbers - by its contravariant or covariant coordinates. In chang­
ing from one coordinate system to another, this system of numbers defining the 
vector transforms in a certain way. The transformation formulae for contravariant 
and covariant coordinates are different (see Theorem 8.1.2 and Theorem 8.1.4). 
On the other hand, if to every coordinate system we assign three numbers al, a2 , a 3 

or b 1, b2 , b3 in such a way that when changing from one coordinate system to another, 
these ~umbers are transformed according to the formulae a'i = f]ai (or b; = e{b1), 

,\ ' 

where (ej) is the corresponding transformation matrix and (fj) is the transpose of 
the inverse of the matrix ( e{) , then these numbers can be understood to be the 
contravariant, or covariant coordinates of the vector o, or b, respectively. This fol­
lows from Theorems 8.1.2 and 8.1.4 and, thus, these numbers define the vectors o 
and b. This idea is exploited in the following definition of a tensor. 
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Theorem 5. Let ai, bi be the contravariant and ai, bi the covariant coordinates 
of vectors a, b in the given coordinate system, respectively. Then the scalar product 
a. b satisfies 

(where again, aibi = a 1b1 + a 2 b2 + a 3b3 , a;bi = a 1b1 + a 2 b2 + a 3b3 ; see 
Example 2). 

Fig. 8.2. 

Example 2. Let ( e1, e2 , e3) = (i, j, k) be the coordinate system of Example I 
and let us choose another three linearly independent vectors e~ e;, e; such that the 
vector e; is obtained from the vector e; (i = 1, 2) by rotation through an angle a 
in the plane of the vectors e 1, e 2 (see Fig. 8.2), and e; = 2e3 • Then equations (2) 
take the form 

e~ = e 1 cos a + e 2 sin a , 

e; = - e 1 sin a + e 2 cos a , 

The transformation matrix of the coordinate system ( e 1 , e2 , e3) to the coordinate 
( , , ') . system e 1 , e 2 , e 3 lS 

[ 
cos a, sin a, 0 ] 

A = -sin a, cos a, 0 . 
0, 0, 2 

We can easily show that equations (3) have the form 

e1 = e~ cos a - e; sin a , 

e2 = e~ sin a + e; cos a , 

and, thus, the transformation matrix of the coordinate system ( e~, e;, e;) to the 
system ( e 1 , e2 , e3) is 

[
cos a, - sin a, 0] 

B = sin a, cos a, 0 , 
0, 0, ! 

i.e. the inverse of A. 
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Definition 1. We say that a tensor is defined in space if, to every coordinate system, 
there correspond 3p+q numbers a~~::: (the number of upper indices is p, the number 
of lower indices q) such that they are transformed according to the formulae 

(1) 

by any change from one coordinate system to another (in the right-hand side of 
formulae (1) we sum (from one to three) over all indices which appear twice there). 
Here, ( e;) is the transformation matrix and UJ) the transpose of the inverse of the 
matrix '( ei·) The tensor so defined is said to be p-times contravariant and q-times 
covariant~ ·rhe number p + q is called the rank of the tensor, the numbers a~~~::: are 
called the coordinates of the tensor. 

REMARK 1. Instead of "tensor of rank two" the term "quadratic tensor" is used. 
A quadratic tensor once covariant and once contravariant is called a mixed quadratic 
tensor. A tensor satisfying q = 0, or p = 0, is called a contravariant, or covariant, 
tensor, respectively. 

Example 1 (a scalar). If to every coordinate system (e1 , e2 , e 3) there corresponds 
the same number a, a tensor of rank zero (p = q = 0), called a scalar, is defined. 

Example 2 (a contravariant vector). If ai arecontravariant coordinates of a vector, 
then, by a change of the coordinate system, they are transformed according to the 
formulae a'i = JJai; this is a particular case of the formulae (1) for p = 1, q = 0. 
Thus ai are the coordinates of a contravariant tensor ofrank 1, called a contravariant 
vector. 

Example 3 (a covariant vector). If ai are covariant Coordinates of a vector, then 
by a change of the coordinate system, they are transformed (see Theorem 8.1.4) 
according to formulae (1), where p = 0, q = 1. Thus, a; are the Coordinates of a co­
variant tensor of rank 1, called a covariant vector. 

Example 4. The coordinates of a contravariant tensor aii are transformed, using 
( 1 ), as follows: 

Hence, in the transformation formulae for a contravariant ( or covariant) tensor 
only the elements ofthe matrix (fj) (or (e;)) appear. 

Example 5 (a metric tensor of the space). Ifto every coordinate system (e1, e2 , e 3) 

we assign the numbers g ii = e;. ei (see Theorem 8.1.3), we can easily checkthat these 
numbers are transformed, by a change of the coordinate system, according to the 
formulae g;i = g 1me:ej. Thus, gii are the coordinates of a double covariant tensor 
of rank 2 (i.e. a quadratic double covariant tensor), called the (covariant) metric 
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tensor. The Coordinates g iJ can be written in the form of a matrix 

If 

is its inverse (i.e. giigik = .:5~ - see Remark 8.1.3), then the numbers gil are the Co­
ordinates of a double contravariant tensor of rank 2, called the ( contravariant) 
metric tensor. lf the contravariant (or covariant) coordinates of vectors a, bin the 
given coordinate system are ai, bi (or a;, b;) and the covariant (or contravariant) 
Coordinates of a metric tensor in this system are g;1 (or gii), then a. b = g;1a1b1 = 

= giia;b1• This justifies the term "metric tensor". 

Example 6. If to every coordinate system we assign the numbers 

.:5~ = {1 for i = j , 
J 0 for i =1- j , 

then .:5'/ = c:5:ejf; = e'jf; = .:5; (see Theorem 8.1.2). Thus, .:5~ are the coordinates of 
a once covariant and once contravariant tensor of rank 2 (i.e. a mixed quadratic 
tensor ). These Coordinates are the same in all coordinate systems. 

Example 7. Let us choose a coordinate system in space and assign to every vector a, 
the contravariant Coordinates of which are ai, the vector b, the contravariant Co­
ordinates b; of which are defined by the equations 

i.e. 

bt = c~at + da2 + da3 ' 
b2 = da1 + c~a2 + c~a 3 , 

b3 = cfat + da2 + c~a3 . 

(2) 

If we change the given coordinate system to a new one in which the coordinates of the 
vector a, or the vector b, are a'i, or b'i, respectively, then the following relation be­
tween these coordinates holds: 

b'i = c'/a'i , 

where c'/ = c:e}f! ( ( e~) is the transformation matrix of the original coordinate 
system to the new one). Thus, c~ are the coordinates of a mixed quadratic tensor. 
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In particular, considering the so-called small deformations of a solid whereby 
the vector ai is transformed into the vector äi, then relations (2) hold between the 
vector a 1 and the vector b1 = äi - ai. The coefficients cJ are the coordinates of the 
so-called deformation tensor (see Example 8.4.4, p. 256). 

8.3. A Tensor on a Surface 

Definition 1. Let 1t be a smooth surface in space defined by the radius vector 
r(u 1 , u2 ) (see equations (9.11.1), (9.11.6) where u, v are written instead of u1, ~2). 

Fig. 8.3. 

lf, to every point M of the surface n, the coordinates of which are u1, u2 , there cor­
responds a vector v(u 1 , u2 ) having initial point M(u 1, u2 ) and lying in the tangent 
plane of the surface at this point, we say that a (tangent) vector field, or briefly a 
(tangent) vector v(u 1 , u2 ) is given on the surface 1t (see Fig. 8.3). 

REMARK 1. lt is known (see § 9·12) that the vectors 

lie in the tangentplane of the surface r(uto u2 ) at the point M(u 1, u2 ) and are non­
collinear. Therefore, they can be taken as the coordinate vectors in the tangentplane 
at the point M(uto u2 ). Every vector v(u 1, u2) on the surface 1t can then be uniquely 
written in the form 

(1) 

briefly 

Definition 2. v1(u 1 , u2), v2(u 1 , u2 ) (briefly vi) are the so-called contravariant 
Coordinates of the vector v(u 1, u2 ) on the surface r(u 1, u2) (in the local coordinate 
system (r1(u 1 , u2), r2(ui> u2 )) of the point M(u1, u2 ) of the surface). 
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REMARK 2. If r'(u;, u~) is another parametric expression of the surface n of 
Definition 1 in which the point M with original Coordinates ul> u2 has Coordinates 
u;, u~, then weshall always assume that u;, u~ are continuously differentiable func­
tions of the variables u1, u2 : 

u; = u~(ul> u2), 

u~ = u~(u 1 , u2 ). 

{2) 

Similarly, weshall assume that u1, u2 are continuously differentiable functions of the 
variables u;, u~; 

u1 = u 1(u~, u~), 

u2 = u2 (u;, u~). 

(3) 

Here, equations (3) represent the solution of equations (2) with respect to the variables 
u 1, u2 • The determinant of the matrix 

is different from zero and the matrix( ~:~ }rormed by the partial derivatives of the 

functions (3)) is the inverse of the matri:x( ~:;). hence 

where ~~ is the Kroneckerdelta (see Remark 8.1.3). 

Theorem 1. If we transform the parametric expression r(ul> u2) of a surface to 
a new parametric expression r'(u;, u~) by means of equations (3), then thefollowing 
relations hold between the local coordinate t•ectors r 1(u 1, u2), r2 (u1> u2) in the 
original expression and the local coordinate vectors r;(u;, u~). r~(u;, u~): 

(4) 

ouj , 
r.= -r .. , a J 

Ui 
(5) 
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REMARK 3. From (4), we see that the transformation matrix of the coordinate 

system (r 1, r2) to the coordinate system (r~, r;) is(ouj)cr. Definition 8.1.2). 
ou~ 

Theorem 2 (Transformation of the Contravariant Coordinates of a Vector on 
a Surface). If the contravariant Coordinates of a tangent vector v at a point Mon 
a surface n in the local coordinate system (r1 , r2 ) are vl, v2 and those in the local 
coordinate system (r~, r~) (which has resulted from the original system by the 
change of the parametric expression of the surface defined by equations (2) and (3)) 
are v11 , v'2 then 

,. au; . 
v'=-v1 , 

auj 

. aui I' 
V 1 = -v 1 • 

auj 

REMARK 4. The coordinates v1 , v2 in Theorem 2 are naturally functions of the 
variables u 1 , u2 ; similarly the coordinates V1

\ V12 are functions of the variables 
u~, u~. 

Theorem 3. Let the contravariant coordinates of vectors a and b on a surface in the 
local coordinate system (rl> r2 ) be a 1 and b1, respectively. Then 

2 2 

a. b = I I g1ia 1bi = giia 1bi, (6) 
i=l j=l 

Definition 3. The numbers a 1 = giiai are said tobe the covariant Coordinates of the 
vector a in the coordinate system (r 1, r 2). 

Theorem 4 (Transformation of the Covariant Coordinates of a Vector on a Sur­
face). If the covariant Coordinates of a vector von a surface r(u 1, u2 ) in the local 
coordinate system (r 1, r2) are v1 and those in the local coordinate system (r~, r;) 
(which has resulted from the original system by the change of the parametric 
expression of the surface according to equations (2) and (3)) are v;, then 

I_ auj 
V---V· 

I a I J' 
U; 

auj ' 
V·=-V·. 

I a J 
U; 

Theorem 5. Let a 1, b1 be the contravariant and a 1, b1 the covariant coordinates 
of vectors a, b on a surface r(u 1 , u 2 ), respectively. Then a. b = a 1b1 = a 1b1 (here, 
i runs from 1 to 2). 

Definition 4 (Definition of a Tensor on a Surface; cf. Definition 8.2.1). We say 
a tensor field (briefly a tensor) is defined on a surface rc if, to every local coordinate 
system (r 1(u 1 , u2 ), r2 (u 1 , u2 )) defined by the corresponding parametric expression 
r(u 1 , u2 ) of the surface n, there correspond 2p+q numbers (depending on the point 
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of the surface) a!{::: ( the number of upper indices is p, the number of lower indices q; 

i, j, k, l, ... = 1, 2) suchthat they are transformed according to the formulae 

.. 1 OU~OU~ a"1"" = a m ... - 1 _J 
rs... tv ... OU I OUm 

(7) 

by any change from the coordinate system (r1(u 1, u2), r2 (u 1 , u2 )) to the coordinate 
system (r~(u~, u;), r;(u~, um which has resulted from the original system by the 
change ofthe parametric expression ofthe surface according to equations (2) and (3). 
This tensor is said to be p-times contravariant and q-times covariant. The number 
p + q is called the rank of the tensor, the numbers a;~::: are called the Coordinates 
of the tensor. 

REMARK 5. The coordinates a!~::: of a tensor on a surface n in the local coordinate 
system (r1, r2 ) defined by the parametric expression r(u 1 , u2 ) of the surface n are 
evidently functions of the variables u 1, u 2 (see Remark 4). 

Example 1 (A Scalar on a Surface). If to every point of a surface n there cor­
responds a certain fixed number a, then a tensor field of rank zero (p = q = 0), 
called a scalar field, briefly a scalar, is determined. In the coordinate system defined 
by the parametric expression r(u 1 , u2 ) ofthe surface n, a is a function ofthe variables 
u1 , u2 : a = a(u 1, u2). For a different expression r'(u~, u;) of the surface n in which 
the point with original curvilinear coordinates u 1, u 2 has curvilinear coordinates 
u~, u;, we naturally have a = a(u~, u;) = a(u 1, u 2). 

Example 2 (A Contravariant and Covariant Vector on a Surface). Let vi and V; 

be respectively the contravariant and covariant coordinates of a vector v on a surface. 
Then, comparing the transformation formulae of Theorems 2 and 4 and the formulae 
of Definition 4, vi and V; are easily seen to be the Coordinates of a once contravariant, 
or a once covariant tensor of rank 1, the so-called contravariant, or covariant, 
vector on a surface, respectively. 

Example3(The Metric Tensor of a Surface(thefirstfundamental tensorof a surface)). 
lfwe assign to every local coordinate system (r1, r2) defined by the expression r(u 1 , u2 ) 

the numbers O;/u 1 , u2 ) = r1(u 1, u 2). riu 1 , u 2 ), we easily verify that these numbers 
under any change of the coordinate system satisfy the transformation formulae 

Hence, gii are the coordinates of a twice covariant quadratic tensor, the so-called 
(covariant) metric (or thefirstfundamental) tensor of the surface. The determinant 
of the matrix (gij) is different from zero and thus there exists the inverse matrix 
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(gij) (Le. g;igik = 6~; see Remark 8.1.3). The numbers gii(u 1, u2 ) arethecoordinates 
of ;,, twice contravariant quadratic tensor, the so-called ( contravariant) metric tensor 

of the surface. If ai, bi, or a;, b;, are the contravariant, or covariant, coordinates, 
respectively, of the vectors a, b on a surface in the coordinate system in which the 
coordinates of the metric tensor are gii• ther1 a. b = g;iaibi = giia;bi, a. a = 
= g iiaiai = giia ;a i· This justifies the term "metric tensor": by means of it we mea­
sure the lengths of vectors on a surface, and angles between them. The coordinates 
gii(u 1 , u 2 ) are called the coefficients of the jirst fundamental form of the surface 

(§9.14). 

Fig. 8.4, 
X 

Example 4 (The Second Fundamental Tensor of a Surface). Let n be a surface 
given by the parametric expression r(u 1 , u2 ) and h 11 (u 1 , u 2 ) dui + 2h12(u 1 , u2 ) • 

. du 1 du 2 + h22(ul> u 2 ) du~, briefly hii du; dui, be its second fundamental form (see 
§ 9.15). Then hii are the Coordinates of a quadratic twice covariant tensor, the so-called 
second fundamental tensor of the surface. 

Example 5. In a reetangular coordinate system, let a spherical surface with centre 
at the origin of the coordinate system and radius r be given (see Fig. 8.4). Let us 
choose the parametric expression r(u 1, u2 ) in such a way that the coordinates of 
r(u 1, u2 ) are 

x = r cos u1 s1n u 2 , 

y = r sin u 1 sin u2 , 0 ~ u1 < 2n, 0 < u2 < 1t. 

z = r cos u2 , 

The coordinates of the local coordinate vectors r1(u 1 , u2), r2(u 1 , u2 ) (see Remark 1) 
are 

r1(u 1 , u 2 ) = (- r sin u1 sin u2 , r cos u1 sin u2 , 0), 

r2 (u 1 , u 2 ) = ( r cos u1 cos u2 , r sin u1 cos u 2 , -r sin u2). 
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The covariant Coordinates g ;i u 1, u 2) of the metric tensor ( see Example 3) are 

g 11 = r 1 • r 1 = r2 sin2 u1 sin2 u2 + r2 cos2 u1 sin2 u2 = r2 sin2 u2 , 

g 12 = g21 = r 1 • r 2 = -r2 sin u1 sin u2 cos u1 cos u2 + 

+r2 cos u1 sin u2 sin u1 cos u2 = 0, 

8.4 

g22 = r 2 • r 2 = r2 cos2 u1 cos2 u2 + r2 sin2 u1 cos2 u2 + r2 sin2 u2 = r2 . 

The contravariant Coordinates gi1(u 1, u2) of the metric tensor satisfy g iJgik = !5~, i.e. 

gugu + gtzgzt = gltrz sin2 u2 = 1' 

gllg12 + g12g22 = g12r2 sinz Uz = 0' 

g21gu + g22g21 = g21rz = 0 , 

g21g12 + g22g22 = g22rz = 1 . 

Thus, g11 = 1/(r2 sin2 u2), g 12 = g21 = 0, g22 = 1/r2. Let a vector a at a point M 
of the spherical surface be given, the contravariant Coordinates of which are a 1, a2 • 

Then its covariant Coordinates are (see Definition 3) 
- }_12·2 . 22 a 1 - g 11a - a r sm u 2 , a 2 = g 21aJ = a r . 

The scalar product a. a has the form (see Example 3) 

a. a = gliaiai = (a1)2 rz sin2 u2 + (a2)2 rz. 

8.4. Basic Algebraic Operations on Tensors 

REMARK 1. By the term "tensor" we understand here both tensor in space and 
tensor on a surface. It is necessary to bear in mind that the indices of the coordinates 
of a tensor in space assume the values 1, 2, 3 while those of the coordinates of a tensor 
on a surface only the values 1, 2. 

Definition 1 (Equality of Tensors). We say that two tensors are equal if they are 
both p-times contravariant and q-times covariant and their coordinates are equal 
in at least one coordinate system. (Then, the coordinates are equal in every coordinate 
system.) 

Definition 2 (Addition of Tensors). If a~~:::, b;~::: are the coordinates of two tensors 
of the sametype (i.e. if both are p-times contravariant and q-times covariant), then 
the numbers 

are the coordinates of a tensor which is said to be the sum of these tensors (and is 
of the same type). 
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Definition 3 (Multiplication of Tensors). If a~,j::. are the coordinates of a Prtimes 
contravariant and q1-times covariant tensor and b~!::: the coordinates of a p2-times 
contravariant and q2 -times covariant tensor, then the numbers 

ciJ ... kl ... = a iJ ... bkl ... 
pq ••• rs... pq... rs ••• 

are the coordinates of a {p1 + p2)-times contravariant and (q 1 + q2)-times co­
variant tensor which is said to be the product of these tensors. 

Definition 4 ( Contraction of Tensors). Let a !L be the coordinates of a p-times 
contravariant and q-times covariant tensor. Consider the sums 

cJ ... = "a~J ... = a11"·. r... ~ &r... Ir ... 
i 

Then c:::: are the coordinates of a (p - 1)-times contravariant and (q - 1)-times 
covariant tensor. The tensor c:::: is called a contraction oj the tensor a!~:::. Contraction 
can be performed not only on the first upper and the first lower indices but also on 
arbitrary k upper and k lower indices. For example, the contraction of a tensor a!~ 
performed on both upper and both lower indices is the scalar a = aB= L L aH. 

I 1 

Example 1. Let v1 be a contravariant vector, g11 a (covariant) metric tensor. By 
multiplication, we get the tensor g11vk of rank three; the covariant vector v1 = g1ivl 
is its contraction. 

Definition 5 (Lowering and Raising of Indices). For every p-times contravariant 
and q-times covariant tensor a!~::: a new (p + q)-times covariant tensor a 11 ... , .... = 
= gk1g IJ ... a~~::: can be constructed, where g 11 are the coordinates of the metric tensor. 
We say that the tensor a11 ... rs ... was obtained from the tensor a!L by lowering of 
indices. 

Similarly a new (p + q)-times contravariant tensor a•s ... IJ ... = g'kg•1 •.• a!{::: can 
be constructed from a tensor a!~:::. The tensor a•• ... iJ ... was obtained from a!~::: by 
raising oj indices. 

REMARK 2. By raising some of the indices of a covariant tensor we again get 
a tensor; however, it is necessary to indicate those indices which have been raised. 
This may be done by means of dots which indicate the place of the raised indices, 
as illustrated in the following examples: 

i il j lj lj il jp 
a.ik = g a,ik• a;.k = g ailk• a .. k = g g alpk' 

A similar notation is used when lowering indices, e.g. a1jk = g liallk. 

Example 2. By lowering the contravariant coordinates v1 of a vector we get its 
covariant Coordinates v1 = g 11vi. 

Definition 6. A tensor is said to be symmetric with respect to given upper (or 
lower) indices if its Coordinates do not alter by an arbitrary permutation of these 
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indiees. For example, a tensor a:i" is symmetrie with respeet to the first two lower 
. d" "f I I m 1ees 1 a iik = a Jik· 

Example 3. The metrietensorg 11 is symmetrie for g 11 = r 1 • r 1 = r 1 . r 1 = g 11. Also 
the tensor gii and the seeond fundamental tensor h11 of a surfaee (see Example 8.3.4) 
are symmetrie. 

Definition 7. A tensor is said to be skew-symmetric (alternating) with respect to 
a given group of upper (lower) indices if the sign ehanges with every interehange 
of two arbitrary indices of the group. For example, a tensor aii is skew-symmetric 
if a11 = -a11. 

Definition 8 (Operation of Symmetrization). For every tensor, a tensor symmetrie 
with respeet to a given group of indiees can be eonstrueted. For example, by sym­
metrization of a tensor a tikt ... with respeet to the first three indiees we get the tensor 

I 
a(l"k)l = - (a · "kl + atkJI + a ··kz + a ·k·z + a". ·z + ak ··z ) • (1) J ••• 3! . IJ ••• ••• Jl ••• J I ••• IJ ••• Jl ••• 

The tensor a(iik) is the so-ealled symmetric part of the tensor a 11". 

Definition 9 (Operation of Skew-symmetrization ). For every tensor, a tensor skew­
symmetric with respeet to a given group of indiees can be eonstrueted. For example, 
by skew-symmetrization of a tensor a1ikl ... with respeet to the first three indices we 
get the tensor 

1 
a[tikJI ... = 3! (atJkl ... - atkJI ... - aitkl ... + aiktl ... + aktJI ... - akitl ... ) · (2) 

(Here, we choose the plus sign with an even and minus with an odd permutation of the 
indiees i, j, k.) 

The tensor a[tikl is the so-ealled skew-symmetric part of the tensor a 11". 

REMARK 3. A quadratie tensor is the sum of its symmetrie and skew-symmetrie 
parts: a11 = a(ti> + a[iJJ· 

Example 4. If aii = c~g 1" are the covariant coordinates of the deformation 
tensor of Example 8.2.7, then its symmetrie part a(ii> = !-(a 11 + a 11) is the so-ealled 
tensor of a pure deformation, its skew-symmetric part a[iil = t(aii - a 11) is the 
so-ealled tensor of rotation (it represents, roughly speaking, the rotation ofthe body). 

8.5. Symmetrie Quadratic Tensors 

Definition 1. On a surfaee defined by a parametric expression r(u 1, u2), Iet a quad­
ratie symmetrie (non-zero) tensor be given. Aeeording to Definition 8.4.5 we can 
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assume that it is covariant and its coordinates are aii(u 1, u2 ) (aiJ = a11)o Let us 
choose a point 0 on the surface whose curvilinear coordinates are u 1 , u2 and con­
struct in the tangentplane at this point the locus ofterminal points ofvectors t 1 on the 
surface with the initial point at 0 which satisfy whichever of the equations 

0 0 

( 1)2 1 2 ( 2)? a 11t't1 = a 11 t + 2a12 t t + a22 t - = ±1 o 

This locus is called the indicatrix of the tensor a11 at the point (u 1, u2 )o 

I 

a) 

Figo 8o5o 

Theorem 1. The indicatrix of the tensor a 11 at a point 0 is 
1. an ellipse (or a circle), if the determinant 

lau, a121 
a21o azz 

is positive (ioeo theform a1/ti is definite) (see Fig. 8o5a); 

cJ 

(1) 

(2) 

2. a pair of hyperbolas with common asymptotes and centre at the point 0 
(see Figo 8o5b), if the determinant (2) is negative (ioe. theform a1/t1 is indefinite); 

3. a pair of parallel lines, if the determinant (2) equals zero (see Figo 8o5c) 

REMARK 1. In what follows we shall restriet our considerations to the case when 
the determinant (2) is non-zero. 

Definition 2. The directions of conjugate diameters of the indicatrix of a tensor are 
called conjugate directions of the tensor; the directions of the axes are the principal 
directions of the tensor. 

Theorem 2. Vectors v1, w1 lie in conjugate directions of a tensor aiJ if and only 
f i j 0 1 aiiv w = 0 

REMARK 20 Determination of the principal directions of a quadratic tensor: 

1. If a iJ is a multiple of the metric tensor (i.e. a Ii = Äg iJ), then the indicatrix is 
a circle and any direction is principal; 
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2. Let au not be a multiple of g11 ; Iet v, w be vectors lying in the principal direc­
tions of the tensor a11 (see Fig. 8.5a,b), v1, w1 their contravariant coordinates. Then 

a11v1w1 = 0, 
v . w = g 11v1wi = 0 . 

Re-write the equations (3) in the form 

v1(a 11w1) = 0, 
v1(g;1w1) = 0. 

In orderthat there exist a non-zero solution v1, the determinant 

must be equal to zero, i.e. a1Jw1 = A.g11w1 and thus 

In orderthat equations (4) have a non-zero solution for wi, it is necessary that 

I au - A.gu, a12 - A.g121 = 0. 
a21 - A021• a22 - A.g22 

(3) 

(4) 

(5) 

The roots A.lt A.2 of the quadratic equation (5) are the so-called characteristic num­
bers of the tensor. Substituting them successively into equations ( 4) we can determine 
the required vectors w1, v1 (see Example 1). 

REMARK 3. Fora quadratic symmetric tensor in space we can obtain results similar 
to those just introduced. However, the indicatrix is then a quadratic surface ( or a pair 
of such surfaces) and there are, in general, three principal directions. 

Example 1. Let the tensor of the membrane stresses in the middle surface of 
a spherical shell of radius r be given by the covariant coordinates uiJ(u1, u 2), with 
respect to the coordinate system of Example 8.3.5. Let us find the directions of the 
principal stresses in the middle surface. 

The tensor of the membrane stresses is symmetric and its principal directions 
coincide with the directions of the principal stresses. In order to determine the prin­
cipal directions of the tensor u11 we substitutein equation (5) above (where g 11 

= r2 sin2 u2 , 9 12 = 9 21 = 0, 922 = r2), giving 

I u 11 - A.r2 sin2 u2, u 12 I = 0, 
i 0'12• 0'22 - Ä.r2 
I 

i.e. 
12 4 . 2 , 2( . 2 ) 2 0 

Jl. r sm u 2 - Ar u11 + u22 s1n u 2 + 0'11 0'22 - 0'12 = . 
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Denoting the roots of this equation by ..1.1, ..1.2 , we find vectors v1, w1 lying in the prin­
cipal directions, from equations (aii - A.1gii)vi = 0, (aii - A.2gii)wi = 0, i.e. 

( 1 2. 2 ) 1 2 0 ( 1 2. 2) 1+ 2_0 u11 - ~~. 1 r sm u 2 v + u 12v = , u11 - 11.2 r stn u 2 w u12w - • 

Thus, v1 jv2 = u12j(A.1r2 sin2 u2 - u11) and similarly w1 jw2 = u12 j(A.2 r2 sin2 u2 -

- u 11). Here, the ratio v1 jv2 (or w1jw2) represents the tangent ofthe angle which the 
principal direction (axis of the indicatrix) makes with the corresponding parallel 
Iine on the middle surface. 

REMARK 4. In tensor calculus, tensors may also be introduced by means of the 
concept of a dyad (see e.g. [90]). For tensor analysis.(covariant derivative etc.) see 
e.g. [181}). 



9. DIFFERENTIAL GEOMETRY 

By BORIVOJ KEPR 

References: [19], [45], [65], [104], [llO], [132], [138], [153], [173]. 

9.1. Introduction 

Differential geometry is the study of curves (both plane and space curves) and 
surfaces by means of the calculus. When investigating geometric configurations (on 
the basis of their equations) in differential geometry, we aim mostly at the study of 
invariant properties, i.e., properties independent of the choice of the coordinate 
system and so belanging directly to the curve or surface ( e.g. the points of inflexion, 
the curvature and so on). But we also study those properties of geometric configura­
tions that depend on the choice of the coordinate system ( e.g. the sections of a surface 
by the coordinate planes, the slope of the tangent and so on ). Differential geometry 
studies mostly the local properties of curves and surfaces, i.e. those which pertain 
to sufficiently small portions of the curve or the surface; so it is essentially "geometry 
in the small". But differential geometry also investigates those properties of curves 
and surfaces which pertain to the configuration as a whole ( e.g. the length of a curve, 
the number of vertices and so on). 

A. CURVES 

9.2. Definition and Equations of a Curve, Length of Are 
and Tangent Line 

Definition 1. A piecewise smooth space curve, defined parametrically, is a set 
of points (x, y, z) given by the equations 

x = x(t), y = y(t), z = z(t), (1) 

where the functions x(t), y(t), z(t), defined in some interval I (most often in a closed 
interval [ a, b] or in the interval (- oo, + co )), 
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1. are continuous in the interval I, 
2. have, in I, piecewise continuous derivatives x(t), y(t), i(t) (we write dxjdt = x, 

etc.), while with the exception of at most a finite number of points tk from the interval 
I the relation x2 + y2 + i 2 > 0 holds (i.e. at least one of the derivatives x, y, i 
is non-zero ). 

REMARK 1. lf I = [ a, b J and if 

x(a) = x(b), y(a) = y(b), z(a) = z(b) 

the curve is said tobe closed. If the functions x, y, i are continuous in I ( cf. Ddinition 
1) ( and in the case of a closed curve the values of the right-hand derivatives of func­
tions x, y, z at the point a and the left-hand derivatives of these functions at the point 
b are equal) and if everywhere in I (in the case of a closed curve also at the points 
a, b) x 2 + y 2 + i 2 > 0, the curve is said to be smooth. ln the following text the 
word curve will stand for a smooth or piecewise smooth curve. As is customary in 
differential geometry, weshall suppose that the functions x(t), y(t), z(t) also pos;;ess 
(continuous)derivatives of an order, r, higher than one (according as the problern 
under investigation may require) without stating explicitly this condition. 
(A similar remark holds for Definition 2.) 

The argument t in equations (I) is called the parameter of the curve and equations 
(1) are called the parametric equations of the curve. Every number t from the interval I 
is called a point of the curve (to every value t ei there corresponds a point (x, y, z) 
on the curve), namely a regular point when x 2 + y 2 + i 2 > 0 and when no other 
value of t EI corresponds to the considered point ( x, y, z ). (An exception may occur 
at the points a, bin the case of a closed curve.) Every other point is called a singular 
point of the curve. 

REMARK 2. Whether a point t is a regular or singular point of a curve may, in the 
general case, depend on the chosen parametric representation of the curve. For the 
parabola, represented parametrically by the equations x = t, y = t2, z = 0, 
t E (- oo, + oo ), the point t = 0 is not a singular point; but if it is represented para­
metrically by equations x = t\ y = t6 , z = 0, t E (- oo, + oo) (both pairs of equa­
tions define the same set of points in the cartesian coordinate system ( 0; x, y, z)), 
then the point t = 0 is a singular point with this parametric representation because 
x2 + iP + i 2 = O.In these cases we speak of a removable singtdar point of the 
given curve. 

REMARK 3. Of course, we obtain the curve as the set of all points (1) for every t 
from the interval I. lf to several different values oft from I there corresponds a single 
point P(x0 , y 0 , z0), then such a singular point is called a multiple point of the curve 
(Fig. 9.1). 

In the following exposition the word "point" will mean a regular point of the 
curve. At such a point there exists a unique tangent. 



262 SURVEY OF APPLICABLE MATHEMATICS 9.2 

REMARK 4. lf r is the radius vector of a point on the curve (I) (where the Coordin­
atesare x(t), y(t), z(t) and the starting point is at the origin), then we can use a single 
symbolic equation of the curve (the vector equation) 

r = r(t) = i x(t) + j y(t) + k z(t) (2) 

where i, j and k are the unit vectors along the positive axes; r is the so-called radius 
vector (the position vector) of the point (x, y, z) on the curve. As t runs through the 
interval J, the end point of the radius vector describes the given curve (Fig. 9.2). 

z 

Fig. 9.1. Fig. 9.2. 

Example 1. For the circular helix (see Example 9.3.1) 

x = a cos t, y = a sin t, z = bt, t E (- oo, oo), 

the vector equation is of the form 

r = ia cos t + ja sin t + kbt , t E (- oo, oo) • 

Definition 2. Let the functions <p(x, y, z), l/J(x, y, z), defined in the (three-dimen­
sional) domain 0, have continuous partial derivatives of the first order. By a curve, 
defined in space implicitly by the equations 

<p(x, y, z) = 0, l/J(x, y, z) = 0, (3) 

is meant the set of points whose cartesian coordinates (x, y, z) satisfy simultaneously 
both equations (3); we suppose that the matrix 

(4) 
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isofrank 2 at every such point (x, y, z), with the exception of at most a finite number 
of points. 

The curve so defined is the intersection of the surfaces (3). Equations (3) are called 
the implicit equations of this curve. 

Example 2. The circle with centre at the origin and radius a which lies in the plane 
z = x may be expressed as the intersection of the considered plane and a sphere 
with the centre at the origin in the form (3) as follows: 

REMARK 5. If the equations (3) are algebraic (or if they can be transformed so 
as to become algebraic; for example, qJ and 1/J are polynomials ), the curve is called 
algebraic; if the equations (3) are not algebraic (and if they cannot be transformed 
so that they become algebraic ), the curve is said to be transcendent. If the functions 
{1) are rational functions of the variable t (or if they can be so reshaped), then the 
curve (1) is said to be rational. The parameter t is the coordinate on the curve. The 
form (1) is often used in mechanics in the study of the movement of a particle, andin 
this case t represents the time. 

Definition 3. A curve (1) is said to be a plane curve if constants A, B, C, D (at 
least one of which is non-zero) can be found such that 

A x(t) + B y(t) + C z(t) + D = 0 (5) 

holds for every t from I. (The whole curve lies in the plane Ax + By + Cz + D = 0.) 
In the contrary case the curve (1) is a space curve (a skew or twisted curve). 

REMARK 6. The curve (3) is said tobe a plane curve if at least one of equations 
(3) is the equation of a plane or may be replaced by the equation of a plane (cf. Exam­
ple 2). Otherwise the curve (3) is a space curve. 

Example 3. The curve 

X = t , y = t2 , Z = t3 (6) 

is a space curve because, as is weil known from algebra, the equation 

At + Bt2 + Ct3 + D = 0 

can be satisfied identically only in the case where A = B = C = D = 0. 

lf we eliminate t from equations ( 6), we obtain an implicit representation of the 
curve 

Example 4. lf the equations 

X = t, y = y(t) , Z = 0 (7) 
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represent a curve, then it is a plane curve since the identity 

At + B y(t) + C . 0 + D = 0 

is satisfied by A = B = D = 0, C being an arbitrary number. The plane curve (7) 
is often expressed in the short form 

y = y(x) or y = f(x). (8) 

(The equation z = 0 is assumed.) Equation (8) is the so-called explicit equation of 

a (plane) curve. 

Example 5. If the equations 

<p(x, y) = 0, z = 0 (9) 

represent a curve, then it is a plane curve because it lies in the coordinate plane xy. 

We write the plane curve (9) in the form 

F(x, y) = 0 or f(x, y) = 0 or <p(x, y) = 0 or in some similar way. (10) 

(The equation z = 0 is assumed.) Equations (10) are called the implicit equations 

of a (plane) curve. 

Definition 4. A point (x 0 , y 0 ) on a plane curve F(x, y) = 0 is called a regular 

(ordinary) point of the curve if at least one of 

oF(x0 , Yo) oF(xo, Yo) 
ax ay 

is non-zero. Every other point on this curve is said to be singular. (Cf., however, 
Remark 2.) 

Definition 5. An equation 

t = t(t) (11) 

expresses a so-called admissible transformation of the parameter in an interval 1 

if the function (11), defived in I, possesses the following properties: 

1. it is a continuous function and has a continuous derivative ( or continuous 
derivatives up to the order r. cf. Remark 1), 

2. dtjdl i= 0. 

The parameter l introduced in place of the parameter t by transformation ( 11) 
is called an admissible parameter. 

REMARK 7. All admissible parameters (and these only) are mutually equivalent. 
A very convenient transformation of the parameter is that one which introduces 
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the arc s of the curve illstead of a gelleral parameter t (in terms of the arc s many 
results oftell become of a much simpler form): 

Definition 6. The expressioll 

s = s(t) = fr ds = fr .j(x2 + y2 + z2 ) dt = 
to to 

= -.- dt = .J~;. r) dt = .J(dr. dr) f t j(dr dr) ft ft 
to dt dt to to 

(12) 

is called the arc of the curve from the point t0 EI to the point t E J. 

REMARK 8. It is knowll, from Integral Calculus, that the expressioll (12) is the 
length of the arc of the curve betweell the points t0 alld t. The differential 

ds = j(dr. dr) dt = .J(r. r) dt = .J(dr. dr) = 
dt dt 

= J(x 2 + y2 + z2) dt = .J(dx2 + dy2 + dz2) 

is called the element of length, or linear element, of the curve. Instead of "the 
length of the arc s" we say only "the arc s". If x2 + y2 + z2 > 0 everywhere in J, 

the arc s is an admissible parameter of the curve. In this case we can write the equa­
ion of the curve in the form 

r = r(s). (13) 

The length of the curve in the interval [a, b] is 

z = J:.J(x2 + y2 + z2) dt. (14) 

Theorem 1. The parameter t represents the arc length s of the curve if the value 

t = 0 corresponds to the starting point of the curve and the relation 

dr dr . . .z + ·2 + ·2 1 -.-=r.r=x y z = 
dt dt 

(15) 

holds good for every t E J. 

REMARK 9. We shall denote derivatives with respect to the arc s by primes, 

dx 
x'=-, 

ds 

The radius vector r of a point Oll a curve corresponding to the value of the parameter 
t = t0 is denoted by r0 (we say shortly the poillt r 0 ) and so Oll. 



266 SURVEY OF APPLICABLE MA THEMATICS 9.2 

Definition 7. The tangent vector of the curve r = r(t) at its point r0 (that is, at the 
point t = t0 or (x0 , y 0 , z0)) is the vector 

. (dr) 
ro = dt o 

(16) 

the coordinates of which are x0 , y0 , .Z0 and its starting point at the point r 0 (i.e. the 
point (x 0 , y 0 , z0 ) ). The straight line that contains this vector is called the tangent 

to the curve at the point r 0 , which is called the point of contact (contact point) 

y Fig. 9.3. 

of the tangent (Fig. 9.3). (The tangent defined in this way is the limiting position of the 
secant line when its two points of intersection with the curve coincide in a single 
point of contact.) 

REMARK 10. To norm a tangent vector r0 means to represent it in terms of a unit 
vector of the same direction and sense (orientation) and with the starting point r0 . 

Theorem 2. The vector 

t =er' 
1 

where c = . , 
.J(r. r) 

(17) 

with the coordinates (the direction cosines of the tangent) 

t", = cx , ty = cy , tz = c.Z (18) 

is the so-ca lled unit tangent vector (its length is equal to 1 ). 

REMARK 11. If the parameter is the arc s, then the modulus of the tangent vector r' 
is 1. We write 

r' = t, (19a) 

where t is the unit tangent vector. Its coordinates 

t", = x' ' t)l = y' ' tz = z' (19b) 

are the direction cosines of the tangent vector. 
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For a general parameter t we obtain the direction cosines of the tangent to the 

curve in the form 

z 
t =-z . (20) 

s 

and the following relations hold 

or 

I dr dr dt • dt • 1 r r 
r = - = -. - = r- = r- = - = (21) 

ds dt ds ds dsfdt s J(x 2 + y2 + z2) 

Let us denote by R the radius-vector of a current point (X, Y, Z) in space. 

Theorem 3. The equations of the tangent of the curve r = r(t) at its point r0 are: 

R = r0 + u r0 , i.e. X = x 0 + ux0 , Y = y0 + uy0 , Z = z 0 + uz0 (22) 

X- x 0 Y- Yo 

Yo 

Z- z0 

Zo 

X- x 0 
or 

(dx)0 

Y- Yo 

(dy) 0 

Z- z0 

(dz)0 

(23) 

( where (x 0 , y0 , z0) is the point of contact, (x0 , y0 , z0 ) are the direction ratios 

(direction parameters) of the tangent, x 0 = x(t0) etc. and u is the variable para­

meter on the tangent). 

REMARK 12. lf a curve lS given implicitly by the equations F(x, y, z) = 0, 

G(x, y, z) = 0, then the direction ratios (dx, dy, dz) of its tangent satisfy the 

relation 

oF oF aF aF oF oF 
- -

' ' ay oz oz ox ox ay 
dx: dy: dz = (24) 

aG aG aG aG aG aG 
-

ay ' oz oz ' ox ox ' ay 

REMARK 13. The equat ion of the tangent to a plane curve x = cp(t), y = l/f(t) at its 

point (x 0 , y 0 ) can be written in the form 

or 

X~ IPo = y~ l/lo (ciJo =F O,tifo =F 0). 
IPo lf!o 

(25) 

The equation of the tangent to a plane curve y = f(x) at its point (x 0 , y0) is of the 

form 

Y- Yo = Yo(X - Xo) (Yo = (df) ) · 
dx 0 

(26) 
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The equation of the tangent to a plane curve F(x, y) = 0 at its point (x0 , y 0 ) is of 
the form 

(X - x0) F~ + (Y- Yo) F~ = 0 (F~ = :: (x0 , Yo), F~ = :; (x0 , Yo)). (27) 

(The derivatives 

y = dy (see (26)), dy = ifJ(t) (see (25)), dy = - aFjax (see (27)) 
dx dx rp(t) dx aFjay 

denote the tangent of the angle between the tangent at the given point of the curve 
and the positive x-axis.) 

9.3. Tbe Moving Trihedron and the Freuet Formulae 

Definition 1. The unit vector n with the same direction and sense as the vector 
t' = dt/ds and with starting point at the point r on the curve is called the principal 
normal unit vector or briefly the principal normal at the considered point. 

REMARK 1. The straight line containing the vector n is also called the principal 
normal of the curve at its point. A principal normal is defined at a point of the 
curve if r" '#: 0 (i.e. if the coordinates (x", y", z") of this vector are not all simul­
taneously equal to zero ). 

Theorem 1. Wehave that 

t' r" 
n = - = - , its coordinates being 

kl kl 

x" y" 
n" = kl ' ny = kl ' n,. 

z" 
(1) 

where 

d2x 
x" = - 2 etc. 

ds 

The vectors t and n are perpendicular (t. n = 0). 

REMARK 2. If the curve is given by its parametric representation with a general 
parameter t, then 

rc + rc 1 1 
n - (c - r '#: 0' rc + rc '#: 0) . - J[(rc + rc) . (rc + rc)] - J(r . r) s 
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The direction cosines of the principal normal are 

(yfs)' n --­.,- k. ' 
tS 

269 

(2a) 

REMARK 3. The direction ratios of the principal normal (when the parameter is 
the arc s of the curve) are given by 

nx : n., : n,. = x" : y" : z" 

or (when the parameter of the curve is a general parameter t) by 

REMARK 4. The equation of the principal normal of a plane curve F(x, y) = 0, 
at its point (x0 , y 0 ) is 

( ) o ( ) o X - Xo Y- Yo X - x0 F - Y- Yo F = 0 or = --
' X pO pO 

X 1 

(provided F~ :/= 0 , F~ :/= 0) , 

for the curve x = cp(t), y = 1/l(t) at its point t0 

(X- IPo)~o + (Y-1/Io)~o = 0, 

and for the curve y = f(x) 

Y - Yo = - (dx) (X - xo) • 
dy 0 

(3) 

(4) 

(5) 

Definition 2. A unit vector b with its starting point at the point r on the curve and 
oriented so that it forms, with the vectors t and n, a positively oriented normed 
reetangular trihedron (hence b = t x n, see Theorem 7.1.15), is called the binormal 
unit vector (or for short the binormal) to the curve at its point. 

REMARK 5. The straight line containing the vector b is also called the binormal to 
the curve at its point. All perpendiculars to the tangent line at its point of contact 
are called normals to the curve. Among them the principal normal and the 
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binormal are of fundamental importance. In the case of a plane curve the principal 
normal is that normal which lies in the plane of the curve. This principal normal is 
briefly called the normal. 

Theorem 2. The relations 

b=txn, n=bxt, t=nxb (6) 

hold (where t x n etc. are vector products, see § 7.1, p. 229). 
Thefollowing relations holdfor the directian casines (bx, by, bz) af the binarmal 

bat a paint af the curve r = r(s) (if the parameter is the arc s): 

(for k 1 see Theorem 1), (7a) 

in the case af a general parameter t (r = r(t)): 

(for k 1 see (2b)). (7b) 

REMARK 6. The equatians af the binarmal to the curve r = r(t) at its point 
(x, y, z) are 

X-x Y-y Z-z 
--=--=--
[y, z] [z, x] [x, .Y] 

(8) 

(X, Y, Z are the orthogonal coordinates of the running point on the binormal, 

[ y, z] = I ~· ~ I etc.) y,z 

Definition 3. The normed orthogonal and right-handed (positively oriented) tri­
hedron formed by the vectors t, n, b at a point of a curve is called the maving tri­

hedran (maving trihedral) of the curve. 

Theorem 3 (The Frenet or Serret-Frenet Formulae). 

a) For the curve r = r(s) (the para- b) For the curve r = r(t) (with a ge-

meter is the arc s) neral parameter t) 

t' = +k1n t = +k1sn 
n' = -k1 t + k 2 b n = - klst + k2sb (9) 
b' = -k2n b = -k2 sn 

(for k1 see Theorem I, (for k1 see (2b ), 

[ I lf "'] k _ x,y,z 
2 - x"2 + y"2 + z"2 ' 

k = [.x,y,·z.] 
2 •2( .. z + .. z + .. z .. z) ' sx y z-s 



9.3 

where 

x', 
, 

y, 
[ x', y", z"'] = x,"' y", 

x"' . ' y"', 
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z' 
z" ) . 
z'" 

where 

x, y, z 
[x,y,z]= x,ji,z). ......... 

X, y, Z 
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REMARK 7. The Frenet formulae define the relations between the direction cosines 
( or the direction ratios) of the tangent, the principal normal and the binarmal 
at a general point of the curve, and their derivatives. The numbers k1 and k2 in 
Theorem 1, Remark 2 and Theorem 3 are called thefirst curvature (briefly the curva­
ture), and the second curvature {briefly the torsion), respectively. For a detailed 
treatment see § 9.4. 

Fig. 9.4. 
X y 

Definition 4. The plane determined by the principal normal and the binarmal 
(at the point considered) is called the normal plane, the plane determined by the 
binarmal and the tangent is called the rectifying plane and the plane determined 
by the tangent and the principal normal is the osculating plane (Fig. 9.4). 

Theorem 4. The equations of the normal plane, the rectifying plane and the 
osculating plane, respectively, at a point r 0 of a curve r = r(t) (or r = r(s)): 

The normal plane (perpendicular to the tangent line): 

(R - r 0). t 0 = 0 or (R- r0). r0 = 0 or (R- r 0). r~ = 0, (10) 

for example, 

(X- x0)(dx)0 + (Y- y0)(dy)0 + (Z- z0)(dz)0 = 0 (11) 

((x0 , y0 , z0) being a point on the curve). 

The rectifying plane (perpendicular to the principal normal): 

(R- r 0). n0 = 0 or {R- r 0). r~ = 0, (12) 
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for example, 

(X - x0 ) (n.)0 + (Y- Yo) (ny)o + (Z - zo) (nz)o = 0 . 

The osculating plane (perpendicular to the binormal): 

(R- r 0).b0 = 0 (13) 

( R being the radius vector of the running point (X, Y, Z) of the plane). 

REMARK 8. If the curve is given by the equations F(x, y, z) = 0, G(x, y, z) = 0, 
the equation of the normal plane at the point (x, y, z) of the curve is 

X-x, Y- y, Z-z 
aF aF aF 
ax ay az = 0. (14) 
aa aa aa 

-
ax ay ' az 

Theorem 5. The equation of the osculating plane at the point (x, y, z) with the 
radius vector r 

a) i/ the parameter is the arc s: b) with a general parameter t: 

[R - r, r', r"] = 0, [ R - r, r, r] = o , 
i.e. i.e. 

I x; - X, \- y, z, - z I 
l
x. y. z r=O 
x", y", z" 1 

X- X, Y- y, Z-z 
.X, y, i =0 (15a) 
x, ji, z 

or 

X - X, y- y, z - z 
dx, dy, dz = 0 . (15b) 
d 2x, d 2 y, d 2z 

REMARK 9. Every plane passing through the tangent of a (space) curve is called 
a tangent plane to the curve at the corresponding point of contact. At this point 
the contact of the tangent plane with the curve is at least a two-point contact. The 
osculating plane of the curve at its point is an important tangent plane because its 
contact with the curve at this point is at least a three-point contact. At a point of the 
curve where the equation r" = 0 (with the parameter s) or r =Ai (with general para­
meter t; A. being a real number) is satisfied, the osculating plane is indefinite. At such 
points on the curve, e.g. at so-called points of inflexion, the equation ofthe osculating 
plane is satisfied identically. In the case of a plane curve, the osculating plane at each 
of its points is the plane of the curve. 
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Example 1. The curve given by the equations 

x = a cos t, y = a sin t, z = bt (a > 0, b #= 0 being real constants) (16) 

is called a circular helix. It is one of the most important curves in applications. lt lies 
on the circular cylinder (Fig. 9.5) 

(17) 

Fig. 9.5. 

(as we canfind by eliminationoft from the first two equations (16)), and the axis ofthe 
cylinder is the coordinate z-axis. The axis of the cylinder on which the circular helix 
lies is called the axis of the helix. From the first and second of equations (16) we 
obtain in the first quadrant (for 0 ~ t < f1t) t = tan- 1 (yfx) and by the third of 
equations (16) 

z=btan- 1 ~, 
X 

(18) 

i.e. the equation of the right helicoid (see Example 9.12.2, p. 316). For !1t < t < 
< i-1t we have z = b[tan - 1 (yfx) + 1t] etc. The given helix is the intersection of the 
conoid (18) and the circular cylinder (17). From (16) it follows that 

x = - a sin t , y = a cos t , z = b , (19) 

hence 

1 1 
---=----
.J(r . r) .J(a2 + b2 ) 
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and for the direction cosines (tx, tY, t.) of the tangent line we obtain ( see Theorem 
9.2.2) 

a sin t 
fx = - -J-(-a-::-2 -+-b-,---2)' (20) 

Thus, the tangents to a circular helix make a constant angle w with its axis, where 
cos w = b/-J(a2 + b2), and therefore the tangent makes a constant angle cp (the 
gradient of the helix), with every plane which is perpendicular to the axis of the helix. 
Moreover, sin cp = cos w, so that tan cp = b/a (the slope of the helix). By (20) and 
Theorem 9.2.3 the equations of the tangent at the point t of a helix are of the form 

X - a cos t Y- a sin t Z - bt 

a sin t a cos t b 
(21) 

If the circular cylinder, on which the helix lies, is developed upon a plane, then 
at the same time, every turn ofthe helix and every circle on the cylinder are developed 
into two segments that intersect at an angle cp. Further, from (19), we have that 

s2 = G: y = , . , = .:e + y2 + ;t2 = a2 + b2 

(see Definition 9.2.6) so that the length ofthe arc of one turn ofthe helix is 

(as can be seen immediately from the development in Fig. 9.6). The length of the 
arc of the helix from the point t = 0 to the point t, is s(t) = t -J(a2 + b2) = ct. 
If we substitutein equation (16) the length of arc s as parameter instead of the general 
parameter t, we obtain the equations of the helix in the form 

s 
x = a cos-, 

c 

From (16) we obtain 

. s 
y = a sm-, 

c 

2rra 

z = b ~ 
c 

21f.b 

Fig. 9.6. 

:X = - a cos t , y = - a sin t , z = 0 , :X2 + ji2 + z 2 = a2 (22) 

and further s = 0. Substituting in (2) we obtain for the direction cosines of the 
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principal normal the expressions 

n,.,= -cost, ny= -sint, nz=O. (23) 

Thus, the principal normals of the helix are perpendicular to the axis of the helix 
(its direction cosines are (0, 0, 1)). From (7) we obtain for the direction cosines of 
the binormal the expressions 

(24) 

Thus, the binormals of the helix are inclined at a constant angle cp to the axis of the 
helix, suchthat cos cp = ajJ(a 2 + b2). 

By (15a), (19) and (22) we obtain the equation of the osculating plane at the 
point t of the helix 

X - a cos t, Y- a sin t, Z - bt 

- a sin t, a cos t, b = Xb sin t - Yb cos t + Za - abt = 0. 
- a cos t, - a sin t, 0 

Further, it follows from (24) that 

. b cos t 
b =-----

X J(az+bz)' 

Putting s = .J(a2 + b2) in the third of the Frenet formulae (9) and using (23), we 
o btain for the torsion k 2 at the point t of the helix, the expression 

(25) 

Similarly, from the first of the Frenet formulae (9) it follows that at the point t of 
the helix the curvature k1 is given by the expression 

(26) 

Thus, the circular helix ( and the circular helix alone from among all space curves) 
has both curvatures constant ( and not vanishing at all its points ). The curvature k 1 

and the torsion k2 can be computed, of course, by formulae (9.4.1) and (9.4.4). 
The sign of k 2 agrees with the sign of the constant b. The helix is right-handed or 
left-handed according as b > 0 (and then k 2 > 0) or b < 0 respectively. 

If k1 and k 2 in (25) and (26) stand for the curvature and the torsion, respectively, 
at any point of a space curve and if (25) and (26) are solved for a and b, then these 
numbers a and b define a circular helix (generally turned round the axis with regard 
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to the helix ( 16) ); this helix has the same curvature and the same torsion as the given 
curve at the point considered. Such a helix plays a similar role for the given curve 
as the osculating circle does for a plane curve, and the contact of this helix with the 
given space curve at the point considered is of the fourth order at least (cf. § 9.5). 

Example 2 (Components of the Vector of Acceleration). Let a particle move along 
a space curve 

r = i x(t) + j y(t) + k z(t) 

(t denoting time). 

The velocity vector is 

dr dr ds ds , ds 
v=-=-.-=-r =-t. 

dt ds dt dt dt 

The acceleration vector is 

Using the first Frenet formula t' = k 1n and writing 

(r 1 is the so-called radius of curvature), we obtain 

We can see from the result that the acceleration vector resolves into two components, 
one in the direction of the tangent vector and the other in the direction of the prin­
cipal normal vector. They therefore lie in the osculating plane. The normal com­
ponent, 

(!:Y 
--n, 

r1 

is called the normal acceleration. For the case of circular motion, this represents 
a well-known formula of physics. 

REMARK 10. When considering plane curves, we often speak of a subtangent Sr or 
a subnormal s"; they are the (oriented) orthogonal projections on the x-axis of the 
segments of the tangent t, or the normal n, from the contact point P up to the point 
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of intersection of the tangent, or the normal, with the x-axis, respectively. If we 
suppose that the derivative y = dyjdx =I= 0 at the point P is finite, then it follows 
from Fig. 9.7 that 

y 

y 

{Often only the absolute values of stand sn are considered.) 

y 

y•/fxJ 

Fig. 9.7. X 

For the length of the tangent t and the normal n we obtain 

t = I y.s I ' n = !Ys! (s = ds = ../(1 + -yz)). 
y dx 

9.4. First and Second Curvatures, Natural Equations of a Curve 

Definition 1. The expression k1 given by the equation 

a) for the parameter s: 

k1 = .J(t'. t') = .J(r". r") = 

= .J(x"z + y"z + z"z) 

(see (9.3.1} and (9.3.9}} 

b} foragenerat parameter t: 

k 1 'c··2 + ··2 + ··2 ··2) 1=-vx y z -s s2 

(see (9.3.2b} and (9.3.9}} 

(1) 

is called the.first curvature (briefly: the curvature) ofthe curve at the point considered; 
its reciproca1 value r 1 = 1/k1 is the so-called radius of curvature (cf. Examples 9.3.1 
and 9.3.2}. 

REMARK 1. A necessary and sufficient condition that a curve be a straight line 
is that the equation k1 = 0 (i.e. r" = 0) holds at every point of the curve. The case 
where the curvature vanishes only at individual points ofthe curve (the case ofpoints 
of inflexion} is considered in§ 9.5. 

Theorem 1 (The Geometrie Interpretation of the Curvature k1 of a Curve). Let 
qJ = cp(s, 0) be the angle between the tangent lines t(s) and t 0 (s > 0} at the 
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points Q(s) and P(ü), respectively on the curve r = r(s)o Then (Figo 9o8) 

lim p_ = (d<p) = (k1) 0 o 
s-+O s ds 0 

(2) 

REMARK 20 If As = PQ is the arc between two "neighbouring" points P and Q on 
curve k and if A<p is the acute angle between the tangents to the curve constructed 
at these points, then the ratio A<pjAs is called the mean curvature of the curve on the 

I 
L~ 

Figo 9o8o 

arc Aso The acute angle between the tangents t 0 and t(As) at the points P(ü) and 
Q(As) is called the angle of contingenceo 

REMARK 30 In the case of a plane curve y = f( x) the curvature at the point ( x, y) is 

I ( 1 + 0 2)3/21 
or r1 = : (ji =/= 0) o (3) 

For example, for the circle 

we obtain k1 = 1/r and so the radius of curvature of the circle is, at all its points, 
constant and has the same value as its radius ( this property holds only for the circle )o 

Definition 2. The expression k2 , given by the equation 

a) for the parameter s: 

j x', y', z' 
, " " z" ! X' y' 
j x"', y"', z"' 

b) for a general parameter t: 

I ~·~· ~ X, y, Z 

/ :x, y, oz 
o2(oo2 + 00 2 + •o2 ··2) sx y z-s 

(4) 

(see (90309)), is called the second curvature (the torsion) of the curve at the point 
considered, and its reciprocal value r2 = 1Jk2 is called the radius of torsion (cfo 
Example 9.301)0 
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Theorem 2. A necessary and sufficient condition that a curve be a plane curve 
is that 

k 2 = 0, i.e. [x', y", z111 ] or [.X, ji, ·z.·] = 0 (see (4)) 

at all points of the curve. 

REMARK 4. Space curves (k1 i= 0, k 2 i= 0) are sometimes called curves of two 
curvatures or curves with torsion. In the case of plane curves the Frenet formulae 
reduce (see (9.3.9)) to 

t' = k 1n, i = k 1sn, 
n' = - k1 t (for the parameter s) n = -klst (for the general parameter t). 

Theorem 3. (The Geometrie Interpretation of the Torsion k 2 of a Curve). Let 1/J = 
= 1/J(s, 0) be the angle between the hinarmals b(s) and b0 (s > 0) at the points Q(s) 
and P(O), respectively, an the curve r = r(s). Then (Fig. 9.8) 

lim '}:_ = (dl/J) = J(k2)ol· 
s-+0 s ds 0 

(5) 

REMARK 5. If As = PQ is the arc between two neighbouring points P(O) and Q(As) 
on the curve and AI/I is the acute angle between the binormals at these points, then 
the ratio Al/J/As is called the mean torsion of the curve on the arc As. For plane 
curves, b'(s) = b(t) = 0 identically. 

REMARK 6. If we introduce a system of coordinates such that at the point s = 0 
the vectors t, n, b of the moving trihedron correspond to the half-axes + x, + y, + z 
respectively, then we can write, for the cartesian coordinates x(s), y(s), z(s) of 
a point on the curve in a neighbourhood of the point s = 0, the series 

s3 
x( s) = s - - ( ki)0 - ... , 

3! 

s2 s3 
y(s) = -(kl)o + -(kDo + ... ' 

2! 3! 
(6) 

Equations ( 6) are called the canonical equations ( or the canonical representation) 
of the curve. We obtain from (6) (when we use only the first term of each series) the 
equations of the simplest algebraic space curve ( the so-called cubical parabola ), 

x(s) = s' y(s) = (kl)o s2' z(s) = (klk2)o s3. 
2 6 

This parabola approximates the given curve at the point s = 0. 
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REMARK 7. A curve is said tobe right-handed or left-handed if at any point of the 
curve k 2 > 0 or k 2 < 0, respectively (cf. Example 9.3.1). 

REMARK 8. Iftwo continuous functions k1 = k1(s) > 0, and k2 = kis) are given, 
then it is possible to construct a curve for which k1 is its curvature, k 2 its torsion and 
the parameter s its arc. This curve is thus determined uniquely except for its position 
in space (if no definite special conditions are given). 

Theorem 4. Let two continuous functions 

(7) 

be given (k1 having a continuous second derivative and k 2 having a continuous 
first derivative). Then there exists a unique curve having the following properties: 

I. its arc is s, its curvature is k1 and its torsion is k 2 ; 

2. it passes through an arbitrary given point s0 ; 

3. three arbitrary mutually perpendicular unit vectors t 0 , n0 , b0 are the tangent 
unit vector, the principal normal unit vector, the binormal unit vector, respectively, 
at the point s0 • 

Theorem 5. It is always possible to write the equations of a plane curve with 
given curvature k 1(s) (the torsion k 2 being equal to zero identically) in theform 

X= 

y= 
(8) 

(a, b, c are arbitrary real constants). 

REMARK 9. All plane curves (in the plane z = 0) with the same curvature k1{s) 
at the point s may be obtained from the rotation of the curve 

through an angle c and by the translation of the curve along the oriented segment 
·given by the vector with the coordinates ( a, b) {for the constants a, b, c see Theorem 5). 

Definition 3. The quantities s, k1 and k 2 are called the natural coordinates and 
the relations 

(9) 

between k1, k 2 and s are called the natural equations (intrinsic equations) of the 
curve. 
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REMARK 10. The natural coordinates of a curve are independent of any coordinate 
system. The natural equations of a curve, which express the curve independently 
of the choice of the coordinate system, are suitable for the investigation of those 
properties of curves that are not dependent on the Coordinates. For example, the 
natural equation 

1 
k1 = - (k2 = 0, a isapositive constant) 

a 

is the equation of a ll circles of radius r = a in the plane z = 0, the implicit equation 
of which is 

(x - m)2 + (y - n)l = a2 (m, n being arbitrary real constants). 

The plane curve having the property that its curvature k 1 is directly proportional 
to the length of the arc s is called a clothoid ( cf. § 4.8). This property is expressed by 
its natural equation 

1 
k 1 = - s (a isareal constant) . 

a2 

By the proper choice of the coordinate system, the cartesian coordinates of the points 
of a clothoid may be expressed with the help of the Fresnel integrals, 

a f"' cos ({J d a f"' sin ({J d X=- --([J,y=- --({J, 

.J2 0 .J (/J .J2 0 .J (/J 

where ({J = s2 J2a 2 is the angle between the tangent line at its point (x, y) and the 
half-axis + x. 

9.5. Contact of Curves, Osculating Circle 

Let 
(1) 

be the equations of two curves 1 k and 2 k represented in terms of the same parameter s, 
which is the length ofthe arc on both curves. Let the curves have a common (regular) 
point s = 0 (i.e. 1r 0 = 2r 0) from which we shall measure the common parameter 
along both curves. Let us consider a point on each curve corresponding to the same 
value of the parameter s (Fig. 9.9) and Iet us investigate the mutual position of both 
curves (1) in a sufficiently small neighbourhood of their common point s = 0. 

Definition 1. Two curves 1r = 1r(s), 2r = 2 r(s) are said to have, at their common 
point 1r 0 = 2r 0 , contact of order q at least i.e. at least (q + 1)-point contact, 
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provided that the equations 

ll·m d(s) = 0 ( ) p = 0, 1, 2, ... , q ' 
s-+0 Sp 

(2) 

are satisfied, where 

d(s) = 1r(s) - 2r(s). 

Theorem 1. The necessary and sufficient condition that the curves (1) have contact 
of order q at least, i.e. at least (q + 1)-point contact, at their common pointisthat 
the equations 

lr - 2r lr' - 2r' lr(q) - 2r(q) o- O• o- O• ••• , o- o (3) 

are satisfied. (The existence of a sufficient number of derivatiL•es is assumed.) 

REMARK 1. The phrase "at least (q + 1)-point contact" corresponds to the con­
ception that at the common point of contact of two curves, both curves have at least 
(q + 1) coincident points ofintersection. Forexample if 1r 0 = 2 r 0 , and 1 r~ =F 2r~, then 
at the point s = 0 the curves have contact of order 0 exactly, i.e. exactly one-point 
contact (they intersect at the point s = 0). 

REMARK 2. For the plane curves 1y = 1y(x) and 2 y = 2 y(x) we may take, instead 
of equations (2), the equations 

lim d(x) = 0 (p = 0, 1, 2, ... , q), d(x) = 1y(x)- 2 y(x) 
x-+o xP 

z 1r• "rfsJ 

Fig. 9.9. 

---­y 

Fig. 9.10. 

assuming that no curve possesses the tangent x = 0 at their common point 
x = 0 (see Fig. 9.10, where 1y(O) = 2y(O), but 1y(O) =F 2 y(O)). Instead of equations 
(3) we have, in the case of the curves 1y = 1y(x) and 2y = 2 y(x), 

1 2 1 • - 2 • 1 (q) - 2 (q) 
Yo = Yo • Yo - Yo • • • • • Yo - Yo • (4) 
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(We use the notation 

i ·c ) diy yx =-
dx 

etc.) 

REMARK 3. If two curves have, at their common point, the same tangent (in the 
case of space curves also the same tangent plane) then at that point they have contact 
of order 1 at least, i.e. at least two-point contact, and conversely. If at their common 
point two curves have the same tangent, principal normal and curvature, they have 
contact of order 2 at least, i.e. at least three-point contact, and conversely. Two space 
curves that have, at their common point, contact at least of order 2 (at least three­
point contact) have at this point a common osculating plane (provided that the oscu­
Jating planesexist at this point). The plane that has contact of the first order (two-, 
point contact) or contact of the second order (three-point contact) with a given curve 
is the tangent plane or the osculating plane, respectively, at the point considered. 

REMARK 4. If 1r 0 = 2 r 0 , 1 r~ = 2r~, but 1 r~ =1- 2r~ (or 1y0 = 2 y0 , 1y0 = 2y0 , but 
1 ji0 =1- 2 ji0), then we say that both curves have contact of exactly the first order or 
exactly two-point contact. Similarly for the contact of any order. In the example 
considered, both curves touch each other at their common point and their contact 
is a so-called ordinary one. The curve 2 y = 2 y( x) lies on the same side of the curve 
1 y = 1 y(x) in a neighbourhood of their common point (Fig. 9.11). If we replace the 
curve 2 y by a straight line, then the straight line which has contact of the first 
order at least (at least two-point contact) with the curve is the tangentat this point. 

Fig. 9.11. 

Definition 2. A curve 2 k of a given type ( e.g. a circle) that has contact of 
highest possible order with the curve 1 k at their common point is said tobe an osculat­
ing curve of the curve 1k at the point considered. We say that the curve 2 k osculates 
the curve 1 k at this point. 

REMARK 5. An osculating curve of the given curve is generally completely deter­
mined by the condition of osculation. In special cases, i.e. at some special points on 
the given curve (e.g. at the points ofinflexion, at the vertices, etc.) the osculating curve 
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may have contact of an orderthat is higher than is the highest possible at an ordinary 
point. 

Definition 3. The curve 2 k that has contact with the curve 1 k at their common 
point of an order higher than is generally the highest possible order, is said to be the 
superosculating curve of the curve 1k at such point. 

Example 1. In the general case a straight line and a curve may have, at a regular 
point of the given curve, contact of the first order at most (i.eo two-point contact)o 
Of course, this osculating straight line is the tangent to the given curveo lf a further 
condition regarding contact of a higher order is imposed, it relates only to the pro­
perties of the given curve and may be fulfilled, for example, at its points of inflexiono 
The tangentat a point of in.flexion is also a superosculating straight line and its contact 
with the given curve is at least a three-point contacto We may proceed to add 
further conditions as far as the given curve possesses derivatives of higher ordero 

Example 2. Let us investigate the contact of the (plane) curve 1k, 

1x = t, 1y = 1y(t), 1z = 0 (ioeothecurve 1y = 1y(x)) (5) 

with the straight line 

(6) 

(ioe. with the x-axis )o The necessary and sufficient condition that the curve ( 5) and 
the straight line ( 6) have contact of the first order at least ( q = 1 ), at the point t = 0 
(which is assumed tobe their common point), is 

(7) 

From this condition it follows that the straight line ( 6) is the tangent to the curve ( 5) 
at the contact point (0, O)o Therefore the function 1y(x) may be expanded, in a suffi­
ciently small neighbourhood of the point (0,0), into the power series 

1 x2 1 .. x3 to•o x" (d" 1 y) 
Y = - Yo + - Yo + .. o + - -- + .. o 

2! 3! n! dx" 0 

(8) 

(see Figo 9o12b forthe case 1 ji0 =f. 0, fullline)o The necessary and sufficientcondition that 
the curve (5) and the tangent (6) have, at the point (0, 0), contact of the second order 
at least (see (4)), isthat in addition to (7), at least 1ji0 = Oo From (8) it then follows 
that if 1y0 =f. 0, the curve crosses the tangent 2 y = 0 at the point (0,0) (Figo 9ol2a, 
fullline )o The point (0, 0) is called the point of in.flexion of the curve (it is an ordinary 
inflexion, an inflexion of the first order )o Similarly it can be shown that the vanishing 
of all derivatives of the function 1 y with respect to x up to the q-th derivative inclu­
sive is a necessary and sufficient condition for contact at least of order q between 
the given curve and the tangent at the point (0, O)o If q is even, q > 2 and 
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( d9 + 1 1 yjdx9 + 1 ) 0 t= 0, the curve crosses the tangent line at the point (0, 0) (Fig. 9.12a, 
the dashed line) and we speak of a higher inflexion (an injlexion of higher order, an 
inflexion of the order q). If q is odd, q > 1, the curve remains in a sufficiently small 
neighbourhood of the point (0, 0), on the same side of the tangent (Fig. 9.12b, the 
dashed line). In this case the contact point (0, 0) is called aflat point. 

Example 3. Let us consider two (plane) curves 1 k and 2 k, 

(9) 

aJ 
I 

!-for even q >2 
bJ I c} 

Fig. 9.12. 

for which the relations 

hold and where 

In a sufficiently small neighbourhood of the point x = 0 the difference d(x) = 
= 1y(x)- 2 y(x) may be represented by the expansion 

q+1 q+2 
d(x) =~ X (1y(q+1) _ 2y(q+1)) + X (1y(q+2) _ 2y(q+2)) + •••. (IO) 

(q + I)! o o (q + l)! o o 

If q is even, then d(x) changes its sign at the point x = 0 (for sufficiently small x) 
and the curve 2 k crosses the curve 1k at the point x = 0 (Fig. 9.12c, the curve 2k 
is the dashed line ). If q is odd, then d(x) keeps its sign (for sufficiently small x) and the 
curve 2 k lies, in a neighbourhood of the point x = 0, on the same side of the curve 
1k (Fig. 9.12c, the curve 2 k is drawn as a narrow line). 

Definition 4. Acircle which passes through a point ofa(space) curve (at which k1 t= 0) 
and has there contact of the second order at least (three-point contact) is called the 
osculating circle (the circle of curvature) of the curve at that point. The centre of 
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this circle is called the centre of curvature and its radins is the radius of curvature 
at that point. 

REMARK 6. In general, contact of the second order exactly ( a three-point contact ), 
of a curve and a circle (or a plane) is contact of highest possible order. This means 
that, at a regular point of a curve, its osculating circle (or its osculating plane) is 
uniquely determined and we cannot construct a circle (or a plane) with contact 
of the third or higher order at that point. But there may be such points on the curve 
(at which k2 = 0) that admit the existence of a circle (or a plane) with contact of 
a higher order. 

Theorem 2. The osculating circle at a point of a curve lies in the osculating 
plane of the curve at that point, its radius is equal to the radius of curvature r 1 

of the curve and the radius vector of its centre is 

r = r + rln (ristheradiusvectorofthepointofthecurve), 

i.e. the centre lies on the principal normal constructed at the point of the curve 
under consideration. 

REMARK 7. If two curves have the same osculating circle at their common point, 
they have contact of the second order at least (three-point contact) at that point, and 
conversely. 

Theorem 3. The orthogonal projection of a curve into the osculating plane (at 
a given point of the curve) is a plane curve which has a common osculating circle 
with the curve at the point mentioned. 

Theorem 4. A curve y = y(x) has at every point (x, y) for which ji =I= 0 (i.e., for 
example, the points of inflexion are excluded) a unique osculating circle; its radius 
(the radius of curvature) r 1 and the coordinates (m, n) of its centre S are given by 
the expressions 

- (1 + y2)3/2 

r 1 - IYI ' 
• 1 + y2 

m=x-y---, 
ji 

1 + •2 
n=y+--Y-. 

ji 
(11) 

REMARK 8. If the osculating circle of a curve at its point has exactly three-point 
contact with this curve, then it crosses the curve at the contact point. 

Theorem 5. In the case of the curve F(x, y) = 0, the radius r 1 (the radius of 
curvature) and the coordinates (m, n) of the centre S of the osculating circle are 
given by the expressions 

{12) 

{13) 
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(It is assumed that the tangentat the point (x, y) of the curve is not parallel to the 
y-axis.) 

Theorem 6. A curve x = IP(t), y = l/l(t) has at every point t, for which (pifr -
- (pif, =/= 0, a unique osculating circle; its radius (the radius of curvature) r 1 and 
the coordinates m, n of its centre S are given by the expressions 

REMARK 9. To find the points of in.flexion of a curve y = f(x) we solve the 
equation of the curve and the equation y = 0. Such points are really points of in­
fiexion if the order of the highest non-vanishing derivative is odd (y<~>> =/= 0, p > 2, 
p odd). The infiexion points at which the tangent is perpendicular to the x-axis must 
be found separately. The Coordinates of a point of inßexion of a curve F(x, y) = 0 
may be found from the common solution of the equation of the curve and the equa­
tion 

wbich is satisfied by the coordinates of the point of inßexion (this condition is only 
a necessary one). But tbe equation J = 0 is also satisfied by tbe coordinates of 
all singular points of the curve (Fx = F, = 0). Thus, among the points obtained, 
there will be the points of infiexion and also the singular points. 

The Coordinates of a point of infiexion of a curve x = IP(t), y = l/l(t) may be 
determined from the equation (pifr - (pif, = 0, which is satisfied by the parameter 
of a point of infiexion (again, this is only a necessary condition because the last 
equation is satisfied by all singular points of the given curve). 

Definition 5. If a point of a curve admits the existence of a circle which at this 
point has contact of the third order at least (four-point contact) witb the curve, then 
such a circle is called the superosculating circle ofthe curve at that point. 

Theorem 7. At a point (x, y) of a curve y = y(x)for which 

(15) 

the osculating circle has with the curve contact of the third order at least (Jour­
point contact), i.e. the circle is the superosculating circle. 

REMARK 10. The superosculating circle that has exactly four-point contact with 
a given plane curve at its point (x, y) lies, in a certain neighbourhood of the point 
of contact, on the same side of the curve. 

Theorem 8. The radius of a superosculating circle is a stationary value of the 
radius of curvature along a given curve (we assume that r 1(t) has a sufficient 
number of derivatives). 
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Definition 6. A point on a plane curve at which the radius of curvature attains 
its (relative) extreme value is called an apex of the curve; it is a point at which the 
plane curve has contact of an odd order with the superosculating circle. 

Definition 7. The straight line through the centre of the osculating circle at a point 
of a ( space) curve and perpendicular to the corresponding osculating plane is called 
the polar line associated with that point. 

REMARK 11. The polar line associated with a point of a curve is parallel to the 
binormal at that point. 

REMARK 12. A curve, for which the equation 

is satisfied at every of its points, lies entirely on a sphere and is called a spherical 
curve. The osculating circle at any point of such curve is the intersection of the sphere, 
on which the curve lies, with the osculating plane at that point. 

9.6. Asymptotes. Singular Points of Plane Curves 

Definition 1. Let a point Tbe given on a plane curve and Iet v be the distance of the 
point Tfrom a straight line p. If lim v = 0, when at least one of the Coordinates of the 
point T tends to ± oo, then the straight line p is called an asymptote of the given 
curve. 

There may be two kinds of asymptotes of the curve y = f(x): If limf(x) = ± oo, 
when x -+ c (also only when x -+ c +, or x -+ c-, respectively ), then the straight 
line x = c (parallel to the y-axis) is an asymptote of the curve. For asymptotes that 
are not parallel to the y-axis, the following theorem holds: 

Theorem 1. lf a curve y = f(x) is defined in the interval [ a, + oo) and the Iimits 

k _ 1i f(x) 
- m ' (1) 

x-++ao X 

q = lim (f(x) - kx) (2) 
%-to+co 

exist, then the curve has an asymptote; its equation is 

y=kx+q. (3) 

REMARK 1. An entirely similar theorem may be formulated for the interval 
(- oo, a]. 



9.6 DIFFERENTIAL GEOMETRY 289 

The tangent to a curve at infinity is an asymptote of this curve. But there are asymp­

totes of another kind (see Theorem 2): 

Theorem 2. If the equation of the given curve is of the form 

y = kx + q + J.l(x) 

where lim J.l(x) = 0, then the curve has the asymptote y = kx + q. 
x__.+oo 

Theorem 3. If, foraplane curve y = f(x), 

lim y = q or lim x = c , 
J;>;J->+ao IJII->+ao 

then the curve has the asymptote 

y = q or x = c, 

res pectivel y. 

Theorem 4. If the equation of an algebraic curve can be put in the form 

or 
x" IP(Y) + x"- 1 IPt(Y) + x"- 2 IPiY) + · · · = 0, 

ym 1/J(x) + ym-l 1/Jt(x) + ym-2 tftix) + ... = 0 

(4) 

(5) 

(we suppose that the polynomials tp(y), tp 1(y), ... , or 1/J(x), I/J 1(x), ... , respectively, 

have no common factor) then the curve has asymptotes parallel to the x-axis or to 

the y-axis, g iven b y 

IP(Y) = 0 or 1/J(x) = 0, respectively. (6) 

Theorem 5. If an algebraic curve of degree n ~ 2, 

F(x, y) = tp"(x, y) + tp"_ 1(x, y) + ... = 0, 

where cph(x, y) denotes the sum of terms of degree h, has the asymptote y = kx + q, 

then k satisfies the equation 

and q the equation 

q= 

respectively. 

IPn-1(1, k) 
IP~(l, k) 

cp"(l, k) = 0 

( cp~(I, k) = ocp" (I, k) -:~= o), 
oy 

(7) 

(8) 

REMARK 2. Theorem 5 thus states the following: Substitute y = kx + q into the 

equation of the given algebraic curve and equate the coefficient of the two highest 

powers of the variable x to zero. From the first condition we compute the values k1 
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(i = 1, 2, ... , n) and substitute these values into the second condition to determine the 
q 1 corresponding to the particular k1• In this way we find also the asymptotes parallel 
to the x-axis (but not those parallel to the y-axis). lf cp~(l, k) = IPn- 1(1, k) = 0, 
then we find q from the equation 

Example 1. The curve 

x3 + y3 - 3axy = 0 

(folium of Descartes) is an algebraic curve. We substitute y = kx + q and equate 
the coefficients of x3 and x2 to zero, so that 

giving 

1 + k3 = 0 and 3k2 q - 3ak = 0. 

The only real solution to the first condition is k = -1, which when substituted into 
the second condition gives 

3q + 3a = 0. 

Hence q = - a and the asymptote is 

y = -x- a. 

Theorem 6. There exists only one straight line passing through a regular point 
of a curve (it is the tangent) such that at this point, the line and the curve have two­
point contact at least. For all other straight lines there is only one-point contact. 

Definition 2. A singular point (x0 , y0) of the curve F(x, y) = 0 is called a double 
point of the curve if F~ = F~ = 0 and if, at the same time, not all partial derivatives 
of the second order of F(x, y) vanish at this point. 

Theorem 7. There are at most two (real) straight lines passing through a double 
point (x0 , y0) of a curve F(x, y) = 0 such that the point (x0 , y0) is their point of 
intersection with the curve and has a multiplicity at least three. 

The slopes k of thesestraight lines satisfy the equation 

(9) 

There are two or one or no such straight lines according as to whether 

(10) 

res pectivel y. 
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Definition 3. The straight lines that pass through a double point of a curve F(x, y)= 
= 0 and the slopes of which satisfy equation (9) are called the tangents to the curve, 
at its double point. 

Definition 4. A double point of a curve F(x, y) = 0 for which 

a) FxxFyy - F;y < 0, 

is called a double point with (two) distinct tangents or a node (the curve has two 
branches through the singular point, each of them touching the corresponding 
tangent (Fig. 9.13a)); 

b) FxxFyy - F;Y > 0, 

is called an isolated point (the curve has no (real) tangentat this point (Fig. 9.13c, 
point P)); 

c) FxxF11 - F;1 = 0, 

is called a cusp (the curve has two branches which tend to the singtdar point from 
one side only and lie on opposite sides ofthe tangent (Fig. 9.13b)). 

REMARK 3. In case c) the curve may have a point of self-tangency (a double 
cusp) (Fig. 9.13d). 

REMARK 4. If at a point (x0 , y 0 ) of a curve F(x, y) = 0, in addition to F~ = F~ = 0, 
F~" = F~Y = F~1 = 0 and at least one of the derivatives of the third order of F(x, y) 
at that point is non-zero, then the curve has a triple point (a singular point of 
multiplicity three) at that point etc. Besides the multiple points, singular points 
of other kind may also exist, e.g. the end point (on the curve y = e1fx, see Fig. 9.14a) 
or the angular point (Fig. 9.14b). 

p 

p 
0 

c) 
Fig. 9.13. 

Theorem 8. The Coordinates (X, Y) of a current point on the tangents at the 
double point (0, 0) or (x 0 , y 0 ) of a given curve F(x, y) = 0 satisfy the equations 

F~"X2 + 2F~yXY + F~1Y 2 = 0 
(the derivatives being computed at the point (0, 0)) ( 11) 
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or 
F~x(X - x0) 2 + 2F2;v(X - x0 ) (Y- Yo) + F~,(Y- Yo) 2 = 0 

(the derivatives being computed at the point (x 0 , y0 )) • (12) 

REMARK 5. A curve F(x, y) = 0 has a singular (multiple) point at points whose 
coordinates satisfy the equations 

F(x, y) = 0, Fx = 0, Fy = 0. 

y 

al 

X 

Fig. 9.14. 

A deeper investigation of these points can be made by means of the analysis of high er 
derivatives. In the case of algebraic curves we may proceed as follows: If an algebraic 
curve passes through the origin and if the origin is a regular point, then we obtain 
the equation of the tangentat this point by equating to zero the sum of terms of the 
first order of the equation of the curve. If the lowest terms of the equation of an 
algebraic curve are of degree at least two then the origin is its singular point. The 
lowest degree of terms of the equation of the curve gives the multiplicity of the sin­
gular point (at the origin). Ifwe equate to zero the sum oflowest terms ofthe equation 
of the curve we obtain an equation which represents the tangents at the singular point. 

REMARK 6. A curve x = <p(t), y = t/J(t) may have a node at a point (x0 , y0) 

when the relations x0 = <p(t 1) = <p(t2), y0 = t/l(t1) = t/J(t 2 ) hold for two different 
values t 1 and t2 of the parameter. A cusp may occur if (jJ(t) = if,(t) = 0 holds for 
a value of the parameter. 

9.7. Envelopes of a One-parameter Family of Plane Curves 

Definition 1. We say that the equation 

F(x, y, c) = 0 (I) 

defines a one-parameter family of curves in a domain 0 of the xy-plane if 

1. the function F(x, y, c) is a continuous function of the variables x, y, c for 
(x, y) E 0 and c of an interval J, 
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2. for every c e J, equation ( 1) defines a certain curve in the domain 0 ( cf. § 9.2) 
in such a manner that to any two different values of c e I there correspond two 
different curves. 

Example 1. The equation 

y- cx2 = 0 (2) 

defines a one-parameter family of parabolas passing through the origin (for c = 0 
the parabola reduces to the straight line y = 0). 

Fig. 9.15. 

Definition 2. A curve is caHed (if such a curve acutally exists) the envelope of the 
family (1), if it touches every curve of the given family and, conversely, if every 
point P( x, y) of the curve is the point of contact with a curve of the family (Fig. 9 .15). 

Theorem 1. Let the function F(x, y, c) have continuous partial derivatives 

aF 
ax. 

aF 
ay, 

aF 
ac • --. --. 

ac ax ac oy 
(3) 

in a neighbourhood of the point (x0 , y0 , c0 ). At the point (x0 , y0 , c0) Iet the follow­
ing relations be fulfilled: 

aF 
F(xo, Yo. co) = 0, - (xo, Yo• co) = 0, 

ac 

aF aF 
- • 

o2F ax ay 
-2 i= 0, i= 0. 
ac azp azp 

-- --
ac ax • ac oy 

( 4) 

(5) 

Then in a certain neighbourhood U of the point (x0 , y 0 ) and for c from a definite 
neighbourhood Vof the point c0 , there exists an envelope of the family (1). 
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REMARK 1. We may obtain the equation of the envelope from the equations 

oF 
F(x, y, c) = 0, - (x, y, c) = 0 

oc 

9.7 

(6) 

by expressing x and y as functions of the variable c (this can be done because of 
the second condition (5)) or :by expressing c as a function of the variables x, y 
(this can be done because of the first condition (5)) and substituting for c into 
the first equation ( 6), 

F(x, y, c(x, y)) = 0 (7) 

(i.e. by "elimination" ofthe parameter c from equations (6)). 

REMARK 2. The conditions ( 5) are sufficient but not necessary for the existence 
of the envelope in a neighbourhood of the point (x 0 , y0): 

Example 2. The envelope of the family of curves ( occasionally called parahalas 
of the fourth order) 

F(x, y, c) = y - (x - c)4 = 0, (8) 

is evidently the x-axis; we easily obtain its equation y = 0 from equations ( 6), 

y - (x - c)4 = 0, 4(x - c) 3 = 0. (9) 

However, at every point of this envelope, both expressions ( 5) are zero: 

oF oF 

o2F ox ay -~-4(x - c)\ ~I = -12(x - c)2 -=-12(x-c)2 , 
oc2 o2F o2 F - 12(x - c)2, 

-- --
oc ox ' oc oy 

(in consequence of (8) and of the equation y = 0). 

If conditions ( 5) are not fulfilled, equations ( 6) need not define the envelope: 

Example 3. Let us consider the family of curves 

F(x, y, c) = (y - c)Z - (x - c) 3 = 0. 

(Fig. 9.16.) From (10) it follows that 

aF 
- = - 2(y - C) + 3( X - C y = 0 , 
oc 

Le. 
y- c = i(x- c)l. 

(10) 

(11) 
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Substituting (11) into (10) we obtain 

~(x - c)3 (x - c - t) = 0. 

Hence either x - c = 0 or x - c - t = 0. 

1. x - c = 0. Then from (11) it follows that y - c = 0. Equations x = c, y = c 
are parametric equations of the straight line y = x. 

2. x - c = t· Then, by (11), y- c = : 7• 

Fig. 9.16. 

Equations 
4 8 

X = C + 9 ' y = C + 27 (12) 

are parametric equations of the straight line 

4 
Y =X- 27 • {13) 

Equations (10) and (11) provide two straight lines, the straight line (13) and the 
straight line y = x. At every point of the former straight line the relation 

82 F = 2 - 6(x - c) = 2 - !!. = - ! 
ac2 3 3 

holds (using the first equation (12)) and 

aF aF 
-

' ax ay 

a2F a2F 
l-3(x- c)2 2(y- c)l = 6(x _ c),' _ 2 = 6(x - c)[(x - c) - 2(y - c)] = 

-- --
ac ax ' ac ay 
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(also using equations (12)). Thus, both expressions (5) are non-zero at all points 
ofthe straight line {13), which is the envelope ofthe family {10), since the other con­
ditions of Theorem 1 are evidently fulfilled. The straight line y = x (see Fig. 9.16) 
is the locus of singular points (the cusps) and evidently it is not an envelope of the 
curves {10). The reader may easily verify that the determinant (5) vanishes at every 
point of this straight line. 

9.8. Parallel Curves, Gradient Curves, Evolutesand lnvolutes 

Definition 1. Two curves are said tobe parallel curves (so-called pair of Bertrand 
curves) if there exists a continuous one-to-one correspondence between their points 
such that both curves have the same principal normal at the corresponding points. 

Theorem 1. lf two curves 

r = r(s), r = r(s) 

are parallel curves, then the relation 

r(s) = r(s) + c n(s) (c being a constant) (1) 
holds. 

REMARK 1. There need not exist a parallel curve to each space curve. The con­
stant c in (I) determines the distance between corresponding points on the common 
principal normals. Every plane curve possesses an infinite number of parallel curves 
{for different values of the real constant c in {1)). 

A (plane) curve k, 

X = q>(t), y = t/f(t) 
has a parallel curve TC 

(2) 

(c being an arbitrary real constant). To a given plane curve k we may construct 
a parallel curve TC in this manner: We mark off a segment of constant length c on the 
normal at every point of the given curve, always on the same side of the curve, the 
starting point of the segment being the point on the given curve (Fig. 9.17). The end 
points of these segments form a plane curve TC parallel to · the given curve. lf the para­
meter t can be eliminated from equations {2), we obtain the equation of a one­
parameter family of curves ( with the parameter c) parallel to the given curve. Any two 
curves of this family are mutually parallel. A plane curve TC parallel to a given plane 
curve k is said to be an equidistant curve of the curve k (the curves k and Ii are said 
to be the curves of equidistance or equidistant curves). The equation of the equi-
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distaut curve to the curve F(x, y) = 0 (in the variables (X, Y)) may be obtained 
by the elimination of (x, y) from the equations 

F(x, y) = 0, 
dx 

Y- y = - dy (X - x), (X - x)2 + (Y- y)2 = c2 • 

The radii of curvature at points on the common normal of two parallel curves differ by 
the constant length c ( the centre of curvature is common ). A circular helix is the only 

ii 

Fig. 9.17. X 

space curve that also has an infinite nurober of parallel curves, each of them being a 
circular helix (lying on a circular cylinder with the same axis as that of the given 
helix). 

Definition 2. A gradient curve with respect to a jixed direction is a curve, the 
tangents to which make a constant angle ro with that fixed direction. 

Theorem 2. A necessary and sufficient condition that a curve be a gradient curve 
with respect to a given direction is that the relation 

k 2 sin ro - k1 cos ro = 0 (3a) 

holds at every point of the curve (k1 and k 2 being the curvature and torsion re­

spectively). 

REMARK 2. Gradient curves are sometimes called cylindrical helices. Their 
characteristic feature is that the equation 

kl - = tan ro = k (k = const). 
k2 

(3b) 

holds along the entire curve. The circular helix is a gradient curve with respect to 
its axis. 

Definition 3. An orthogonal trajectory TC of the tangents of a curve k is called an 
involute of the curve k. The curve k is called an evolute of TC. 

REMARK 3. An orthogonal trajectory of the tangents of a curve is a curve that 
intersects the tangents to the given curve at right angles. 
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Theorem 3. The equation of an involute K of the given evolute k = r = r(s) is 

r = r- (s + c) t (c is a constant; Fig. 9.18). (4) 

REMARK 4. lf a curve k (the evolute) isaplane curve, then its involutes (for dif­
ferent values ofthe constant c) arealso plane curves. Every two ofthese involutes have 
common normals in the tangents to the curve k ( the evolute) and are parallel curves 
(Fig. 9.18). 

s c k Fig. 9.18. 

REMARK 5. To every curve there exists an infinite number of evolutes (forming 
a one-parameter family of curves) and of involutes (c in (4) is the parameter of the 
family of involutes). 

Theorem 4. The evolutes of a plane curve Karegradient curves (with respect to 
the perpendicular to the plane of the given curve). Among them, there is one plane 
evolute k formed by the centres of curvature of the given curve. The equation of 
this plane evolute is 

(5) 

(r1 is the radius of curvature at the variable point of the given plane curve K). 

REMARK 6. The plane evolute of a curve x = <P(t), y = 1/t(t) is expressed para­
metrically by equations (9.5.14) in Theorem 9.5.6, p. 287, defining the coordinates 
(m, n) of the centre of curvature. By the elimination oft from these equations we 
obtain the equation of the evolute in the form F( m, n) = 0 lf a curve is given by an 
equation y = f(x) or F(x, y) = 0, we find the equation of its evolute by the elimina­
tion of the variables (x, y) from equations (9.5.11) (Theorem 9.5.4) and y = f(x), 
or equations (9.5.12) and F(x, y) = 0, respectively. If a curve is given by an equation 
y = f(x), we may retain the parametric expression for an evolute if we choose, for 
example, x as the parameter. 

Example 1. For the parabola y = x 2 , we have 

and by (9.5.11) 

y = dy = 2x, 
dx 

1 + 4x2 
m = x - 2x = -4x3 , 

2 
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From the first equation it follows that 

on substituting for x into the second equation, we obtain the equation of the evolute 
of the given parabola, 

Conversely the parabola y = x 2 is the involute of this curve. 

REMARK 7. Eliminating m and n from the equations 

. 1 + y2 
m=x-y---, 

ji 

1 + y2 
n = y + --, F( m, n) = 0, 

ji 

(see (9.5.11)) we obtain the differential equation of the involutes of the given curve 
F(m, n) = 0. 

REMARK 8. The plane evolute of a given plane curve is the envelope of normals of 
this curve. The centre of curvature at a fixed point of a given plane curve is the limiting 
point of the point of intersection of the normal at that point and the normal at a point 
which tends to the given point along the curve. A normal of a given plane curve is 
a tangent to its plane evolute with the point of contact at the corresponding centre 
of curvature of the given plane curve. 

Fig. 9.19. 

Theorem 5. The length of the arc s an the plane evolute k of a given plane curve 
"K is equal (in absolute value) to the difference in length of the radii of curvature 
of the curve k that lie an the normals tauehing the evolute at the end points of the 
arc s (Fig. 9.19), i.e. 

(6) 

(s = S92 iS the arc of the evolute k, SPt and Sp2 are the CentreS of CUrVature 
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corresponding to the points P1 and P2 on the given curve K and 1 f 1 and 1 f 2 are 
the corresponding radii of curvature). 

REMARK 9. 1t is assumed in Theorem 5 that there are no points of inflexion or -singular points on the arc s = P 1 P 2 of the curve "K and that no inner point of this arc 
is a summit of the given curve "K. 

REMARK 10. To every curve k it is possible to construct an infinite number of 
involutes as follows: we choose a fixed point on the curve k and then mark off on 
every tangent of the curve k a segment whose length is equal to the length of the 
arc of the curve k measured from the fixed point to the point of contact of the 
tangent; the starting point of the segment is the point of contact of the tangent, the 
end point of the segment is a point of the involute so constructed. The plane invo­
lutes of the same family have a single plane evolute in common. To a regular point 
( which is not a point of inflexion) of a plane curve with maximal or minimal curva­
ture (i.e., to a summit of the curve) there corresponds a cusp of its plane evolute. 
The normal at a point of inflexion of a plane curve is an asymptote of its plane 
evolute. The plane evolute passes through the cusps of its plane involute having there 
its tangent perpendicular to the double tangent at the cusp of the involute ( cf. 
Example 1 ). Using equation ( 6), we may determine the length of the arc of the evolute 
( or of any curve that may be considered as an evolute) if the radü of curvature of its 
involute are known. 

9.9. Direction of the Tangent, Curvature and Asymptotes 
of Plane Curves in Polar Coordinates 

For analytic representation of many plane curves, it is often convenient to use 
polar coordinates. In the system of polar coordinates a plane curve is represented 
by an equation expressing a relation between the polar Coordinates (€!, (/) ): 

F({!, ({)) = 0 or l! = /(({)). 

The direction of a tangent to a curve expressed in polar coordinates is determined 
by the angle 8 between the tangent and the radius vector of its point of contact; 
this angle 8 is called the direction angle of the tangent. 

Theorem 1. The direction angle 8 (Fig. 9.20) is determined by the relation 

tan 8 = ll/ll' (0 < 8 < 7t, 8 :f: f7t, {! 1 = dl!/d({) :f: 0). (1) 

REMARK 1. The tangent to the curve at the point P({!, ({)) makes an angle (/) + 8 
with the polar axis o, the normal at the point P on the curve and the radius vector of 
the point P are inclined at an angle 8 + f7t, while the same normal and the polar 
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axis o are inclined at an angle qJ + 9 + !1t. The distance v of the tangent t from the 
origin 0 is given by the relation 

2 

v = e (e being the radius vector ofthe point of contact) . 
.J(e2 + e'2) 

REMARK 2. In order to construct the tangent or the normal at the point P or to 
determine their mutual position, it may sometimes be convenient to find the ( oriented) 
length of a segment on the tangent (the length of the polar tangent t) and on the 

Fig. 9.20. 

normal (the length of the polar normal n). These lengths are measured from the 
point of contact P to their respective points of intersection with the perpendicular 
to the radius vector ofthe point P through the origin 0. We may also need the ortho­
gonal projections of these two segments on the above-mentioned perpendicular, the 
so-called polar subtangent s, and subnormal sn. The relations 

(!2 
s, = {} tan 9 = - , 

e' 
e , 

Sn=--= l! 
tan9 

{2) 

hold for s, and Sn {Fig. 9.20). {The segments s, and sn are taken either oriented as 
shown in Fig. 9.20, or in absolute values.) For the length t of the polar tangent and 
the length n of the polar normal the following relations hold: 

t = lg_l s' , n = s' (s' = ~ = .J(e2 + e'2), ds being the differential of the arc). 
i dqJ 

{3) 

Theorem 2. The radius of the circle of curvature of the curve F((}, <p)= 0 is 
given by the expression 

(4) 
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The coordinates (? 0 , q>0 of the centre of the circle of curvature satisfy the 
equations 

and (5) 

REMARK 3. lf we eliminate the variables q> and {! from equations ( 5) and the equa­
tion F(e, q>) = 0, we obtain the equation of the plane evolute of the given curve. 

Definition 1. An asymptote of a curve F((}, <p) = 0 is a straight line intersecting the 
polar axis at an angle, for which 

lim q> = a (6) 
(1-++co 

and at a distance v from the origin for which 

v = lim (- C?~) (see (2)) 
., ... « e 

(7) 

(on the assumption that the Iimits (6) and (7) exist). 

REMARK 4. According to Definition 1, we find an asymptote (if it exists) of a curve 
as follows: First we determine its direction defined by the angle a, i.e. the angle of 
inclination to the polar axis and then its distance v from the origin. This distance is the 
limiting value of the polar subtangent (see (2)) for q> -+ a. 

Example 1. For the hyperbolic spiral (reciprocal spiral) 

the relation e -+ + oo yields 

Further, 

a e = - (a > 0, q> > 0), 
q> 

q> -+ 0 , hence a = 0 . 

v = lim (- C?~) = lim a2
fq>2

2 = a . 
., .... o e ., .... o af q> 

Thus the asymptote is a line parallel to, and at a distance a from the polar axis. 

REMARK 5. Besides the asymptotes there may exist, with some plane curves, so­
called asymptotic points. An asymptotic point of a plane curve is a point which does 
not lie on the curve but to which a point moving along the curve approaches to 
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within an arbitrarily small distance. (This occurs, for example, in the case of the 
clothoid; cf. § 4.8.) Of a similar meaning is the concept of an asymptotic curve (so­
called curvilinear asymptote). For example, for the curve 

e = aqJ- (a =F 0 isareal constant) 
(/J - 1 

we have lim e = a when 1(/JI -+ + oo, thus the curve has an asymptotic circle of 
radius a and the curve considered approaches this circle asymptotically from out­
side and inside (for qJ -+ + oo and qJ -+ - oo, respectively). 

9.10. Supplementary Notes to Part A 

a) To determine the equations of the tangents drawn to the curve F(x, y) = 0 
from an arbitrary point (x0 , y0 ), we find first the coordinates of their points of 
contact by solving the equations 

F(x, y) = 0 l 
(xo - x) BF + (Yo - y) BF = 0 

ax oy 

(1) and 

and then substitute these Coordinates into the equation of the tangent to the given 
curve. 

b) Todetermine the equations of the normals drawn to the curve F(x, y) = 0 from 
an arbitrary point (x0 , y0 ), we find those points at which the normals cut the given 
curve orthogonally (so-calledfeet of the normals), by solving the equations 

aF oF 
F(x, y) = 0 and (x0 - x)- - (y0 - y)- = 0. 

oy ax 
(2) 

If a given algebraic curve is of degree n, then at most n2 normals can be drawn from 
a given point to the curve. 

Definition 1. The locus of the foot of the perpendicular from a given point (in the 
plane of the curve) on the tangent to a given curve is called the pedal curve of the 
given curve with respect to the given point (the pole). 

c) We can find the equation of the pedal curve of the curve F(x, y) = 0 with 
respect to the pole (x0 , y 0) by elimination of the variables (x, y) from the equations 

(X-x)°F +(Y-y)°F =0, (X-x0)°F -(Y-y0 )°F =0, F(x,y)=O. 
ax ay oy ax 

The equation of the pedal curve will thus be expressed in the coordinates (X, Y). 
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d) The angle between two curves y = f(x), y = g(x) or u(x, y) = 0, v(x, y) = 0 
at their common point is given by the equation 

dg df au av ou OV --- -----
ax oy ay ax 

or tan ro = ----'----
ouov auav' 

dx dx 
tanro= , 

1 + df dg --+--
dx dx ox ax ay ay 

respectively. (The derivatives are to be evaluated for the coordinates of the point 
of intersection of the curves.) 

The curves u(x, y) = 0, v(x, y) = 0 intersectat right angles if 

ouov +auov =O. 
ax ax ay ay 

e) The curves which intersect a one-parameter family F(x, y, c) = 0 of curves 
at right angles are called the orthogonal trajectories of this family and they form 
a one-parameter family of curves. Both families form an orthogonal net (provided 
exactly one curve of each family passes through each point). By eliminating the 
parameter c from the equations 

aF + aF dy = o, 
ax ay dx 

F(x, y, c) = 0, 

we obtain the differential equation f(x, y, y) = 0 of the given family. By putting 
-lfy for y we obtain the differential equation 

f(x, y,- ~) = 0 

of the family of orthogonal trajectories ( cf. § 17·6). 

In polar coordinates, by eliminating the parameter c from the equations 

aF + aF de = 0 , 
o<p oe d<p 

F(e, <p, c) = o, 

we obtain the differential equationf(e, <p, e') = 0 ofthe family of curves F(e, <p, c) = 
= 0. Writting -e2/e' for e', we obtain the differential equation 

!(e. <p, - ~:) = o 

of the orthogonal trajectories. 
The curves which intersect a one-parameter family of curves at a constant angle 

ro =1: !1t are called the isogonal trajectories of this family. If f(x, y, y) = 0 is the 
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differential equation of the given family, then 

f(x. y, y- k) = 0 (k = tanro) 
1 + ky 

305 

is the differential equation of the isogonal trajectories. If, in polar coordinates, 
f(e, qJ, e') = 0 is the differential equation of a family of curves, then 

f e, qJ, (! fl(! = 0 (k = tan ro) ( k2+ ') 
(! - k(!' 

is the differential equation of the isogonal trajectories. 

Fig. 9.21. 

Definition 2. The locus of the end point of a segment of constant length c marked 
off on the tangent of a given curve, with the starting point at the point of contact, 
is called the equitangential curve of the given curve (Fig. 9.21). 

f) We find the equation of an equitangential curve of the given curve F(x, y) = 0 
by eliminating the variables (x, y) from the equations 

F(x, y) = 0, Y- y = dy (X - x), (X - x)2 + (Y- y)l = c2 • 

dx 

The equation of the equitangential curve is then given in the coordinates (X, Y). The 
equations of an equitangential curve to the curve x = ({J(t), y = 1/l(t) are 

X - c11 y - 1/1 cift 
- qJ + .J( 112 + ift2) ' - + .J( 112 + ift2) . 

B. SURFACES 

9.11. Definition and Equations of a Surface; Coordinates 
on a Surface 

Definition 1. A finite piecewise smooth surface, defined parametrically, is a set 
of points (x, y, z) given by the equations 

x = x(u, v), y = y(u, v), z = z(u, v); (1) 
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we suppose that the functions x(u, v), y(u, v), z(u, v) are defined in a domain I which 
is a region of the type A (§ i4.1) containing, possibly, its boundary or apart of its boundary, 
and possess the following properties: 

I. They are continuous and have piecewise continuous derivatives (Remark 
12.1.8, p. 405) of the first order in I. (On the curves of discontinuity or at the 
boundary points, a derivative is taken to be the value of the corresponding contin­
uaus extension.) 

2. The matrix 

[ 
ax ay az l 
au'au' au 

J.L= 
ax 8y az 
8v'8v'8v' 

(2) 

is everywhere - with the exception of at most a finite number of points - of rank 
h = 2 (i.e. at least one of its determinants of order two is non-vanishing). 

REMARK I. In Remark 9.2.1, we defined a closed curve and a smooth curve; in 
a somewhat similar fashion we can define a closed surface and a smooth surface. Briefiy: 
a smooth surface has at every pointadefinite normal(§ 9.12) which varies continuously 
with the point on the surface. When a surface is considered in this chapter, a smooth 
surface or a piecewise smooth surface will be assumed. Furthermore, in the case 
of a surface, we often suppose (as the nature of the problern may require) that the 
functions x(u, v), y(u, v), z(u, v) have derivatives of an order r > 1, without expli­
citly pointing out this condition. (The same remark applies to the surface (4).) 

The arguments (u, v) in equations (1) are called the parameters of the surface 
and equations (1) are called the parametric equations of the surface. Every pair 
of numbers (u, v) from I is called a point of the surface (because to every pair of 
numbers (u, v) there corresponds adefinite point (x, y, z) on the surface); such a point 
is said to be a regular (general, ordinary) point of the surface if, at this point, the 
functions (1) possess continuous partial derivatives and if the matrix {2) is of rank 
h = 2. Otherwise it is called a singular point of the surface. (However, see also 
Definition 9.12.2 and Remark 9.12.1.) 

REMARK 2. If equations (1) are of the form 

x = u, y = v, z = z(u, v), 

the equation 

z = z(x, y) or z = f(x, y) {3) 

is called the explicit equation of the surface. 



9.11 DIFFERENTIAL GEOME1RY 307 

REMARK 3. A surface may be defined implicitly as a set of points satisfying 
an equation 

F(x, y, z) = 0. (4) 

When we speak, in the following text, of a surface given implicitly, then we shall 
suppose that the function F(x, y, z) is continuous and has continuous or piecewise 
continuous partial derivatives of the first order in the domain considered and that, 
with the exception of a finite number of points on the surface, at least one of them 

Fig. 9.22. 

is non-zero. {In the case of piecewise continuous derivatives, the derivatives are to be 
understood in the sense of a continuous extension - cf. Definition 1.) If the relations 

aF = 0 
ax ' 

aF = 0 ay , 
aF = 0 
az (5) 

hold at a point (x, y, z) on the surface (4), then such a point is said tobe a singular point 
on the surface. A point on the surface (4) at which at least one of the partial deriva­
tives (5) is non-zero is called a regular (general, ordinary) point of the surface (4). 
(Cf., however, Remark 9.12.1 which may be applied in a similar form to equation 
{4).) 

REMARK 4. A singular point on the surface ( 4) at which at least one partial deriv­
ative of the second order of the function Fis non-zero is called a conical point of the 
surface (the point S in Fig. 9.22). 

We shall suppose in the following text that the surface does not intersect itself 
at its regular points. 

If we denote by r the radius vector of a point on the surface, the coordinates of 
whichare, in the parametric representation (1), x(u, v), y(u, v), z(u, v), we can use, 
instead of equations (1), the single symbolic equation 

r = r(u, v) = ix(u, v) + jy(u, v) + kz(u, v) {6) 

for the equation of the surface (the so-called vector equation). 



308 SURVEY OF APPLICABLE MATHEMATICS 9.11 

Definition 2. The set of points (u 0 , v) from I (where u0 is fixed) for which the 
derivatives 

ox(uo, v) oy(uo, v) oz(uo, v) 

av av av 

do not vanish simultaneously, is called the parametric u-curve (briefly u-curve) on 
the surface (1). The parametric v-curve (briefly the v-curve) is defined in a similar 
way. 

) 

h-curves 
j 

Fig. 9.23. 

REMARK 5. If one of the parameters in equations (1) is kept constant while the 
other varies continuously, we obtain two one-parameter families of curves, one being 
formed by the u-curves and the other by the v-curves. These curves are called the 
coordinate curves (Fig. 9.23). Their equations on the surface are: 

u = u0 = const. , v = t , (7a) 

(the u-curve; only the parameter v varies along the curve); 

u = l , v = v0 = const. , (7b) 

(the v-curve; only the parameter u varies along the curve). 

The parameters u and v constitute the so-called curvilinear coordinates (u, v) 
of a point on the surface (1) in such a domain where 

1. no two curves from the same family intersect, 

2. one and only one curve from each family passes through every point of the 
surface. 

The parametric equations of a u-curve (with variable parameter v) or the para­
metric equations of a v-curve ( with variable parameter u) - in space - are 

x = x(u 0 ,v), y = y(u 0 ,v), z = z(u 0 ,v), (8a) 

or 

x = x(u, v0 ), y = y(u, v0 ), z = z(u, v0 ), (Sb) 
respectively. 
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The direction cosines of the tangent of these coordinate curves are proportional 
to the numbers 

ax(uo. v) ay(uo, v) az(uo, v) 
av av av 

{9a) 

or 

ax(u, vo) ay(u, Vo) az(u, vo) 
au au au 

(9b) 

respectively. 

neorem 1. The tangents of a u-curve and a v-curve constructed at their common 
regular point are different. (See Fig. 9.23, the point (u0 , v0).) 

9.12. Curves on Surfaces, Tangent Planesand Normal Lines 

Definition 1. The equations 

u* = u*(u, v), v* = v*(u, v) (1) 

express a (regular) Iransformation of parameters in a two-dimensional domain I* 
from I, if the functions (1), defined in I*, possess the following properties: 

1. They are continuous and have continuous derivatives of order at least 
m ~ r (cf. Remark 9.1Ü); 

2. the determinant 

is non-vanishing in I*. 

av• av• 
a;;' av 

Definition 2. Let (u0 , v0) be a singular point on a surface. Suppose there exist two 
functions u* = u*(u, v), v* = v*(u, v), continuous in a neighbourhood of the point 
(x0 , y0) and having there continuous partial derivatives of the order m ~ r (see 
Definition 1) with Ä '# 0. Moreover, Iet the point (u0 , v0) be not a singular point with 
respect to the new parameters. Then the point (u 0 , v0) is called an unsubstantially 
singular point (a pole) with respect to the parameters (u, v). Every singular point 
which is notapole is called substantially singular. 

REMARK ·1. Thus, an unsubstantially singular point is a singular point of a surface 
only with respect to a certain system of coordinates on the surface. For example on 
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a sphere, if we choose the parallels of latitude for the u-curves, the meridians (paral­
lels of longitude) for the v-curves, then, according to Remark 9 .11.1, p. 344, the 
"north" and "south" poles are singular points of the sphere. But according to 
Definition 2 these points are. unsubstantially singular (because they may be regular in 
some other system of coordinates.) 

The notion of a general curve on a surface is introduced by the following definition: 

Definition 3. The equations 

u = u(t) , v = v(t) , t E i , (3) 

express parametrically a curve on a surface (9.11.1) provided that functions (3), 
defined in an interval i, have the following properties in the interval i: 

1. They are continuous and possess continuous first derivatives which do not 
vanish simultaneously; 

2. the points (3) lie for all t Ei in the domain I (see Definition 9.11.1); 
3. the elements of the matrix (9.11.2) vanish simultaneously at a finite number 

of points at most. 

Equations (3) are called the parametric equations of a curve on the surface 

(9.11.1 ). 

REMARK 2. lf equations (3) are of the form 

u = t, v = v(t) , 

then the equation 
v = v(u) (4) 

is called the explicit equation of a curve on the surface (9.11.1). Equations (3) and ( 4) 
are the equations of a curve expressed in the coordinates on the surface. The equa­
tions 

x = x(u(t), v(t)), y = y(u(t), v(t)), z = z(u(t), v(t)) (5a) 

or briefly 

r = r(u(t), v(t)) (r being the radius vector of a point on the curve) (Sb) 

give the parametric representation of the same curve, which lies on the surface con­
sidered, in orthogonal cartesian coordinates (i.e. parametric representation of a space 
curve). 

Definition 4. We also say that the equation 

f(u, v) = 0 (6) 

expresses, in a definite neighbourhood of a certain (regular) point of a surface, 
a curve on the surface defined implicitly in I, if f(u, v) is defined in I and has con-
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tinuous firstpartial derivatives in I such that at least one of them is non-zero at every 
point. The equation ( 6) is called the implicit equation of a curve on the surface. 

REMARK 3. The functional relation between the curvilinear coordinates defines 
(under the above-mentioned conditions) a curve on the surface (and conversely). 

Theorem 1. Let us consider all the curves that lie on a surface r = r(u, v) and pass 
through a regular point (u 0 , v0 ) of this surface, and themselves have a regular point 
at this point. Then the tangent lines at (u 0 , v0) of all these curves lie in a plane 
(Fig. 9.24). 

Fig. 9.24. 

Definition 5. The plane mentioned in Theorem 1 is called the tangent plane of the 
surface r = r(u, v), at its regular point (u 0 , v0 ). The point (u 0 , v0 ) is called the point 
of contact ofthisplane (the planet in Fig. 9.24). 

REMARK 4. The tangential vector of a curve on a surface is the so-called tangen­
tial vector of the surface (shortly the vector of the surface) at the corresponding 
point of contact. 

Theorem 2. At a regular point (u 0 , v0 ) of a surface r = r(u, v) there exists just 
one tangentplane and its equation in orthogonal cartesian coordinates (X, Y, Z) is 

X - x0 , Y- y 0 , Z - z0 

G:)o• G~)o• G:)o 
G:\· G:)o. G:)o 

X - Xo, y- Yo• z - zo 
- (x.,)o, (Y.,)o. (z.,)0 = 0 (7) 

(x.)o, (Yu)o. (z")o 

(where R is the vector of the variable point on the plane, (r.,)0 = (orfou)0 , (r")0 = 

= (orfov)0 ). 
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REMARK 5. The linearly independent (i.e. non-collinear) vectors r,. = orjou and 
r" = orfov, with the starting point at a regular point (u, v) of a surface, form the 
tangential vectors ofthe corresponding v-curve and u-curve at this point, respectively. 
The tangential vector r of a curve r = r(u(t), v(t)) on the surface passing through 
its regular point (u, v) is given by the linear combination of the vectors r,. and r", 

. . . . du 
r = r .. u + r"v, u = -, 

dt 

. dv 
V=-. 

dt 

The ratio üfv defines, at the point (u, v) of the surface, the direction on the surface 
in which the curve u = u(t), v = v(t) on the surface passes through the point con­
sidered {Fig. 9.24). The tangent plane -r of the surface at its regular point (u, v) is 
determined by the vectors r,. and r," with the starting point of both vectors at (u, v). 
A regular (or removably singular,p. 309) point of a surface is a point at which 
there exists just one tangent plane. 

Theorem 3. The tangent plane at a regular point (x, y, z) of a surface z = 
= z(x, y) has the equation 

(X - x) p + (Y- y) q - (Z - z) = 0 (8) 

(where p = ozfox, q = ozfoy, and (X, Y, Z) are the coordinates of the variable 
point on the plane). 

Theorem 4. The tangentplane at a regular point (x, y, z) of a surface F(x, y, z) = 
= 0 has the equation 

oF (X - x) + oF (Y- y) + oF (Z - z) = 0 
ax oy oz (9) 

((X, Y, Z) being the coordinates of the variable point on the plane). 

Definition 6. The normal n = n(u, v) to a surface r = r(u, v), at a regular point 
(u, v), is the unit vector with its starting point at (u, v), perpendicular to the tangent 
plane at (u, v) and oriented so that 

[nruru] > 0, 

where [ nr11r"J is the mixed product (scalar triple product) of the vectors n, r,., r" 
{Fig. 9.25). 

Theorem 5. The unit vector n of the normal to the surface x = x(u, v), y = 
= y(u, v), z = z(u, v) is 

(10} 
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where 
E _ _ (ax)2 (ay)z (az)z - ru. ru - - + - + - ' 

ou ou ou 

F = ru. r., = ox ox + oy oy + oz oz' 
ou ov ou OV ou ov 

(11) 

n 

Fig. 9.25. 

REMARK. 6. At a regular point of a surface the relation D2 = EG - F2 > 0 
always holds. The expression 

D = ..}(EG- F2) = jru X r.,j = [nrur.,J > 0 

is called the discriminant of the surface. We have 

vz = J;: ~I· 
The lengths of the tangential vectors r u and r., to a surface are 

(12) 

{13) 

Theorem 6. The direction cosines (n,., n1 , nz) of the normal n to a surface r = 
= r(u, v), are given by the expressions 

oy oz oz ox ax ay 
- - -
au ' au au ' ou au ' ou 

ay oz az ax ax oy 
- - - -

' ' ' av av av OV ov av 
n,. = 

D ' nJI = 
D • nz = 

D 
{14) 

Theorem 7. The direction cosines of the normal to a surface z = f(x, y) are given 
by the expressions 

-p -q nz= 1 (15) 
n,. = .j(pz + qz + 1) • nJI = .j(pz + qz + 1)' .j(pz + qz + 1) 

(where p = ozfox, q = ozfoy). 
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Theorem 8. The direction cosines of the normal to a surface F(x, y, z) = 0 are 
given by the expressions 

F,. 
n"=-;• 

F n=-2 
y J' 

F. n=-
z J 

(where F,. = oFjox, F1 = oFjoy, F. = oFfoz and J = J(F;, + F; + F;)). 

(16) 

The equations of a normal to the surface F(x, y, z) = 0 at its regular point 
(x, y, z) are 

X-x Y-y Z-z 

F,. F., 
(17) 

((X, Y, Z) being the coordinates of the variable point on the normal). 

REMARK 7. The direction ratios of the normal to a surface F(x, y, z) = 0, or 
z = f(x, y) are (F,., F1 , F.), or (offox, offoy, -1), respectively. 

Example 1. If we choose the spherical coordinates u and v (polar coordinates in 
space) (Fig. 9.26) for the representation of a spherical surface of radius r with its 
centre at the origin of the cartesian coordinate system, then the equations 

x = r sin u cos v , y = r sin u sin v , z = r cos u 

( 0 ~ U ~ 1t, 0 ~ V < 21t) 

z 

Fig. 9.26. 

(18) 

are the parametric equations of this spherical surface. The geometrica1 interpretation 
of the parameters u and v may be seen in Fig. 9.26. The net of the coordinate curves 
is formed by the parallel circles (u-curves) and the half-meridians (v-curves) of the 
spherical surface. For the vector ru (the direction of the tangent to a meridian) and 
the vector r., (the direction of the tangent to a parallel circle), at the point (u, v), we 
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obtain from (18) (for the sake of clarity we use here the notation a = {:~ instead of 
a3 

a = (a1, a2, a3)) 

{ 
r cos u cos v , { - r sin u sin v , 

ru(u, v) = r c~s u sin v, rv(u, v) = r sin u cos v, 
-r sm u, 0 0 

For the direction ratios of the vector of the normal we obtain 

{
r 2 sin2 u cos v, {sin u cos v, 

2 0 2 0 0 0 0 

r u x r v = r s~n u s1n v , Ioeo n = stn u sm v , 
r2 sm u cos u , cos u 

and, using (18), we obtain the equation of the tangentplane at the point (u, v) in the 
form 

X sin u cos v + Y sin u sin v + Z cos u - r = 0 0 

Example 2. Let the equations 

x = ucosv, y = usinv, z =f(v) (ue(-oo, +oo), ve(-f7t,!7t)) {19) 

represent a surfaceo By the elimination of u and v from (19) we obtain the explicit 
equation of the surface in the form 

(20) 

\ v-curves 

I 

Figo 9o27o X 

For u = u 0 i= 0 the parametric u-curve is the intersection of the surface (20) and the 
circular cylinder x 2 + y 2 = u~o The equation u = 0 denotes the z-axiso The v-curves 
are the sections of the surface (20) cut by the planes y = x tan v0 and therefore 
constitute the straight lines which intersect the z-axis at right angles (Figo 9o27)o This 



316 SURVEY OF APPLICABLE MATHEMATICS 9.12 

surface (which contains a one-parameter family of straight lines) is a ruled surface 
(in this case a skew surface or a scroll, i.e. a non-developable surface), in fact a right 
conoid. The equation of the tangentplane at the point (u, v) is, by (7), 

X - U COS V, Y - U sin V, Z - f( V) 

cos v, sin v, 0 = 
-u sin v, u cos v, dffdv 

=(X sin v- Ycos v) df + [Z- f(v)] u = 0. 
dv 

In particular, ifwe choose for the function z = f(v), the function z = cv (c =F 0 being 
a real constant), we obtain a right conoid and screw surface, known as a helicoid; 
its equation is 

z = c tan- 1 ~ 
X 

(the u-curves are formed by coaxial helices). At the point (x, y, z) we obtain, from 
(8), the equation of the tangentplane of this screw surface 

cyX- cxY + (x2 + y2 ) Z = (x2 + y2 ) z 

and, from ( 15), the equations of the normallirre 

X-x Y-y Z-z 
--=---=---

cy -cx 

~an~ple 3. I.et 

x = x( u) , y = y( u) , z = z( u) , u E I , (21) 

be the parametric equations of a space curve, all points of which are regular for 
u EI. The equations 

-c ) dx X=XU +v-, 
du 

-c) dy -c) dz y=yu +v-, z=zu +v-
du du 

(22) 

are the parametric equations of the tangent surface (or the tangent developable) of 
the space curve (21). The given curve is called the cuspidal edge, or edge of regression 
ofthis surface. The matrix Jl (see (9.11.2)) isofrank h < 2 for v = 0. The parametric 
curves are on the one hand the curves u = const., i.e. the tangents to the curve (21), 
and on the other v = const., i.e. the curves which have the same distance v, measured 
a1ong the tangent to the given curve, from the given curve (i.e. from the curve v = 0). 
Every point of the given curve is a singular point of the surface (22) (see Fig. 9.28). 
The surface ( 22) which contains a one-parameter family of straight lines ( the u-curves) 
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is a ruled surface, but is developable. The equation of the tangentplane at a regular 
point (u, v) (for which v f:. 0) is 

[ R - ;, d2;: , dr] = o . 
du 2 du 

This equation (which is independent of v) is, however, an equation of the osculating 
plane of the curve r = ;:( u) at its point ( u ). Any tangent plane of the given surface 
is a tangent plane at every point v f:. 0 to a fixed u-curve, i.e. to a definite straight 

Fig. 9.28. 

line on the surface (the so-called generator, or ruling of the surface). The normal 
n to the surface does not change along this straight line and is parallel to the binormal 
b to the given curve at the corresponding point of contact (u, 0). 

Example 4. According to {9), the surface 

xyz = a 3 (a f:. 0 being a real constant) 

has at the point (x, y, z) the tangentplane with the equation 

X +_!'+~=3. 
X y Z 

9.13. Envelope of a One-parameter Family of Surfaces, Ruled Surfaces 
(Torses and Scrolls) 

Definition 1. We say that an equation 

F(x, y, z, c) = 0 (1) 

defines a one-parameter family of surfaces in a domain 0 of the three-dimensional 
space xyz if 
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I. the function F(x, y, z, c) is a continuous function of the variables (x, y, z, c) 
for (x, y, z) E 0 and for c from an interval I, 

2. for every c E 1, equation (1) defines in the domain 0 a certain surface (cf. § 9.11) 
and to every two different values of c EI there correspond two different surfaces in the 
domain 0. 

Definition 2. A surface is said to be the envelope of the family (1) (provided such 
a surface exists) if it touches every surface of the given family, and conversely, if its 
every point (x, y, z) is a point of contact with a surface of the family (1). 

Theorem 1. Let a point (x 0 , y 0 , z0 ) E 0 and a number c0 EI exist such that the 
equations 

( ) aF '( ) F x 0 , y 0 , z 0 , c0 = 0, - x 0 , y0 , z0 , c0 = 0 
oc 

hold. 

Let the function F(x, y, z, c) have continuous partial derivatives 

oF oF oF oF i32F 

ax ' ay ' a;' & ' ac ax 

iPF 

ac ay 

(2) 

(3) 

in a certain neighbourhood of the point (x 0 , y0 , z0 , c0 ). Further at the point 
(xv, Yo• Zo, co). let 

iJ2F 
-#0 
oc2 

(4) 

and let the matrix 

aF oF aF [ -, -] ox oy oz 

i32F iJ2F o2F 
oc ox, ac ay' oc oz 

(5) 

be of rank 

h = 2. (6) 

Then, in a certain neighbourhood U of the point (x 0 , y0 , z0 ) and for c from a certain 
neighbourhood V of the point c0 , there exists an envelope of the family (1). 

REMARK I. The equation of the envelope may be obtained, for example, from the 
equations 

oF F(x, y, z, c) = 0, - (x, y, z, c) = 0 
oc 

(7) 
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by expressing c from the second equation as a function of (x, y, z) and substituting 
into the first equation; by eliminating c we obtain 

F(x, y, z, c(x, y, z)) = 0. (8) 

For a fixed c, equations (7) give the so-called characteristic curve, or simply the 
characteristic, of the family (I), along which the envelope touches the corresponding 
surfaces of the given family. 

REMARK 2. By considering ( 4) and ( 6), we can make a remark, similar to Remark 
9.7.1, on the envelope of a given family of curves. In the next example, the reader 
may verify the fulfilment of the above-mentioned assumptions: 

Example 1. The equation 

(9) 

is the equation of a one-parameter family of spheres, whose centres are on the z-axis 
and whose radii depend on the distance c between the centre of the sphere and the 
origin. Equation (9), together with the second equation (7), 

dr(c) -(z- c) = r(c)-
dc 

(10) 

express ( c being fixed) the characteristic of a sphere from the family investigated. 
By using (9) and (IO), the equation of this characteristic may be expre~sed in the form 

dr{c) 
z = c- r(c)--. 

dc 
(11) 

The first of equations (11) represents a circular cylinder with its axis along the 
z-axis; the second of equations (11) represents a plane which is perpendicular to the 
z-axis, so that the characteristic is a circle lying in this plane and having its centre 
on the z-axis. We obtain the equation of the envelope of the family (9) by eliminating 
the parameter c from equations (II) in the form 

{12) 

which is the equation of a surface of revolution with its axis of revolution in the 
z-axis. lf, for example, r2(c) = 2c - I, equations (11) reduce, after rearrangement, to 

x 2 + y 2 = 2(c - I), z = c - I . 

The equation of the envelope of the family x 2 + y2 + (z - c)2 = 2c - 1 will be 
obtained by the elimination of the parameter c from the two preceding equations, 
in the form 
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this is the equation of a paraboloid of revolution generated by the revolution of the 
parabola 2z = x 2 about the z-axis. 

REMARK 3. Surfaces of revolution are examples of envelopes of a one-parameter 
family of spheres. The characteristics are circles. 

Definition 3. If the equations 

aF 
F(x, y, z, c) = 0 , - = 0, 

oc (13) 

determine a curve, then this curve is called the edge of regression of the given one­
parameter family of surfaces. 

REMARK 4. We also speak of an edge of regression in the case where equations 
{13) define a finite nurober of points. 

Theorem 2. If the edge of regression is a curve, then at each of its points (x0 , y 0 , z0) 

the characteristic corresponding to a parameter c0 and the edge of regression are 
tangential to each other, i.e. every characterütic of the surface of the family is 
a tangent to the edge of regression (at the so-called focal point). 

Theorem 3. If the edge of regression of a one-parameter family of planes is 
a space curve, then this family of planes is formed by the osculating planes of the 
edge of regression and the characteristics are the tangents to the edge of regression. 

Theorem 4. The envelope of a one-parameter family of planes, whose edge of 
regression is a space curve, is the tangent surface of this space curve. 

REMARK 5. The envelopes of one-parameter families of planes are developable 
ruled surfaces. The straight lines of the surface (so-called rulings or generators) 
are the characteristics of the family ( of planes). The tangent surfaces of space curves, 
all cones and cylinders belong to this group. The tangent surfaces of gradient curves 
(Definition 9.8.2) are called the gradient surfaces. All tangent planes of such a sur­
face make a constant angle with a fixed direction. 

REMARK 6. In Examples 9.12.2 and 9.12.3 two substantially different cases of 
ruled surfaces were shown. The ruled surfaces are of great importance in technical 
applications. 

Definition 4. A ruled surface is a surface such that, through every point of it, there 
passes at least one straight line lying entirely on it. 

REMARK 7. We may also represent a ruled surface as a locus of a straight line 
moving continuously in space, i.e. a ruled surface is a one-parameter family of straight 
lines where the corresponding parameter changes continuously through an interval. 
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Theorem 5. The parametric equations of a ruled surface are 

x(u, v) = x(u) + v. a(u), 
y(u, v) = y(u) + v. b(u), i.e. r(u, v) = r(u) + v. p(u), (14) 
z(u, v) = z(u) + v. c(u), 

where x = x(u), y = y(u), z = z(u) are the parametric equations of the so-called 
director curve, and a(u), b(u), c(u) are continuous functions of the argument u 
and determine the direction ratios of the straight lines (so-called rulings or 
generators) on the surface. 

Theorem 6. lf on a ruled surface (14), it is not possible to determine a value of u 
for which the ruling is such that the tangentplanes at the points along that ruling 
form a pencil of planes, the ruled surface is a cylinder, cone, or tangent surface 
of a (space) curve. The characteristic feature of these surfaces is that every tangent 
plane touches the surface along an entire ruling. 

Definition 5. A ruled surface of the type mentioned in Theorem 6 is called a de­
velopable surface or a torse. A ruled surface which possesses a property such that 
the tangent planes at the points along its rulings ( with the possible exception of 
a finite number of rulings called tarsal lines) form a pencil of planes, is called 
an undevelopable ruled surface, a skew surface or a scroll. The ruling of an un­
developable ruled surface is called the tarsal line if it has the same tangent plane at 
all its regular points. 

REMARK 8. Every ruling on a cone, cylinder or tangent surface of a space curve 
(i.e. on a developable ruled surface) is a torsalline. The skew conicoids (the hyper­
bolic paraboloid and the hyperboloid of one sheet) and the helicoid from Example 
9.12.2 serve as examples of skew surfaces that have no torsallines. 

Theorem 7 ( Chasles' Theorem). The tangent planes of a skew surface along its 
rulings form pencils of planes (their axes are the rulings). There is a projectivity 
between the pencil of tangent planes and the range of their points of contact on 
a ruling, i.e. the cross-ratio of Jour tangent planes to a skew surface at points of 
a ruling is equal to the cross-ratio of the points of contact. 

Theorem 8. A necessary and sufficient condition that a ruled surface (14) be 
developable is 

[r, p, f)J = o, (15) 

_,_ dr . dp 
where r = - , p = - . 

du du 

Theorem 9. lf a ruled surface is given by the equations 

x = a(t) z + m(t), y = b(t) z + n(t) 

(a, b, m and n being functions of the same parameter t), then a necessary and 
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sufficient condition that this surface be developable is 

an= bm (ä =da 
dt' 

Theorem 10. The equation 

. dn ) n =-, etc . . 
dt 

9.14 

is the differential equation of developable surfaces (for surfaces expressed by the 
equation z = f(x, y)). 

9.14. First Fundamental Form of the Surface 

Theorem 1. The square of the differential of the arc of a curve u = u(t), v = v(t) 
on a surface r = r(u, v) is given by the formula 

ds2 = E du 2 + 2F du dv + G dv2 = I • (I) 

Definition 1. The quadratic differential form (1) is called the firstfundamental 
(or metric)form of a surface, ds is called the linear element (the element of the arc) 
on the surface and E, F, Gare called thefirstfundamental coefficients (see Theorem 
9.12.5). 

Theorem 2. If qJ is the angle between the curves u = u(t), v = v(t) and ü = ü(t), 
ii = v(t) which lie on a surface r = r(u, v) and pass through any of its regular 
points, then 

Eüfi + F(üb + fiv) + GvÖ (2) 

REMARK I. For the parametric curves of a surface we have that ds2 = G dv2 

(for u = const.) and ds2 = E du2 (for v = const.). 
If the second curve of Theorem 2 is a parametric curve, then 

@+n n+~ 
cos qJ = or cos qJ = ----,--.,---------

.j(E) .j(Eü2 + 2Füv + Gv2) .j( G) .j(Eü2 + 2Füv + Gv2 ) 

(3) 
for ii(t) = ii0 or ü(t) = ü0 , respectively (the curve is oriented in the sense of the 
increasing parameter ). If the curves of Theorem 2 intersect at right angles, then 

(Edu + Fdv)dü + (Fdu + Gdv)dii = 0. 

Theorem 3. For the angle made by a parametric v-curve with a parametric u-curve 
(in this order) the following relations hold: 
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cos qJ = .J(~G), sin qJ = .j(~G) (D = .j(EG - F 2)). (4) 

Theorem 4. A necessary and sufficient condition that the parametric curves 
intersect at right angles at every point of a surface, i.eo, that the parametric net 
on a surface be orthogonal, is 

F(u, v) = 0 (identically) o (5) 

Example 1. For a sphere (Example 901201, po 314) 

x = r sin u cos v , y = r sin u sin v , z = r cos u 

we obtain (using (9o12oll)) 

E = r2 , F = 0, G = r2 sin2 u 0 

Hence the metric form is 

and this relation holds for the element of arc of every curve on the sphereo A curve 
which makes a constant angle qJ (0 < qJ < f7t) with the meridians of a sphere is called 
a loxodrome on the sphere (Figo 9o26)o Its equation in the coordinates u and v is 

u 
v + tan qJ In tan- = c (c being a real constant). 

2 

The length of its arc s is given by 

s = r JJ[I + sin2 u (::)]du. 

By differentiation of the equation of the loxodrome we obtain its differential 
equation 

dv -tan qJ 

du sin u 

and for the length of arc s, eog. between u = i1t and u = f7t 

s = r .j(I + tan2 ({J) du = r .J(1 + tan2 ({J). [u]:~~ =- .j(I + tan2 ({J) 0 f"/2 1tr 

~4 4 



324 SURVEY OF APPLICABLE MATHEMATICS 9.14 

Theorem 5. The area of the parallelogram, two adjacent sides of which are 
tangent vectors of the surface, is (Fig. 9.29) 

dP = D I du, dv I· 
dü, dii 

Fig. 9.29. 

(6a) 

Definition 2. The expression (6a) for dP is called the element of area ofthe surface 
r = r(u, v). 

REMARK 2. If for the tangent vectors of Theorem 5 we choose the tangent vector 
of parametric curves (Fig. 9.29), then equation (6a) reduces to 

dP = D du dv. (6b) 

The area of a region of a surface x = x(u, v), y = y(u, v), z = z(u, v), over a 
domain 0, may be found by evaluating the double integral 

P = fL v'(EG- F2 ) du dv. (7) 

REMARK 3. For a surface z = z(x, y) we obtain the firstfundamental coefficients 
in the form 

E = 1 + (oz)2· F = ~ ~' G = 1 + (oz)2· 
ax ax oy oy 

the discriminant D = y'[l + (ozfox)2 + (ozfoy)2 ] and the element of area 

dP = J[l + (!:Y+ G;)]dxdy = v'(I + p2 + q2)dxdy. 

For the differential ds of the arc of a curve on the surface z = f(x, y), we 
obtain 
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9.15. Second Fundamental Form of the Surface, Shape of the Surface 
with Respect to its Tangent Plane 

Theorem 1. Along a curve u = u(s), v = v(s) (s being the arc of the curve) on the 
surface r = r(u, v) the following equation holds: 

- dr . dn = L du 2 + 2M du dv + N dv2 = II , {I) 

where 

(nu = onfou, n" = onfov, and n is the unit normal vector of the surface). 

Definition 1. The form {I) is called the second fundamental form of the surface, 
while the coefficients L, M, N are called the second fundamental coefficients of the 
surface. 

Theorem 2. The following relations hold: 

where 

o2r 
r =--

uu ouov' 

Theorem 3. For a surface z = f(x, y) we have 

Definition 2. A regular point of a surface at which 

oz 
q = -). 

oy 

(3) 

(4) 

LN- M 2 > 0 or LN- M 2 = 0 or LN- M2 < 0 (5) 

is called an elliptic, parabolic or hyperbolic point of the surface, respectively. 

Theorem 4. In a sufficiently small neighbourhood of a regular point P which is 
an elliptic, or hyperbolic point, the surface lies on one side, or on both sides of the 
tangent plane -r at P, respectively. The tangent plane -r at an elliptic, parabolic 
or hyperbolic point P of a surface cuts the surface in a curve for which the point 
P is a double point with imaginary conjugate, real coincident, or real distinct 
tangents, respectively (Fig. 9.30). 
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REMARK 1. lf a surface is given by the equation z = f(x, y), then at an elliptic 

point /,.,,f" - r;y > 0, at a hyperbolic point fxx/yy - r;y < 0, and at a parabolic 
point fxxf.n - {;7 = 0. Developable surfaces have only parabolic points (with the 
exception of singular points ). 

Example 1. Every point of an elliptic paraboloid is elliptic; a hyperbolic paraboloid 
and a skew helicoid consist exclusively of hyperbolic points. 

Fig. 9.30. 

REMARK 2. The directions dvfdu of the tangent vectors at a point of a surface 
which are tangent vectors of the section of the surface by the tangent plane at this 
point, are called the asymptotic directions and they satisfy the equation 

L du 2 + 2M du dv + N dv2 = 0 . (6) 

If the equation of a surface is of the form z = f( x, y ), then equation ( 6) for the asymp­
totic directions reduces to 

fxx + 2/,.7k + / 77k2 = 0 (k = dy). 
dx 

9.16. Curvature of a Surface 

(7) 

Theorem 1. All curves on a surface which pass through a regular point P of the 
surface and have the same osculating plane at P have also the same curvature at P. 
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REMARK 1. The radius of curvature of the curve ofthe section cut by a plane passing 
through a point P of the surface r = r( u, v) is 

E du 2 + 2F du dv + G dv2 n 
r = cos~ 

1Ldu2 +2M du dv + N dv2 l 
(II =1= 0; cf. Theorem 9.15.1) (1) 

( 8 being the angle between the plane of section and the normal to the surface at P; 
Fig. 9.31). Formula (1) also holds for space curves on the surface (in this case we 

" 

Fig. 9.31. 

consider the corresponding osculating plane in place of the plane of section). A curve 
cut on a surface by a plane that contains a normal to the surface is called a curve of 
normal section (Fig. 9.31). 

Theorem 2 (Theorem of Meusnier). A curve of section passing through a regular 
point P on a surface, has at P a radius of curvature which is the orthogonal projec­
tion of the radius of curvature R,. of the curve of normal section (into the osculating 
plane of the first curve at P), while both curves of section have a common tangent 
line at P (Fig. 9.31, schematic), i.e. 

r = R,. cos 8. (2) 

REMARK 2. The circles of curvature of all the curves of section on a surface, 
through a regular point P and with the same tangent line t at P, lie on a sphere of 
radius R,. (the radius of curvature ofthe curve ofnormal section through the common 
tangent t) with its centre on the normal to the surface at P. Theorem 2 holds also for 
space curves on a surface. 

REMARK 3. If, for example, we consider a regular point P of a surface of revolution 
(Fig. 9.32, schematic), then the centre of curvature S of the curve of normal section 
lying in the plane through the tangent line to the corresponding parallel circle at P 
is on the axis of the surface. 
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REMARK 4. The normal curvature 1/R in a given direction at a point P of a sur­
face r = r(u, v) is 

1 L du2 + 2M du dv + N dv2 

R E du2 + 2F du dv + G dv2 
(8 = ±I); 

Rn 

8 (3a) - = 

lo 

Fig. 9.32. 

if a surface is given by an equation z = f(x, y), then the following relation holds 
for the radius of curvature of a curve of normal section at a point of the surface: 

R - .j(pz + qz + I) 
8 n- 2 2 

fxx COS IX + 2/xy COS IX COS ß + J." COS ß 
(3b) 

(where oc, ß are the angles which the tangent of the curve of normal section at the 
point considered mak:es with the axes x and y ). 

If a regular point P of a surface z = f(x, y) is the origin of the coordinate system 
and the normal to the surface at the point P is the z-axis (i.e. the tangent plane of the 
surface at P is the coordinate plane xy), then the expression for the curvature of 
a curve of normal section at P is of the form 

!.._ = C!xx)o cos2 cp + 2(/x,)o sin cp cos cp + (!.,.,)0 sin2 cp (4a) 
Rn 

or 

~ = -!-C!xx + f 11)o + t(fxx - f,.,)o COS 2cp + (/x.,)o sin 2cp (4b) 
Rn 

( cp being the angle between the tangent vector of the curve of normal section at P 
and the x-axis ). 

Theorem 3. Among the curves of normal section at a point P of a surface there 
exist at least two curves in mutually perpendicular planes such that the normal 
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curvature of one curve has a maximum value and that of the other curve a minimum 

value at P. 

Definition 1. The curves of normal section of a surface for which the corresponding 
normal curvatures have extreme values are called the principal curves of normal 

section, and their radii of curvature R1 and R 2 the principal radii of curvature, at 
the point considered on the surface. 

Theorem 4 (Euler's Theorem). The curvature I/Rn of a curve of normal section 

at a regular point of a surface is given by the formula 

1 cos2 (j sin2 (j 
- = -- + -- (e = ± 1) 
Rn eR1 eR, 

(5) 

(b being the angle between the plane of the curve of normal section and the plane 

of the.first principal curve of normal section). 

REMARK 5. Let us introduce in the tangent plane at a point P of a surface, carte­
sian Coordinates such that the x- or y-axis is in the tangent line of the first, or second, 
principal curve of normal section at P, respectively. lf the point P is elliptic, hyper­
bolic, or parabolic (in this case, Iet the curvature of the second curve of normal 
section be equal to zero ), Iet us construct, in the tangent plane at P, the ellipsc, two 
hyperbolas, or two parallel straight Iines given by the equations 

(Fig. 9.33). 

Fig. 9.33. 

x2 
or - = 1 , respectively, 

Rl 

p.direcfion y 

(6) 

Then the Iength of radius vector (} of each point of the ellipse, hyperbolas, or the 
straight lines is the square root of the radius of curvature of the curve of normal 
section whose plane passes through the radius vector (} at the point P. The angle (j 

between (} and the first principal direction is the angle (j from equation ( 5). 
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Definition 2. The ellipse, two hyperbolas, or two parallel straight lines ( 6) in the 
tangentplane at a point of a surface is called the indicatrix of Dupin. 

Definition 3. An elliptic point of a surface for which R 1 = R 2 is called an um­
bilical point, an umbilic, or a circular point of the surface. 

REMARK 6. The indicatrix of Dupin at an umbilical point of a surface is a circle. 
Spheres are the only surfaces which have every point an umbilic. 

Theorem 5. The following relations hold: 

1 1 LN- M2 1 1 EN- 2FM + GL 
±-·- = 2 • - +- = (s = ± 1). (7) 

R 1 R 2 EG - F sR1 sR2 EG - F 2 

The principal radii R1 and R 2 are the roots of the equation 

(EG - F2 ) _!_ - (EN - 2FM + GL) _!_ + (LN - M 2) = 0. (8) 
R2 R 

Definition 4. The product 

K = + _!_ • _!_ = LN - M2 W 2 

- R 1 R2 EG - F 2 D 2 
(9) 

of the principal normal curvatures 1/sRto 1/sR2 at a regular point of a surface is 
called the total curvature or the Gaussian curvature at the point of the surface. 

The average 

H =! (-1- + _1_) = EN - 2F~ + GL (s = ± 1) 
2 sR1 sR2 2D 

(10) 

of the principal normal curvatures 1/sR1, 1/sR2 of a surface at a regular point is 
called the mean curvature of the surface at the point considered. 

Theorem 6. The average of the normal curvatures of two curves of normal 
section in mutually perpendicular planes at a point of a surface is constant, and 
equal to the mean curvature of the surface at that point. 

REMARK 7. At a regular point P of a surface z = f(x, y), the Gaussian or mean 
curvature at P is given by the formula 

or 

respectively. 

K = fxx/yy - (;y 
u; + Ji + 1)2 

H =! (1 + J;)fxx- 2/Jy/xy + (1 + J;)fyy 
2 u; + J; + 1)3'2 • 

(11) 

(12) 
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REMARK 8. If P is an elliptic, parabolic or hyperbolic point of the surface, then 
K > 0 (i.e. LN - M 2 > 0), or K = 0 (i.e. LN - M 2 = 0 or at least one of the 
principal curvatures is zero ), or K < 0 (i.e. LN - M 2 < 0), respectively. For de­
velopable surfaces (and for planes) K = 0 identically, and conversely. For so-called 
minimal surfaces the equation H = 0 holds identically. 

9.17. Lines of Curvature 

Definition 1. A curve on a surface whose tangent line at every point lies in the 
principal direction on the surface (Definition 9.16.1) is called a line of curvature. 

Theorem 1. The differential equation of the lines of curvature is of the form 

(LF- ME) du 2 + (LG- NE) du dv +(MG- NF) dv2 = 0. {1) 

REMARK 1. Through a regular (not umbilical) point of a surface there pass two 
reallines of curvature intersecting at right angles. The lines of curvature constitute 
an orthogonal conjugate net on a surface. 

Theorem 2. A necessary and sufficient condition for a point of a surface r = 

= r(u, v) to be an umbilical point is 

L = 2E, M = 2F, N = )..G (2 =/= 0). (2a) 

If a surface is given by an equation z = f(x, y), then the equations 

(2b) 

express the conditions for an umbilical point of the surface. 

REMARK 2. For the radii of curvature of curves of normal section at an umbilical 
point of a surface z = f(x, y) the following relation holds: 

Rn = 1 + J; .J(l + f~ + J;) • 
fxx 

(3) 

Theorem 3. A curve on a surface is a line of curvature of the surface if and only 
if the ruled surface of normals to the surface at points of the curve is a developable 
surface. 

REMARK 3. Every curve on spheres and planes is a line of curvature. 
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9.18. Asymptotic Curves 

Definition 1. An asymptotic curve (or asymptotic line) is a curve on the surface, 
to which the tangent line, at every point of it, has asymptotic direction (Remark 
9.15.2). 

Theorem 1. The differential equation of asymptotic curves is of the form 

L du 2 + 2M du dv + N dv2 = 0 . (1) 

REMARK 1. Only the plane has the property that every curve in it is an asymptotic 
curve. 

Theorem 2. Real asymptotic curves exist only on that part of a su1jace where 
all points are hyperbolic (K < 0) or parabolic (K = 0). Through every hyperbolic 
point of a surface there pass two real distinct asymptotic curves. Through every 
parabolic point of a surface there passes exactly one real asymptotic curve. 

Theorem 3. If a curve of section of a surface by its tangent plane has a double 
point at the corresponding point of contact, then the tangent lines of the curve at the 
double point are in asymptotic directions. 

Theorem 4. An asymptotic curve on a surface is a curve such that the osculating 
plane at every point of the curve coincides with the tangent plane of the su1jace 
at the same point. 

REMARK 2. If a surface is given by the equation z = f(x, y), then the equation 

fxx dx 2 + 2f:xy dx dy + JYY dy 2 = 0 

is the differential equation of the orthogonal projection of asymptotic curves of 
the surface oato the coordinate plane xy. 

The curves of normal section of a surfacc which touch an asymptotic curve have 
zero curvaturc at their comrnon point. An asymptotic curve follows a direction of 
zero normal curvature on the surface. Thc tangcnt lines of asymptotic curves at 
evcry point of the surface are identical with the asymptotes of the corresponding 
indicatrix of Dupin. On a ruled surface one family of asymptotic curves is constituted 
by the generators of thc surface. 

9.19. Fundamental Equations of Weingarten, Gaussand Codazzi 

The formulae of the following thcorems give the relations between the vectors 
nu, nv and the vectors ru, rv (onfou = ""' orfou = ru, etc.) corresponding to the 
Frenet formulae of the theory of curves. 



9.19 DIFFERENTIAL GEOME1RY 333 

Theorem 1 (The Weingarten Equations). The following relations exist between 

the vectors n., n" and r., r": 

MF- NE ME- LF 
r. = n. + n.,; w2 wz 

(1) 
MG-NF MF-LG 

r" = n. + n., w2 w2 
(where W 2 =LN- M 2). 

Theorem 2 (The Gauss Equations). The following relations exist between the 

vectors '··· r.", r"" and r., r.,, n (where o2rfau av = r.", etc.): 

GE.- 2FF. + FE" -FE.+ 2EF.- EE., L 
r.,.= r + r"+ n, 

2D2 " 2D2 

GE" - FG. EG. - FE., M 
r." = r. + r., + n, 

2D2 2D2 
(2) 

-FG" + 2GF"- GG. EG"- 2FF., + FG. N 
r""= r+ r+ n 

2D2 " 2D2 " 

(where E. = oEjau, F" = oFfov, etc.). 

The following relations express the mutual dependence of the six functions E, F, G; 
L, M, N which correspond to the same surface: 

Theorem 3 (The Codazzi or Mainardi Equations): 

(EG - 2FF + GE)(L"- M.)- (EN- 2FM + GL)(E.,- F.) + 

II E, E., L 
+ F, Fu, JH = 0, 

I G, c., N 

(EG - 2FF + GE) (M,.- Nu)- (EN- 2FM + GL) (F.,- G.) + 

E, E., L 
+ F, F", M = 0 

G, G., N 

(where Lv = oLjav, Mu = oMjou, etc.). 

Theorem 4 (The Gauss Theorem Egregium). 

1 JE, E., E" 1 ( a E"- F. 
K =-- F F F -- _ _..;;__..o;; 

4D4 j G: G:, G: 2D av D 
_ ~ F"- G·)· 

au D 

(3) 

(4) 
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9.20. Geodesie Curvature, Geodesie Curves and Gradient Curves 
on a Surfaee 

9.20 

Definition 1. The geodesie eurvature k9 of a curve on a surface at a regular point 
P is defined by the relation 

(1) 

( 8 being the angle between the principal normal to the curve and the normal to the 
surface at P and k1 the curvature of this curve at P). 

n 

Fig. 9.34. 

Theorem 1. The geodesie eurvature of a eurve on a surfaee at a point P is equal 
to the eurvature of the orthogonal projeetion of the eurve onto the tangent plane 
of the surfaee at P (Fig. 9.34). 

If a curve r(s) = r(u(s), v(s)) on a surface r = r(u, v) is given, then for its geodesie 
curvature k, the following relation holds: 

Theorem 2. 

(2) 

REMARK 1. If a curve depends on a parameter t different from the arc s, then 

(3) 

holds instead of (2). 

Definition 2. A curve on a surface is called a geodesie eurve, or simply a geodesie 
if at every point of the curve its osculating plane contains the corresponding normal 
to the surface. 
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Theorem 3. A necessary and sufficient condition that a curve on a surface is 
a geodesie is that the geodesie curvature of this curve at every point is zero, i.e. 
k 11 = 0 at every point of the curve. 

REMARK 2. The geodesies on a surfaee thus satisfy the eondition (the differential equa­
tion) 

[r.r •• n] = 0 or [ dr, d2 r, n] = 0. (4} 

A straight line on a surfaee is a geodesie on this surfaee. 

Theorem 4. On the assumption that the curvilinear coordinates on a surface 
constitute an orthogonal net, the differential equation of geodesics on the surface 
can be put in the form 

(5) 

(ds2 = E du2 + G dv2 , 

d<p = [(EG du dv2 - !G dE du dv + !E dG du dv)/"'(EG)] ds2, <p being the angle 
which the geodesie makes with the parametric v-curve at a point of the surface). 

Theorem 5. From among all arcs on a given (properly chosen) part of a surface 
joining two definite points of the surface the shortest arc is on a geodesic. 

REMARK 3. All straight lines on a plane and on a ruled surface are geodesies. The 
helix isageodesie on a eylinder, ete. A geodesie on a surfaee is determined by apoint 
of the surfaee and its tangent line at that point. Through every regular point of a sur­
faee there passes a one-parameter family of geodesies. When a developable surfaee 
is developed upon a plane, the are of every geodesie on the surfaee beeomes a line 
segment in the plane. 

Definition 3. The gradient curves (the curves of greatest slope) on a surfaee are 
the orthogonal trajeetories of the Ievel lines of the surfaee with respeet to a given 
plane. 

Theorem 6. The equation 

(6) 

is the differential equation of the orthogonal projection of the gradient curves of 
a surface z = f(x, y) with respect to the coordinate plane xy, onto this plane. 
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For sequences and series of variable terros see Chapters 15 and 16. 

10.1. Sequences of Constant Terms 

Definition 1. If to every natural nurober n we assign a nurober an (which roay be 
real or complex) and order the nurobers an according to their increasing suffixes, then 
we say that we have forroed a sequence. We denote it by a 1, a 2 , a 3 , •.• , an, ... or 
briefty by { an}• 

Example 1. The relation an = (n - 1)/n defines the sequence 

0,!, t.! ..... 
Definition l. We say that a sequence {an} possesses a (finite) Iimit a (in other 

words: tends to a number a, converges with limit a, is said to converge to a liroit a), 
if, to any arbitrary nurober e > 0, there corresponds a number n0 ( depending in 

1+cr----------------------------------
1 ---------~------------- ----------

1-c 9 9 9 

~--------L---~--~--~----~--~--
0 1 2 3 4 5 6 ;r n Fig. 10.1. 

general on the choice of the nurober e), such that !an - ai < e holds for every 
n > n0 (Fig 10.1). We then write 

lim an= a. 
n-+oo 

(When dealing with sequences, it is customary to write simply n --+ oo rather 
than n -+ + co.) 
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REMARK 1. Roughly speaking: A sequence {an} possesses a Iimit a if the number 
a" "approaches closer and closer" to the number a as the suffix n increases. 

Definition 3. When a sequence possesses a (finite) Iimit, it is said tobe convergent. 
Otherwise it is said to be divergent. 

Theorem 1. A sequence { a"} can have at most one Iimit. 

Definition 4. We say that { a"} diverges to + oo (has an infinite limit + oo, is 
definitely divergent with the Iimit + oo ), if, for any arbitrary number K, there exists 
a number n0 ( depending on the choice of the number K), such that a" > K for every 
n > n0 • We then write 

lim a" = +oo. 
n-+co 

A corresponding meaning holds if we write 

lim a" = -oo. 
n-+co 

Example 2. The sequence given in Example 1 is convergent and the number 1 
is its Iimit. For any given e > 0, it is sufficient to choose as n0 any number greater 
than 1/e (Fig. 10.1 ). For, if n0 > 1/e and n > n0 , then 

I ln-1 I 1 l a" - 11 = -- - 1 = - < - < e. 
n n n0 

Example 3. The sequence defined by the relation a" = 2" (i.e. the sequence 2, 4, 
8, ... ) diverges to + oo, i.e. 

lim 2" = +oo. 
n-+co 

Example 4. The sequence 0, I, 0, I, 0, 1, ... is divergent (its terms do not tend 
to any (single) number). As a rule, sequences ofthistype are said to oscillate. 

Theorem 2. A sequence {a"} is convergent if and only if it fulfils the following 
(Bolzano-Cauchy) condition: Given any (arbitrarily small) number e > 0, there 
exists a number n0 (depending on the choice of the number e) such that the relation 
lam - a"j < e is valid for every pair of numbers m, n, such that m > n0 , n > n0 • 

Theorem 3. If {a"}, {b"} are convergent sequences such that 

lim a" = a , lim b" = b , 
ra-+co n ..... oo 

then 

lim (a" ± b") = a ± b, lim ka" = ka (k a constant), lim ja"j = Iai, 
n-+ CO n-+co n-+co 

lim a"b" = ab , lim a" = ~ for b =I= 0 . 
n-oco n-+co b11 b 
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(Thus each of the sequences mentioned above is convergent. In the last case, we omit 
from the sequence {a./ b.} the terms with suffixes for which b. = 0 and of which 
there are a finite number, because b i= 0.) 

Example 5. Find 

1. 2n 2 - n + 1 
Im -,--------

n-+oo 7n 2 - 5n + 2 

Because the sequences {an} (in the numerator) and {b.} (in the denominator) are 
divergent, we cannot apply Theorem 3 directly. However, for every n 

so that 

because 

2n2 - n + 1 

7n 2 - 5n + 2 

1 1 
2-- +­

n n2 

5 2 
7--- +-

n n2 

1 1 
2-- +-

lim 2nz - n + 1 = lim n nz 2 
n-+oo 7n 2 - 5n + 2 n-+oo 5 2 7 

7-- +-
n n2 

lim ..!_ = 0 and lim ~ = 0 . 
n-+oo n n-+co n 

REMARK 2. Theorem 3 can be generalized to cases where the sequences {an}, { b.} 
diverge to + oo or - oo. lf, for example, 

lim an = + 00 and lim bn = - 00 
n-+ oo n-+oo 

then 

lim (a. - bn) = + oo and lim anbn = - oo . 
n-+ oo n-+ oo 

But we cannot apply the theorem directly when the computation Ieads to so-called 
indeterminate expressions of the type oo - oo, 0 . oo or oo / oo. 

Theorem 4. Let 

lim a. = a , lim b. = a 
n-+oo n-+oo 

and let { cn} be a sequence such that an ~ cn ~ bn holds for every n. Then 

lim cn = a. 
n-+ oo 
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REMARK 3. In other words: If a sequence { cn} lies between two con vergent 
sequences {an} and { bn} which have the same limit, then { cn} is also convergent and 
has this same limit. 

Theorem 5. Let {an} be a sequence of complex numbers and for every n let 

an = rx" + ißn, where rx", ß" are real. Then {an} is convergent if and only if both 

sequences { rxn} and {ß"} are convergent. Moreover, the relation 

lim an = lim rxn + i lim ßn 
n-+ co IJ-+ CO 

holds. 

Theorem 6. Let lim an = a, lim b" = b. If, for every n, an ~ b11 , then a ~ b. 
n-cx;:~ n-+oo 

REMARK 4. If a" < b. for every n, then we cannot conclude that a < b, but only 
that a ~ b. For example: 

{a"} = {21n}, {b.} = {;J. 
Then a" < b" for every n, but a = b = 0. 

Definition 5. Let us consider the sequence {a"}. A sequence {akJ, where k" are 
positive integers, such that k1 < k 2 < k 3 < ... , is called a sub-sequence of the 

sequence { a"}. 

Example 6. lf, for the sequence 0, 1, 0, 1, 0, 1, ... , we choose k1 = 2, k 2 = 4, 
k 3 = 6, ... , we obtain the sub-sequence 1, 1, 1, .... 

Example 7. Let us form a sub-sequence of the sequence {a"} = {(n- 1)/n} in 
such a way that we take only every third term, i.e. k1 = 3, k 2 = 6, k 3 = 9, ... Then 
the resulting sequence is 

2 5 8 
3• 6• 9• .... 

Theorem 7. If lim a" = a, then lim ak" = a also. 
n-+co 

REMARK 5. The converse of the Theorem is not true. If a sub-sequence is con­
vergent then the original sequence need not be convergent. For example, the sequence 
0, 1, 0, 1, 0, 1, ... from Example 6 is divergent but its sub-sequence I, I, I, ... is 
convergent. 

Definition 6. A sequence { a"} is said to be bounded above, or bounded below, or 
bounded if there exists a finite number K 1, or K 2 , or M, respectively, such that 

a" < K 1 , or a" > K 2 , or la"l < M, respectively 

for every n. 
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Definition 7. A number d is called a point of accumulation or limiting point 
of a sequence {an} if an infinite number of terms of the given sequence lie 
in every arbitrarily small e-neighbourhood of the point d (i.e. in the interval (d - e, 
d + e)). (The term cluster point is also used.) 

Theorem 8 (The Bolzano-Weierstrass Theorem). Every bounded sequence {an} 
possesses at least one limiting point. There always exist (even when there are 
infinitely many limiting points) a greatest limiting point and a least limiting 
point; we denote them by: 

lim sup an or Iiiii an ' lim inf an or tim an' 
n-+co n-+co n-+co n-+co 

respectively. 

REMARK 6 The expression 

lim an= +oo' 
n-+«> 

which is occasionally to be found in the literature, stands for the assertion "However 
large a number K be chosen, the sequence {an} always possesses infinitely many terms 
suchthat an > K." The expression 

has a corresponding meaning. For example, for the sequence an = ( -n)" the rela­
tions 

Iiiii an = + 00 ' tim an = - 00 
n-+ co n-+ co 

hold. 

Theorem 9. The sequence {an} is convergent if, and only if, the numbers Iiiii an 
n-+«> 

and lim an arefinite and 
n-+«> 

Iiiii an = tim an ' 
n-+oo n-+oo 

i.e. if the sequence {an} possesses one and only one limiting point (which is not 
infinite). 

Exam.ple 8. The sequence 0, 1, 0, 1, 0, 1, ... in Example 4 possesses two limiting 
points: the point 0 and the point 1. Thus 

Um an = 1 ' lim an = 0 . 
n-.oo n-+co 

Then the fact that this sequence is not convergent follows from Theorem 9. 
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Definition 8. A sequence is said to be 

strictly increasing } 
strictly decreasing if, for every n, 
decreasing 
increasing 

an+l > an 

an+1 < an 

an+l ~an 
an+1 ~an. 
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All such sequences will be referred to as monotonic sequences, the first two as 
strictly monotonic sequences. 

Theorem 10. Every increasing ( and thus every strictly increasing) sequence which is 
bounded above possesses a Iimit (equal to the l.u.b. of all the values an)· Similarly 
every decreasing (and thus every strictly decreasing) sequence which is bounded 
below is convergent (and its limit is equal to the g. l. b. of all the values an)· 

Theorem 11. The sequences 

( 1)n+l 
bn = 1 +­

n 

(the former being strictly increasing, and the latter strictly decreasing) possess the 
same limit, the number e (so-called) which is the base of natural logarithms. Thus 

e=lim 1+- =lim 1+- =2·718,281,828,459,0 .... ( l)n ( l)n+l 
n-+co n n-+oo n 

Theorem 12. If a > 0, lim bn = b (bn need not be rational; see § 1.9), then 
n->oo 

lim bn 
lim ab" = a" ... "" = ab . 

Example 9. 

lim '!Ja= 1 (a > 0), because ".ja= a11n and lim .!_ = 0. 
n-+oo n-+co n 

Theorem 13. The sequence 

a 1 , a 1 + d, ... , a 1 + nd, ... , 

called an arithmetic progression, is divergent for every d =f. 0. 

The sequence 

called a geometric progression, has Iimit 0 for lql < 1 and limit a1 for q = + 1; 
if a 1 =f. 0, then for any other value of q this sequence is divergent. 
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REMARK 7. lt is often convenient to replace the calculation of the limit of a se­
quence by the calculation of the limit of a suitable function as x - + oo. If f(x) is 
a function suchthat f(n) = an for every positive integer n, then from the existence 
of the limit lim f(x) = A, it follows that lim an = A. 

x-+ + cx> n-+ co 

Example 10. To calculate 

lim (1 + ~)n 
n-+oo n 

we make use of the function 

Wehave 

while 

f(x) = (~ + ~r· 

( 1 + ~ r = [ eln(l +a/x)r = ex ln(l +afx) ' 

Iim {x In (1 + ~)} = lim 
x-+ + co X x-+ + oo 

In (1 + afx) 
1/x 

1. In (1 + az) 1. a = 1m = 1m --- = a 
z-+0+ z ~-+0+ 1 + az 

(according to I'Höpitai's Rule, Theorem 11.8.1). Because the exponentiai function 
is continuous everywhere we have 

lim x ln(l +a/x) 
lim ex ln(l +afx) = ex-+ + 00 = ea • 

o:-++oo 

Hence 

Iim (1 + ~)n = e0 • 

n-+oo n 

Theorem 14. Survey of lmportant Formulae and Limits 

I. lim (an ± bn) = Iim an ± Iim bn; lim kan = k lim an (k a constant) ; 
n-+oo n-+oo n-+oo n-+oo 

n-+oo n-+oo n-+oo n-+oo n-+oo 

Iiman 
I. an n-+ oo ( ) 1m - = -- Iim bn =I= 0; cf. Theorem 3 . 
n-+oo bn Iim bn n-+oo 

n-+oo 

2. an ~ bn => Iim an ~ Iim bn (Theorem 6) . 
n-+ oo n-+ oo 

n-+oo 
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3. lim ak" = lim a" (Theorem 7) . 
n-+oo n ... al 

4. lim (1 + ~)" = ea for every a; in particular lim (1 + !)" = e . 
n-+oo n n-+oo n 

5. lim a" = 0 for Iai < 1 . 
n-+oo 

6. lim (1 +! + l + ... +.!_-In n) = C = 0·577, 215,664, 9 ... (Euler'sConstant). 
n-+oo n 

7. lim ':jn! = + oo ; Iim" f.]_ = 0; Iim ':jn! = .!_; lim n! = 0. 
" ... <Xl " ... <Xl v nt " ... <Xl n e " ... <Xl n" 

8. lim " ~~~! .j = ..j(2rt) (Stirling's Formula). 
n-+oo n e n 

. m . - = - a zs s ro uct . 9 Ii [ 2 . 4 . 6 ..... 2n ] 2 I 1t (w 11 . , P d ) 
n-+oo 1 . 3. 5 ..... (2n - 1) 2n 2 

10 1. 1" + 2" + ... + n" 1 (k . . . ) 
• 1m = -- a posztzve znteger . 

n-+oo nk+l k + 1 

11. Iim 12 + 32 +52+;··+ (2n- 1)2 = ~. 
n-+oo n 3 

12. lf a" > 0 and lim an+t = a then Iim ".ja" = a also. 
" .... 00 a" n-+ 00 

13 1,, I" then I" a 1 + a2 + ··· + a" 1 • J 1m a" = a 1m = a a so. 
" ... <Xl n-+oo n 

10.2. Infinite Series (of Constant Terms) 

Definition 1. Let the sequence {a"} be given. The symbolical expression 

<Xl 

at + a2 + a3 + ... =La" 
n=l 

is called the (infinite) series corresponding to the given sequence. 
Thesum 

is called a partial sum of the series (1). 

(1) 
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Definition 2. If the sequence of partial sums s1, s2 , s3 , o 0 0 is convergent (see defini­

tion 10o1.3) and possesses a (finite) Iimit s, we say that the series is convergent and 

has the sum So If the sequence {sn} is divergent then we say that the series (1) is 

divergent. 

Example 1. For the so-called geometric series 1 + q + q2 + . 0 0 we have 

If jqj < 1 then 

1 - qn 
Sn = -- (q -:/= 1). 

1 - q 

10 1 
S = liDSn = --, 

n-+oo 1 - q 

so the series is convergento If q = 1 then sn = n, so the sequence of partial sums 

diverges to + oo (see Definition 10ol.4)o (In this case we say that the series has the 

sum + oo.) For q = -1, s1 = 1, s2 = 0, s3 = 1, s4 = 0, ... and, the sequence sn 

having no limit, the series is divergent (we speak of an oscillating series). 

Example 2. The arithmetic series 

a 1 + ( a 1 + d) + ( a 1 + 2d) + •.. 

is divergent when at least one of the numbers a1 , disnot zero. For d > 0 its sum 

is + oo, for d < 0 its sum is - oo. 

Example 3. The series 
1+-!-+t+t+ ... 

(the so-called harmonic series) is divergent (its sum is + oo, see Examples 6 and 7.) 

REMARK 1. Thc problern of deciding whether a given series is convergent or not 

is a very important oneo When wc know that a series is convergent we may (according 

to the definition) determine an approximation to its sum to any desired dcgree of 

accuracy by considering the finite sum of a sufficicntly Iarge nurober of its terms. It is 

for thi~ reason that in the following tcxt we are so concerned with tests for the conver­

gence of infinite series. To determine exactly the sum of a series is generally a difficult 

problcm, and theorems on the differentiation and integration of power series 

(§ 15.4) and on double series (see Remark 14) etco provide an etfective help. 

Theorem 1. For the series a 1 + a2 + a 3 + ... to be convergent it is necessary 

that 
!im an= 0. 
n-+oo 

REMARK 2. This condition is not, however, sufficient for the convergence of 

a given series as wc can sec in the case of the harmonic series in Example 3. 
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Theorem 2 (The Bolzano-Cauchy Condition). A necessary and sufficient con­
dition for the convergence of the series a1 + a2 + a 3 + ... is that, for any given 
e > 0, there exists a number n0 such that for every n > n0 and every positive 
integer p the relation 

hoids. 

Theorem 3. If the series a 1 + a2 + a 3 + ... and b1 + b2 + b3 + ... are con­
vergent with respective sums s and t, then the series whose n-th terms are respectively 
an ± bn and kan (k constant), are also convergent and 

00 00 

l.:(an ± bn) = S ± t, l.:kan = ks. 
n= 1 n= 1 

REMARK 3. For the multiplication of infinite series see Theorems 21, 22 and 24. 
00 00 

REMARK 4. If the series L (an + bn) is convergent then neither of the series L an> 
oo n=l n=l 

L bn need be convergent. For example, the series (1 - 1) + (1 - I) + (I - I) + ... 
n=l 

is convergent as each of its terms is zero but neither the series 1 + 1 + 1 + ... 
nor the series - 1 1 - 1 - . . . is convergent. The series without parentheses 
is also divergent. 

Theorem 4. If the series 

(2) 

CO/Werges, then the series 

(3) 
also convcrges. 

Definition 3 lf the seric<> (2) converges then the series (3) is said to be absolutely 
con:;ergent. lf the scrics ( 3) converges but the series (2) does nüt, then the series (3) 
is sJid to be conditionally convergent. 

Example 4. The series whose n-th term is 

(that is the scries 

( ·- l )" + 1 
an=----

11 

1 -l+l-l+ ) 2 3 4 •• •. ' 

(4) 

converges (see Example 9), but the corresponding series of absolute values (2), that is 

1+-!+t+ ... 
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is the harmonic series (see Example 3) which is divergent. Hence the series 

I-!+t--1:+ ... (5) 

is conditionally convergent. 

Theorem 5. If (I) is absolutely convergent then every series that arises from the 
series (I) by a rearrangement of its terms (i.e. by a change of the order of its terms) 
is also absolutely convergent and possesses the same sum. 

Theorem 6. lf (I) is conditionally convergent then we can obtain from (I), by 
a suitable rearrangement of its terms, a series converging to any given value, 
or even one which diverges. 

Theorem 7. If we remove from an infinite series a finite number of its terms 
we change in general the sum oj the series, but alter nothing regarding its con­
vergence or divergence. 

REMARK 5. If we omit in a given series the terms with value zero (finite or infinite 
in number) then we change neither the convergence nor the sum of the series. We 
can thus suppose in the following exposition that the series considered have no zero 
terms, so that instead of series with non-negative terms we need consider only series 
with positive terms. This is important in particuiar in the case of d' Alembert's Ratio 
Test (Theorem I3) where the term a,. occurs as a divisor. 

Theorem 8. A series of positive terms converges if and only if the sequence s,. 
of its partial sums (see Definition I) is bounded above. 

REMARK 6. When we say that the terms a,. of a given series have some property for 
almost every n, then we mean that they have that property for all n with the exception 
of a finite number of terms at most. For example, if the relation a,. < a,. + 1 holds for 
almost every n, it means that this inequality fails for a finite number of indices n 
at most. 

Theorem 9 ( Comparison Test). Let 

(6) 

(7) 

be two series of positive (Remark 5) terms and suppose a,. ~ b,.jor almost every n 
(Remark 6). Then, from the convergence of the series (7) follows the convergence 
of the series ( 6), while from the divergence of the series ( 6) follows the divergence 
of the series (7). 

{A series such as (7) is called a majorant of the series (6).) 
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Theorem 10. Let ( 6), (7) be two series of positive terms and K =I= 0 be a finite 
number. lf the Iimit 

lim a,. = K 
n-+oo b,. 

exists then both the series (6), (7) are simultaneously either convergent or divergent. 

Theorem 11. If the series of positive terms a1 + a2 + a3 + ... is convergent and 
eh c2 , c3, ... are positive numbers, for which c,. < A for almost every n (A being 
a constant) then the series 

is also convergent. 

Theorem 12. lf a 1 + a2 + a 3 + ... , b1 + b2 + b3 + .. . are two series of 
positive terms, the latter being convergent, and if 

for almost every n (Remark 6), then the former of these series is also convergent. 

Theorem 13. Let a 1 + a2 + a3 + ... be a series of positive terms. If 

lim "Ja,. = l and <Il 
n-+oo 

lim "Ja,. = l and > 1 
n-+oo 

lim an+l = k and k < 1 
n-+oo a,. 

r an+l k lffi--= and k > 1 
n-+oo a,. 

lim n (~ - 1) = m and m > 1 
n-+oo an+l 

then 
theseries 
is 

r convergent } 
(Cauchy's Root Test). 

divergent 

(d'Alembert's Ratio 
convergent } 

Test). 
divergent 

lim n (~ - 1) = m and m < 1 J 
n-+oo a,.+ 1 

convergent } 

(Raabe's Test) . 

l divergent 

REMARK 7. Some statements of Theorem 13 are valid under more general as­
sumptions. In particular, for a given series tobe convergent, it is sufficient that one 
of the relations 

ITiii "Ja,. < 1 , Iiiii a,.+ 1 < 1 
n-+ 00 n-+ CIC a11 
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(Theorem 10.1.8) holds. On the other hand, if ~an ~ 1 or a,.+ 1/an ~ 1 for almost 
every n, then the series is divergent. 

REMARK 8. The tests of Cauchy and d' Alembert are inconclusive when l = 1 and 
k = 1, respectively. For Raabe's test we have the result: "If the relation 

n(~ -1) ~ 1 
an+l 

holds for almost every n, then the series diverges". Using Cauchy's test we can often 
conclude that a series converges, even when d' Alembert's test fails (but not vice 
versa). If Cauchy's test fails, it is often possible to reach a conclusion with the help 
of Raabe's test: 

Example 5. For the series I ~ neither d'Alembert's nor Cauchy's Test gives 
n=l n 

a conclusion. Using Raabe's test we have 

lim n (~ - 1) = lim n [( n +2 
1 )2 - 1] = lim (2 + .!_) = 2 , 

n-+oo an+l n-+oo n n-+oo n 

so the series is convergent. 

Example 6. According to Remark 8 we can conclude that the harmonic series 

I ~ is divergent, because n (~ - 1) = n (n + 1 - 1) = 1 for every n. 
n=l n an+l n 

Theorem 14 (Integral Test). Let f(x) be a non-negative decreasing function 
defined in an interval [ a, oo) (a > 0) such thatf(n) = a11 for every positive integer n. 
Then the series a 1 + a2 + a 3 + ... and the integral f;;' f(x) dx both converge or 
both diverge. 

Example 7. Let us find for which a > 0 the series 

1 1 1 
1+-+-+-+ ... 

2rz 3rz 4rz 
(8) 

converges (for a ~ 0 it is evidently divergent). In Theorem 14 Iet us choose 
f(x) = 1/xrz. The integral 

is convergent if and only if a > 1 (see Theorem 13.8.9, p. 529). Thus, by Theorem 14 
the series (8) is convergent for a > 1 and divergent for a ~ 1. (In particular, from 
this result it follows that the harmonic series diverges, since a = 1 in this case.) 
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Theorem 15 ( Cauchy's Theorem). Let a 1 + a2 + a3 + ... be a series of positive 
decreasing terms (a" ~ a"+ 1 ~ ••• > 0) and c be a positive integer such that 
c > 1. Then the given series and the series 

both converge or both diverge. 

Example 8. Let us find for which rt. ~ 0 the series 

1 1 1 ... 1 
--+--+--+ ... =2:;--
2In'"2 3In'"3 4In'"4 n•2nln•n 

(9) 

converges. (For rx < 0 the series is evidently divergent; it is sufficient to compare it with 
the harmonic series.) The conditions of Theorem 15 are fulfilied, so Iet us choose c = 2. 
By Theorem 15 our series converges if and only if the series 

with the generat term 

1 1 1 
---=--
(k In 2)'" In'" 2 · k'" 

converges. According to Exampie 7 the series with the general tenn 1/k• converges if 
and only if rt. > 1. Thus the series (9) converges for a > 1 and diverges for IX ~ 1. 

REMARK 9. The criteria (tests) expressed in Theorems 13-15 arevalid for series 
of positive (Remark 5) terms. For other series they are useful because we can prove 
the convergence of the series ( 3) on the basis of Theorem 4 by proving the convergence 
of the series (2) for which our tests are applicable. From the divergence of the series 
(2) the divergence of the series (3) does not follow. Let us remark, however, that 
from the relations 

follows not only the divergence ofthe series (2) but also the divergence ofthe series (3). 
Theorems on differentiation and integration of power series provide further 

effective means for investigating the convergence (and also for finding the sum) of 
many series (§ 15.4). 

... 
REMARK 10. The series 2: a" of complex terms a" = cx" + iß" (rt.n, ß" real) is con-

n=t CIO CIO 

vergent if and only if both series 2:; IX", L ß" converge (and then 
n=l n=l 

CIO 00 CIO 

L a" = 2: IX" + i L ß") . 
n=l n=l n=l 
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To prove the convergence of a series of complex terms we can often with advantage 
use Theorem 4 on absolute convergence and so transform the problern to the in­
vestigation of the convergence of a series with positive terms. 

Definition 4. A series 

(IO) 

(with alternating positive and negative terms) is called an alternating series. 

Theorem 16 (Leibniz's Rule). If, for the series (IO), the relations 

hold, then the series (IO) is convergent. The absolute value of the difference s - Sn 

between the sum s of this series and the partial sum sn is less than or equal to the 
number an+ 1 and this difference has the same sign as the (n + I)-th term in the 
series (IO). 

Example 9. By Theorem I6 the alternating series 

I-t+t-t+ ... 

is convergent. lf we consider, for instance, the first eight terms, then 0 < s - s8 < ~· 

Theorem 17 (Dirichlet's Test). Let two sequences {an}, {bn} be given, where {bn} 
n 

is a monotonic sequence (Definition I0.1.8) such that Iim bn = 0. If I L a"j ~ K 
GO n-+GO k=1 

for every n (K constant), then the series L a"b" is convergent. 
k=1 

Theorem 18 (Abel's Test). Let two sequences {an}, {bn} be given, where {bn} is 
Cl() Cl() 

bounded and monotonic. If the series L ak converges, then the series L a"b" is also 
""' 1 /c= 1 

convergent. 

Example 10. Let b1 ~ b2 ~ b3 ~ ••• ~ 0 and lim bn = 0. Then the series 
n-+oo 

b1 sin x + b2 sin 2x + b3 sin 3x + ... (11) 

is convergent for every x: If x = 2k1t (k integral), the sum of the series is zero. For 
X :fz 2k1t 

. . 2 . sin tnx . n + I 
a 1 + a2 + ... +an= sm x + sm x + ... + sm nx = -.-- sm -- x 

smtx 2 
(see Theorem 25), so 

L < I I n I I I I 
k=1a" = sin!x I 



10.2 SEQUENCES, SERIES, INFINITE PRODUCTS 351 

for every n, and the convergence of the series (11) for every fixed x :F 2krt follows 
from Theorem 17. 

DefinitionS. Let us consider the "two-dimensional" array of (real or complex) 
numbers 

The expression 

au, a12• at3• a14• ···, 

a21o a22• a23• a24• • · • , 

a31• a32• a33• a34• • · · • 

lim am" = a 
m-+co 
n-+co 

(12) 

means: "For an arbitrarily chosen e > 0 there exists a number K such that the rela­
tion 

jamn- aj < e 

holds whenever both m > K and n > K." 

Definition 6. Let us write 

If the Iimit 

exists, then we write 

m n 

Smn = L Laik • 
1=1 k=l 

lim Smn = s 
m-+co 
n-+ CO 

CO 

L aik = s 
i,k= 1 

CO 

(13) 

and say that the so-called double series L a ik formed from the array ( 12), is conver-
l,k=t 

gent and has the sum s. 

REMARK 11. Let us form from the array ( 12) an arbitrary series suchthat it includes 
every term from the array (12) exactly once. In particular, Iet us form the series 

(14) 

(we note down successively from the array {12) the terms that have the same sum 
of indices). If any one of these series converges absolutely, in particular the series 
(14), then allsuch series converge absolutely and possess (Theorem 5) the same sum s. 
It is then possible to sum the terms of the array (12) in any order. In particular it 
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00 

follows that L a 11, = s [see (13)]. We speak of the absolute convergence of the 
1,1=1 

double series (13). Theorem 19 provides a simple criterion for absolute convergence. 

RBMARK 12. We meet double series in particular when dealing with Fourier 
series in two-dimensional domains. For example, the equation 

00 

L A,..11 sin mx sin ny = f(x, y) (15) 
m,n=l 

( A,..11 are the Fourier coefficients of the function f( x, y)) means, according to Defini­
tion 5: For every arbitrarily smalle > 0 there exists a number K such, that for every 
pair of numbers M, N, for which both the relations M > K, N > K hold, the rela­
tion 

M N 

I L L Amn sin mx sin ny - f(x, y)l < e (16) 
m=1 n=1 

holds. If we know {from the theorems on Fourier series and from the properties 
ofthe functionf(x, y)) that the series (15) converges absolutely to f(x, y) at the point 
(x, y), we can sum the termsofthat series in an arbitrary order. 

00 00 

Theorem 19. Let the series L lau,! be convergent for every i. Let us write L !a1kl = 
CO k=1 11:=1 

= u1• lf the series L u1 converges, then the double series (13) is absolutely conver-
1=1 

gent. 

Theorem 20. Let the double series (13) be absolutely convergent. Then the series 
00 00 

L a 11 = s1 are absolutely convergent for every i. The series L s1 is also absolutely 
1=1 1=1 

convergent and its sum s is equal to the sum of the double series (13). 

RBMARK 13. The summing in theorems 19 and 20 is done first by rows, then by 
columns. The theorems, however, retain their validity if the summing is done first 
by columns and then by rows. 

RBMARK 14. The fact that an absolutely convergent double series can be summed 
in an arbitrary order, may be used to improve the rapidity of convergence of simple 
series. In particular, the series 

x x 2 x3 
S=--+--+---+ ... 

1 - x 1 - x 2 1 - x3 
(17) 

is absolutely convergent for every x for which lxl < 1, as follows, for example, from 
d' Alembert's Test {Theorem 13). But this series converges slowly for lxl in the vici-
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nity of 1. By means of the so-called Clausen's transformation this series changes 
into the series 

1 + x 4 1 + x 2 9 1 + x3 16 1 + x4 ( ) s = x-- + x --2 + x --+x --4 + ... , 18 
1 - X 1 - X 1 - x3 1 - X 

which converges much faster. Namely, the i-th term ofthe series (17) is the sum ofthe 
series formed by members of the i-th row of the array 

x, x2, x3, x\ ... , 
x 2 , x\ x 6 , x8, ••• , 

x3, x6, x9, xu, ... ' (19) 

Bach of these series converges absolutely for lxl < 1. The series corresponding 
00 

to the series L a 1 from Theorem 19 is here the series 
1=1 

which is convergent ( e.g. according to d' Alembert's Test) for lxl < 1. Thus, the 
double series corresponding to the array (19) is absolutely convergent by Theorem 19. 
We form the sum in the following way: 

where U 1 is the sum of the elements from the first row and the first column in (19), 
U 2 is the sum of the remairring elements of the second row and the second column and 
so on. lt follows that 

U 2 2 3 4 2 1 1+x 
1 =x+2x + x +2x + ... =x+2x --=x--, 

1-x 1-x 

1 1 + x2 
U 2 = x4 + 2x6 + 2x8 + 2x10 + .•. = x4 + 2x6 --- = x4 ---. 

1 - x 2 1 - x2 

In this way, we proceed to the series (18). 

REMAR.K 15. By analogy with the definition of double series we can define triple 
series, etc. 

00 00 

Theorem 21 (Multiplication or Product of Series). Let the series L an and L bn 
n=l n=l 

be absolutely convergent and have the sums s and t, respectively. Then the double 
series 
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is absolutely convergent and has the sum s. t (i.e. we can multiply the series as 

we would multiply polynomials and then sum in an arbitrary order). 
00 00 

Theorem 22 ( Cauchy Product of Series). Let L, an, L, bn be convergent series ( with 
n=1 n=1 

sums s, t, respectively), one of which at least is absolutely convergent. Then the 

series 
00 

L Un, where Un = albn + azbn-1 + ... + an-lb2 + anbl 
n=1 

is convergent and has the sum s . t. 

Theorem 23. Let us write in the customary way sn = a 1 + a 2 + ... + an. Let 
00 

L an be convergent, that is lim sn = s. Then also 
•=1 n-+c:o 

1. S 1" sl + Sz + ... + Sn tm n = tm = s. 
n-+oo n-+w n 

REMARK I6. The converse of Theorem 23 does not hold. We say that a series, 
for which the sequence Sn converges, is summable by arithmetic means of the first 

order [ or Cesaro summable; we write: summable ( C, I)]. This method assigns 
a "sum" to certain divergent series. For some definitions of the summability and 
particularly for the applicability of divergent series to asymptotic expansions (repre­
sentations) see § 15.7. Weshall mention one application here: 

Theorem 24. If a1 + a2 + a 3 + ... and b1 + b2 + b3 + ... are two convergent 

series with respective sums s and t then the series 

a1b1 + (a1b2 + a2b1) + (a1b3 + a2bz + a3b 1) + ... 
is summable by arithmetic means (Remark 16) to the sum s. t (i.e. lim Sn = s. t). 

n-+oo 

Theorem 25 (Survey of Important Formulae). 

IX) CO CO W 00 

1. L, (an ± bn) = L, an ± L, bn, L, kan = k L, an (k a constant) (Theorem 3). 
n=1 n=1 n=l n=1 n=1 

2. an > 0 ' lim an+ 1 = { k < 1 } => { n~1 an is convergent} (Theorem 13); 
n-+co a11 CIO 

k > I L an is divergent 
n=1 

{ } {

00 } 

1 < 1 L, an is convergent 

an > 0, n~~ .J an = => n: 1 (Theorem 13); 

z > 1 L, an is divergent 
n=1 
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{ 
m > I } { I an is convergent} 

an> 0, Iim n (~- I)= => n:l (Theorem 13). 
n-+ot> an+ 1 

m < I L an is divergent 
n=l 

3. The arithmetic series a 1 + a2 + a 3 + ... , where an= a1 + (n- 1) d, is 
convergent if and only if a 1 = 0 and d = 0. The partial sum of the first n terms is 

4. The geometric series 

converges if and only if lql < 1. The sum of the series is 

The partial sum is: 

a 
s=--. 

I - q 

qll- 1 
S11 = a -- ( q * 1) . 

q- 1 

5. 1 + 2 + 3 + ... + n = -!n(n + 1) ; 

12 + 22 + 32 + ... + n2 = in(n + 1)(2n + 1); 

13 + 23 + 33 + ... + n 3 = !n2(n + 1)2 ; 

14 + 24 + 34 + ... + n4 = 3
1
0 n(n + 1)(2n + 1)(3n2 + 3n - I). 

1 1 1 n2 

6. 12 + 22 + 32 + ... = 6 ; 

I 1 1 n4 
-+-+-+ ... =-; 
14 24 34 90 

1 1 1 n6 

6+6+6+ ... =-; 
1 2 3 945 

1 1 1 n2 

12 + 32 +52 + ... = 8. 

7 . . 2 . sin !nx . 1 ( ) l . sm x + sm x + ... + sm nx = -.-- sm - n + 1 x, 
sm !x 2 x "I= 2kn , 

sin !nx 1 j k an integer. 
cos x + cos 2x + ... + cos nx = -.-- cos - ( n + 1) x , 

sm!x 2 
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8. Let.!_ + .!_ = 1. The following results then hold: 
p q 

(a) lf a11 ~ 0, b11 ~ 0, p > 1, then 

(Hölder's Inequality) 

(b) lf a11 ~ 0, b11 ~ 0, p ~ 1, then 

(Minkowski's Inequalitv) 

(c) From (a)for p = 2 (a11 ~ 0, b11 ~ 0) itfollows that 

(
00 )2 00 00 

11~1 a,.b11 ~ 11~1 a; • 11~1 b! (Schwarz or Schwarz-Cauchy Inequality) 

00 00 00 

(so, if the series La;, L b; converge, then the series L a11b11 also converges). 
n=1 11=1 11=1 

Theorem 26 (The Sums of Some Series). 

1 1 1 1 .. 
1.1+-+-+-+ ... +-+ ... =e. 

1! 2! 3! n! -

1 1 1 ,.1 1 
2. 1 - - + - - - + ... + (- 1) - + ... = - . 

1! 2! 3! n! e 

3. 1 - ! + ~-! + ... + ( -1)"+ 1 .!_ + ... = In 2. 
2 3 4 n 

1 1 1 1 4. 1 + - + - + - + ... + - + ... = 2 . 
2 4 8 2" 

5. 1 - ! + ! - ! + ... + (- 1 )" _.!_ + . . . = ~ . 
2 4 8 ~ 3 

6. 1 - ! + ~ - ! + ... + (- 1 )" + 1 _ 1_ + ... = ~. 
3 57 2n-1 4 

1 1 1 1 
7. - + - + - + ... + + ... = 1 . 

1 . 2 2 . 3 3 . 4 n(n + 1) 

1 1 1 '1 1 
8.-+-+-+ ... + + ... =-. 

1.3 3.5 5.7 (2n-1)(2n+1) 2 

10.2 
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1 1 1 3 
9o - + - + - + . 00 + + 000 =-. 

I . 3 2. 4 3 . 5 n(n + 2) 4 

1 1 1 1 1 7t 10.-+-+--+ ... + +000=---. 
3 . 5 7 . 9 11. 13 ( 4n - 1 )( 4n + 1) 2 8 

1 1 1 1 
11. +--+ ... + + ... =-. 

1 o 2. 3 2. 3. 4 n(n + 1)(n + 2) 4 

1 1 1 ----+ + ... + + ... == 
1 . 2 .. 00 . l 2. 3 ..... (l + 1) n .. 0 .. (n + l - 1) 

12. 

1 

(l - 1){1 - I)! 

REMARK 17. For series with variable terms see Chap. 15 where the application 
of power series to the numerical summation of series is dealt witho For the sum­
mation of infinite series by means of integral transformations see the article "The 
Summation of Infinite Series by means of Integral Transformations" by D. MAYER 
and J. NECAS, Aplikace matematiky 1 (1956), .No. 3, ppo 165-1.85. (In Czech, 
English summary.) 

10.3. Infinite Products 

Definition 1. Suppose we )re given the sequence of (real or complex) numbers 
P1• pz, P3• • 0 •• Let us define 

Pn = P1 • Pz · P3 • • ·· · Pn • (I) 
The symbol 

GO 

fl Pn = P1 · Pz • P3 • • .. (2) 
nal 

is called an infinite product. If lim Pn exists, then this Iimit is called the value of the 
n-+ro 

infinite product (2). 

Definition 2. We say that the product (2) is convergent if, either (i) the limit 
lim Pn, finite and different from zero, exists, or (ii) in the product (2) there is only 

n-+ro 

a finite number of factors equal to zero and their omission 1eads again to a finite 
Iimit different from zero. (In the latter case the infinite product has the value 0 
according to Definition 1.) 

In every other case we shall say that (2) is divergent. 
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Example 1. The product 

is divergent because 

P" = _!_ and lim P" = 0. 
n! n-+oo 

REMARK 1. The reader's attention is drawn to the fact that there is no uniformity 
in mathematical literatme regarding the definition of the convergence of an infinite 
product. 

REMARK 2. In applications, the investigation of infinite products frequently relates 
to cases where the factors p" are of the form 1 + a". 

Theorem 1. Let the product 

(3) 

be convergent. Then the product 

(4) 
is also convergent. 

Definition 3. If the product (3) converges then the product (4) is said tobe abso­
lutely convergent. 

Theorem 2. lf the series a 1 + a2 + a 3 + ... is absolutely convergent (see Defini­
tion 10.2.3) then the product (4) is absolutely convergent (and conversely) and its 
value does not depend on the ordering of its factors. (We say in this case that its 
factors may be rearranged.) 

REMARK 3. If the series a 1 + a2 + a3 + ... is only conditionally convergent 
(Definition 10.2.3) then the product (4) need not be convergent. 

Theorem 3. For every x (real or complex) the relations 

hold. Also 

1t 224466 
(Wallis's Product). -=-.-- -.-.- ... 

2 133557 

REMARK 4. For the expression of the r function as an infinite product see § 13.11. 



11. DIFFERENTIAL CALCULUS OF FUNCTIONS 
OF AREAL VARIABLE 

By KAREL REKTORYS 

References: [1], [4), [15), [17), [25), [26), [30), [31), [40), [52), [54), [59), [60), [68], [74), 
[91), [96), [109), [111), [119), [121), [122), [123], [139], [142], [145], [148), [158], [160], [175]. 

11.1. The Concept of a Function. Composite Functions. 
Inverse Functions 

Notation: x is a real number. Instead of "the number x" we often say "the 
point x". 

The closed interval [ a, b] is the set of all x, for which a ~ x ~ b ; 
the open interval (a, b) is the set ofall x, for which a < x < b; 
the semi-closed (semi-open) interval [ a, b) is the set of all x, for which a ~ x < b; 

the semi-closed (semi-open) interval (a, b] is the set of all x, for which a < x ~ b. 

The interval (a, + oo) (briefiy (a, oo )) is the set of all x, for which x > a ; 
the interval [ a, + oo) (brießy [ a, oo )) is the set of all x, for which x ~ a ; 
the interval (- oo, a) is the set of all x, for which x < a ; 
the interval (- oo, a] is the set of all x, for which x ~ a ; 
the interval (- oo, + oo) (briefly (- oo, oo )) is the set of allreal numbers x. 

We shall write the interval I in speaking of an interval without special reference 
to its end-points. The notation x E M means: x is an elementbetonging to the set M. 
For example, x E [ a, b] means that x is in the interval [ a, b ]. 

Definition 1. We say that a real function is defined on a set M of real numbers, 
if a rule (relation) is given by virtue of which to each number x E M there corre­
sponds exactly one real number y. The number x is called the independent variable 

(argument), y is called the dependent variable. The set M is called the domain of 
de.finition of the function. 

A function is generally denoted by the letters j, g, .... The value y of the function 
corresponding to an arbitrary point x E M is denoted by f(x), g(x), etc. Instead of 
"the function f" we often say "the function f(x)" or "the function y = f(x)". 
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Example 1. The area y of a square is a function of the length x of its side, y = x 2 • 

The domain of definition is the interval (0, + oo ), since the length of the side of the 
square is always expressed by a positive number. 

REMARK 1. The domain of definition of a function is most often an interval, e.g. 
the interval [ -1, 1] for the function y = arcsin x, etc. But every "reasonable" 
function need not have an interval as its domain of definition. For example, the func­
tion y = tan x is defined in the interval (- oo, + oo) from which the points ±f1t, 
±i1t, ±f1t, ... are excluded. 

REMARK 2. The relationship defining the function need not be given by an equa­
tion (i.e. by an analytic formula, from which the value of the dependent variable y 
can be calculated for a given value of the independent variable x) as was the case in 
Example 1. Frequently, in applications, the correspondence between the independent 
variable x and the dependent variable y is established by a graph, expecially in cases 
where the values of the independent and dependent variables can be read off the 
graph with adequate accuracy. When we perform different types of measurements 
we compile a table of measured values. From this table we often try to obtain values 
of a function for the whole domain of definition (e.g., by interpolation). The function 
may be given also as the Iimit of a sequence of functions, as the sum of a series of 
functions, etc. Often a relationship between x and y is given (most frequently by an 
equation) from which it is necessary to determine the single-valued correspondence 
between the dependent variable y and the independent variable x (Fig. 11.1 ). (E.g. 
x 2 + y2 = 25; in the neighbourhood of the point (3, 4) the function y = f(x) will 
be given by the relation y = .J(25 - x 2). There we say that the explicit function 
y = .J(25 - x 2) is given in a neighbourhood of the point (3, 4) by the implicit 

y 

0 X 

Fig. 11.1. The curve in this figure is the 
graph of two functions, y = / 1 (x) and 
y = j 2(x); it is not the graphical repre­
sentation of a single-valued function. 

equation x 2 + y 2 = 25.) See § 12.9 for more detailed treatment. Until further 
notice the concept of a function means the (single-valued) function as defined in 
Definition 1. 

REMARK 3. If to each real number x from a certain domain M there corresponds 
a complex number y = y1 + iy2 we say that y = f(x) = j 1(x) + ij2(x) is a complex 
junction of the real variable x. The study of these functions is reduced to that of 
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the real functionsf1(x) andfix) (e.g. the derivative is defined by the relation f'(x) = 
= f~(x) + if~(x), etc.) so that in the following weshall deal only with real functions 
of a real variable. (For functions where the independent variable is complex see 
Chap. 20.) 

REMARK 4. If the functional relationship is given by an analytical formula then 
we are interested in those x for which the formula has a sense (in the domain of real 
numbers ). The set of those x is then accepted as the domain of definition of the given 
function. For example, the domain of definition of the function given by the formula 
y = .J(4 - x2 ) is taken to be the interval [ -2, 2] (for jxj > 2, .J(4 - x2) is no 
Ionger a real number). 

Definition 2. By the graph of the function y = f(x) is understood the set of all 
points (x, y) in the plane xy (with a cartesian coordinate system (0; x, y)) such"that 
x E M, y = f(x). Instead of "the graph of the function y = f(x)" we often say 
"the curve y = f(x)". The coordinate x is called the jirst coordinate (the abscissa, 
x-coordinate), the coordinate y is called the second coordinate (the ordinate, y-co­
ordinate). 

Example 2. Graphs of the trigonometric functions are given on p. 72. 

Definition 3. Let the function y = f(x) be defined in the interval M 1• We say that 
the function y = f(x) maps the interval M 1 into (in) the interval M 2 if for every 
x E M 1 it follows that y E M 2• 

If in addition it is possible to find, for every y E M 2, at least one x E M 1 such that 
y = f(x) then we say that the function y = f(x) maps the interval M 1 onto (on) the 
interval M 2 • 

Example 3. The interval [0, 7n] is mapped by the function y = sin x onto the in­
terval [ -1, 1 ], because for every x E [0, 7n ], y = f(x) E [ -1, 1 J and to any number 
y E [ -1, 1 J we can find even several x E [0, 7n J such that y = sin x. We can say as 
weil that the interval [0, 7n J is mapped into any interval that includes the interval 
[ -1, 1], e.g. into the interval [ -5, 10]. ~ 

Definition 4 (of a Composite Function). Let the interval M 1 be mapped by the 
function z = f(x) into the interval M 2 • Let y = g(z) be a function defined in the 
domain M 2.The function y = g(f(x)) is said tobe a composite function ofthe func­
tions z = f(x) and y = g(z). 

REMARK 5. Thus, y = g(f(x)) has the following meaning (Fig. 11.2): When we 
choose any nurober x E M 1 then by means of the relation z = f(x) we can evaluate z. 
Tothis nurober z we can then by means of the relation y = g(z) evaluate y. Thus y 
is determined uniquely by the choice ofthe number x E M 1, so that finally y = g(f(x)) 
is a function of the variable x only. (On how to use composite functions for finding 
derivatives see Theorem 11.5.5, p. 382.) 
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Example 4. The function y = .J(1 - tsin2 x) may be "decomposed" into the 
functions y = .Jz, z = 1 - tsin2 x. As the interval M 1 we can take the interval 
(- ro, + oo) because the function z = 1 - tsin2 x maps the interval (- oo, + oo) onto 
the interval [t, 1] and consequently also into the interval [0, + oo ), which is the domain 
of definition of the function y = .J z. 

z 

y 

---------------f- -------------- : 
M2 : 

y=~~ j H'~~______L_-
y 0 X X Fig. 11.2. 

REMARK 6. In general, we define composite functions (and also mappings) for 
sets other than intervals. lt is then necessary to replace in definitions 3 and 4 the 
word "interval" by the word "set" . 

. y } ---------------------------------1 ---------------------------: 

M2 ! 
' ' ' ' ------ i -------------------- ~-- ----1 

0 M1 X X 
\t-·---~----11 Fig.l1.3. 

Definition 5. Let the interval M 1 be mapped by the function y = f(x) onto the 
interval M 2 (see definition 3) with a one-to-one correspondence (Fig. 11.3), which 
means that not only to every x E M 1 there corresponds exactly one y E M 2 , but 
also to every y E M2 there corresponds exactly one x E M 1 such that y = f(x). 
Because to every y E M 2 there corresponds just one x E M 1, a function is defined 
on the interval M 2 which we derrote by x = <p(y ). This function is called the 
inverse function of the function y = f(x). Conversely, the function y = f(x) is 
the inverse function of the function x = <p(y ). 
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REMARK 7. The one-to-one correspondence is ensured, for example, if y = f(x) 
is strictly increasing or decreasing in M 1 ( or if the function x = <p(y) is strictly 
increasing or decreasing in M 2) (see Fig. 11.3). This case is very common. 

REMARK 8. It is possible to add a remark to the definition of inverse function 
similar to Remark 6. 

-1: 

Fig. 11.4. 

r,, 
' ' ' ' \ \ 

\ 
1t' I 2 ------------- : 

I 
I 
I 

y:=:arccinx 
I 
I 
I 
I 
I 

_TC 
2 

1 X 

Example 5. The function x = sin y is a strictly increasing function of the variable 
y in the interval [ --!rt, -!rt]. The corresponding interval of the variable x is [ -1, I] 
(see Fig. 11.4). Theinverse function of the function x = sin y is called arcussinus x 

and is denoted by y = arcsin x ( or y = sin - 1 x ). Thus this function is defined in the 
interval [- 1, 1 J ( of the independent variable x ). (For details see § 2.11.) 

Example 6. The interval (- oo, + oo) of the independent variable x is mapped 
by the function y = x 2 onto the interval [0, + oo) of the dependent variable y, but 
the correspondence between x and y is not one-to-one, because, for example, /(2) = 

= f(- 2) = 4. But the interval [0, + oo) of the variable x is mapped by tbe given 
function onto tbe interval [ 0, + oo) in a one-to-one correspondence. The corresponding 
inverse function is then x = + -Jy as we easily derive from tbe equation y = x2 , 

and is defined in tbe interval 0 ~ y < + oo. 

REMARK 9. We draw attention to the fact tbat, according to Definition 5, the 
function y = arcsin x (- 1 ~ x ~ 1) is tbe inverse of tbe function x = sin y 
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( -tn ~ y ~ -!n) (Example 5). Both equations have the same meaning and both 
functions have the same ,graphical representation (in the chosen coordinate system 
xy). When we interchange the variables x and y in one of them (e.g. in Example 5 
we write y = sin x instead of x = sin y) then the graphs of the functions will be 
symmetrical with respect to the straight line y = x (i.e. the straight line bisecting the 
angle between the positive x-axis and the positive y-axis ). (See Fig. 11.5.) 

Fig. 11.5. 

11.2. Elementary Functions. Algebraic Functions, Transeendental 
Functions. Even and Odd Functions. Bounded Functions 

A function y = f(x) is called algebraic (in a domain M) if it satisfies identically 
an equation 

F(x, y) = 0 (1) 

where F(x, y) is a polynomial in the variables x, y. For example, the function y = 
= ..}(1 - x2), x E [ -1, 1], is algebraic since it satisfies in the interval mentioned 
the equation 1- x2 - y 2 = 0 and 1- x2 - y 2 is a polynomial in the variables x, y. 

Functions which arenot algebraic are called transeendental functions. 

REMARK 1. Algebraic functions include, first, polynomials (or rational integral 

functions) and fractiona l rational junctions ( or briefly rational functions ), 
i.e. functions of the form 

where m, n are non-negative integers. Additional examples are the functions 

y=..)x (x~O), y=V(l-x2 ) (-1~x~1), y=..}(1+x2) (-oo<x<+oo). 

etc. (For more details on polynomials see § 1.14.) 
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Transeendental funetions inelude the general power y = x" (x > 0, n irrational). 
trigonometrie, hyperhoHe and exponential funetions and their inverse funetions. 
All these funetions are ealled elementary transeendental functions. Further transeen­
dental funetions are defined by means of differential equations and integrals (so-ealled 
higher transcendentalfunctions; e.g. g(x) = J~e-r2 dt). 

REMARK 2. For the trigonometric and hyperhoHe functions and their inverse 
functions in more detail, see Chap. 2. 

In Definition 1.9.2, p. 51, the meaning of the symbol ab (a > 0) for b irrational 
is explained. lf b is a constant and a a variable, we get the general power with stan­
dard notation: y = x" (x > 0, n any real number). The function y = x" is con­
tinuous and strictly increasing or strictly decreasing or constant in the interval {0, oo) 
according as n > 0, or n < 0, or n = 0, respectively. For certain n it is possible 
to extend the domain of definition of the function y = x" to values of x other than 
x > 0. For example, the relation y = x 2 has sense for all x (the domain of definition 
is ( :- oo, + oo)). 

lf the exponent b in the expression ab changes its value and the base a remains 
constant we get the exponential function y = a" (a > 0); its domain of definition is 
(- oo, + oo ). For the graph of the function y = a" see Fig. 11.6. The function is 

Fig.l1.6. Fig. 11.7. 

positive for all x, it is increasing for a > 1, constant for a = 1 (y = 1) and decreasing 
for 0 < a < 1. For a = e = 2·718, 281, 828, 459, 0 ... (Theorem 10.1.11) we obtain 
the important function y = e" (frequently used notation: y = exp (x)). 

If a > 0, a =F 1, the function x = a1 maps the interval - oo < y < + oo onto the 
interval 0 < x < + oo in a one-to-one correspondence and so we can define (see 
Definition 11.1.5) the inverse function of the exponential function, called logarithm 
ofx to the base a. Notation: y =log,. x. For the graphical representation see Fig.11.7. 
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The function is defined for x > 0 and is strictly increasing for a > 1 and strictly 
decreasing for 0 < a < I. For a = e we write y = In x (in the Iiterature the nota­
tion lg x, log x is also used) and this function is called the natural logarithm of x. 
This function is the inverse function of the function x = e7• 

REMARK 3. On the differentiation of the elementary functions see § 11.5. All 
current rules known from elementary mathematics, e.g. a"'' . a"'2 = a"''+"'2 , 

loga (x1 • x 2) = loga x1 + loga x 2 (x 1 > 0, x 2 > 0), etc., are valid for general 
powers and for the exponential and logarithmic functions (for details see §§ 1.9 and 
1.10). Further we have 

in particular 

}oga X = logll X • log ab , 

log10 X = M log. X = M In X ~ 0·434 294ln X , 

1 
log. X = ln X = -log10 X ~ 2·302 585 log10 X • 

M 

The number M is called the conversion modulus from natural to common logarithms, 
the number 1/M is the conversion modulus from common to natural logarithms. 

Definition 1. We call a function y = f(x) an even function if f( -x) = f(x), an 
odd function if f(- x) = - f( x) for every x from the domain of definition of the func­
tion f(x). 

Example 1. The functions y = x2 , y = x\ y = cos x are even in the interval 
(- oo, + oo) (because ( -x)2 = xa, ( -x)4 = x\ cos ( -x) = cos x). The functions 
y = x, y = x3, y = sin x are odd in the interval (- oo, + oo ), because, for exam­
ple, sin ( -x) = -sin x for every x. 

Definition l. The functionf(x) is called bounded above (below) in the domain M, 
if there exists a constant K (k) suchthat for all x E M, f(x) < K (f(x) > k). If the 
function f(x) is both bounded above and bounded below in the domain M, we say 
simply thatf(x) is bounded in the domain M. 

11.3. Continuity. Types of Discontinuity. Functions of Bounded 
Variation 

Definition 1. By a ~-neighbourhood of a point a we mean a set of all points x such 
that their distance from the point a is smaller than ö ( or: such that they lie in the 
interval (a - ö, a + ö) or for which lx - ai < ö; we often denote such a neighbour­
hood by u,(a)). 

Definition l ( Cauchy's Definition of Continuity). We say that f(x) is continuous 
at the point a if, an arbitrary number e > 0 being chosen, another number ö > 0 
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exists (depending in general on the choice of the number 8), suchthat for every x 
in the 8-neighbourhood of the point a the relation 

lf(x) - f(a)j < 8 (I) 

holds. 

REMARK 1. Roughly speaking: f(x) is continuous at the point a, if f(x) differs 

from f(a) by a small enough quantity when x is sufficiently near to the point a 

(Fig. 11.8). Or also (writing ßy = f(x + ßx)- f(x)) if ßy _,. 0 when ßx _,. 0. 

y t --------------------.------- ------ -----~ 

c : 
f(aJ Ay i 

---------------- ---- --- : 

c i 
I I ! 

I - -----------:------:--------:----

! i Ax i · 
I I Ü 1 

0 a-6 a a+6 x 
fuJ lllllllll t 

Fig. 11.8. Fig. 11.9. 

REMARK 2. lt follows from the definition that: Should f(x) be continuous at 

a point a, it must be defined in a certain neighbourhood of the point a (and so also 

at the point a itself). 

REMARK 3. It is possible to define the continuity of a function f(x) at the point a 
by means of sequences of xn tending to the point a (the so-called Reine dEfinition). 

Definition 3. We say that f(x) is continuous from (on) the right at the point a if, an 

arbitrary number 8 > 0 being chosen, another number (> > 0 exists, such that for 

every x ~ a in the <5-neighbourhood of the point a the relation 

lf(x) - f(a)l < 8 

holds. Analogaus is the definition of left-hand continuity. (In these definitions we 

consider "the right-hand" or "the left-hand" <5-neighbourhood of the point a.) 

Example 1. The function y = .J(4 - x2) is continuous from the right (according 

to Theorems 4 and 5 and Remark 6) at the point x = -2 (to the left ofthe point -2 

it is not defined at all). Similarly it is continuous from the left at the point x = 2. 

REMARK 4. The function in Fig. 11. 9 illustrating the loading of a bar is continuous 

from the right at the point a, and continuous from the left at the point b, if we define 

the function at the points a, b by the value c. If we assign to our function the value 0 

at these two points it will be continuous from the left at the point a (and discontinuous 

from the right) and continuous from the right at the point b. (Of course we cannot 
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assign to our function both values 0 and c at the point a; this would be in contra­
diction to the definition of a single-valued function). 

Theorem 1. The function f(x) is continuous at the point a if and only if it is 
continuous from the right and continuous from the left at this point. 

Theorem 2. The function f(x) is continuous at the point a if and only if it is 

defined at the point a and has a Iimit at the point a (see Definition 11.4.1) equal 

to the number f(a). 

Definition 4. We say that f(x) is continuous in a domain M, if it is continuous at 
every point of this domain. It is continuous in [ a, b J if it is continuous in ( a, b) and 
continuous from the right at a and from the left at b. 

Theorem 3. If f(x) has a derivative at the point a (Definition 11.5.1), then f(x) is 
continuous at a. 

REMARK 5. The converse theorem is not valid (cf. Remark 11.5.3, p. 379). 

Theorem 4. If f(x) and g(x) are continuous at a, then the functions k .J(x) (k being 

a constant),J(x) + g(x),J(x) - g(x),J(x). g(x) arealso continuous at a; if g(a) =fo 0 
then also f(x)Jg(x) is continuous at a. A similar theorem is true on the continuity 
from the right and from the left. 

Theorem 5. A composite function composed of continuous functions is also 

continuous. Precisely: If f(x) is continuous at a and g(z) continuous at the corres­

ponding point z0 = f(a), then the function y = g(f(x)) (see Definition 11.1.4) is 
continuous at the point a. 

REMARK 6. On the basis of Theorems 4 and 5 it is easy to show that the great 
majority of functions we meet with in applications are continuous functions. Especially 
all polynomials and rational functions with non-vanishing denominators are conti­
nuous functions. The function y = .Jx is continuous for x ~ 0. Further, trigono­
metric functions are continuous ( with the exception of points in the neighbourhood 
of which they are not bounded, e.g. the function tau x is not continuous at the point 
t1t), inverse trigonometric functions, exponential functions, logarithmic functions and 
functions generated from them by addition, subtraction, multiplication and division 
(with non-vanishing divisors) as weil as their composite functions are continuous. 

Definition 5 (Points of Discontinuity). We say that the point a is a point of dis­

continuity of the first kind for the function f(x) ( the point a 1 in Fig. 11.10) if there 
exist a finite right-hand limit and a finite left-hand limit of the function f(x) at the 
point a (denoted by the symbols f(a + 0) or f(a - 0), respectively, see Remark 
11.4.2,p. 371) and if/(a + 0) i= f(a - 0). We call the number f(a + 0)- f(a - 0) 
the jump of thefunctionf(x) at the point a. 

If at least one of the one-sided limits does not exist then we call the point a a point 
of discontinuity of the second kind of the function f(x) (the point a 3 in Fig. 11.10). 
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If the finite Iimit limf(x) = A exists but either the function f(x) is not defined at 
x-+a 

the point a or f(a) =I: A, then we say thatf(x) has a removable discontinuity at the 
point a (the point a2 in Fig. 11.10). 

Example 2. The function f(x) = sin (1/x) has a discontinuity of the second kind 
at the point x = 0. The function represented in Fig. 11.9 has a discontinuity of the 
first kind at the points a and b. The function 

y 

Fig. 11.10. 0 

( ) sin x 
gx =--

~'! ' ' ' 
' ' ' ' 

l l 

x 

has a removable discontinuity at the point x = 0 because it is not defined at the 
point x = 0 but 

Ii sinx_ 1 m---
x-+o X 

(cf. Theorem 11.4.9, p. 377, formula 2). 

Definition 6. A function f(x) defined in the interval [ a, b] is called sectionally or 
piecewise continuous in the interval [ a, b] if it is continuous in [ a, b] except at 
a finite number of points of discontinuity of the first kind. 

Example 3. The function illustrated in Fig. 11.9 is sectionally continuous in the 
interval [0, l]. 

Theorem 6. A function f(x) continuous in [ a, b] takes on a greatest and a least 
value in [ a, b]. Precisely: There exist at least one point x1 e [ a, b] such that 
f(x 1) ?::.f(x)for all x e [a, b] and at least one point x 2 e [a, b] such thatf(x2) ~ 
~ f(x)for all x e [a, b]. 

REMARK 7. There may be several such points. For example, the function y = 
= sin x attains in the interval [-27t, 27t] its maximum value at the points - f7t and 
f7t, its minimum value at the points -t7t and i7t. 

Theorem 7. Let f(x) be continuous in [a, b], f(a) '=/: f(b), let c be any number 
between f(a) and f(b) (i.e. either f(a) < c < f(b) or f(a) > c > f(b)). Then there 
exists at least one point x 0 E (a, b) such that f(x 0) = c. 



370 SURVEY OF APPLICABLE MATHEMATICS 11.3 

REMARK 8. Thus a function continuous in [ a, b J assumes every value betwecn 
f(a) and f(b). Especially, if f(x) is continuous in [a, b] and f(a) .f(b) < 0, then 
f(x) has at least one zero in (a, b). 

Theorem 8. A function: f(x), continuous in the interval [a, b], is uniformly 

continuous in this interval, that is, to any arbitrary e > 0 there exists [) > 0 (de­

pending only on the choice of the number e) such thatfor every two points x 1 , x 2 from 

the interval [ a, b ], the distance of which is smaller than [), the relation 

holds. 

REMARK 9. Theorems 6 and 8 do not hold in an open; interval as we can easily 
verify for the function 1/x in the interval (0, 1). 

Theorem 9. (Weierstrass's Theorem). It is possible to approximate uniformly in 

[ a, b J with an arbitrary accuracy every function continuous in [ a, b J by means 

of a sequence of polynomials, that is, to every e > 0 there exists a polynomial Pn(x) 

suchthat 

lf(x) - Pn(x)l < e for all x E [ a, b J. 
Definition 7. Letf(x) be defined in [ a, b]. Let us divide this interval into subintervals 

by means of the points a = x 0 < x 1 < x 2 < ... < Xn_ 1 < Xn = b and let us form 
the sum 

n 

V= L lf(xk) - f(xk-1)1 · 
k=1 

Visa non-negative nurober depending on the choice ofthe points of division x 1 , x 2 , ••• 

... , Xn-l· If we choose all possible n and all possible divisions of the interval [a, b], 
then the numbers V form a set of non-negative numbers. Its Iowest upper bound 
(Definition 1.3.3) is called the Variation (or more precisely the total variation) of the 

function f(x) in the interval [ a, b ]. Wederrote this by 

b 

b 
V(f). 
a 

If V(f) is a finite number, then f(x) is said to be of bounded variation in [ a, b ]. 

a 

Example 4. 
21t 
V(cos x) = 4 
0 

(it is sufficient to divide the interval [0, 21t J intv the intervals [0, 1t ], [ 1t, 21t J in which 
cos x is decreasing or increasing, respectively. 
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Theorem 10. If f(x) has a bounded derivative in [ a, b J or if f(x) is monotonic 
in [ a, b J or if f(x) is continuous and attains a finite number of maximum and mini­
mum values in [a, b ], then f(x) is of bounded variation in [ a, b ]. 

Theorem 11. f(x) is a function of bounded variation if and only if it can be ex­
pressed as the difference of two non-decreasing functions. 

11.4. Limit. Infinite Limits. Evaluation of Limits. Some lmportant 
Limits. Symbols o(g(x)), o(g(x)) 

Definition 1. We say that f(x) has the Iimit A at the point a (in more detail the 
finite Iimit A) if to any arbitrary 8 > 0 tht:re exists a b > 0 (depending in general 

Fig. 11.11. 

on the choice of the number 8) suchthat for all x from the b-neighbourhood ofthe 
point a, from which we exclude the point a (i.e. for all x, for which 0 < jx - aj < 
< b) the relation 

lf(x)- Al< 8 

holds. 

We write 
limf(x) = A. 

REMARK 1. Roughly speaking: f(x) has the Iimit A at the point a, if f(x) differs 
from the number A by as little as we please when x is sufficiently near to the point a. 

Example 1. The function 

sin x 
y=-

x 

(Fig. 11.11) is not defined at the point a = 0 ( therefore it cannot be continuous at that 
point, cf. Remark 11.3.2) but it has a Iimit at that point equal to 1 ( see Theorem 9). 
This example shows why we exclude the point a (here the point zero) from our con­
sideration, because our function need not be defined at this point at all. 

REMARK 2. The Iimit from the right or the Iimit from the left is defined quite 
analogously as in Definition 1 ( we take into consideration only those x that lie in the 
"right" or "left" neighbourhood of the point a while the point a is excluded). We 
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write 
lim f(x) = A or lim f(x) = B 
x~a+ x~a-

or often 

f(a + 0) = A or f(a - 0) = B. 

Example 2. For the function represented in Fig. 11.9 we see that f( a + 0) = c, 
f(a- 0) = 0. 

Theorem 1. The function f(x) has a Iimit at the point a if and only if it has both 
Iimits from the right and from the left at this point and if these two Iimits are 
equal. 

Theorem 2. The function f(x) is continuous at the point a if and only if it is 
defined at this point and if 

Iimf(x) = f(a). 
x-+a 

REMARK 3. If the function f(x) is continuous at the point a, we compute the limit 
ofj(x) at that point very easily by putting x = a in the formula ofj(x). For example, 
the function y = sin x is continuous at the point a = f7t, hence 

Ii . . 7t J3 
msmx = sm- = -. 

J<-+fC/3 3 2 

Theorem 3. The function f(x) has a (finite) Iimit at the point a if and only if the 
Bolzano- Cauchy condition is satisfied: To any arbitrary e > 0 there exists a ~ > 0 
such that for every pair of numbers XI> x 2 , 0 < lx1 - aj < ~. 0 < jx2 - al < ~ 
the relation lf(x1) - f(x 2)1 < s holds. 

Theorem 4. If f(x) has the Iimit A and g(x) the Iimit B both at the point a, then 
the functions k .f(x) (k = const), f(x) ± g(x), f(x). g(x), f(x)fg(x) (if B =I= 0) have 
Iimits at the point a a11d the relations 

lim k .f(x) = kA, lim [f(x) ± g(x)] = A ± B 
J<-+a x-+a 

Iimf(x) g(x) = AB, lim f(x) = ~ 
x-+a x-+a g(x) B 

hold. A similar theorem holds for the Iimit from the right or from the left. 

REMARK 4. This theorem facilitates the practical computation of Iimits of many 
functions; cf. the similar Remark 11.3.6. 

Theorem 5 (Limit of Composite Functions). Let 

Iimf(x) = A, lim g(z) = B 
x~a z~A 
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and let ö > 0 exist such that for all x, for which 

Then 

Fig. 11.12. 

0 < lx - al < ö, the relationf(x) =F A holds . 

lim g{f(x)) = B • 
:x--+a 

y 2 

y=gfzJ 

z 
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(I) 

REMARK 5. If condition (I) is not satisfied, an incorrect result may be obtained 
as we can see from Fig. 1l.I2 where f(x) = 0 in some neighbourhood of the point a. 
Because here A = f(a) = 0, g(O) = 2, we have 

lim g(f(x)) = 2 
:x-+a 

whereas 
B = lim g(z) = 1. 

:r-+0 

Definition 2 (Infinite Limit). We say that f(x) has the infinite Iimit + oo at the 
point a (we write limf(x) = + oo) if to any (arbitrarily great) nurober K > 0 there 

exists a ö > 0 suchthat for all x from the ö-neighbourhood ofthe point a (except the 
point a itself) the relation f(x) > K holds. 

REMARK 6. We can give similar definitions of the infinite Iimit - oo and of the 
infinite Iimit from the right or from the left. For example, the infinite limit - oo 
from the right is defined in this way: 

Definition 3. We say that the function f(x) has the infinite Iimit - oo from the 
right at the point a if to any (arbitrarily great) number L > 0 there exists a ö > 0 
such that for all x from the interval ( a, a + ö) the relation 

f(x) < -L 
holds. 
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Theorem 6. If f(x) is continuous from the right at the point a and f(a) > 0, 
and if for a certain o > 0 g(x) > 0 in the interval (a, a + o) and 

then 

lim g(x) = 0, 

lim f(x) = +oo. 
x-+a+ g(x) 

REMARK 7. Similar theoremshold (with the corresponding sign) for various com­
binations f(a) ~ 0, g(x) ~ 0, and also for the limit from the left and for the Iimit. 

Example 3. 

For b > 0, 

for b < 0, 

Example 4. 

I. 1 1. 1 
Im - = +oo, Im - = -oo. 

x-+0+ X x-+0- X 

I. b 1. b 
Im - = + oo , Im - = - oo ; 

x-+0+ X x-+0- X 

1. b 1. b 
Im - = - oo , Im - = + oo . 

x-+0+ X x-+0- X 

li 2x2 - 5x + 1 
x-+~ X2 - X- 2 

1im 
x-+2+ 

2x2 - 5x + 1 

X + 1 
----- = -oo, 

x-2 

because x 2 - x- 2 .. ", (x - 2) (x + 1), and if we write 

2x2 - 5x + 1 
f(x) = , g(x) = x - 2, 

then X+ 1 

/(2) = -1 < 0, g(x) > 0 for x > 2 and lim g(x) = 0. 
x-+2+ 

The Iimit from the left at the point x = 2 is + oo because g(x) < 0 for x < 2. 

REMARK 8. If the numerator of the quotient f(x)fg(x) also vanishes or if both 
f(x) and g(x) become infinite as x-+ a (an expression of the type 0/0 or oofoo ), then, 
in many cases, we can conclude whether the quotient has a limit, by means of l'Hospi­
tal's Rule (Theorems 11.8.1, 11.8.2). 

lf, however, f(x) is bounded in the neighbourhood of the point a (i.e.lf(x)l < M) 
and 

lim g(x) = + oo or lim g(x) = - oo, 
x~a x~a 
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lim f(x) = 0 
x-+a g(x) 

(and similarly for the Iimit from the right or from the left). 

Example 5. 

because 

for all x =I= 0 and 

I im 
x-+0+ 

. 1 + x 2 
sm---
---,..,.x __ = 0 

el/x 

lim e11" = + oo • 
x-+0+ 
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Definition 4 (Limits at the Points at Infinity). We say that f(x) has the Iimit A 
at the point at infinity + oo ( or briefly, at the point + oo) if to an arbitrary e > 0 
there exists an x0 such that for all x > x0 

lf(x) - Al < e. 
We write 

lim f(x) = A. 
x~+oo 

REMARK 9. The definition of the Iimit at the point at infinity - oo is analogous. 
The definitions of the infinite Iimit at the points at infinity + oo or - oo are analo­
gous. For example: 

Definition 5. We say that the function f(x) has the infinite limit + oo at the point 
at infinity - oo if to an arbitrary K > 0 there exists such a number x0 that for all 
X< Xo 

f(x) > K. 
We write 

lim f(x) = + oo . 
x-+- oo 

Example 6. 

lim .!_ = 0 , lim x = + oo , lim x3 = - oo , 
.x-+ +CO X X .... + CO .x-+- CO 

I. x 2 - 2x + 3 1. 1 - 2/x + 3Jx2 
tm = tm x = +oo 

x-++co 2x - 1 x-++co 2- 1/x 

(cf. Remark 12). 

REMARK 10. We often write oo only instead of + oo. 
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REMARK 11. L'Hospital's rule may also be applied to find Iimits of the form 
ofo, oo 1 oo at the points at infinity (§ 1t.8). 

REMARK 12. For computation with finite Iimits at points at infinity we apply 
Theorem 4. For computation with infinite Iimits as x - a or x - + oo or x - - oo 
we may apply Theorem 4 unless the result is of an "indeterminate form" (0 . oo, 
oo - oo, etc.). For example, 

. sin x . sin x 1 
hm - 2 = hm -.-= l.(+oo)= +oo. 

x-+0+ X x-+0+ X X 

We naturally obtain the same result if we apply Theorem 11.8.1. (Cf. also Example 6.) 

Theorem 7. lf f(x) ~ g(x),Jor all x in some neighbourhood of the point a (with 
the possible exception of the point a itself), then limf(x) ~ lim g(x) if both these 

Iimits exist. A similar theorem holds for the Iimit from the right or from the left. 
(If a = + oo or a = - oo, then we take into consideration all x greater (or smaller) 
then a certain number x 0 (instead of a "neighbourhood of the point a").) 

REMARK 13. If f(x) < g(x) for all x in a neighbourhood of the point a, then the 
relation limf(x) < lim g(x) need not hold, the sign of equality may also be valid. 

x~a x-+a 

For example, in a sufficiently small neighbourhood of the origin jxj > x2 for all x 
(x =I= 0), but lim jxj = lim x2 = 0. 

x-+0 x-+0 

Theorem 8. lf f(x) ~ g(x) ~ h(x) for all x in a neighbourhood of the point a 
(with the possible exception of the point a itself) and if the Iimits limf(x) = A, 

lim h(x) = A exist, then lim g(x) exists also and is equal to A. 

REMARK 14. Theorem 8 has a simple geometrical interpretation: lf the graph of 
g(x) lies between the graphs of f(x) and h(x) and if bothf(x) and h(x) tend to the 
same value as x- a, then g(x) also tends to the same value. 

Definition 6. We say thatf(x) is of the order O(g(x)) in the neighbourhood of the 
point a if the expression lf(x)fg(x)j is bounded for all x =I= a from a certain neigh­
bourhood of the point a. lf 

lim lf(x) I = 0 
x-+a g(x) ' 

we say thatf(x) is of the order o(g(x)) or of a smaller order than g(x), in the neigh­
bourhood of the point a. 

REMARK 15. We naturally demand that the expression lf(x)fg(x)j has sense in 
the neighbourhood ofthe point a (x =I= a), i.e. that g(x) =1= 0. 

REMARK 16. One can see from the definition that if f(x) = o(g(x)), then also 
f(x) = O(g(x)); however, in general, the converse is not true. 
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REMARK 17. By the point a in Definition 6 we may understand also the point 

at infinity. 

Example 7. sin x = O(x) in the neighbourhood of the point x = 0 because 

lim I sin x I = 1 ; 
x-+0 X 

x3 
x3 = o( ex) for X ~ + 00 because ]im - = 0. 

X-+'+ 00 eX 

Theorem 9 (Some lmportant Limits). 

}. }im (I + ~)x = ea , }im (1 + ~)x = ea , 
x-++co X x-+-co X 

2. lim sin x = 1 , lim tan x = 1 , 
x-+0 X x-+0 X 

3. lim ax = + oo (a > I), lim ax = 0 (a > I), 
x-++oo x-+-co 

4. lim ax = 0 (0 < a < 1), lim ax = + oo (0 < a < 1), 
x-++co x-+-oo 

ex- 1 ax- 1 
5. lim -- = I , lim -- = ln a (a > 0), 

x-+0 X x-+0 X 

6. lim ~: = 0 (k > 0, n arbitrary), 
x-++co e 

7. lim (ln :)n = 0 (oc > 0, n arbitrary), 
x-++oo X 

lim x"'( -ln xt = 0 (oc > 0, n arbitrary). 
x-+0+ 

Especially lim x In x = 0. 
x-+0+ 

11.5. Derivative. Formulae for Computing Derivatives. Derivatives of 

Composite and Inverse Functions 

Definition 1. If there exists the (finite) Iimit 

1. f(a + h) - f(a) 
Im , 

h-+0 h 
(I) 
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we say that f(x) has a derivative at the point a. The corresponding Iimit is denoted 
by f'(a). 

REMARK 1. The geometrical representation of the number f'(a) is, as we can see 
from Fig. 11.13, the slope of the tangent to the curve, given by the equation y = f( x ), 
at the point a (because the tangent at the point a is the limiting position of the Lhord 
for h ---+ 0). In dynamics, if x stands for time, y for the length of path traversed by 
a particle up to the instant x, y = f(x) for the equation of motion, then the meaning 
of the derivative is the Iimit of the average velocity, i.e. the instantaueaus velocity 
v at the instant a. 

y 

0 a a+h X Fig. 11.13. 

Definition 2. If there exists in ( 1) only the Iimit from the right or from the left, then 
we say that f(x) has a right-hand or left-hand derivative at the point a. We write 
f~(a) or f'_(a). 

Theorem 1. A necessary and sufficient condition that f(x) has a derivative at the 
point a is that it has a right-hand and left-hand derivative at the point a and 

f~(a) = f'_(a). 

Definition 3. If (1) is an infinite Iimit (Definition 11.4.2) or an infinite Iimit from 
the right (or from the left), we say thatf(x) has an infinite derivative at the point a 
or an infinite right-hand (or left-hand) derivative. (One of the possible geometrical 
interpretations: The tangent to the curve y = f(x) is vertical.) 

REMARK 2. When we say that f(x) has a derivative at the point a, weshall always 
mean a finite derivative. 

Definition 4. If f(x) has a derivative at every point x E (a, b), we say that f(x) is 
differentiable in the interval (a, b) orthat it has a derivative in the interval (a, b). 
Current notations for derivatives: 

f'(x), y'(x), df , ddy' dd f(x), 
dx X X 

~ y(x), y', f', [f(x)]'. 
dx 

If f(x) is differentiable in (a, b) and if it also has a right-hand derivative at a and 
a left-hand derivative at b, we say that f(x) is differentiable in [ a, b J or that f(x) 
has a derivative in [ a, b]. 
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Definition 5. A function y = f(x) that has a continuous derivative in [ a, b] is 
called a smooth function in [ a, b]. The curve y = f(x), its graphical representation, 
is also said to be smooth. 

Definition 6. If there exists the (finite) limit 

lim f'(a + h)- f'(a) 
h-0 h ' 

we say that f(x) has a second derivative at a. We write it as f"(a). Similarly we 
define higher derivatives. We write them as f"'(a), j<4)(a),J<5)(a), etc. 

Theorem 2. If f(x) has a derivative at the point a, then it is continuous at this 

point. 

REMARK 3. The converse is not true as we can see when f(x) = lxl (Fig. 11.14), 
which is continuous at the origin but has no derivative there (it has there the right­
hand derivative equal to + 1 and the left-hand derivative equal to -1). 

y 

Fig. 11.14. 
0 X 

Theorem 3 (Fundamental Formulae). We denote a derivative by a dash. Unless 

the contrary is stated, all the formulae are valid for all x and every value of the 

constants referred to. 

1. (x")' = nx"- 1 (x > 0, n arbitrary). It is possible to enlarge the domain of 
validity for the variable x for some n. For example, (x3)' = 3x2 holds for all x; 
(x 1' 3)' = tx- 2 ' 3 holds for all x =1- 0. 

2. If f(x) = const., then f'(x) = 0. 

3. (ax)' = axlna (a > 0), (ex)' = ex. 

4. (log0 x)' = - 1- (a > 0, a =I= 1, x > 0), (lnx)' = !_ (x > 0), 
x~a x 

[In(kx)]' = !_ (k arbitrary but suchthat kx > 0). 
X 

5. (sin x)' = cos x, (cos x)' = - sin x. 

6. (tan x)' = - 1- (x =1- ±!n, ±in, ... ), 
cos2 x 
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(cot x)' = - -.-1- (x # 0, ±tt, ±2tt, ... ) . 
sm2 x 

7. (arcsin x)' = 1 (JxJ < 1), 
.J(1 - x 2 ) 

(arccos x)' = - 1 (JxJ < 1) . 
.J(1 - x 2) 

1 1 8. ( aretau x )' = -- , ( arccot x )' = - --.. 
1 + x2 1 + x2 

9. (sinh x)' = cosh x, (cosh x)' = sinh x. 

1 1 10. (tanh x)' = --.-, (coth x)' = - -- (x # 0). 
cosh2 x sinh2 x 

Some other common formulae: 

11. (sin x)<n> = sin (x + ~1t), (cos x)<"> = cos (x + n21t). 

12. (xm)(n) = m(m- I) ... (m- n + 1) xm-n (x > 0, n a positive integer, m ar­
bitrary), in particular (x")<"> = n! . 

13. ( ax)<•> = ax(ln a )" ( a > 0), ( ex)(n) = ex, 

(In x)<•> = ( -1)"- 1 (n- I)! (x > 0). 
x" 

14. (sin ax)' = a cos ax, (cos ax)' = -a sin ax. 

15. ( arcsin ~)' = 

.J(az - xz) 
(a < 0, JxJ < JaJ), 

( arccos ~ )' = 
1 

(a > 0, JxJ < a), .J(az - xz) 

I 
(a < 0, JxJ < JaJ) . .J(az - xz) 

16. (arctan ::)' = a , (arccot ::)' = - a (a # 0). 
a a2 + x 2 a a2 + x 2 
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1 
17. (ln lx + ..J(x2 + a)!)' = (a =1= O,x2 + a > 0) . 

..J(x2 + a) 
18. [sin (ax + b)]' = a cos (ax + b), [cos (ax + b)]' = -a sin (ax + b). 

20. [ln(ax + b)]' = a (ax + b > 0). 
ax + b 

21. (xx)' = xx(1 + ln x) (x > 0). 

22. [f(x)g(x)]' = [eg(x)lnf(x)]' = f(x)g(x) [g'(x) lnf(x) + g(x) f'(x)] (f(x) > 0). 
f(x) 

23. (arsinh x)' = 1 , (arcosh x)' = ..J(x2
1_ 1) (x > 1), 

..J(1 + x 2 ) 
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1 
(artanh x)' = ( -1 < x < I), (arcoth x)' = - -- (lxl > 1). 

1 - x 2 x 2 - 1 

24. ( arsinh ~)' = 

( arcosh ~ )' = 

1 
(a > 0), 

..J(az + x2) 

1 (a < 0) 
.J(az + xz) ' 

1 
(x > a > 0), 

..J(xz- a2) 

1 
(x < a < 0) . 

..J(xz - az) 

Theorem 4. If the functions f(x), g(x) have a derivative at the point a, then also 
thefunctions k .f(x) (k = const.),f(x) ± g(x),J(x) g(x) and, if g(a) :F O,j(x)fg(x) 
each have a derivative at the point a. Moreover (briefly written), 

(kf)' = kj'' (! ± g)' = f' ± g'' (fg)' = f'g + fg'' (~)' = f'g g~ fg' 

Example 1. Applying the rule for differentiation of a quotient we find that for all 
x :F 0 the function 

has the derivative 

sin x 
y=--

x 

, X COS X - <>in X 
y = .. 

xz 
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Theorem 5 (Differentiation of a Composite Function or the Chain Rule). Let 

y = g(f(x)) be a composite function where y = g(z), z = f(x) (Definition 11.1.4). 

lf the function z = f(x) has a derivative with respect to x at the point a and if the 

function y = g(z) has a derivative with respect to z at the point z0 = f(a), then 

y = g(f(x)) has a derivative with respect to x, at the point a, equal to g 1(z0 ) .f1(a); 

in short notation 

dy dy dz 
(2) -=-.-

dx dz dx 

REMARK 4. We therefore compute the derivative of the function g(f(x)) with 

respect to x at the point a by multiplying the derivative of the function y = g(z) 

(with respect to z) at the point z0 = f(a) by the derivative of the function z = f(x) 

(with respect to x) at the point a. A more exact form of equation (2) is 

dy dg df 

dx dz dx 
(3) -=-.-

Example 2. We express the function y = sin5 x as a composite function as follows: 

y = z5, z = sin x. From (2), or (3) we have 

1 dy dy dz 5 4 5 · 4 
y = - = - - = Z COS X = Slll X COS X • 

dx dz dx 

Example 3. If y = sin (x5), we choose y = sin z, z = x 5 ; hence 

I dy dy dz 4 4 ( s) 
y = - = - - = cos z . 5x = 5x cos x . 

dx dz dx 

Theorem 6 (Derivative of an Inverse Function). If y = f(x) is the inverse func­

tion of the function x = g(y) (Definition 11.1.5) and if g(y) has a non-zero 

derivative (with respect to y) at the point y0 , then the function y = f(x) has 

a derivative ( with respect to x) at the corresponding point x 0 = g(y0 ) and the 

relation 

dy 1 df 1 
- =- (or, more exactly:- =-) 
dx dx dx dg 

holds. dy dy 

Example 4. 

y = aresirr x (i.e. y = sin -l x) , - 1 ~ x ~ 1 , 

is the inverse function of x = sin y (- f1t ~ y ~ f1t) (Example 11.1.5, p. 363). Then 

dx 
- = cos y =1- 0 for y =1- ±t1t, 
dy 
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hence 

dy 1 
---

dx cos y +)(l - sin2 y) 
l ( -1 <X < 1). 

)(1 - x 2 ) 

(We take the positive root because cos y > 0 when -!n < y < !n.) 

Theorem 7. The derivatives of a function given parametrically by equations 
X = cp(t), y = t/J(t): 

f dy t/l'(t) 
y =-=-

dx cp'(t)' 
" d ( ') d ( ') dt t/l"(t) cp'(t) - t/l'(t) cp"(t) y=-y=-y-= , 

dx dt dx [ cp'(t)J3 

q>'2 t/1"' - q>' t/1' q>"' - 3 q>' cp" t/1" + 3 q>"2 t/1' 
q>'s 

Example 5. For the ellipse x = a cos t, y = b sin t we have 

( cp'(t) =I= 0) . 

b cos t 
y'=---

- a sin t 

b b2 X 
- - cot t = ---, t =/= kn (where k is an integer) . 

a a2 y 

REMARK 5. Similarly, for polar Coordinates 

x = f2 cos q> , y = (} sin q> , 

the relations 

dx = d(} cos q> - f2 sin q> dq> , dy = df2 sin q> + f2 cos q> dq> 

hold; hence 

dy 

dx 

. d(} 
sm q> - + f2 cos q> 

dq> 

d(} . 
COS q> - - {}Sill q> 

dq> 

Same formulae that find frequent application: 

Theorem 8. For the derivative of a product of functions u1(x), u2 (x), ... , u.(x) the 
following rule holds: 
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(we apply the last form if u1 =F 0, u2 =F 0, . .. ).In another form: 

Theorem 9 (Leibniz's Rule). 

(uv)<n> = u<">v<O> + G) u<n-l>v<O + (;) u<n-2)v(2) + ... + u<o>v<n>. 

The upper indices in brackets stand for the order of the derivative; u<o> = u, 

v< 0> = v; (~) are the binomial coefficients (§ 1.12, p. 18). 

Example 6. For the second derivative of a product of functions u(x). v(x) the 
relation 

(uv)" = u"v + 2u'v' + uv" 

hoids. For exampie 

(x3 sin x)" = 6x sin x + 6x2 cos x - x3 sin x. 

REMARK 6. If the given function y = h(x) is positive and if we can easily dif­
ferentiate the function In h(x), then we frequentiy use so-called logarithmic dif­
ferentiation. Then y = h(x) = e1nh(.x>, y' = e10 h(.x>[In h(x)]' = h(x). [In h(x)]'. 

Example 7. y = x" (x > 0), In x" = x In x, [ x In x ]' = In x + xjx = In x + 1, 
so y' = x" (In x + 1). 

so 

More generally: 

y = f(x) 9<.x> (f(x) > 0), In [f(x)9<">] = g(x) Inf(x), 

[g(x) Inf(x)]' = g'(x) Inf(x) + g(x)~(~?, 

y' = f(x)9<.x> [u'(x) In f(x) + g(x) f'(x)J. 
f(x) 

11.6. Differential. Differences 

Definition 1. We say that f(x) is differentiable or has a differential at the point a 
if we can express its increment N = f(a + h) - f(a) in the form 

N=f(a + h) -f(a) = Ah + h-r:(h) (I) 
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where A is a constant and 
lim r(h) = 0. (2) 
h-+0 

Theorem 1. Thefunctionf(x) has a differential at the point a if and only iff(x) 
has a derivative at the point a. The constant A in (I) is equal to f'(a), i.e. 

f(a + h)- f(a) = f'(a) h + h r(h). (3) 

Definition 2. The expression f'(a) h is called the differential of the function f(x) 
at the point a. Wederrote it by df(a). At a general point we write df(x) or dy. 

Fig. 11.15. 

ly 

' 
' 

j(aJ ----------) 

' ' 

a a+h X 

The geometrical interpretation (Fig. 11.15): If we replace the increment Af = 
= f(a + h) - f(a) by the differential f'(a) h, then it means that we take only the 
increment on the tangent y = f(a) + f'(a) (x- a) instead of the increment of the 
function y = f(x). According to (3), the "error" Af- df is equal to the function 
h r(h) of the variable h; if h-+ 0, then df-+ 0 and h -r:(h)-+ 0. The condition (2) 
says that, if f'(a) i= 0, then h -r:(h) tends to zero at a "higher order" than f'(a) h. 
That is, the smaller is h, the smaller relative error we commit in replacing Af by 
the differential df. 

At a general point x, df(x) = f'(x) h. For the function y = x we have dy = 
= dx = h. This justifies the notation of differentials 

df(x) = f'(x) dx or dy = f'(x) dx 

used almost exclusively nowadays. 

We call the reader's attention to the fact that here dx is by no means an "infinite­
simally small quantity", but it can assume any value. Sufficient accuracy when re­
placing the increment of a function by its differential is, of course, secured by (2) only 
for sufficiently small dx. 

Example 1. For the function y = x3 , dy = 3x 2 dx; Lly = (x + dx)3 - x3 = 
= 3x2 dx + 3x dx 2 + dx 3 , hence -r:( dx) = 3x dx + dx 2 • (Cf. the notation in 
Remark 4.) Obviously for every x, 

lim -r:(dx) = 0. 
dx~o 
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Further, 

dy = 2·7, Ay = 2·791 when x = 3, dx = 0·1. 
dy = 0·027 , Ay = 0·027, 009, 001 when x = 3 , dx = 0·001 . 

REMARK I. In technical subjects we often speak about an increment of the func­

tion instead of a differential of the function. 

Taylor's formula gives a better approximation to the increment of a function than 
the differential does (§ 11.1 0, p. 396). 

REMARK 2. If we replace the increment of a function by its differential, then it 
follows for the estimation of the error R = [!( a + h) - f( a )] - f'( a) h by Taylor's 
formula that 

IRI = if"(a + .9h)l hz' 0 < .9 < I. 
2! 

REMARK 3. Th" differential is often used for the approximate determination of the 
error committed in computing the value of a quantity from the value of another 
quantity measured with some error. For example, ifthe radius of a sphere is measured 
as a = 4 cm and if we know that the error of that measurement is 0·1 mm at most, 
then the maximum error in the determination of the volume V= 1'1tx3 = !x . 43 cm3 

is given approximately by the differential V'. h = 41tx2 h = 41t. 42 • 0·01 cm3 (about 
0·75 per cent). 

Definitior Let f(x) have a second derivative which is continuous at the point x. 
The sec ,ifferential of the function f(x) at the point x is the expression 

gously we define differentials of higher orders, d<"'i(x) = j<">(x) dx"; it is sup­
,d that f(x) has a continuous n-th derivative at the point x. 

The second (n-th) differential is obtained formally as the differential of the first 
(or(n - 1)-th) differential for the same constant h: 

d 2f(x) = d[hf'(x)] = hf"(x). h = h2 f"(x) = f"(x) dx 2 • 

REMARK 4. The notation dx" is usual for (dxt, thus it does not stand for d(x"). 
Similarly Ax" is used instead of(Ax)". Thus Ax" is not A(x"). 

Definition 4. Thefirst difference Af(a) of thefunctionf(x) at the point a is defined 
as 

Af(a) = f(a + Ax) - f(a). 

The second difference is the difference of the first difference, A 2f(a) = A[Af(a)J = 
= [f(a + Ax + Ax)- f(a + Ax)J- [f(a + Ax)- f(a)] = f(a + 2Ax)- 2f(a + Ax) + 
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+ f(a). Generally, the n-th difference is the difference of the (n - 1)-th difference, 

!l.nf(a) =f(a + n!l.x)- G)f[a + (n- l)Ax] + (;)f[a + (n- 2)Ax]­

- · · · + (-1/ f( a) · 

Theorem 2. If f(x) has the n-th derivative which is continuous at the point x, then 

pn>(x) = lim L\nf(:). 
Ax-+0 L\x 

For more detailed treatment of differences see Chap. 32. 

11.7. General Theorems on Derivatives. Rolle's Theorem. Mean-Value 
Theorem 

Theorem 1 (Rolle's Theorem). If a function f(x) is continuous in [a, b], has 
a derivative (finite or infinite) in ( a, b ), and f(a) = f(b ), then there exists at least one 
point c e (a, b) such that f'(c) = 0 (so that tangent to the graph at c is horizontal). 

Theorem 2 (Mean-Value Theorem or Lagrange's Theorem). If a function f(x) 
is continuous in [a, b] and has a derivative(finite or infinite) in (a, b), then there 
exists at least one point c e (a, b) such that 

f'(c) = f(b)- f(a) or f(b)- f(a) = (b- a)f'(c) · 
b- a 

2 b X 0 a 

Fig. 11.16. Fig. 11.17. 

b X 

REMARK. I. Geometrical interpretation: There exists at least one point c (in Fig. 
11.16 even two such points, c 1 and c 2) such that the tangent at c is parallel to the 
straight line joining the points (a,f(a)), (b,f(b)). For f(a) = f(b) we have Rolle's 
Theorem. The theorem does not hold ifj(x) has a right-hand and left-hand derivative 
at an interior point, but these are not equal, as we can see in Fig. 11.17. 
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Theorem 3 (The Generalized Mean-Value Theorem). If the functions f(x) and 
g(x) are continuous in [ a, b J and have derivatives in ( a, b) (an infinite derivative 
of f(x) is admitted), g'(x) # 0 in (a, b), then there exists at least one point c E (a, b) 
such that 

f(b) - f(a) = f'(c) 

g(b)- g(a) g'(c) 

REMARK 2. For g(x) = x we have the preceding Mean-Value theorem. 

Theorem 4. lf f(x) is continuous from the right at the point a, has a finite or in-
finite derivative when a < x < a + {) ({) > 0) and if the finite or infinite limit 
limf'(x) exists, then there exists a derivative from the right of f(x) at the point a 

x-+a+ 

which is equal to this limit. 
An analogaus theorem holds for a left-hand neighbourhood of the point a. 

11.8. The Computation of Certain Limits by means of l'Hospital's Rule 

Theorem 1 ( Computation of Limits of the Form 0/0). If 

limf(x) = 0, lim g(x) = 0 
x-+a 

and 

I. f'(x) 
Im--

x-+a g'(x) 

exists (finite or infinite), then 

also exists and 

lim f(x) 
x-+a g(x) 

lim f(xl = lim f'(x) . 
x-+a g(x) x-+a g'(x) 

A similar theorem is valid for the Iimit from the right or from the left (i.e. for 
x --+ a + or x --+ a-) and for the Iimits at the points at infinity (for x --+ + oo or 
X--+ -00 ). 

REMARK 1. Frequently it is necessary, if f'(x)Jg'(x) is again of "indeterminate 
form" (i.e. if again limf'(x) = 0 and lim g'(x) = 0), to repeat the application of 

x-+a 

l'Hospital's rule. 

Example 1. 

I. 1 - cos x _ 1. sin x _ 1. cos x _ 1 
1m - 1m-- - Im-- - -. 

x-+0 x 2 x-+0 2x x-+0 2 2 
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REMARK 2. L'Hospital's Rule cannot be used if onc of the functions tends to zero 
when x - a while the other does not. 

REMARK 3. Note that f(x)fg(x) is not differentiated as a quotient; the functions 
in the numerator and the denominator are differentiated separately. 

Theorem 2 ( Computation of Limits of the Form oofoo ). Let lim jg(x)j = + oo (we 
x-+a 

do not suppose anything about Iimf(x), not even the existence ofthat Iimit). Then, if 

lim f'(x) 
x-+a g'(x) 

exists (finite or infinite) so does 

and 

lim f(x) 
x-+a g(x) 

lim f(x) = lim f'(x) . 
x-+a g(x) x-+a g'(x) 

Theorem 2 holds analogously for x- a+, x -t a-, x- +oo, x- -oo, res­
pectively. 

Example 2. 

I. x 3 + 5x - 2 lim 3x2 + 5 
Im = 

x-++oo x 2 - 1 x-++oo 2x 
1. 6x 
Im - = +oo. 

x-+ + oo 2 

Example 3. For a > 1, n a positive integer, 

. a" . a" In a . a" (In a )" 
hm - = hm --- = ... = hm + oo . 

x-++oo x" x-++oo nxn-l x-++oo n! 

In particuiar, 
e" 

lim - = +oo. 
x-++oo x" 

This fact is expressed by the statement that the exponentiai function increases 
faster than any power of x, when x- + oo. 

REMARK 4. The computation of Iimits of the form 0 . oo, oo - oo is frequently 
reduced to the preceding forms: 

Example 4. 

Iim x In x = Iim In x = Iim _x- = Iim (- x) = 0 . 
x-+0+ x-+0+ 1 x-+0+ 1 x-+0+ 

X 
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Example 5. 

1. ( 1 1) 1" lffi ---- = lffi 
x-+0+ Slll X X x-+0+ 

x - sin x 

x sin x 
lim 

1 - COS X 
------= 

x-+0+ sin X +X COS X 

sin x = lim = 0. 
x-+0+ 2 COS X - X sin X 

11.9 

We try to reduce "indeterminate expressions" of other forms to the preceding 
forms also: 

Example 6. 

lim x"' = lim e"' In"' = exp ( lim x In x) = e0 = 1 . 
x-+0+ x-+0+ x-+0+ 

Herewe have appiied the resuit of example 4, the reiation x = e1n x (following from the 
definition of In x) and the continuity of the exponential function, 

I im e: = exp ( lim z) . 
z-+zo z-+zo 

11.9. Investigation of a Function. Graphical Representation. Monotonic 
Functions. Concavity. Convexity. Points of Inflection. 

Maxima and Minima 

In this paragraph the briefer term "the function" instead of "the graph of the 
function" is frequently used. 

Definition 1. We say that f(x) is strictly increasing at the point a if, in a certain 
neighbourhood of the point a, 

f(x) > f(a) when x > a, 

f(x) < f(a) when x < a 

(1) 

(the points x 1, x4 in Fig. 11.18). Analogously we define a function strictly decreasing 
at the point a. 

Ifin (l)f(x) ~ f(a) when x > a andf(x) ~ f(a) when x < a, we say thatf(x) is 
increasing at the point a; anaiogously we speak of a function being decreasing at a. 
For example the function f(x) = const. is both increasing and decreasing at a. 

Theorem 1. Iff'(a) > 0, thenf(x) is strictly increasing at the point a; iff'(a) < 0, 
thenf(x) is strictly decreasing at the point a. 

REMARK 1. If f(x) is strictly increasing at every point of an interval J, we say that 
it is strictly increasing in I. The following definition is equivalent: f(x) is called 
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strictly increasing in I if for every pair of points x 1, x 2 of this interval, satisfying 
x 1 < x 2 , the relation 

(2) 

holds. Increasing (with the sign ~ in (2)), strictly decreasing, and decreasing func­
tions in I are defined analogously. All such functions are called monotonic in I. 
Strictly increasing or strictly decreasing functions are called strictly monotonic 
in I. If f'(x) > 0 (f'(x) < 0) in I, thenf(x) is strictly increasing (decreasing) in I. 

y 

0 

Fig. 11.18. 

Definition 2. If, in a certain neighbourhood U of the point a, the graph of the 
functionf(x) lies below the tangent (or on the tangent) drawn at the point (a,f(a)) 
(i.e. if the relation f(x) ~ f(a) + (x - a)f'(a) holds in U; the points x 1, x 2 in Fig. 
11.18), we say thatf(x) is concave at the point a. Ifthe graphlies above the tangent 
(or on the tangent), i.e. the relationf(x) ;?; f(a) + (x - a)f'(a) holds in U, we say 
thatf(x) is convex at the point a (the point x 3 in Fig. 11.18). 

REMARK 2. If in these cases the graph of the function coincides in a certain neigh­
bourhood U of the point a with the tangent only at the point of contact (this is the 
case we meet most frequently in applications), the function is called strictly concave 
or strictly convex at a. 

Theorem 2. If f"(a) > 0, then f(x) is strictly convex at a; if f"(a) < 0, then f(x) 
is strictly concave at a. 

REMARK 3. If f(x) is convex at every point of an interval I, we say that it is convex 
in the interval I. Analogously a function is defined to be strictly convex or concave 
or strictly concave in an interval I. 

Jf f"(x) > 0 ( or f"(x) < 0) everywhere in I, then f(x) is strictly convex ( or strictly 
concave) in I. 

Definition 3. If the graph of a function crosses, at the point x = a, its tangent 
at this point, we say thatf(x) has a point of in.flection at the point a (the point x4 in 
Fig. 11.18). 
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Theorem 3. If f"(a) = 0, f"'(a) =I= 0, then f(x) has a point of injlection at a. 
Further if f"'(a) < 0, the graph of the function crosses its tangent from above 
(the point x4 in Fig. 11.18); if f"'(a) > 0, the graph crosses its tangent from below. 
If f"(a) =I= 0, thenf(x) has no point of infiection at a. 

Definition 4. If 
f(x) ~ f(a) (or f(x) ~ f(a)) (3) 

in some neighbourhood U of the point a, we say thatf(x) has a relative maximum 
( or a relative minimum) at the point a. If the sign of equality in (3) holds in U at the 
point a only ( this is the case we meet most frequently in applications) we speak 
of a strict relative maximum or s. r. minimum (the points x 2 , x 3, x 5 in Fig. 11.18). 

Theorem 4. If f'(a) = O,f"(a) > 0, thenf(x) has a strict relative minimum at a; 
if f'( a) = 0, f"( a) < 0, then f(x) has a strict relative maximum at a. If f'( a) =I= 0, 
then f(x) has no relative extremum at a. 

Definition 5. If f(x) ~ f(a) for all x from a given interval (more generally from 
a domain) M, we say thatf(x) has a minimum on M at the point a E M (the point B 
in Fig. 11.18). A maximum on M is defined analogously (the point x 2 in Fig. 11.18). 
(Both theseextremes are often called total or absolute.) 

REMARK 4. As we can observe in Fig. 11.18, absolute extremes on M need not 
always be at the points of the relative extremes (the pointBin Fig. 11.18); it is ne­
cessary to investigate also the values of the function at the boundary points of the 
domain M. In the same figure, we can see that the relative extremes occur not only 
at the points where f'(a) = 0 (Theorem 4) but they may occur also at points at 
whichf(x) has no derivative at all (the point x5 in Fig. 11.18). 

REMARK 5. Even if a function f(x) has a sufficient number of higher derivatives at 
the point a, Theorems 1-4 may prove to be ineffective when several of the first 
derivatives vanish. Then the following theorems may be useful: 

Theorem 5. Let f"(a) = f"'(a) = ... = pn-ll(a) = 0, t<">(a) =I= 0 (n ~ 2). Then 

f(x) is strictly convex at a when J<">(a) > 0, n even, 
f(x) is strictly concave at a whenj<">(a) < 0, n even, 
f(x) has a point of infiection at a (and crosses the tangent from below) when 

J<">(a) > 0, n odd, 
f(x) has a point of infiection at a (and crosses the tangent from above) when 

J<">(a) < 0, n odd. 

Theorem 6. Let f'(a) = f"(a) = ... = pn-ll(a) = 0, J<">(a) =I= 0 (n ~ 1). Then 
f(x) has a strict relative minimum at a whenj<">(a) > 0, n even, 
f(x) has a strict relative maximum at a when t<">(a) < 0, n even, 
f(x) is strictly increasing at a whenj<">(a) > 0, n odd, 
f(x) is strictly decreasing at a whenJ<">(a) < 0, n odd. 
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REMARK 6. Putting n = 2, 3 in Theorem 5, we obtain Theorems 2, 3 respectively. 
Putting n = 1, 2 in Theorem 6, we obtain Theorems 1, 4 respectively. 

REMARK 7. Iff'(a) = 0 (the zeros ofthe derivative are generally known as "station­
ary" points of the function f(x)) and if the computation of the second derivative 
or of higher derivatives is not complicated, then we decide easily whether there is 
an extrem um at the point a (and its type) by Theorem 4 or 6. lf the computation of 
derivatives is rather lengthy, we may use the following theorem: 

Theorem 7. Let f'(a) = 0 and f'(x) > 0 when x < a, f'(x) < 0 when x > a in 
a certain neighbourhood U oj the point a. (We say briefly that the derivative is 
changing its signfrom positive to negative.) Thenf(x) has a strict relative maximum 
at the point a. 

If f'(a) = 0 and f'(x) < 0-when x < a, f'(x) > 0 when x > 0 in U, th'en f(x) 
has a strict relative minimum at the point a. 

If f'(a) = 0 andf'(x) > 0 (or f'(x) < 0) when x < a as well as when x > a in U, 
then f(x) is strictly increasing (strictly decreasing) at the point a. 

Similarly we have: 

Theorem 8. If f"(a) = 0 and if, in a certain neighbourhood U oj the point a, 
f"(x) > 0 when x < a andf"(x) < 0 when x > a, thenf(x) has a point of in.flection 
at the point a and the graph of f(x) crosses the tangent from above. If f"(a) = 0 
and f"(x) < 0 when x < a, f"(x) > 0 when x > a in U, then f(x) has a point oj 
in.flection at the point a and the graph crosses the tangent from betow. 

Example 1 (The Investigation oj a Function). Using the theorems of this para­
graph, let us investigate the characteristic features of the function 

and plot its graph approximately. 

4 
f(x) = x +-

X 
(4) 

The functional relation ( 4) is defined for every x =F 0. Also the domain of definition 
is (Remark 11.1.4, p. 361) the interval (- oo, + oo) from which the point x = 0 is 
excluded. The function (4) has derivatives of all orders. Especially 

f'(x) = 1 - 42' 
X 

(5) 

f"(x) = ~-x3 (6) 

From (5) it follows thatf'(x) = 0 for x1 = 2, x 2 = -2. By (6)f"(x 1) > O,j"(x2 ) < 0, 
hence by Theorem 4, f(x) has a strict relative minimum at the point x 1 and a strict 
relative maximum at the point x 2 • We easily compute f(2) = 4, f( -2) = -4 (the 
points A, Bin Fig. 11.19). For x # ±2, f'(x) =F 0 and thus the given function has 
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no other relative extremes. For jxj > 2 we have by (5)f'(x) > 0 and so (Remark 1) 

the function f(x) is strictly increasing in the intervals (2, + oo) and (- oo, - 2). In 

the intervals (0, 2), ( -2, 0) we have f'(x) < 0 by (5) and f(x) is strictly decreasing 

there (Fig. 11.19). 

By (6),f"(x) > 0 for x > 0, hencef(x) is strictly convex in the interval (0, +oo) 

(Remark 3). In the interval (- oo, 0), f"(x) < 0 and thus f(x) is strictly concave 

(Fig. 11.19). 

/ 
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Fig. 11.19. 

Because f"(x) "# 0 everywhere in the domain of definition M, f(x) has nowhere 

a point of inflection (Theorem 3). 

For an approximate plotting of the graph it is useful to determine the asymptotes 

of the graph. Evidently, 

lim f(x) = + oo , lim f(x) = - oo , 
x~O+ x~o-

so that the straight line x = 0 is a vertical asymptote of the graph (§ 9.6, p. 288). 

Further, there exist finite limits for x -+ + oo and x -+ - oo, 

4 
x+-

k = lim f(x) = lim __ x = lim (1 + ~) = 1, 
X X x 2 
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q = lim [f(x)- kx] = lim ( x +:- x) = lim: = 0, 

so that the straight line 
y=x 

is a (non-vertical) asymptote of the graph (Theorem 9.6.1, p. 326). 

To facilitate the drawing of the graph, we observe that the investigated function 
is odd (Definition 11.2.1, p. 404 ), 

f( -x) = -x + ~x = - (x + :) = -f(x), 

thus its graph is symmetric with respect to the origin. (Moreover, we could have used 
this property earlier for the investigation of the given function for x > 0 only: 
If f( x) has a strict relative minimum at x = 2, then it has a strict relative maximum at 
x = -2, etc.) For the construction ofthe graph it is advantageous, further, to work 
out the values of the function itself at some points where their computation is easy, 
e.g. at the points x = 1, x = -1 (the points C, D in Fig. 11.19). 

Thus the investigation of the properties of the function f(x) and the pre­
paration for the approximate drawing of its graph are finished. Briefly, we say that 
we have performed the investigation of the given function. 

Example 2. Of all rectangles of perimeter 20 cm, to find that with the greatest area. 
Denoting the lengths of the sides by x, y, the area is P = xy with the condition 

2x + 2y = 20, hence y = 10 - x, and P = x(lü- x) = 10x - x 2 • We Iook for 
that value of x E [0, 10] for which P assumes its maximum value. Evidently we have 
to find the relative maximum, since P(O) = P(lü) = 0. Because the function P(x) 
has a derivative everywhere it may have a maximum only at the point where P' = 0 
(Theorem 4). From the equation P'(x) = 0 or 10 - 2x = 0 we obtain x = 5. Indeed, 
there is a maximum at the point x = 5 (by Theorem 4), because P"(5) = -2 < 0. 
(Thus the square, the length of side of which is 5 cm, has a maximum area of all 
rectangles of the given perimeter 20 cm.) 

Example 3. Of all right circular cylinders of given volume V, to find that with the 
least surface S. 

Wehave 
V= nr2 h, 

S = 2nrh + 2nr2 • 

(7) 

(8) 

If we choose for instance ras independent variable, then we can express h using (7) by 

h=~. 
nr2 

(9) 
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for V is fixed. Putting (9) in (8), 

2V 
S =- + 2rrr2 , (10) 

r 

which gives S as a function of the singlevariable r. We will find the minimum of this 
function for r E (0, + oo ). If we put S' = 0, i.e. · 

we obtain 

2V -- + 4rrr = 0, 
rz 

rmin = ~~ • 

(11) 

For this value of r the surface S really attains its minimum value in the interval 
(0, + oo) because for r > r min> S' > 0 and for 0 < r < r min• S' < 0 (as follows from 
the left-hand side of equation (11)). For r min we obtain from (9) 

hmin = 3J4: = 2rmin • 

Thus, the resulting cylinder is such that its height is equal to the diameter of its base. 

Example 4. Discuss the behaviour of the function 

f(x) = x3e-x 

at the point x = 0. By easy computation we obtain f(O) = 0, f'(O) = 0, f"(O) = 0, 
f"'(O) > 0. By Theorem 6,f(x) is increasing at the point x = 0; by Theorem 5, it has 
a point of inflection there and crosses its tangent from below (its behaviour in the 
neighbourhood ofthat point is represented in Fig. 11.20). 

Fig.l1.20. 

11.10. Taylor's Theorem 

Theorem 1 (Taylor's Theorem). Let f(x) have continuous derivatives up to the 

n-th order inclusive in [ a, a + h J ( or in [ a + h, a J if h is negative) and a continuous 

derivative of the (n + 1)-th order in (a, a + h) (or in (a + h, a)). Then 

f(a + h) = f(a) + f'(a) h + f"(a) h2 + ... + J<">(a) h" + R (1) 
1! 2! n! n+l 
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where the expressionfor the remainder Rn+ I may be put in one of theseforms: 

R = pn+l)(a + 8h) hn+l (0 < 8 < 1) 
n+l (n + 1)! 

(Lagrange form), (2) 

R = pn+ll(a + 1Jh) (1 - rr)" hn+l ( ) ( ) n+l I ., 0 < 1J < 1 Cauchy form , 
n. 

{3) 

{integral form). {4) 

REMARK 1. If we write h = x - a, we obtain the frequently used form 

f(x) = f(a) + f'(a) (x- a) + f"(a) (x- a)2 + ... + j<•>(a) (x- a)" + R +l (5) 
1! 2! n! " 

where 

R = j<•+Il[a + 8(x- a)](x- a)•+l (0 < 8 < 1) (6) 
n+l (n + 1)! 

or 

Rn+l = f(n+l>[a + 11J(x- a)] (1 - 1J)" (x- a)•+l (0 < '1 < 1)' (7) 
n. 

or 

(8) 

REMARK 2. In particular, if a = 0, then 

f(x) = f(O) + f'(O) x + f"(O) x 2 + ... + f<">(o) x" + Rn+l, (9) 
1! 2! n! 

where it is sufficient to put a = 0 in (6), (7), (8), respectively, to obtain the expression 
for the remainder Rn+l· Formula (9) is called Maclaurin'sformula. 

REMARK 3. We use Taylor's or Maclaurin's Theorem in order to compute the values 
of a function or to express approximately a given function by means of a polynomial 
in the neighbourhood of the point a ( or zero ). Because we know the values of several 
functions at the origin and can then easily compute the values of the derivatives at 
this point, formula (9) finds the mostfrequent application; note, that x (or hin (1)) 
may be negative. 

REMARK 4. lfwe consider only the first two terms on the right of(1), then we obtain 
(except for the remainder R 2 ) the replacing ofthe differencef(a + h)- f(a) by the 
differential hf'(a). For n = 0 we obtain from (1) the Mean-Value Theorem. 
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Example 1. Let us try to approximate the function y = sin x in the neighbour­
hood of the origin by means of a polynomial of degree 4 and Iet us estimate the error. 

We apply (9); f(x) = sin x, f(O) = O,j'(O) = 1, f"(O) = 0, f"'(O) = -1,j<4>(o) = 

= 0, hence 
x3 

sin x = x - - + Rs . 
3! 

(10) 

According to formula 11, p. 380, (sin x)<s> = sin (x + trr) = cos x. According to 
(6), for a = 0 

Rs = cos 8x xs (0 < 8 < 1). 
5! 

(11) 

Let us consider the interva1 [ - 1~, 1~]. Because lcos 8xl ~ 1, we shall have for all x 
in this interval IRsl ~ (1~)5/5! = 1/12,000,000. 

Example 2. Let us compute the approximate value of sin 3°. 
In radians 

Further 

thus by (10) 

2rr rr 
X = - . 3 = - ='= 0·052,359,878 . 

360 60 

- - = 0·000,023,925 ' 1 ( 1t)3 
3! 60 

sin 3° ~ -~ - _.!._ (~)3 = 0·052,335,953 
60 3! 60 

with an error (by ( 11)) of less than 

~(~Y = 3·3 x 1o- 9 • 

Theorem 2. Let f(x) have derivatives of all orders in [a, x] (or in [x, a] if 
x < a ). Then a neoessary and sufficient condition that the series 

f(a) + f'(a) (x- a) + f"(a) (x- a)2 + ... 
1! 2! 

converges and has the sum f(x) is that lim Rn+ 1 = 0 (for the specified x). 
n-+oo 

11.11. Approximate Expressions. Computation with Small Numbers 

REMARK l. If we take into consideration only the first few terms of the right-hand 
side of equation (11.10.1), p. 396, we obtain an approximating formula for the 
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evaluation of the number f(a + h). If need be, we can use the formulae (11.10.2)­

( 11.10.4) or (11.10.6)- (11.10.8) for the eventual estimation of the error. Some 
frequently used approximations ( we denote the approximations by ~, e is a relatively 
small number (in absolute value) not necessarily positive) are: 

Theorem 1. 

1. (1 ± e)" ~ 1 ± ne, (1 ± e)Z ~ 1 ± 2e, ~(1 ± e) ~ 1 ± -!-t:, 

1 
--~1=te, 

1 - 1 - ~ --- ~ I + 2e , ~ 1 + 2 e . 
1 ± t: (I ± e)Z -./(1 ± e) 

2. a• ~ I + e In a , e" ~ I + e. 

3. (I ± e) (I ± <5) (I ± Yf) ~ 1 ± e ± <5 ± Yf, 

( 1 + e) ( 1 + <5) - - ~I+e+b+Yf+x. 
(I ± Yf) (I ± x) - -

4. For positive numbers p ~ q the relation ~(pq) ~ !(P + q) holds. 

5. sin 8 ~ 8 , cos e ~ 1 , tan e ~ 8 , 

sin ( x + 8) ~ sin x + 8 cos x , 

e 
tan (x + 8) = tan x + -- , 

cos2 x 

e' ~ I + 8, In (I + 8) ~ 8, 

In x + 8 ~ 28. 

X-8 x 

cos (x + e) ~ cos x - 8 sin x , 

e 
In (x + 8) ~ In x + -, 

X 

83 
6. sin 8 ~ e--

3! 

82 83 
cos 8 ~ I - - , tan 8 ~ e + - , 

2! 3 

e2 s3 
e• ~I+ 8 +- +-

2! 3! 

In (I + 8) ~ 8 - -!-82 + -!-83 , 

e 1 e2 1 e3 

In (x + e) ~ In x + - - - - + --, 
x 2 x 2 3 x 3 

ln--~2 -+-. x + e (e c3
) 

x - e x 3x3 

first 

approxi­
mation, 

higher 

~ approxi­
mations. 

(For higher approximations we have considered the first four terms of the right-hand 
side of equation ( 11.10.I )). 
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Example 1. Let us compute J9,986 . 

Using the relation J(1 - s) ~ 1 - !s, we have: 

..)9,986 = y'(lO,OOO- 14) = 100 /(1 - ~) ~ 100 (1 - - 1-) = 99·93. 
1\j 10,000 10,000 

Estimation of error: If we take f(x) = y'(1 - x), then by (11.10.2) (a = 0, h = 
= 0·001,4, 0 < 8 < 1) 

jR21 = l[y'(1 - x)];=o.oot,49 0.001421 = 0·001,42 < __ 1_. 
2! ' 4. 2! [J(l - x)J!=o.oo1,49 4. 106 

Because the whole expression J(1 - 0·001,4) is multiplied by the number 100, we 
obtain the result J9,986 = 99·93 with an error less than 10- 4 /4. 

11.12. Survey of Some Important Formulae from Chapter 11 

(Cf. also Theorems 11.4.9, 11.5.3, 11.5.8, 11.5.9.) 

1. lim [f(x) ± g(x)] = Iimf(x) ± lim g(x), lim kf(x) = k limf(x), 

limf(x) g(x) = limf(x) lim g(x), 
x-+a x-+a 

!im f(x) 
Iim f(x) = x-+a (lim g(x) #: 0) (Theorem 11.4.4). 
:x-+a g(x) lim g(x) x-+a 

x-+a 

2. lim !_ = + oo , 
x-+0 + X 

1. 1 
lm - = -00' 

x-+0- X 

r a { + 00 when a > 0 r a {- 00 when a > 0 , 
":~+ ~ = -oo when a < 0, "~~ ~ = +oo when a < 0. 

3. lim f(x) = lim f'(x) , if at the same time Iimf(x) = lim g(x) = 0, 
x-+a g(x) x-+a g'(x) x-+a x-+a 

or if lim lg(x)l = +oo (Theorems 11.8.1, 11.8.2). 

4. [f(x) ± g(x)]' = f'(x) ± g'(x), [f(x) g(x)]' = f'(x) g(x) + f(x) g'(x), 

[ f(x)]' = f'(x) g(x)- f(x) g'(x) (Theorem 11.5.4), 
g(x) g2(x) 
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dy dy dz 
- = - - (differentiation of composite functions, Theorem 11.5.5). 
dx dz dx 

5. dy = - 1- (differentiation ofinversefunctions, Theorem 11.5.6). 
dx dx/dy 

8. [f(x)9<">]' = f(x) 9<"> [g'(x) 1nf(x) + g(x) ~~~n (f(x) > o; Examp1e 11.5.7). 

9. df(x) = f'(x) dx (§ 11.6). 

10. f'(a) = 0, f"(a) > 0 => f(x) has a strict relative minimum at the point a, 

f'(a) = 0, f"(a) < 0 => f(x) has a strict relative maximum at the point a 

(Theorem 11.9.4). 

11. f(x) = f(a) + f'(a) (x - a) + f"(a) (x- a)2 + ... + J<">(a) (x- a)" + Rn+l, 
1! 2! n! 

where e.g. 

R = pn+l>[a + 9(x- a)] (x- a)n+l (0 < 9 < 1) 
n+l (n + 1)! 

(Taylor'sformula, Theorem 11.10.1, Remark 11.10.1). 

x x 2 x3 x" x"+ 1 
12. e" = 1 + - + - + - + ... + - + e/)" , 0 < 9 < 1 ; 

1! 2! 3! n! (n + 1)! 

x3 xs x2n-1 x2n+1 
sinx=x--+-- ... +(-1t-1 +(-1t cos9x, 

3! 5! (2n - 1)! (2n + 1)! 

0<9<1; 

x2 x4 x2n x2n+2 
COS X= 1 - - +-- ... + ( -1t- + ( -l)n+l cos 9x, 

2! 4! (2n)! (2n + 2)! 

0<9<1. 

All three formulae hold for every x. 

13. 1 + x > 0, x =I= 0 => (1 + x)" > 1 + nx, n any positive integer greater 
than 1. 



12. FUNCTIONS OF T\VO OR MORE VARIABLES 

By KAREL REKTORYS 

References: [4], [17], [26], [31], [52], [54], [57], [59], [68], [80], [91], [96], [111], [112], 
[119], [122], [123], [134], [142], [148], [158], [160], [169]. 

12.1. Functions of Several Variables. Composite Functions. Limit, 
Continuity 

Definition 1. Let us consider a set M of points (x, y) in the xy-plane (this set is 

most often a region; see Remark 1). We say that a real function of real variables x,y 

is defined in ( on or over) the set M if a rule is given according to which exactly one 

real nurober z is assigned to each point (x, y) of M. The set M is called the domain 

of definition of the function. Similarly a function of n variables 

may be defined. 

Usually we denote functions by Ietters f, g, etc. At an arbitrary point (x, y) E M 

or (x 1, x 2 , • •• , xn) E M we then write 

z = r(x, y) or z = g(xl, x2, ... , xn), 

etc. Cf. also Remark to Definition 11.1.1, p. 359. 

REMARK I. The domain of definition is most often a region or a closed region 

( that is, a region with its boundary included). Both these concepts are defined in § 22.1. 

(Thus, for example, the interior of a circle, the interior of an ellipse, the whole 

xy-plane, etc., are regions. An example of a closed region is a circle with its circum­

ference included, the so-called closed circle.) 

Example 1. The function z = x 2 y is defined in the whole plane. The function 
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is defined at all points for which 

For its domain of definition the closed region x 2 + y 2 ~ 1 may be taken, i.e. the 
closed circle with its centre at the origin and radius equal to 1. 

Similarly the function 

z = .)(1 - xi - x~ - ... - x;) 

is defined in a "closed n-dimensional sphere" 

xi + x~ + ... + x; ;2; 1 . 

REMARK 2. The geometrical interpretation of a function z = f(x, y) (in so far as 
the function is a "reasonable" one) is a surface in three-dimensional space. Functions 
of more than three variables can no Ionger be represented in such a simple way. 

REMARK 3. The function 

z = h(f(x, y), g(x, y)) 

is called a composite function, composed of the functions 

u = f(x, y), v = g(x, y) ,. 

z = h(u,v). 

(1) 

(2) 

(3) 

The functions (2) are defined in the set M, the function (3) in the set N and it is 
required that for every point (x, y) E M the relation (u, v) E N be satisfied. Fora given 
point (x, y) E M we can then compute by (2) the values of u and v and by (3) the 
corresponding value of z. 

Example 2. The function z = (1 + x 2 + y 2)sinxy may be considered as a com­

posite function by means of the relations z = u0 , u = 1 + x 2 + y 2 , v = sin xy. 

For the set M the whole plane xy may be taken because the function z = u0 is defined 
at all points (u, v), where u > 0, and the function u = 1 + x 2 + y 2 is positive for 
all x, y. 

Example 3. The function z = .J(1 - x 2 sin x) may be considered as a function 
composed of the functions z = .j(I - uv), u = x2 , v = sin x. (This function is 
a function of only one variable x.) 

Definition 2. The distance between two points (x 1 , y 1), (x 2 , Yz) is, by definition, 
the number 
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( we use cartesian coordinates unless otherwise stated). Similarly, the distance between 
the points (x 1, x 2 , •• • , xn), (y1, Jl, .. . , Yn) is defined as the number 

Definition 3. A set of all points, the distance of which from a point P is smaller 
than b, is called a b-neighbourhood of the point P. (Note that the point P itself 
belongs to the o-neighbourhood of the point P.) It is often denoted by UlP). 

REMARK 4. In the xy-plane a o-neighbourhood of a point P is formed by all 
points that lie inside the circle with centre at the point P and radius o. In three-dimen­
sional space a o-neighbourhood is the interior of a sphere, etc. 

Definition 4. We say that a function z = f(x, y) has a Iimit A at a point P(x0 , y0 ) 

if to every ( arbitrarily small) number e > 0, there exists a number o > 0 ( depending, 
in general, on the choice of the number e) such that for all points (x, y) "# P in the 
o-neighbourhood of the point P the relation 

holds. 

The notations 

lim f(x, y) = A, 
(X,JI)-+P 

are used. 

IJ(x, y) - Al < e 

lim f(x, y) = A, 
(x,JI)-+(xo,Jio) 

limf(x, y) = A 
x~xo 

JI-+Jio 

The Iimit of a function of several variables is defined similarly. 

REMARK 5. The intuitive meaning of Definition 4:f(x, y) has a Iimit A at a point P, 
if f(x, y) is sufficiently close to the value A for all points (x, y) that are sufficiently 
close to the point P, except possibly P itself. 

Definition 5. We say that f(x, y) is continuous at a point (x0 , y0 ) if it is defined 
at this point and if, corresponding to an arbitrary e > 0, there exists a o > 0, such 
that for all points (x, y) in the o-neighbourhood of the point (x0 , y0) the relation 
IJ(x, y) - f(x 0 , Yo)l < e holds. The continuity of a function of several variables is 
defined similarly. 

REMARK 6. It follows from the definition of continuity that a function f(x, y) 
continuous at the point (x0 , y0) is defined in a definite neighbourhood of the point 
(x0 , Yo) (this point included). 

Theorem 1. Let a function f(x, y) be defined at a point (x0 , y0). Then it is con-
tinuous at that point if, and only if, lim f(x, y) = f(x 0 , y 0). Similarly for 

(x,JI)-+(xo,Jio) 

functions of several variables. 

Definition 6. If a function is continuous at every point of a region ( more generally: 
of a set) M we say that it is continuous in (or on) M. 
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REMARK 7. When we say thatf(x, y) is continuous in a closed region 0, we mean 
that it is continuous in 0 and that on the boundary it is continuous with regard to 
the points from l5 (i.e. if the point (x 0 , y 0 ) lies on the boundary, then we consider in 
Definition 5 only those points from the <5-neighbourhood of the point (x0 , y0) that 
belong to l5). The same remark holds for functions of several variables. 

Example 4. The function z = .J(l - x2 - y2) is continuous in the closed region 
given by x 2 + y2 ~ 1, i.e. in a closed circle. 

REMARK 8. We often have to deal with the case where f(x, y) is defined and con­
tinuous in the region 0 and at the same time can be defined on the boundary h of this 
region in such a manner that the extended function is continuous in 0. Then we say that 
f(x, y) is continuously extensible on the boundary h. 

In a similar way we define continuous extensibility on the boundary for functions 
of several variables. 

We also often come across the case where the given function is continuous in 
a closed region 0 and has in 0 continuous partial derivatives of the first order. It is 
tobe understood that thesederivatives are continuous in 0 and continuously extens­
ible on the bouudary. Similarly, we may speak of the continuity of higher derivatives 
in 0. 

When we say that a function f(x, y) is piecewise continuous in a region 0 of the 
type A (Definition 14.1.2) we shall mean that it is possible to divide the region 
0 by means of a finite nurober of simple finite piecewise smooth curves (Definition 
14.1.1) into a (finite) number of regions On ofthe type Aso thatf(x, y) is continuous 
in every region On and continuously extensible on its boundary. (For example, the 
function considered in Example 14.1.2 is piecewise continuous in O.)i 

Similarly we define a piecewise continuous function in a three-dimensional region 
of the type A. 

A function is said to be piecewise smooth in 0 when the function and its partial 
derivatives of the first order are piecewise continuous in 0. 

Further definitions and theorems (similar to those given in§ 11.3, 11.4 for functions 
of one variable) can be formulated for functions of two or more variables. 

Of most frequent application are the following theorems: 

Theorem 2. If f(x, y) and g(x, y) possess the limits A and B, respectively, at 

the point (x 0 , y 0 ), then the functions k. f(x, y) (k = const.), f(x, y) ± g(x, y), 
f(x, y). g(x, y) and (if B # O)f(x, y)Jg(x, y) also possess a Iimit at the point (x 0 , Yo) 
and the relations 

lim kf(x, y) = kA (k a constant), lim [f(x, y) ± g(x, y)] = A ± B, 
(x,y)-(xo,Yo) (x,y)-(xo,yo) 

lim f(x, y) g(x, y) = AB, 
(x,y)-(xo,Yo) 

lim f(x, y) - :i. 
(x,y)-(xo.Yo) g(x, y) - B 

hold. 
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A similar theorem holds in the n-dimensional case. A similar statement holds 
also for continuity. 

Theorem 3. A continuous function of continuous functions is itself continuous. 
In more detail (for functions of two variables): If u = f(x, y), v = g(x, y) are conti­
nuous at the point (x0 , y0 ) and if z = h(u, v) is continuous at the corresponding 
point (u 0 , v0 ), then z = h(f(x, y), g(x, y)) is continuous (considered as a function 
of the variables x, y) at the point (x0 , y 0 ). 

REMARK 9. On the basis of the last two theorems we may decide on the continuity 
of many functions which we come across in applications. In particular all polynomials 
in x and y, allrational functions (provided the denominator is non-zero ), all functions 
composed of continuous functions (e.g., the function z = xy sin2 x), etc., are 
continuous. 

Theorem 4. If f(x, y) is continuous in a region 0 and if (x 1, y 1), (x2, y 2) are any 
two points in this region, then f(x, y) takes on in 0 every value between f(xt. y 1) 

and f(x2, Y2)· 

Theorem 5. A function that is continuous in a bounded closed region Ö takes on 
a greatest value at least at one point (x0 , y 0 ) E Ö (that is: f(x 0 , y 0 ) ;s f(x, y) for 
all points (x, y) E ö) and a least value at least at one point (x1, Yl) E Ö. 

Theorem 6. A function f(x, y) that is continuous in a bounded closed region ö 
is uniformly continuous there. This means: To an arbitrary e > 0 there exists 
o > 0 depending only on the choice of the number e (thus the same for the whole 
closed region ö) such that 

for every pair of points (x1, y 1) E Ö, (x 2, y 2) E Ö, the distance between which is 
smaller than o. 

REMARK 10. Theorems similar to Theorems 4, 5, 6 hold for functions of several 
variables. 

12.2. Partial Derivatives. Change of Order of Differentiation 

Definition 1. We say that a function z = f(x, y) has a partial derivative lVith 
respect to x at the point (x 0 , y 0 ) ifthe (finite) Iimit 

I. f(xo + h, Yo) - f(xo, Yo) rm · 
h-+0 h 

exists. 
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The following notations are used: 

Similarly 

of ( ) oz ( ) ( ) , ( ) . f(xo, Yo + k) - f(xo, Yo) - Xo, Yo = - Xo, Yo = /y Xo, Yo = /y Xo, Yo = hm · 
oy oy k~o k 

y 
Fig. 12.1. 

------
fxo,foJ , ___________ " X 

REMARK 1. The geometrical interpretation of the partial derivative is given in Fig. 
12.1. The section of the surface z = f(x, y) by the plane x = x0 (a plane parallel to 
the coordinate plane x = 0) is the curve z = f(x 0 , y) (z depends only on y if x0 is 
constant); offoy(x0 , y0 ) is the slope ofthe tangent to this curve at the point (x0 , y0 , z0) 

indicated in Fig. 12.1. 

REMARK 2. Partial derivatives of functions of several variables are defined in 
a similar manner. For example, 

of ( ) -I. f(x!, Xz + hz, x3, . .. , xn) - f(x!, Xz, x3, ... , x.) - x 1,x2 , ••• ,x"- 1m . 
ox2 hl-+0 h2 

REMARK 3. To compute a partial derivative, we differentiate the given function 
regarding it as a function of the sing le variable, with respect to which the derivative 
is required. The other variables are treated as though they were constants. 

Example 1. 

az = 3x2y 
ax 

( during this differentiation y is kept constant); 

az 
z = sin(xy), - = xcos(xy) 

ay 
( during this differentiation x is constant). 
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REMARK 4. of jax, offoy are again functions of X, y. Derivatives of the second order 

are defined by the relations: 

The last two derivatives are called mixed. 

The derivatives of second order of functions of several variables are defined simi­
larly and so are those of higher orders. The order of differentiation is indicated by the 
order of the symbols ox, oy in the denominator. For example, o3f/ox 2 oy means that 
the function z has been differentiated first with respect to y, then with respect to x and 
then again with respect to x. 

Example 2. Find o3zjoy ox2 , if z = y 2 sin x. Wehave 

az 2 - = y COS X 

OX 

Theorem 1. Change of Order of Differentiation (Interchangeability of Mixed 

Derivatives). If 

o2f o2f --, 
ax oy ay ax 

are both continuous at the point (x 0 , y 0 ), then they are equal at this point, i.e. the 

relation 

ax oy oy ox 

holds. 

REMARK 5. Under similar assumptions theorems on the interchangeability of 
mixed derivatives of higher orders or on the interchangeability of mixed partial 
derivatives of functions of several variables also hold. If, for instance, o4ffoy 2 oz ox 

and o4f/ox oy2 az are both continuous at the point (x 0 , y0 , z0), then they are equal 
at that point. If the equality holds at every point of a given domain then, of course, 
the corresponding derivatives are equal in the whole domain. 

Example 3. Let us consider the function z = y2 sin x from Example 2. Then 

az 2 0 - = ysmx, 
ay 

hence 

o2 z 
-- = 2ycosx, ax ay 

iJ3z iJ3z 
---=--
ox2 ay oy ox2 
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12.3. Total Differential 

Definition 1. The function z = f(x, y) is said to be differentiable at the point 

(x 0 , y0 ) when its increment Llz = f(x 0 + h, y0 + k) - f(x 0 , y0) can be expressed, 
in a certain neighbourhood of the point (x 0 , y0 ), in the form 

Llz = f(x 0 + h, Yo + k) - f(xo, Yo) = Ah + Bk + e-r(h, k), (I) 

where A, Bare constants, e = .J(h2 + k2 ) and 

Iim -r(h, k) = 0. 
h-+0 
k-+0 

(2) 

Note that in general -r contains h, k, x 0 , y0 ; x 0 , y0 are treated as constants. (See 
Definition 11.6.1 and Remark to Definition 11.6.2, p. 385.) 

Theorem 1. lf f(x, y) is differentiable at the point (x0 , y0 ), then it possesses partial 
derivatives at (x0 , y 0 ) and the relations 

af qf 
A = - (xo, Yo) , B = - (xo, Yo) 

ax ay 

hold. 

REMARK 1. If we pass to the customary notation h = dx, k = dy, we have 

Llz = of dx + of dy + {tt(dx, dy). 
ox ay 

(3) 

Definition 2. lf f(x, y) is differentiable at (x 0 , y0 ), then the expression 

of of 
dz = -dx +- dy 

ox ay 

is called the total differential of the function z = f(x, y). 

Theorem 2. lf f(x, y) is differentiable at the point (x 0 , y0 ), then it is continuous 
at that point. 

REMARK 2. If f(x, y) has partial derivatives of the first order at the point (x0 , y0 ) 

then it need not be continuous at that point as a function of both variables x, y (it is 
continuous only as a function of the variable x on the straight line parallel to the x-axis 
drawn through the point (x0 , y 0 ) and as a function of the variable y on the straight 
line parallel to y-axis). This can be shown, for example, by the function 

z(x, y) = xy for (x, y) "# (0, 0), z(O, 0) = 0 
x2 + y2 
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which possesses derivatives of the first order at the origin ( eq ual to zero) but is not 
continuous at this point. This example shows (see Theorem 2) that a function which 
possesses partial derivatives of the first order at (x 0 , y 0 ) need not be differentiable 
at that point. The following theorem, however, holds: 

Theorem 3. If 

of of 
ox ily 

are continuous at (x 0 , y0 ), then f(x, y) is differentiable at (x 0 , y 0 ) (and therefore 

also continuous). 

Theorem 4. If f(x, y) is differentiable at (x 0 , y 0 ), then the surface z = f(x, y) 
possesses a tangentplane at the point (x 0 , y 0 , z0 ) ( where z 0 = f(x 0 , y0)). Its equation 

is 

z - zo = ( 81) (x - xo) + ( 81) (y - Yo) , 
ax o ay o 

where 

- = - (xo, Yo) , - = - (xo, Yo) · (ij) ij (ij) ij 
ax o ax ay o ay 

REMARK 3. In the same way as we approximate, in the case of a function of one 

variable, the increment of the function by its differential (geometrically: we substitute 
the increment on the tangent for the increment of the function) so here we approxi­
mate the increment of the function by its total differential (geometrically: we substi­
tute the increment on the tangentplane for the increment of the function). 

Example 1. f(x, y) = x 3 + 4y3 • Let us find the approximate value of f( 1·11; 0·58). 

First, we havef(1; 0·5) = 1·5. If we compute the total differential for dx = 0·11, 
dy = 0·08 at this point (i.e. at the point x 0 = 1, y 0 = 0·5), we obtain: dz = 3x2 dx + 
+ 12y2 dy = 3 .0·11 + 12.0·52 .0·08 = 0·57. Hence !(1·11;0·58) ~!(1;0·5) + 
+ dz = 1·5 + 0·57 = 2·07. (The exact result isf(1·11;0·58) = 2·148079.) 

Theorem 5. lf the functions 

P(x, y), Q(x, y), ~; (x, y), ~; (x, y) 

are continuous in a simply-connected region 0, then a necessary and suf.ficient 

condition that the expression 

P(x, y) dx + Q(x, y) dy 
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be the total differential of afunctionf(x, y) in 0 isthat the relation 

oP oQ 

oy ax 
holds in 0. 

The conditions for a similar expression 

P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz 

to be the total differential of a function f(x, y, z) are 

oP 

oy 

oQ oP 
-,-
OX oz 

oR oQ oR 
-, - = - (simultaneously) in 0. 
ox az oy 

(Fora more detailed treatment see § 14.7.) 
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Definition 3. Let z = f(x, y) have a total differential in a neighbourhood of 
a point (x0 , y 0 ) and Iet the partial derivatives 

of of 
ox (x, y)' oy (x, y) 

have a total differential at the point (x 0 , y 0 ). Then we say that f(x, y) has a total 

differential of the second order (briefly a second differential). By this differential 
we understand the expression 

o2f o2f o2f 
d 2 z = h 2 - (x0 , Yo) + 2hk -- (xo, Yo) + k 2 - (xo, Yo) . 

ox2 ox oy oy2 

Instead of h, k we often write dx, dy. 

REMARK 4. Formally, we obtain the second differential as the differential of the 
first differential at the point (x0 , y0) regarding h and k as constants (cf. Definition 
11.6.3): 

We have used here the symbolic operator notation which is convenient especially 
in the case of higher differentials. 



412 SURVEY OF APPLICABLE MA THEMA TICS 12.4 

Similarly we can also define higher differentials: 

Definition 4. Let f(x, y) and all its partial derivatives up to the (n - 2)-th order have 
a total differential in a neighbourhood of the point (x0 , y 0 ). Let the partial derivatives 
of the (n - 1)-th order have a total differential at the point (x0 , y0 ). Then we say 
that the functionf(x ,y) has at the point (x 0 , y 0 ) a total differential of the n-th order 
(briefly an n-th differential) and by this differential we mean the expression 

d"z = h - + k - f = ( a a)" 
ax ay 

= h" a"j + (n)h"-1 k a"j + ... + ( n ) hk"-1 a"j + k" a"j . 
ax" 1 ax"- 1 ay n - 1 ax ay"- 1 ay" 

REMARK 5. In a similar way we define a differentiable function of n variables. 
Its m-th total differential is given by the formula 

dmz = h1 - + h2 - + · · · + h,.- f · ( a a a )m 
ax1 ax2 ax,. 

REMARK 6. In contradistinction to the total differential we often speak of the 
partial differential of the function z = f(x, y) with respect to x or y: 

of 
d"z = -dx 

ax 

of 
or d,.z = -dy. 

ay 

12.4. Differentiation of Composite Functions 

Theorem 1. Let the functions u = f(x, y), v = g(x, y) be differentiable at the 
point (x0 , y 0 ). (In order that the functions be differentiable it is sufficient by 
Theorem 12.3.3 that they have continuous partial derivatives at that point.) Let 
the function z = h(u, v) be differentiable at the corresponding point (u 0 , v0 ) (where 
u0 = f(x 0 , y 0 ), v0 = g(x0 , y0)). Then the composite function (see Remark 12.1.3) 

z = h(f(x, y), g(x, y)) 

is a differentiable function (as a function of the variables x, y) at the point (x 0 , y0) 

and 

az az au az av 
-=--+--. 
ax au ax av ax 

az az au az av 
-=--+--. 
ay au ay av ay 

(I) 

In somewhat more precise notation: 

az ah of ah ag 
-=--+--, 
ax au ax av ax 

az ah af ah ag 
-=--+--, 
ay au ay av ay 

(2) 
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where the derivatives of the functions f, gare computed at the point (x 0 , y0 ) and those 
of the function h at the point ( u0 , v0 ). 

Und er similar assumptions regarding the functions 

the relation 

holds. 
2 

Example 1. z = (y sin xY"" (y sin x > 0). Let us put 

Z = Uv , U = y sin X , V = ex2Y. 

By (I) or (2) 
oz 1 2 - = VUv- y COS X + U 0 ln U 2xy ex y 

ox 

= (y sin xY"2
". ex2y. [cot x + 2xy ln (y sin x)J. 

REMARK 1. When computing the second derivatives it is necessary to bear in 
mind that the functions ohjou and ohjov are functions of U, V and thus they are to be 
differentiated with respect to x or y as composite functions (according to ( 1 ), {2)). 
For example, using (2): 

o2 z a (az) a [ah of ah og] 
ox2 = ox ax = ox au ox + av OX = 

a (ah) of ah a (of) a (ah) ag ah a (ag) 
= ox au ox + au ax ax + ax av ax + av OX ax = 

[ a (ah) of a (ah) ag] of oh o2f 
= au au ox + av au ax ox + au 8x2 + 

[ a (oh) of a (oh) og] og oh o2g 
+ au av ox + av av OX ox + av ox2 = 

= o2 h (o/)2 + 2 o2 h of og + 82 h (og)2 + oh o2f + oh 82g . 
ou 2 ox au av ax ox 8v2 ax au ox 2 av 8x2 

{We have already applied the interchangeability of the order of differentiation, 
o2 hjou ov = o2 hjov ou.) Similarly, 
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iJ2z iJ2h iJf iJf iJ2h (aj iJg iJf iJg) 
ax ay = iJu 2 ax ay + au a~ ax ay + ay ax + 

iJ2h iJg iJg iJh iJ2f iJh iJ 2g +---+---+---. 
iJv2 ax ay au ax ay av ax ay 

REMARK 2. We often come across the case where the composite function is given 
as follows: 

z = h(x, y, u, v), u = f(x, y), v = g(x, y). (3) 

Here the function h contains the variable x partly directly, partly through the func­
tions u, v so that 

az iJh iJh au ah av -az iJh iJh au iJh av -=-+--+--, 
ax ax au ax av ax 

-=-+--+--. 
iJy ay au iJy iJv ay 

(In this case we cannot apply notation (1) and write iJzfiJx instead of iJhfiJx.) 

Example 2. z = xu 2 + 2y2 v, u = y sin x, v = x In y. By (4) 

az = u2 + 2xup cos X + 2y2 ln y = y2 sin2 X + 2xy2 sin X cos X + 2y2 In y . 
ax 

(4) 

REMARK 3. The preceding differentiation could also be carried out directly after 
putting the expressions y sin x and x In y for u and v into the formula z = xu 2 + 
+ 2y2v. But, if one (or more) of the functions (3) is given implicitly, then the Substi­
tution cannot (at least in the general case) be carried out. Then the application of 
formulae for differentiation of composite functions is necessary (cf. § 12.9). 

12.5. Taylor's Theorem, the Mean-Value Theorem. Differentiation in 
a Given Direction 

Theorem 1 (Taylor's Theorem). Let the function z = f(x, y) possess total dif­
ferentials (§ 12.3) up to order n + 1 at every point of the closed segment u joining 
the points (x0 , y0), (x0 + h, Yo + k). Then 

( h ~ + k ~) fxo l'o 
' ax ay . 

f(xo + h, Yo + k) = flxo, Yo) + + · · · + 
1! 
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( . a a }" fl- + k- fxo,Yo 
' (!x ay 

T (1) 
n! 

where the most ojten applied form of the remainder is Lagrange's form, namely 

( a c )"+ 1 
h -- + k ;- fc .J 

= ~'( ___ Djl ___ _ 

(n + 1)! 

Here, the point (c, d) is an interior point of the above-mentioned segment u. The 
suffixes x 0 , y 0 or c, d denote the point at which the derivatives are to be computed. 

REMARK 1. For n = 0, the relation (1) reduccs to the mean-value theorem: 

cf of 
f(x 0 + h, y 0 + k) - f(x 0 , y 0 ) = h ;- (c, d) + k 0- (c, d). 

ux y 

REMARK 2. The generalization of Taylor's Theorem (or ofthe mean-value theorem) 
to functions of several variables is immediate: 

( a a )m 
hJ-;-- + ... + hn ;-- fx 1 ,xz, ... ,x,. 

, uX 1 (;.'(" 
T ------------------- + Rm+!, 

m! 

wherc 

( a a )m+t 
h! -~- + ... + hn :;- fc,,c,, ... ,c. 

ox 1 uXn 

(m + 1)! 

ck = xk + 8hk and 0 < 8 < 1. (For n = 1 wc obtain Taylor's Theorem for functions 
of one variable, § 11.10.) 

Definition 1. Let cos cx, cos ß bc the direction-cosines of the oriented segment u 
joining the points (x0 , y 0 ), (x 0 + h, y 0 + k). If s = J(h 2 + k2 ) denotes the length 
of this segment, then h = s cos cx, k = s cos ß (Fig. 12.2). The Iimit 

1. f(x 0 + s cos a, Yo + s cos ß)- f(x 0 , Yo) 
lill -------------------- (2) 

s-o s 
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(if it exists) is called the derivative of the function f(x, y) in the direction (cos IX, 

cos ß) at the point (x 0 , y 0 ) and is denoted by dffds. 

Theorem 2. If f(x, y) is differentiable at (x0 , y 0 ), then 

of of of . - = - (x0 , y0 ) cos IX + - (x0 , y0 ) sm IX • 
as ax ay 

0 
Fig. 12.2. 

X 

12.6. Euler's Theorem on Homogeneous Functions 

Definition 1. The function z = f(x, y) is said to be homogeneaus of degree n in 
a region 0 if the relation 

f(tx, ty) = t" f(x, y) 

holds identically for every point (x, y) E 0 and for every t from a certain neighbourhood 
of the point t = 1 ( depending, in general, on the point (x, y )). 

Example 1. The function 

is a homogeneous function of the second degree in the whole plane because (for 
every t) 

The function 

1 
z = .J(x _ y) (x > y) 

is, as we see in a similar way, a homogeneous function of degree n = -!in the half­
plane x > y. 

Theorem 1 (Euler's Theorem on Homogeneaus Functions). If a function z = 
= f(x, y), homogeneaus of degree n in a region 0, has a total differential in 0, then 
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the relation 

of of 
x- + y- = nf(x, y) 

ax ay 
(1) 

holds in 0. 

Example 2. The function z = x 2 + y 2 satisfies the relation 

X of + y of = X • 2x + y . 2y = 2(x2 + y 2 ) • 

ax ay 

REMARK 1. Under similar assumptions the relation 

holds for a homogeneous function of degree m of n variables. 

REMARK 2. The converse of Theorem 1 is also true: If a function f(x, y) possesses 
a total differential in the region 0 and if equation (1) is satisfied everywhere in 0, 
then f(x, y) is a homogeneous function of degree n in 00 A similar assertion holds 
for functions of several variables. 

12.7. Regular Mappings. Functional Determinants 

Definition 1. Let us consider m functions 

y 1 = / 1(xl> x2,. o ., Xn), 
Y2 = J2(x1> X2, • · ., Xn), (1) 

defined in an n-dimensional domain M. By system (1), to every point X (xl> x 2 , • o o' xn 
of M, there corresponds a certain point Y(y 1, J2, o o ., Ym) of the rn-dimensional space 
Emo This correspondence is called a mapping, or transformation (of M into Em)· The 
point Xis called the original (or the model or the inverse image), the point Yis the 
image (or the transform). (On the simplest case m = n = 1 see Definition 11.1.3.) 

Example 1. The parametric representation of a surface 

x = / 1(u, v), y = / 2(u, v), z = JJ(u, v) 

is a mapping, where the points X(u, v) ofthe plane uv are the originals and the points 
Y( x, y, z) of the space E 3 are the images. 



418 SURVEY OF APPLICABLE MATHEMATICS 

Definition 2. The mapping 

Y1 = !1(x1> x2, .. . , x,.), 
Y2 = f2(x1> X2, · · ., xn), 

12.7 

(2) 

(where the number of functions is the same as the number of variables) is said to be 
regular in a region M if each of the functions Y1> y2, ... , y,. possesses continuous 
partial derivatives of the first order in M and if the determinant 

o!1 af1 of, -
oxl ' ax2 ' 

... , 
ax,. 

oJ2 of2 of2 -
' ' 

... , 
axl ax2 ox,. (3) 

.................... 
of,. cf,. of,. - -
axl ' ax2 ' ... ' ax,. 

is different from zero in M. 

REMARK 1. The determinant (3) is called the functional determinant of the given 
mapping or the Jacobian. We denote it by 

a:y,, f2, ... , y,.) 
a(xl, x2, ... , x,.) 

The Jacobian is continuous and non-zero in M; hence its sign does not change in M. 

Definition 3. The mapping (I) is called continuous at the point A(xl> x 2 , •.• , x,.) 
if all the functions f 1,f2 , ••• , !,. are continuous at the point A. 

REMARK 2. Evidently, every regular mapping is continuous but the converse is not 
true in general. 

Definition 4. Let M and Em have the same meaning as in Definition 1 and let N 
be a subregion of M; we do not exclude the possibility that N = M. Denote by Q 

the set of all point s Y in Em which correspond to all points X E N according to 
equations ( 1 ). We then say that the set N is transformed ( or mapped) by equations ( 1) 
onto the set Q. If this correspondence has the further property that to each Y E Q 
there corresponds a unique original XE N, then we say the correspondence is 
one-to-one. The so obtained mapping from Q to N (denoted by Q--+ N), where thus 
Y is the original and X is the image, is called the inverse mapping to the original 
mapping N--+ Q. 
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Theorem 1. If a mapping is regular in M, then it is a one-to-one mapping in 
a sufjiciently smallneighbourhood of every interior point X 0 E M. 

REMARK 3. Thus, this means that in a neighbourhood of every interior point 
X 0 E M there exists an inverse mapping, i.e. we can compute x1, x2, ... , xn from the 
system (2) as functions of the variables y 1, J2, ... , Yn- The theorem has, however, 
a local character, i.e. a mapping that is regular in a region need not be a one-to-one 
mapping in the whole region. 

Example 2. The Jacobian of the mapping x = e cos qJ, y = e sin qJ (where e 
and qJ are the polar Coordinates of the point (x, y)), namely 

ox ox -e sin qJ - ' cos qJ, 

o(x, y) 0(! 0(/J 

= (!' o(e, (/)) ay cy 
I sin qJ, (! cos (/) I 

0(! ' 0(/J 

is non-vanishing when e > 0 (e is always non-negative) but, evidently, x and y are 
the same, for instance, when Q = 1, qJ = f1t and (! = 1, qJ = 11t. If we restriet the 
values of qJ, say, to the interval 0 ~ qJ < 21t, then the mapping will be one-to-one 
for e > 0. (But not for e = 0 because, for example, for (! = 0, qJ = f1t and e = 0, 
qJ = 1t we obtain the same values x = 0, y = 0.) 

REMARK 4. If n = 1 in (2), then we obtain the mapping y = f(x). Its Jacobian is 
f'(x). If, in a certain interval,f'(x) :1: 0, tben the function y = f(x) is strictly increas­
ing or strictly decreasing in the whole interval and the inverse mapping exists in the 
whole interval. 

Theorem 2 (Theorem on the Preservation of the Region). The image of a region 
by a one-to-one regular mapping is again a region. 

Theorem 3. If the mapping (2) is regular in a neighbourhood of the point X 0 E M, 
then the inverse mapping (see Remark 3) is also regular in a neighbourhood of the 
corresponding point Y0 and the values of the corresponding Jacobians are reci­
procal, 

o(yt, Y~·· Yn) = 

o(xl, Xz, ... , Xn) o(xl, Xz, •.• , Xn) 

o(yt, Yz, · · ·• Yn) 

Example 3. Let us consider the mapping 

x = (! cos qJ , y = e sin qJ (4) 
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(Example 2). Let us choose a point (x0 , y0 ), for example so that x0 > 0, y0 > 0. 
Squaring equations (4) and adding them we obtain x 2 + y2 = (/. Dividing them 
we have yfx = tan cp. So we obtain the inverse mapping (in a neighbourhood of the 
chosen point) 

lts Jacobian is 

a(e, cp) = 

o(x, y) 

X 

..J(x2 + y2)' 

y 1 

y 
cp = arctan - . 

X 

y 

- xz 1 + y2jx2' 

(5) 

in accordance with Theorem 3 (the value of the Jacobian of the mapping (4) is {} (Ex­
ample 2)). 

Theorem 4. The mapping which is the resultant mapping obtained by combining 
two regular mappings is again a regular mapping. Its Jacobian is equal to the 
product of the Jacobians of the individual mappings: 

12.8. Dependence of Functions 

Let us consider m functions defined in an n-dimensional region 0, 

Y1 = /1(x1, X2, • • ., xn), 

Yz = f2(xl, Xz, ... , xn) ' 

having continuous partial derivatives of the first order in 0. 

(1) 
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Theorem 1. Let the so-called Jacobian matrix of the functions (1), 

oft oft oft - -
OXt ' ox2 ' 

... ' 
OXn 

ofz ofz ofz 
- -

' ' ... ' 
oxl ox2 OXn (2) 

•••••••• 0 ••••• 0 0. 0. 0 

ofm ofm ofm 
- -
oxl ' ox2 ' 

... ' 
OXn 

be of rank h (0 < h < m) in a neighbourhood U of the point A(ah a2, . .. , an) E 0. 
Thus, at the point A (and, hence, owing to the continuity of thefunctions ofdoxk also in 
a neighbourhood of the point A) at least one minor of order h is non-zero; let it be, 
for example, the minor 

o(yt, Yz, · · ., y") 
' o(xl, Xz, ... , x11) 

Let us denote by B(b1, b2, •.. , b") the point with the coordinates 

Then there exist functions 

with continuous partial derivatives of the first order in a sufficiently small neigh­
bourhood of the point B, such that at every point X(x1, x 2 , ••• , xn) from a suffi­
ciently small neighbourhood Q of the point A the equations 

hold. 

Yh+ 1 = F 1(Y1• Yz, · · ., y"), 

Yh+2 = F2(Y1> Y2• .. . , y"), (4) 

REMARK 1. The functions (1) are said in this case (i.e. when some of them can be 
expressed as functions of the others) to be dependent in Q. In the opposite case we 
say that the functions (1) are independent in Q. This case occurs when h = m. 
In particular the functions defining a regu1ar mapping (Definition 12.7.2) are in­
dependent. 

REMARK 2. If the matrix (2) is of rank h in the whole domain 0, we cannot, in 
general, affirm that the conclusion of Theorem 1 holds in the whole domain 0; 
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Theorem 1 has a local character (therefore we often speak of local dependency 

offunctions). lt may, of course, happen that equations ( 4) hold in the whole domain 0. 

Example 1. The rank of the Jacobian of the system of functions 

u 1 = x 2 + y 2 + z2 , u2 = x + y + z, u 3 = xy + xz + yz (5) 

is less than 3 because the corresponding determinant 

2x, 

1, 

2y, 

1, 

2z 

1 

}' + Z, X + z, X + }' 

is zero in the whole three-dimensional space xyz (as may be easily verified). Hence 
the functions (5) are locally dependent. It is easy to find that u3 = t(u~ - u 1). 

Therefore, the functions (5) are dependent in the whole three-dimensional space. 

Example 2. The functions y 1 = sin x, y 2 = cos x are dependent, for instance, in 

the interval [0, n:] because the relation y 1 = -J(l - YD holds for every x from this 
interval (see, however, Example 4 and Remark 4). 

Definition 1. We say that the function yr{x 1 , x 2 , •. • , xn) is a linear combination 

of the functions Yl(xl, Xz, ... , xn), ... , Yr-l(xl, Xz, ... , xn) in the region 0 if it is 
possible to find constants c 1, c 2 , ••• , cr-t such that 

Yr = CtYl + CzYz + ... + cr-lYr-1 identically in 0. 

Definition 2. The functions (1) are said to be linearly eiependent in 0 if at least 
one of them can be expressed as a linear combination of the others. In the opposite 

case the functions (1) are said tobe linearly independent in 0. 

REMARK 3. The following definition is equivalent to Definition 2: 

Definition 3. The functions (1) are said to be linearly dependent in 0 if m con­
stants c1, c2 , ..• , cm, at least one of which is different from zero, exist suchthat 

CJ}' 1 + CzYz + ... + CmYm = 0 identically in 0. (6) 

If the identity ( 6) holds only when all ck in ( 6) are equal to zero, thc functions ( 1) are 
said tobe linearly independent in 0. 

Example 3. The functions 1, x, x 2 are linearly independent m every interva1 I 

because (as is well known from algebra) the equation 

c1 + c2 x + c3x 2 = 0 

holds in I oaly when c 1 = c 2 = c 3 = 0. The functions 
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are linearly dependent in every interval because 

4 sin2 x - 4 + 4 cos2 x = 0. 

Theorem 2. Let the functions (1) be square-integrab/e in 0 (§ 16.1) and Iet their 
number be n. Let us denote (cf. Definition 16.1.2 and Remark 16.1.7) by 

(fi,Jk) the scalar product of functions fi(x 1 , X2, •.• , xn), fk(x 1 , X2 , .. • , x.), 1.e. 

(fi,Jk) = J/i(x1, Xz, ... , xn)fk(xl> Xz, ... , xn) dx1 dxz ... dxn. (7) 

Then the necessary and sufficient condition for the functions (1) to be linearly 
dependent in 0 is the vanishing of the so-called Gram determinant, 

= 0. (8) 

Example 4. Let us apply (8) to the investigation of the linear dependence of the 
functions f 1(x) = sin x, f 2(x) = cos x in the interval [0, n]. Wehave 

(!1,/1) = I: sin 2 x dx = tn, (/2,/2 ) = J: cos2 x dx = tn:, 

(fl,Jz) = (fl,j1) = J:sin x cos x = 0. 

So 

G = I' -}rt, 0 I = ~1t2 =I= 0 
0, !rt 4 

and the functions under consideration are linearly independent in 0. (Note that, by 
Example 2, the functions are dependent in the sense defined in Remark 1.) 

REMARK 4. lf the functions (1) are linearly dependent, then they are naturally 
dependent in the sense of Remark 1. If they are independent in accordance with 
Remark 1, then they are also linearly independent. 

For a simple criterion (the so-called Wronski determinant or Wronskian) in the 
investigation of the linear independence of functions that are integrals of a linear 
differential equation see § 17 .11. 

12.9. Theoremonlmplicit Functions. Equationsf(x,y) =O,f(x,y,z)=O 

Definition 1. Let an equation f(x, y) = 0 be given. We say that the function 
y = cp(x) is a solution of this equation in the domain M ifthe relationf(x, cp(x)) = 0 
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holds identically in M. The functions defined in this sense by the equationf(x, y) = 0 
are said to be given implicitly, or are briefly called implicit functions. 

Example 1. Consider 2ln x - x 2 + eY - y = 0. In the interval (0, + oo) the 
function y = 2 In x is a solution of this equation. 

Theorem 1. Let us consider an equation 

f(x, y) = 0 {I) 

and a point (x0 , y0) such that f(x 0 , y0 ) = 0. Let f(x, y) have continuous partial 
derivatives of the first order in a neighbourhood of this point and let 

Then, in a certain neighbourhood of the point x 0 , there exists a unique continuous 
solution y = q>(x) of equation (I) that satisfies the condition q>(x0 ) = y 0 • The 
function y = q>(x) has a continuous derivative y' = q>'(x) in a neighbourhood of the 
point x0 • This derivative may be computed from the equation 

or 

af + af y' = 0 
ax oy 

y' 

y 

_ ajfax 

ajfay 

r-----------------, 
~...,...:_· -'Afx0 ,y0 J\ 

l 
: l· 
'--------------- J 

{2) 

(3) 

Fig. 12.3. 

REMARK I. Geometrical interpretation: lfj(x, y) is a "reasonable" function, then 
by equation (1) a curve in the plane xy is given; e.g. the equation 

x 2 + y2 - 25 = 0 

represents a circle (Fig. 12.3). If we choose a point (x0 , y0 ) on the curve, then the 
question arises if it is possible to express all points of this curve in a neighbourhood 
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of the point (x0 , y 0 ) by an explicit single valued function y = cp(x). It can be seen 
from Fig. 12.3 that, for example, in the neighbourhood of the point A it certainly 
is possible (indeed, here this function can be found directly because y may be com­
puted from the given equation, y = + .,)(25 - x2)), but this is not so at the point B: 
However small we choose the neighbourhood of the point B, two values of y will 
always correspond to a single value of x E (x 1 - b, x1) (if all points of the circle in 

y 

Fig. 12.4. 

X 

Fig. 12.5. x- y 3 = 0; at the point (0, 0) 
we have oj joy = 0. 

the neighbourhood of the point B are to be considered), and not a single value as is 
required by the definition of a function (Definition 11.1.1 ). We note that 

of 
- = 2y = 0 
oy 

at the point B(x1, 0), so that even in this simple case we can see the importance of the 

d.. of 
con Itwn oy (x0 , Yo) ,p 0. 

Likewise it can be seen that, in the case of the lemniscate (x2 + y2 ) 2 + 
+ 2c2(y2 - x 2 ) = 0 (Fig. 12.4), it is not possible to express all its points by a unique 
function y = cp(x) in any (non-zero) neighbourhood of the origin - however small 

this neighbourhood is chosen. Here also we note that of (0, 0) = 0. 
oy 

The condition of (x 0 , y 0 ) "# 0 is not, however, a necessary condition - as can 
oy 

be seen from Fig. 12.5. 

REMARK 2. Since of is continuous in a neighbourhood of (x0 , y 0 ), and since 

~ "# 0 at (x 0 , y 0 ), it ~~ possible to compute y' from (2) in a certain neighbourhood 

of the point (x 0 , y 0 ). If of (x0 , y 0) = 0 and simultaneously of (x0 , y0 ) "# 0, then 
oy ax 
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this means geometrically that the tangent to the curvef(x, y) = 0 at the point (x 0 , y0) 

is parallel to the y-axis. 

REMARK 3. Equation (2) results from (1) formally by differentiating equation (1) 
with respect to x as a composite function of a single variable x (i.e. when considering 
y as a function of x, y = cp(x)). Similarly, by differentiating equation (2) with respect 
to x (e.g. under the condition that f(x, y) has continuous partial derivatives of the 
second order), treating the left-hand side of (2) as a composite function of the single 
variable x, we obtain an equation from which we can compute y", namely 

-+--y + --+-y y +-y = . azr azj ' ( azj azj ') ' aj " 0 
ox2 oy ax ax oy oy2 iJy 

Or (making use of the interchangeability of mixed derivatives), 

{4) 

By further differentiation of this equation we obtain an equation for y"', etc. 

Example 2. Let us compute y' and y" for the function given implicitly by the 
equation 

(a circle) at the point (3, 4). 

The chosen point does satisfy equation (5) (i.e. lies on the circle (5)) and 

of = 2y = s =1: o . 
ay 

(5) 

Hence the condition offoy =/: 0 is fulfilled. From (5) we have (because offox = 2x) 

2x + 2yy' = 0 (6) 

or ( when we put x = 3, y = 4) y' = - i· Further differentiation of equation ( 6) 
(divided by 2) gives 

1 + y'y' + yy" = 0. 

We substitute y = 4 and for y' the computed value y' = -i: 

1 + C~Y + 4y" = o , 
Y"= -~ 64. 

Hence, the function y = cp(x) given by equation (5) and suchthat cp(3) = 4, has the 
following values of derivatives for x = 3: y' = --i, y" = - !!· 
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REMARK 4. The foregoing example is a very simple one and was used here only as an 
illustration; y' and y" could have been computed directly by differentiating the equa­
tion y = ..J(25 - x 2 ). But for implicit equations, where y = <P(x) cannot be 
computed on the basis of current elementary functions (for example, in the case of the 
equation eY sin x + x 2 y 2 - x In y + 1 = 0), the application of the theorem con­
sidered is essential. 

Theorem 2. Let us consider the equation 

f(x, y, z) = 0 . (7) 

Let 

(8) 

and Iet f(x, y, z) have continuous partial derivatives of the first order in a neigh­
bourhood of the point (x0 , y 0 , z0). Further, let 

af 
- (xo, y0 , zo) =I= 0 . az 

(9) 

Then, in a certain neighbourhood of the point (x0 , y0), there exists a unique con­

tinuous solution 

Z = <P(X, y) (10) 

of equation (7) that satisfies the condition <P(x0 , y0) = z0 • The ft~;nction z = <P(x, y) 
has continuous partial derivatives of the first order in a neighbourhood of the point 
(x0 , y0 ) and these derivatives can be determined from the relations 

aj + aj az = 0' 
ax az ax (11) 

REMARK 5. Equations (11) result formally from equation (7) if we differentiate 
this equation partially with respect to x (or with respect to y) considering z as a func­
tion of x and y. In the same way as was shown in Remark 3 we can obtain higher 
derivatives by differentiation of ( 11 ). For example, if we differentiate the first equation 
(11) with respect to x, we obtain an equation for 82 zf8x2 : 

or, after rearrangement, 
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Example 3. Let us find the equation of the tangent plane of the ellipsoid 

(12) 

at the point (2, 3, 1). 

This point does satisfy equation (12) and at this point 

Condition (9) is thus satisfied. The equation of the tangent plane is (Theorem 12.3.4, 
p. 410) 

z - z0 = - (x - Xo) + ----'--- (y - Yo) · (of) (ar) 
ax 0 ay 0 

By (11) 

2x + 2z oz = 0 , 
12 3 ax 

2y + 2z az = 0. 
21 3 oy 

If we insert the values x0 = 2, y 0 = 3, z0 = 1, we get 

(af) = az (2, 3) = 
ay o oy 

Thus, the equation of the tangentplane is 

z - 1 = -t(x - 2) - t(y - 3) 
or 

3x + 2y + 6z - 18 = 0 . 

Example 4. By the equations 

1 

3 

uz - 2e"z = 0, u = x 2 + y 2 , v2 - xy In v - 1 = 0 (13) 

z is given as a composite function of the variables x, y (by means of the functions u, v ). 
We wish to find ozjcx at the point x = 0, y = e (the corresponding values of u, v, z 
are u = e2 , v = 1, z = 2). According to the rule for differentiation of composite 
functions (Theorem 12.4.1) we obtain 

az oz ou az ov -=--+--. 
ax au ax av ax 

(14) 

Let us derrote uz - 2e"z by f( u, v, z ). Then 

cf = u - 2v evz ' of ( e2 ' 1' 2) = - e2 'I= 0 . 
az az 
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Thus, according to (11), 

of + of oz -- 0 ' ( ) oz 2 - e2 oz -- 0 z + u - 2v evz - = 0 ' 
ou oz ou ou ou 

and hence 

Similarly 

of + of az = 0 • 
ov oz ov 

oz -2z evz + (u - 2v ev•)- = 0' 
iJv 

2 2 oz oz -4e - e - = 0, - = -4. 
ov ov 

Further (after Substitution of the values x = 0, y = e, v = I) 

If 

ou 
-=2x=0. 
ox 

og xy 
g(x, y, v) = v2 - xy In v- 1 , then - = 2v-- = 2 i= 0. 

OV V 

Hence 

og + og av = 0' 
ax av iJx 

- Y ln V + (2v - xy) OV = 0 , 0 + 2 OV = 0, 
V OX OX 

If we insertallpartial results into (14) we obtain: 

oz 2 -(O,e) =- .0- 4.0 = 0. 
ox e2 

ov = 0. 
ox 

REMARK 6. Instead of using equation (14) we may compute ozfox by differentiarion 
of the first equation of ( 13) with respect to x taking into consideration the fact that u, v 
and z contain x: 

ou az vz (av oz) -z+u--2e -z+v- =0 
ax ox ax iJx 

(aujox and ovfox have naturally to be found from the second and third equations 
of (13)). We arrive at the same result. The advantage of this methodisthat it can be 
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applied without difficulty even in the case where the functionf contains explicitly not 
only u and v but also x and y, when equation (14) cannot be applied (cf. Remark 
12.4.2). 

REMARK 7. The problern becomes somewhat complicated when the second and 
third equations of (13) do not contain u and v separately but when u and v are given 
(as functions of x and y) by the equations 

g(x, y, u, v) = 0, h(x, y, u, v) = 0. (15) 

The required derivatives aufax, avfax are found by solving the equations derived from 
(15) by differentiating with respect to x: 

ag + ag au + ag av = 0 ' 
ax au ax av ax 

ah + ah au + ah av = 0 
ax au ax av ax 

(see § 12.10). 

12.10. Theorem on lmplicit Functions. General Case 

Definition 1. Let us have a system of equations 

F1(x1, X2, · .. , Xno Y1• Y2• ... , Ym) = 0 • 

F2(xl, x2, ... , Xm Yt· Y2• ... , Ym) = 0' 

By a solution of system (1) (in a region 0) we understand the functions 

Y1 = J1(xt, x2, · · ., xn), 

Y2 = fixt, X2, · · ., xn) , 

(1) 

(2) 

suchthat if we substitute / 1 for y 1, etc., into (1), all the equations of the system 
become identities in x1, x 2, ... , xn in the region 0. The functions (2) are said tobe 
given implicitly by equations (1). Briefl.y they are implicit functions. 

Theorem 1. Let 

1. the point (x~, x~, . .. , x~, y~, y~, .. . , y~) satisfy all the equations of system (1), 

2. the functions (1) possess continuous partial derivatives of the first order with 
respect to all variables in a neighbourhood of this point, 
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3. the determinant 

aF, oF, 

ay, OYz 
' ... , 

oF2 oF 2 

o(F 1 , F2 , • •• , Fm) = 
- ' ... , 

ay, oyz 
o(y,, Yz, · · ., Ym) 

' ... , 

b h . ( 0 0 0 0 0 0) e non-zero at t e poznt x 1 , x 2 , • .• , Xn, y 1 , y 2 , •.. , Ym · 

oF, 

oym 

oF1 

oym 

431 

(3) 

Then, in a certain neighbourhood of the point (x~, x~, ... , x~), there exists a unique 
system of continuous functions (2) which is the solution of equations (I) in this 
neighbourhood and for which the equations 

f ( 0 0 0) 0 
2 x,, x2, ... , Xn = Y2' 

I" ( 0 0 0) - ,0 Jm x,, X2, · .. , xn - Ym 

hold simultaneously. Each of the functions (2) possesses continuous partial deriva­
tives of the first order with respect to allvariables x 1 , x2 , ... , Xn in the neighbourhood 
of the point considered. 

REMARK I. The formulae for the computation of derivatives are rather cumber­
some, expecially those for the computation of derivatives of lligher orders ( existence 
of thesederivatives is established if, for example, all the functions (1) possess con­
tinuous derivatives ofthe order considered in a neighbourhood of the point (x~, x~, ... 
.. . , x~, y~, y~, .. . , y~)). The computation of derivatives is carried out practically 
by differentiating the equations ( 1) with respect to the corresponding variable xk 
and considering simultaneously y 1 , y 2 , ••• , Ym as functions of the variables x 1, x 2 , •.• 

. . . , xn. For example, to compute the derivatives with respect to x 2 we have: 

(4) 

cF'" + oFm cy, + oFm CYz + ... + cFm 0:_m = O. 
OXz oy, CX2 CYz OXz CYm CXz 

This system of equations for oytfcxz, CYz/CXz, ... , cymfox2 IS uniquely solvable 
because the determinant (3) is non-zero. 
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Example 1. Let y 1 and y2 be given implicitly by the equations 

x 1en + y 1 ln X 2 - e = 0, x 1y 1 + x 2e12 - (2 + e) = 0. (5) 

Let us compute oy 1fox 1, oy2 fox 1 at the point x 1 = 1, x 2 = 1. 

From equations (5) it follows (at the point x 1 = 1, x2 = 1) that y 2 = 1, y 1 = 2. 
(In the general case, when there are more possibilities, it is necessary to state in 
advance for what values Yt> y 2 the problern is tobe solved.) We differentiate equations 
(5) with respect to x 1 considering (see Remark I) y 1 and y 2 dependent on x 1: 

When the numerical va1ues of x 1, x2 , Yt> y2 are substituted into (6), we obtain 

hence 

oyz (1 1) = -1 
!l ' ' uX 1 

oyl (1, 1) = e - 2 . 
OXt 

12.11. Introduction of New Variables. Transformations of Differential 
Equations and Differential Expressions (Especially into Polar, Spherical 

and Cylindrical Coordinates) 

In the course of the solution of differential equations andin many other problems 
it may be convenient to introduce new variables. In this section we shall consider 
the most frequently occurring cases of introducing new variables, independent as weil 
as dependent, and shall show how to express the given differential expressions with 
the help of the new variables. 

REMARK 1. Throughout this section we suppose that the functions considered 
possess all the necessary (continuous) derivatives and that the correspondence between 
the original and the new variables is one-to-one. 

(a) CASE OF ONE VARIABLE 

(cx) lntroduction of a new Independent Variable. By introducing a new variable 
x = c,o(t), the function y = f(x) becomes a composite function of the variable t. 
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We have to find the relation between Y1 = dyjdx and y = dyjdt and, similarly, bet­
ween higher derivatives. 

By Theorem 11.5.5 ( assuming x = dxjdt i= 0 and applying Theorem 11.5.6) we get 

dy dy dt . 1 . 1 
yl = - = - . - = y . -- = y. - ' 

dx dt dx dxjdt x 
(1) 

II- dy' - d (. 1) - d (. 1) dt - (·· 1 . X) 1 y ---- y.- -- y.--- y--y- -, 
dx dx x dt x dx x x2 x 

(2) 

{ 
1 .. . ... 3 .•• 2 .. } 1 1 .. ... . 3 .. z ··· 3 .. X • XX - 3xx X ••• 3 .. X • XX - X 

= Y:J:- Y-;J-Y . 6 ~=y-=-3- Y-=--4-y .s 
X X X X X X X 

(3) 

To compute higher derivatives, we proceed in a similar way. Derivatives with respect 
to t expressed in terms of derivatives with respect to x may bc obtaincd from equa­
tions (1), (2), (3), or directly: 

. dy dy dx I 

y=-=-.-=y.x, 
dt dx dt 

(4) 

•• d 2 y d ( 1 • ) • d ( 1) 1 d ( • ) y =- =- y , X =X- y + y .- X = 
dt2 dt dt dt 

, d ( I) dx I .. • 2 II •• I = x - y . - + y . x = x y + xy , etc. 
dx dt 

(5) 

Example 1. Let us transform the left-hand side of the differential equation 

x 2 yll + 4xy' - 2y = 0 (6) 

by introducing a new independentvariable t by the relation x = e1 (x > 0). 
Evidently, the correspondence is one-to-one for all t and the function e1 possesses 

derivatives of all orders. We may proceed according to ( 1 ), (2) or differentiate directly: 

1 • 1 • 1 • -f 11 d (, -f) dt y = y . - = y . - = ye , y = - ye - = 
x c1 dt dx 

( .. -t . -t) -t .. -2t . -2t = ye - ye e = ye - ye . 

After substituting into ( 6) we obtain 
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or 

ji + 3y- 2y = 0 

(see § 17.13, Euler's differential equation). 

(ß) Introduction of a New Dependent Variable. Instead ofthedependent variable y 
we shall introduce a new dependent variable z by the relation y = cp( z) or z = lfi(y ). 
In the same way as in ( 4), ( 5) we get 

I dy dy dz dy I 

y = - = -- . - = - . z , 
dx dz dx dz 

(7) 

y 11 = d 2 y = ~ (dy 21 ) = 21 ~ (dy) dz + dy ~ (zl) = 
dx2 dx dz dz dz dx dz dx 

(8) 

Similarly for the relation z = lfi(y): 

1 dz dz 1 11 d 2 z d 2 z 12 dz 11 z = - = - y , z = - = - y + - y etc . 
dx dy dx 2 dy 2 dy 

(9) 

Example 2. If we introduce into the differential equation 

y' e cos y - X sin y = In X (10) 

a new dependent variable by the relation sin y = z, then cos y. }' 1 = Z 1
• Substituting 

into (10) we obtain the linear differential equation 

e"z1 - xz = In x ( 11) 

for the new unknown function z(x). 

REMARK 2. In the majority of cases we need not apply thc general transformation 
formulae because simpler methods are available as we have seen in Examples l and 2. 
A very simple treatment is also possible in the case of so-called homogeneaus dif­
ferential equations of the first order, where (see § 17.3) we introduce instead of 
y(x) a new dependent variable z(x) by means of the relation y = xz. Then y' = z + 
+ XZ 1

• 

REMARK 3. It is relatively seldom that we introduce simultaneously both a new 
independent variable and a dependent variable. As a rule, the transformation may be 
carried out successively according to a) and ß). 

(b) CASE OF Two OR MORE VARIABLES 

If we introduce new independent variables 

x = x(u, v), y = y(u, v), (12) 
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then the function z = f(x, y) becomes a composite function of the variables u, v, 
z = f(x(u, v), y(u, v)). By Theorem 12.4.1 we have 

az az cx az ay 
--=-~+~~, 

au ax cu ay au 
oz oz ax az oy 
-=~·-+~~. 

ov ox au oy av 
(13) 

Higher derivatives are computed similarly (for a more detailed treatment see Remark 

I2.4.I where second derivatives are computed directly; it is necessary, however, in the 

formulae ofthat Remark to interchange (x, y) and (u, v) because in the present case 

z = z(x, y), x = x(u, v), y = y(u, v), which is different from the notation ofTheorem 

I2.4.1). 
So1ving (13) for ozfox, ozfoy we obtain (if o(x, y)fo(u, v) =P 0; Remark 12.7.1) 

the derivatives azjax, ozfoy expressed in terms ofthe derivatives ozfuu, azjav. 

Example 3. Let us transform the differential equation 

?Pz o2 z - +- = 0 (14) 
ox2 oy2 

by introducing the polar coordinates 

x = (!cos<p, y = 12sin<p (12> 0, 0 ~ cp < 2rc). (15) 

By (13) (writing u = 12, v = cp) we have 

az oz az . az az oz 
~ = ~ cos cp + - sm cp, - = --( -12 sin <p) +- 12 cos <p . (16) 
a12 ax ay acp ax ay 

Solving (16) for ozfcx, ozfcy we obtain 

cz oz oz I . 
~ = ·-- COS qJ - - - Slll qJ , 
ox 812 ocp 12 

az oz . az 1 
~ = - sm cp + - - cos cp . 
ay 812 acp 12 

(17) 

lf we carry out these operations with the function ozfox instead of the function z, 
we o btain by ( 17) 

a Cz) a Cz) 
~ (i3z) = ~- cos cp - ~- ~ sin cp . 
ox ox 812 ocp [! 

( 18) 

Substituting the right-hand side of the first equation ( 17) into the right-hand side 

of (18) we obtain 

o2 z o [az oz I . J I . a [az oz 1 . J - = cos cp - ~ cos cp - - - sm cp - - sm cp - - cos cp - - - sm cp = 
ox2 812 812 acp 12 f2 crp 812 acp 12 

o2 z c2 z 2 . iJ2z I . 2 
= - cos2 cp - --- cos cp sm cp + -- sm (P + 

8122 812 ocp 12 ccp 2 122 

I oz . 2 oz 2 . + - - sm cp + - - sm cp cos cp . 
(JO[! orp[! 2 

(19) 
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Similarly, by application of the second equation ( 17) we get 

1 oz 2 oz 2 . + - -- COS (p - - - Slll (p COS q> • 
o o{! acp {!2 

Substituting (19), (20) into (14) we obtain the transformed equation 

82 z 1 82 z 1 oz -+- -+- -=0. 
op2 p2 o<p2 P op 

12.11 

(20) 

(21) 

REMARK 4. Without making use of the above formulae we can by a rather 
more Iaborions process - reach the same result directly, starting out from the trans­
formation inverse to (15), 

0 = J(x 2 + y 2), q> = arctan ~ ( + const.) (22) 
X 

and applying the equations 

oz oz OQ oz ocp 
-=--+--, ax o{! ax acp ax 

az az o{! az acp 
-=--+--. ay o{! ay acp ay 

The constant in the second equation (22) depends on the quadrant in which the point 
( x, y) lies. It is irrelevant when differentiating. 

Another method, making use of the simplicity of equation (14) and the substitu­
tion (15), is the following: Differentiating the first equation (16) with respect to {!, 
we obtain 

and differentiating the second equation with respect to q> we have 

( 82z . o2 z ) oz . + - -- {! sm <p + - {! cos <p {! cos <p - - {! sm <p . oy ax oy2 ay 
Then 
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REMARK 5o The method of transformation in the case of several variables is quite 
similaro For example, the equation 

(23) 

is converted (i) by introducing cy1indrical coordinates 

x = {} cos <p , y = {} sin <p , z = z (24) 

into the equation 

(25) 

and (ii) by introducing spherical Coordinates 

x = r sin 8 cos <p , y = r sin 8 sin cp , z = r cos 8 (26) 

into the equation 

o2u 1 o2u 1 o2u 2 au au - + -- + - + - - + - cot 8 - = 0 0 (27) 
or2 r2 882 r2 sin2 8 ocp2 r or r2 88 

The expression 

is converted by the transformation (15) into the expression 

The expression 

is converted by the transformation (24) into the expression 

and by the transformation (2G) into the expression 

(au)2 1 (ou )2 1 (au) 2 

or + r2 sin2 8 0(/J + r2 88 ° 
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REMARK 6. The transformation of a dependent variable may be carried out in the 
same way as in (ß). If, forexample, z = cp(t), then 

oz dz ot oz dz ot 
-=--, -==---, 
ax dt ax ay dt ay 

whence we obtain otfox and otfoy. Further, 

12.12. Extremes of Functions of Several Variables. Constrained 
Extremes. Lagrange's Method of Undetermined Coefficients. Extremes 

of Implicit Functions 

Definition 1. The function z = f(x, y) is said to have a relative (local) maximum 

at the point (x 0 ,y0 ) ifthere exists a neighbourhood Uof the point (x 0 ,y0 ) suchthat the 
relation 

f(x, y) -::2 f(xo, Yo) (1) 

holds at every point of this neighbourhood. A relative minimum is defined similarly 
and so are relative extremes for functions of several variables. 

If, in the neighbourhood U of the point (x0 , y 0 ), the equality in (1) occurs only 

at the point (x 0 , y 0 ) we speak of a strict relative maximum. (Similarly for a minimum 
and for functions of several variables.) 

Definition 2. The function z = f(x, y) is said to have at the point (x 0 , y 0 ) a maxi­

mum in the region (set) M (a so-called absolute maximum) ifthe relation f(x, y) -::2 

-::2 f(x 0 , Yo) holds at every point (x, y) of M. 

REMARK 1. An (absolute) minimum an M is defined similarly. The definition 
of absolute extremes for functions of several variables is also similar. 

Theorem 1. If the function z = J(x, y) possesses partial derivatives of the first 

order in the region 0, then it may attain a relative extreme only at a point (x 0 , y 0 ) 

for which 

of 
ox (xo, Yo) = 0, 

of 
- (xo, Yo) = 0. 
ay 

(2) 

lf, moreover, z = f(x, y) possesses a second total differential at this point 

(a sufficient condition for this is the continuity of the second partial derivatives) 

and if 

AC- B2 > 0, (3) 
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where 

then there is in fact a relative extreme at the point (x 0 , y 0 ), namely a strict relative 
maximum when A < 0, a strict relative minimum when A > 0. If 

AC- B2 < 0, (4) 

then there is no extreme at the point (x0 , y 0 ). If this expression vanishes at the 
point (x0 , y 0 ), then there may be, but need not be, a relative extreme at the point 
(x0 , y 0 ) and further investigation is necessary. 

REMARK 2. As a rule, this further investigation is dorre by considering straight 
lines y - y 0 = k(x - x 0 ) drawn through the point (x0 , y 0 ) and investigating the 
given function only on these lines as a function of the single variable x. (But if the 
given function has, for example, a strict relative maximum on every straight line 
going through the point (x 0 , y0 ), then generally it does not follow that it has a strict 
relative maximum at this point by Definition 1 whei: considered as a function of the 
variables x, y.) In addition: If AC - B 2 = 0 at the point (x 0 , y 0 ) and AC - B 2 > 0, 
or AC - B2 < 0 holds in a certain neighbourhood of the point (x0 , y0 ) from which 
the point (x0 , y 0 ) is excluded, then f(x, y) has, or has not a strict relative extreme 

at that point, respectively. (Here A = fP! (x, y), etc.) 
ox2 

Theorem 2. If z = f(xl, Xz, ••• , xn) possesses partial derivatives of the first 
order in the region 0, then necessary conditions for the existence of a relative 
extreme at a point P(x~, x~, ... , x~) E 0 are 

... , (5) 

at that point. 

Sufficient conditions: Let, moreover, f(x 1 , x 2 , •• • , xn) have continuous derivatives 
of the second order in a neighbourhood of the point P. Derrote 

a2f ( o o o) _ A * --- X1, Xz, • • ., Xn - ik' 
oxi iJxk 

i = 1, 2, ... , n, k = 1, 2, ... , n; 

form the matrix 

A = ~.2.1: .~~~' ... : ~' • ~l.n . lAu, A12, ... , A1nl 

Anl• An2• • · ., Ann 

* A ik = Aki under the assumptions considered. 
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If this matrix is positive definite, i.e. if all its principal minors 

'

Au, A121 
Au' A A ' ... ' 

21• 22 

(p. 68) are positive, then f(x 1, x2 , ... , xn) has a strict relative minimum at the point 
(x~, x~, ... , x~). 

If Ais negative definite, i.e. if its principal minors of odd and even orderarenegative 
and positive, respectively, then f(x 1, x 2 , •• • , xn) has a strict relative maximum at the 

. t ( 0 0 0) pom x1 , x 2 , .. • , xn . 

REMARK 3. The solution of equations (2), and even more so that of equations (5), 
is difficult in the general case. (In the case of equations (2) we have to find - geo­
metrically speaking - the points of intersection of the curves (2).) In applications, 
however, there are usually no difficulties in solving those equations. See also Example 
31.5.1. 

Example 1. Let us find the dimensions of a reetangular water-tank of volume 32 m 3 

with minimal area of its base and vertical walls. 
If we derrote the dimensions of the base by x and y and the height of the tank 

by z, then we have for the volume 

V= xyz (6) 

and for the area of the walls and base 

P = xy + 2xz + 2yz • (7) 

P is a function of x, y and z but, in fact, it depends only upon two variables, because 
x, y and z are subject to the relation ( 6) where V is a given constant, so that ( after 
substituting z = Vjxy) we have 

Equations (2) now give 

aP = o, 
ax 

From (9) it follows that 

2V 2V 
P=xy+- + -. 

y X 

oP 2V 
= 0 or y-- = 0 

oy x 2 ' 

2V 
X--= 0 2 • 

y 

(8) 

(9) 

(10) 

by dividing the first of these equations by the second we get xjy = 1 or x = y. If 
we put y = x in the first equation (10) we obtain x = V(2V) and then y =V (2V). 
From ( 6) it then follows that z = ~ (V/4). Substituting the numerical values we obtain 
x = y = 4 m, z = 2m. 
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Wehave really found a (strict) relative extreme because 

o2P 4V 4V 
-=-=-=2 
ox 2 x 3 2V 

so that AC - B2 = 4 - 1 = 3 > 0 in accordance with (3); also, o2 Pjox 2 = 2 so 
that a minimum is assured. lt is easy to verify that this relative minimum is a minimum 
in the whole region x > 0, y > 0. 

REMARK 4. The extremes of a given function in a domain M can be expectcd 
at the points, where (2) or (5) are fulfilled, or where these derivatives do not exist, 
or, finally, on the boundary of the domain M. The last problern leads to the so-called 
constrained extremes (or extremes with subsidiary conditions). 

Definition 3. We say that the function z = f(x, y) has a relative maximum (or 

minimum) on the curve g(x, y) = 0 at the point (x0 , y0 ) for which g(x0 , y 0 ) = 0 
(so-called relative constrained extreme) if the relation f(x 0 , y0 ) ~ f(x, y) (or 
f(x 0 , y0 ) ~ f(x, y)) holds at every point (x, y) on the curve g(x, y) = 0 in a certain 
neighbourhood of the point (x 0 , y 0 ). If in this neighbourhood the equality occurs 
only at the point (x 0 , y 0 ), then we speak of a strict relative constrained extreme. 

lfj(x0 , y0 ) ~ f(x, y) or f(x 0 , Yo) ~ f(x, y) holds at every point (x, y) of the curve 
g(x, y) = 0, then we speak of an (absolute) extreme of the function f(x, y) on the 
curve g(x, y) = 0 (or of an absolute constrained extreme) at the point (x 0 , y0). 

The curve g(x, y) is often called a constraint. 

REMARK 5. In applications, we find the constrained extrr:mes (at least on a certain 
part of the given curve) either by computing, for example, y as a function of x, 
substituting into z = f(x, y) and thus reducing the problern to one offinding extremes 
of a function of a single variable (Example 2) or by the application of Lagrange's 
method (Example 3). 

Example 2. Let us find the (absolute) maximum and minimum of the function 

z = x 2 + y 2 - 2x - 4y + 1 (11) 

in a closed triangle (i.e. its boundary included) with vertices (0, 0), (3, 0), (0, 5). 

First, we find the relative extremes by (2): 

2x - 2 = 0 , 2 y - 4 = 0 , hence x = 1 , y = 2 . (12) 

By Theorem 1 we easily verify that at the point (1, 2) there is a (strict) relative 
minimum, z = -4; this point is an interior point of the given triangle. 

Constrained extremes: The equations of the sides of the triangle are (§ 5.4, p. 170): 

y = 0, x = 0, 5x + 3y - 15 = 0. (13) 
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On the segment y = 0, 0 ~ x ~ 3, the function (11) is ofthe form z = x 2 - 2x + 1. 
From dzfdx = 2x - 2 = 0 it follows that x = 1. Because d 2zfdx 2(1, 0) = 2, there 
is a (strict) relative minimum, z = 0, at the point x = 1. There are no other relative 
extremes of the function z = x2 - 2x + 1. At the first end point x = 0, we have 
z = 1, at the second end point x = 3, z = 4. Thus the function z = x 2 - 2x + 1 
attains its maximum value on the segment concerned at the point x = 3. The absolute 
extremes of the function (11) on the segment y = 0, 0 ~ x ~ 3 are therefore at the 
points (1, 0), (3, 0). 

Similarly, we find that the absolute extremes of the function (11) on the segment 
x = 0, 0 ~ y ~ 5 are at the points (0, 2) (minimum, z = - 3), (0, 5) (maximum, 
z = 6). 

The third side ofthe triangle is the segment Sx + 3y - 15 = 0, 0 ~ x ~ 3. Hence, 
y = (15 - 5x)J3. If we put y into (11) we obtain after rearrangement 9z = 34x2 -

- 108x + 54. If we put the firstderivative equal to zero, i.e. 68x - 108 = 0, we get 
x = ~ ~, y = ~ ~. The second derivative with respect to x is positive; so we have 
a (strict) relative minimum, z = - 3·6, at this point. At the end points of the segment, 
(3, 0), (0, 5) we have z = 4, z = 6, respectively. The absolute extremes on the in­
vestigated segment are therefore at the points ( ~ ~, ~ ~) and ( 0, 5). 

The result. The function (11) attains its (absolute) minimum, z = -4 at the point 
(1, 2) and its (absolute) maximum z = 6, at the point (0, 5) ofthe triangle concerned. 

Theorem 3 (Lagrange's Method of Undetermined Coefficients (Multipliers)). Let 
f(x, y) and g(x, y) have total d fferentials in a neighbourhood of the points of the 
curve g(x, y) = 0. Let at least one of the derivatives ogfox, ogfoy be non-zero at 
every point of the curve g(x, y) = 0. lf the function z = f(x, y) has a relative 
extreme on the curve g(x, y) = 0 at a point (x0 , y 0 ) of this curve, then there exists 
a constant A. such that for the function 

F(x, y) = f(x, y) + A.g(x, y) (14) 
the equations 

aF aF 
- (xo, Yo) = 0, - (x0 , Yo) = 0 (and also g(x0 , Yo) = 0) (15) 
ax oy 

are satisfied at the point (x0 , y 0 ). 

REMARK 6. Constrained extremes can thus be found by constructing the function 
(14) and then solving equations (15) for the unknowns x0 , y0 , A.. We observe that 
equations (15) are necessary conditio~s for the existence of a constrained extreme. 

REMARK 7. Sufficient conditions: Let us construct the second differential 
of the function (14) at the above-mentioned point (x0 , y 0), 

o2F o2 F o2 F 
d2 F(x0 , Yo) = - 2 (x0 , Yo) dx2 + 2 -- (xo, Yo) dx dy + - 2 (xo, Yo) dy 2 • 

ax ax oy ay 
(16) 
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If for all points (x0 + dx, y0 + dy) from a certain neighbourhood of the point 
(x 0 , y0 ), and such that g(x0 + dx, y0 + dy) = 0 and dx and dy are not simultane­
ously zero, the differential ( 16) is positive ( or negative), then there is a constrained 
relative minimum (or maximum) at the point (x 0 , y0). 

REMARK 8. For this condition to be fulfilled it is sufficient that the form (16) be 
positive ( or negative) definite at the point (x0 , y0) (§ 1.29, p. 67). For this it is again 
sufficient that 

AC- B2 > 0, (17) 
where 

()2p ()2p 
A = "'x 2 (xo, Yo) , B = -- (xo, Yo) , 

u ax ay 

and that 

(18) 

Example 3. Let us find the constrained extremes of the function 

(19) 
on the curve 

At least one of the derivatives with respect to x or y is non-zero at every point of the 
given ellipse. We construct the function (14), 

F(x, y) = x 2 + y2 + A.(x2 + 4y2 - 1) = x2(1 + A.) + y2(1 + 4A.) - A.. (20) 

Equations (15) are now 

2x0(1 + A.) = 0, 
2y0 (1 + 4A.) = 0, 
X~ + 4y~ - 1 = 0 . 

(21) 
(22) 
(23) 

If A. =F -1 and also A. =F -!, then by (21) and (22) x0 = y0 = 0 and (23) is not 
fulfilled. lt follows that either A. = -1 or A. = -!. ForA. = -1 we obtain from (22) 
Yo = 0 and from (23) x 0 = ± 1. ForA. = -! we obtain similarly x0 = 0, y0 = ±0·5. 
So we have four points: 

ForA.= -1: (1, 0), ( -1, 0); for A. = -t: (0, 0·5), (0, -0·5). (24) 

For the case A. = -1 the second differential (16) is (see (20)) 

(25) 
for A. = -! 

(26) 
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From the form of the right-hand member of (25) it can be seen that the condition of 
Remark 7 or 8 is fulfilled at the points ( ± 1, 0) and a constrained relative maximum, 
z = 1, is attained there. Similarly, at the points (0, ±0·5) a constrained relative 
minimum, z = 0·25 is attained. (Evidently, these extremes are also absolute con­
strained extremes.) 

REMARK 9. We could not apply (17) here, because AC - B2 = 4(1 + it)(l + 4it) = 
= 0 at the points considered. 

REMARK 10. The problern of finding the constrained extremes of a function of 
several variables is solved similarly. For example, a necessary condition for the exist­
ence of a relative extreme of the function 

w = f(x, y, z, u, v) 

with subsidiary conditions 

F 1(x, y, z, u, v) = 0, F 2(x, y, z, u, v) = 0, 

is that the equations 

aG = 0 
ax ' 

aG = 0 
ay , 

where 

aG = o, 
az 

aG = 0 
au ' 

aG = o o o av , F t = ' F 2 = ' 

be satisfied. (We suppose that at least one of the functional determinants 

... ' 

is non-zero at the points of the hypersurfaces F 1 = 0, F 2 = 0.) This gives a system 
of seven equations for seven unknowns x 0 , y0 , z 0 , u 0 , v0 , it1o ).2 • 

The sufficien~ conditions are similar to those in Remarks 7 and 8. In particular, 
we obtain a constrained relative minimum if the second differential of the function G 
at the point (x 0 , y 0 , z 0 , u0 , v0 ) is a positive definite form and a constrained relative 
maximum if it is a negative definite form. 

REMARK 11. Relative extremes of implicit functions are found from equations 
(12.9.2) or (12.9.11), pp.424 and 427. Since for a function of one variable we require 
that y' = 0, equation (12.9.2) gives the condition 

aJ = o 
ax ' (27) 
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while at the same timef(x, y) = 0 has tobe fulfilled, as the required point (x 0 , y 0 ) has 
to lie on the curvef(x, y) = 0, and 

of =I= o. 
iJy 

It then follows from equation (12.9.4) (since y' = 0) that y" =I= 0 if 

jj2j 
-=1=0. 
iJx2 

Generally: The relative extremes of the function y = q>(x) given implicitly by the 
equationf(x, y) = 0 (more exactly: of all functions defined implicitly by the equation 
f(x, y) = 0) are to be found at the points at which offox = 0 and simultaneously 
f(x, y) = 0. If at such a point offoy =I= 0, then the existence of a relative extreme 
is assured if the first non-zero derivative in the sequence 

of iJ2f iJ3f 

ox ' ox2 ' ox3 ' 

is of an even order. If its sign is the sameasthat of offoy, we obtain a strict relative 
maximum, if its sign is opposite, we obtain a strict relative minimum. 

The case of functions of several variables can be dealt with in a sirnilar manner. 
For example, the extremes of a function z = q>(x, y) given by f(x, y, z) = 0 aretobe 
found at the points where, simultaneously, 

of of 
f(x, y, z) = 0, - = 0, - = 0 

ax ay 

(see equation (12.9.11)) under the assumption that 

of =I= 0 . 
j}z 

Example 4. Let us find the extremes ofthe function (more exactly: ofthe functions 
defined implicitly by the equation) 

x 2 + y2 - 25 = 0 . 

According to (27) we solve the system 

2x = 0 , x2 + y2 - 25 = 0 . 

Solving it, we get two points: (0, 5), (0, -5). At both points offoy =I= 0, since 

of (o 5) = 10 ay , , 
of 
- (0, -5) = -10. 
oy 
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Further 

At the point (0, 5) there is a strict relative maximum because 

are of the same sign at that point. At the point ( 0, - 5) there is a strict relative minimum 

because the derivatives are of opposite signs. (This example is only an illustrative 
one - geometrically the problern is self-evident.) 

REMARK 12. From equations (12.9.2) and (12.9.4) and from the corresponding 

equations for higher derivatives conclusions may also be drawn ( on the basis of 
theorems from § 11.9) on other properties of implicit functions ( on convexity, on 
points of inflexion, etc.), not only on extremes. Implicit functions of several variables 

may also be studied by means of equations of the type ( 12.9.11) and of similar equa­
tions for higher derivatives. 

12.13. Survey of Some Important Formulae from Chapter 12 

1. lim [f(x, y) ± g(x, y)] = limf(x, y) ± lim g(x, y), 
x ..... xo x-+xo x--+xo 
y-+yo y-+yo y-+yo 

lim kf(x, y) = k limf(x, y) (k a constant), 

lim [f(x, y) g(x, y)] = limf(x, y) lim g(x, y), 

limf(x, y) 

x-xo 
y-yo 

I. f(x, y) _ ;:;~ 
tm -- - !'._2~--

x-+xo g(x, y) !im g(x, y) 
if lim g(x, y) =I= 0 (Theorem 12.1.2). 

y-+yo x-+xo , ..... ,0 

2 of ( ) _ 1. f(xo + h, Yo) - f(xo, Yo) 
. - Xo, Yo - tm ' 

ox h-+0 h 

of ( ) 1. f(xo, Yo + k) - f(xo, Yo) (D fi · · 12 ) - x0 , y 0 = 1m e mtwn .2.1 . 
oy k=o k 

iJ2f iJ2f 
3. -- = -- (Theorem 12.2.1). 

ax oy iiy ox 
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4. dz = az dx + az dy ' d(m) z = (h ~ + k ~)m z 
ax ay ax ay 

(Definition 12.3.2, Remark 12.3.4), 

az az au az av az az au az av -=--+--, -=--+--
ax au ax av ax ay au ay av iJy 

(differentiation of composite functions, Theorem 12.4.1; see also Remarks 12.4.1 
and 12.4.2). 

5. z - zo = ( 81) (x - xo) + ( 81) (y - Yo) 
ax. o ay o 

( equation of a tangent plane, Theorem 12.3.4) . 

6. of = (aj) cos oc + (aj) sin oc 
OS ax 0 ay 0 

(differentiation in a given direction, Theorem 12.5.2). 

7. X of + y of = nf(x, y) (Theorem 12.6.1 on homogeneous functions). 
ax ay 

8 , = _ offox 
· Y offay 

( differentiation of a function y given implicitly by an equation f(x, y) = 0, 
Theorem 12.9.1). 

9. Extremesofa function z = f(x, y): If 

af of 
- (xo, Yo) = 0 , - (xo, Yo) = 0 , 
ax ay 

a21 a21 [ a21 ]2 
iJx2 (xo, Yo) iJy2 (xo, Yo) - ax iJy (xo, Yo) > 0, 

then for 02! (x 0 , y 0 ) > 0 the function has a strict relative minimum at the point iJx2 

(x 0 , y 0 ), for 02! (x 0 , y 0 ) < 0 a strict relative maximum (Theorem 12.12.1). 
ox2 
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13.1. Primitive Function (Indefinite Integral). BasicIntegrals 

Definition 1. The function F(x) is said to be a primitive (primitive function, 
indefinite integral) of the function f(x) in the interval (a, b), if the relation F'(x) = 
= f(x) holds for all x E (a, b). 

Theorem 1. For each function f(x) which is continuous in (a, b) there exists 
a primitive. In fact, there exists an infinite number of them. If F(x) is a primitive, 
then all others are of the form 

F(x) + C, (I) 

where C is an arbitrary constant. 
We write 

ft(x) dx = F(x) + C. (2) 

The functionf(x) itselfis called the integrand ofthe integral (2). 

REMARK 1. According to the definition we have, keeping C fixed in (2), 

i_ ft(x) dx = f(x). 
dx 

(In this sense differentiation and integration may be regarded as inverse Opera­
tions.) 

Example 1. Wehave 

(3) 

(where Cis an arbitrary constant, e.g. 7). For, if we differentiate the function on the 
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right-hand side of equation (3) (keeping C fixed), we obtain x2 • According to Theorem 
1, functions of the form x 3/3 + C are the oniy ones which possess this property. 

Theorem 2 (Standard Integrals). (Unless the contrary is stated, the formulae 
are valid for all real x and for all values of constants involved.) 

f xn+l 
1. xn dx = -- + C (x > 0, n real, n :F -1). 

n + 1 

(For some n, the range of validity may be extended. For instance, if k is a positive 
integer, the relation 

ho1ds for all x.) 

f xk+l 
xkdx=--+C 

k + 1 

2. fdxx =In jxj + C (x :F 0), or f~ =In kx (kx > 0). 

4. fsin x dx = -cos x + C, 

f ax 
ax dx =- + C (a > 0). 

In a 

f cos x dx = sin x + C . 

5. s~ = -cot X+ C (x #- n7t, n an integer), 
sm2 x 

f~ = tan x + C (x :F !1t + n1t, n an integer) . 
cos2 x 

f dx 
6. ---2 = arctan x + C = -arccot x + k. 

1 +X 

7. f dx = aresirr x + C = - arccos x + k (- 1 < x < 1) . 
.J(1 - x2) 

8. --2 = t In -- + C for jxj :F 1 , f dx 1

1
1 + xl 

1-x 1-x 

= artanh x + C for jxj < 1, 

= arcoth x + C for jxj > 1 . 

9. Jsinh x dx = cosh x + C, Jcosh x dx = sinh x + C. 



450 SURVEY OF APPLICABLE MATHEMATICS 13ol 

lOo f~ = -cothx + C (x =I= 0), f dx = tanhx +Co 
sinh2 x cosh2 x 

11. f dx = In [ x + -J ( x2 + 1) J + C = arsinh x + C 0 
J(x 2 + I) 

12. f dx = In lx + -J(x2 - 1)1 + C (lxl > 1), 
-J(x2 - 1) 

= arcosh x + C ( x > 1) • 

REMARK 2. arsinh x, arcosh x, artanh x, arcoth x are the functions inverse 
to the hyperbolic functions (x = sinh y etc., see § 2013). 

REMARK 3. Wehave given two expressions for the integral fdx/xo In the domain 
where x is negative, fdxfx = In ( -x) + C (for there we have lxl = -x), or 
fdx/x= In kx, where k < 0. The fact that In kx is the primitive ofthe function 1/x, 
follows from the chain rule (Theorem 11.5.5), since (In kx)' = (1/kx). k = 1/x. 

Two forms of the indefinite integral do not contradict Theorem 1, for one can be 
reduced to the other. For instance, In kx = In x + In k holds for x > 0 and k > 0, 
and the right-hand side is already of the form In lxl + C. This situation occurs very 
frequently. If two forms of an kdefinite integral are found, it is always possible to 
reduce one to the other. 

REMARK 4. Even though for each continuous function there exists a primitive, in 
many cases it is not possible to express it in terms of elementary functions (i.e. alge­
braic functions and elementary transeendental functions, see § 11.2). An example of 
such a primitive is theindefinite integral of the function ex2

• Hence a new transeenden­
tal function is defined by the integral 

Similarly, new transeendental functions are defined by the integrals 

S1 x = - dt (sme mtegral), Ci x = - -- dt (coszne mtegral), 
0 fx sin t . 0 0 fco cos t 0 0 

0 ( X ( 

Ii x = fx ~ (logarithm integral), 
0 ln t 

Ei(x) = -dt. fx er 

-co t 

(At singular points of the integrands, the integrals are understood in the sense of the 
Cauchy principal value, see Remark 13.8.3.) See also Theorem 13.12.1, po 5500 On 
elliptic integrals see § 13.12. 
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13.2. Methods of Integration. Integration by Parts. Method of 
Substitution. Method of Differentiation with Respect to a Parameter 

Theorem 1. If there exist primitives of the functions f 1(x), j 2(x), f(x), then 

JUt(x) ±J2(x)]dx = Jft(x)dx ± JJ2(x)dx, 

Jkf(x)dx = k Jf(x)dx (k = const.). 

(The relation ff(x) g(x) dx = ff(x) dx. fg(x) dx does not hold in general.) 

Example 1. 

J
4x- I dx = ~(4.J(x)- _I )dx = 

.Jx J 1 .J(x) 

= 4 Jx 112 dx - Jx- 112 dx = ~x312 - 2x112 + C =} .J(x3)- 2 .J(x) + C (x > 0). 

Theorem 2 (Integration by Parts). Let us assume that the functions u(x) and v(x) 
possess continuous derivatives in the interval (a, b) (hence these functions arealso 
continuous in the interval (a, b) by Theorem Il.5.2). Then the relation 

Ju'v dx = uv- Juv' dx (I) 

holds in the interval ( a, b ). 

REMARK 1. Equation (I) is often written in the form 

Jv du = uv - Ju dv. 

REMARK 2. Integration by parts is convenient when integrating functions of the 
type 

x" sin x , x" cos x , x"ex , In x , arctan x , 

etc. (In the two last cases we put u' = 1.) See Examples 2, 3, 4. 

Example 2. To evaluate the integral 

I= Jx sin x dx 

we put 
u' = sin x , v = x , so that u = - cos x , v' = I ; 
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hence by (1) 

f X sin X dx = -X COS X + f COS X dx = -X COS X + sin X + C o 

Example 3. 

Jln x dx = x In x - fx ~ dx = x In x -x + C = x(ln x - 1) + C (x > 0); 

u' = 1 , v = ln x , 

u = x, v' 
1 

X 

Example 4. 

I = feax sin bx dx 0 

First we put 

U 1 = eax , V = sin bx hence 
1 u =- eax, v' = b cos bx, 
a 

thus reducing the given integral to the integral of the function eax cos bxo Again 

integrating by parts, with 

u' = eax, V = COS bx , 
1 u =- eax, v' = - b sin bx , 
a 

we obtain the original integral with the opposite sign (and a different constant)o 

From the equation so obtained the required integral may then be easily evaluated: 

I = feax sin bx dx = ~ eax sin bx - ~ feax cos bx dx = 

= ~ eax sin bx - ~ (~ eax cos bx + ~ feax sin bx dx) = 
a a a a 

1 ax 0 b b ax b b2 I = - e Sill X - - e COS X - - o 

a a2 a2 

From this equation (to the right-hand side, we can assign an arbitrary constant) we 

obtain 

I = (aeax sin bx - be"x cos bx) + C 0 

az + bz 

This method of procedure is often usedo 
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Method of Substitution 

A. Substitution h(x) = z: 

Theorem 3. Let f(x) be of the form f(x) = g(h(x)) h'(x) in the interval (a, b), 
where h'(x) is a continuousfunction in (a, b) and g(z) is continuous for all z = h(x) 
when x runs through the interval (a, b). Then 

ff(x) dx = fg(h(x)) h'(x) dx = fg(z) dz = G(z) + C, (2) 

where h(x) is to be substituted for z in the result. 

B. Substitution x = <p(z): 

Theorem 4. Letf(x) be continuous in the interval (a, b). Let x = <p(z) be afunction 
(of the variable z), which is strictly increasing or strictly decreasing in the interval 
(cx, ß) and possesses a continuous derivative <p'(z). Let us denote by z = l/f(x) the 
function inverse to the function x = <p(z). Jj, further, a < <p(z) < b holds for 
z E ~cx, ß), then 

f f(x) dx = f f( <p(z)) <p'(z) dz = H(z) + C, (3) 

where l/f(x) is to be substituted for z in the result. 

REMARK 3. Application of the method of substitution requires a certain amount 
of experience, in order to foresee the form of the resulting integral or in order to see 
in the function f(x) the form g(h(x)) h'(x). Note that the existence of the inverse 
function to h(x) = z is not assumed in Theorem 3. 

REMARK 4. Note that the right-hand side of equation (3) is formally obtained by 
substituting <p(z) for x and <p' ( z) dz ( which arises as a result of differentiation of the 
right-hand side of the equation x = <p(z)) for dx. Similarly in (2). 

In the following examples, the range of validity of the result is mentioned only 
in those cases where it is not evident. 

Example 5. 

f f "3 sin3 x 
sin2 x cos x dx = z2 dz = -3 + C = - 3- + C · 

Wehavemade use ofthe substitution sin x = z (from which it follows that cos x dx = 
= dz) and substituted z = sin x in the result (Theorem 3). 

Example 6. Using the substitution 

dx 
tanx = z, -- = dz or (1 + tan2 x)dx = dz, 

cos2 x 
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we obtain (in every interval (!k7t, !(k + 1) 1t), where k is an integer) 

tan4 x dx = -- dz = dz = f f z4 f (z4 + z2) - (z2 + 1) + 1 

1 + z2 z2 + 1 

= z2 - 1 + -. - dz = - - z + arctan z + C = -- - tan x + x + k }( 
1 ) z3 tan3 x 

z2 + 1 3 3 

(since arctan tan x = x + const.). 

Example 7 (using Theorem 3). 

f x2 dx = !f dz = 1arcsin z + C = 1arcsin x3 + C (lxl < 1), 
.J(1 - x6 ) 3 .J(l - z2) 

where 
x3 = z , 3x2 dx = dz . 

Example 8. Using the substitution 

we obtain 

For example 

f(x) = z, f'(x) dx = dz 

ff'(x) dx = 1n lf(x)l + C (f(x) "# 0). 
f(x) 

--dx =- --dx- -- = -1n(x2 + 1)- arctanx + C. f 5x - 1 5 f 2x f dx 5 

x2 + 1 2 x2 + 1 x 2 + 1 2 

Example 9. Using the substitution 

ax + b = z , a dx = dz 

we have (if F(z) denotes a primitive off(z)) 

f 1 f 1 1 f(ax + b) dx =- f(z) dz =- F(z) + C =- F(ax + b) + C. 
a a a 

For example 

fcos (3x + 5) dx = 1 Jcos z dz = 1 sin z + C = 1 sin (3x + 5) + C . 

Example 10. Using the substitution 

x = sin z , dx = cos z dz 
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we obtain 

f J(1 - x2 ) dx = f J(1 - sin2 z) eos z dz = Jeos2 2 dz = J!-(1 + eos 2z) dz = 

= !z + -! sin 2z + C = !z + ! sin z eos z + C = ! aresirr x + 

+~x .J(l - x2 ) + C 

(Theorem 4). The interval ( -1, 1) for x eorresponds to the interval ( -!7t, !1t) for z, 

which was denoted by ( r.t., ß) in Theo~·em 4. (The same eonsiderations hold also for 

closed intervals.) The inverse funetion to x = sin z is z = aresirr x; J(l - sin2 z) = 
= + eos z, for eos z > 0 if z belongs to the interval ( -!7t, !1t). When integrating 

eos 2z we employ the substitution 2z = t; ef. Example 9. 

The integral 

ean be evaluated either by the Substitution x = a sin z or may be redueed by the 

substitution x = at to the previous ease. 

For some further typieal examples on the method of substitution see § 13.4. 

REMARK 5. Theorems on integration by substitution and by parts may be formul­

ated under rather weaker restrietions than those introdueed in Theorems 2 and 3. 

In praetiee the two methods are often eombined: 

Example 11. Integrating by parts, 

u' = 1 , v = aretau x , u = x, v' = ---
1 + x 2 

and using the result of Example 8, we obtain 

Jaretan x dx = x aretau x - f-x __ dx = x aretan x - t ln (x 2 + 1) + C. 
x2 + 1 

REMARK 6 (Method of Differentiation of Integrals with Respect to a Parameter). 

We have (Example 13.4.6) 

f dx =ln[x+J(x2 +a)]+C (a>O). 
J(x 2 + a) 

This equation, jormally differentiated with respeet to a (not with respeet to x!), 

gives 
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Hence, if differentiation with respect to a under the integral sign is "permissible", 
then this procedure gives the primitive ofthe function l/J(x2 + a)3 • For the condit­
ions under which this method leads to correct results we refer the reader to § 13.9. 
Here, we shall treat only the simplest case. 

Theorem S. Let us denote 

ff(x, a) dx = F(x, a) + C. (4) 

lf the functions f(x, a), iJf (x, a), are continuous as functions of two variables (in 
iJa 

the region considered), then 

- (x, a) dx = -:;- (x, a) + k. f
iJf iJF 

aa ca 
(5) 

Example 12. Let us determine 

f dx (a > 0, b > 0) . 
(a + bx2 ) 2 

We use the relation (see e.g. § 13.5, formula 33) 

f dx = _I_ arctan J(!!.) x + C ( a > 0, b > 0) . ( 6) 
a + bx2 .J(ab) a 

Obviously, the function 1/(a + bx2 ) as well as the function -1/(a + bx2 ) 2 are 
continuous functions of x, a, b for all x (since a > 0, b > 0), hence (4) and (5) are 
applicable. Differentiating (6) with respect to a, we have 

hence on rearranging 

f dx = 1 arctan )(!!.) x + _!_ x + k (a > 0, b > 0). 
(a + bx2 ) 2 2a J(ab) a 2a a + bx2 

REMARK 7. Graphical integration is based on the following idea: If F(x) denotes 
the primitive of f(x), then F'(x) = f(x). Hence (see § 11.6) 

F(a + h) - F(a) = hf(a) + h -r(h), where -r(h)-+ 0 for h-+ 0. 

Neglecting the second term, one gets 

F(a + h) ~ F(a) + hf(a). 
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Similarly 
F(a + 2h) - F(a + h) ~"hf(a + h), 

whence F( a + 2h) is determined, etc. 

13.3. Integration of Rational Functions 

In this paragraph, we shall deal with integrals of the form 

fP(x) dx' 
Q(x) 

457 

(1) 

where P(x) and Q(x) are polynomials (we shall assume throughout that P(x) and 
Q(x) have real coefficients). Basically the method is to split the integrand into the 
sum of simple functions, which can be integrated directly. 

If the degree m of the polynomial P(x) is greater than ( or equal to) the degree n 
of the polynomial Q(x), then the fraction P(x)/Q(x) can be reduced to a sum of 
a polynomial ( of order m - n) and of a proper fraction 

R(x) --, 
Q(x) 

(2) 

where the degree r of the polynomial R(x) is less than the degree n of the polynomial 
Q(x) (or R(x) = 0). The mechanism of division is to be seen from the following 
example: 

Example 1. 

-x + 11 (x3 + 4x2 - x + 2)/(x2 + x - 3) = x + 3 + ---::---­
x2 + x- 3 

3x2 + 2x + 2 
- 3x2 ± 3x + 9 

- X+ 11 

Theorem 1. Every polynomial 

of the n-th order, with real coefficients can be reduced in a unique way, except for 
the ordering of the factors, into a product of the form (see Example 2) 

Q(x) = an(x - tx1Y' (x - tx2Y2 ••• (x - tx;Y' (x 2 + p 1x + q 1) 1' (x 2 + p2 x + q 2 ) 12 ••• 

. . . (x 2 + pix + qi)'J, (3) 
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where the numbers IX1, IX2 , ••• , IX1, p 1, q 1, p2, q2 , • • • are real and the quadratic 
expressions in (3) are irreducible to real linear factors (i.e. they have negative 
discriminants, 

p2 
-- q < 0). 
4 

(4) 

REMARK 1. The reduction (3) is obtained from the well-known method offactorisa­
tion in linear factors in the following way: If IX isareal zero of Q(x), then the reduction 
contains the factor x - IX. If ß (ß = ß1 + iß2) is a complex zero of Q(x), then the 
complex conjugate ß = ß1 - iß2 is also a zero of Q(x). The product of corresponding 
factors 

[x - (ßl + iß2)] [x- (ßl - iß2)] = (x- ß1)2 + ß~ = 

= x2 - 2ßlx + Pi + ß~ 

gives a quadratic expression with real coefficients. If the multiplicity of ß is l, then 
ß is ofthe same multiplicity and we obtain in (3) the factor 

(x 2 + px + q)1 • 

REMARK 2. On the practical determination of zeros of a polynomial of the n-th 
degree see Chaps. 1 and 31. It is often possible to find a zero of the given polynomial 
by inspection, especially if the polynomial has integral coefficients. Dividing by the 
corresponding linear factor x - IX we reduce the order of the polynomial, as in the 
following example. 

Example 2. The polynomial Q(x) = x4 - x 3 - x2 - x - 2 has obviously the 
zero IX1 = -1. We have 

(x4 - x3 - x2 - x - 2)/(x + 1) = x 3 - 2x2 + x - 2. 
-x4 ± x3 

- 2x3 - x2 

+ 2x3 + 2x2 

x 2 - x 
x 2 ± x 

- 2x- 2 

The resulting polynomial has the zero IX2 = 2. Dividing by the linear factor (x - 2) 
we obtain the polynomial x 2 + 1, which is irreducible to reallinear factors (see (4); 
p = 0, q = 1 ). Hence 

Q(x) = x4 - x3 - x2 - x - 2 = (x + 1) (x - 2) (x 2 + 1) 

and this factorisation is of the form (3). 
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Theorem 2. Let 

P(x) 

Q(x) 

459 

(5) 

be a proper rational fraction with real coefficients and Iet Q(x) be of the form (3), 
i.e. 

Then there exist real numbers A 1 , A 2 , • •• , Ak,, . .. ; Cl> C2 , • •• , C1,; D 1 , D2 , ... , D1, ... 

(uniquely determined by the function (5)), such that for all x different from the 
zeros of Q(x) the relation 

P(x) A1 A2 Ak, --=---+ 2+ ... + k + Q(x) x - a 1 (x - at) (x - a 1) ' 

C 1x + D 1 C2x + D2 C1,.x + D1, + + + ... + + X2 + PtX + qt (x 2 + PtX + ql)l (x2 + PtX + qt)1' 

E 1x + F 1 E 2x + F2 E 12X + Fz, (6) + + + ... + + ... 
x 2 + PzX + qz (x2 + PzX + qz)2 (x2 + PzX + qz) 12 

holds. 

REMARK 3. This means that if a 1 isareal kcfold root of Q(x) = 0, then all frac­
tions with denominators x - a 1 , (x - a 1y, ... , (x - a 1)k' occur in the reduction. 
If a 1 is a simple root, then only one fraction in the reduction ( 6) corresponds to it; 
similarly for all other real roots. The situation for expressions of the form x 2 + px + 
+ q is similar; the linear binomials of the form Cx + D, however, should be written 
in the numerators instead of constants. 

REMARK 4. The unknown constants Al> A2 , ••• can be determined by several 
methods, only two of which will be mentioned here: the method of undetermined co­
efficients and the substitution method: 

Example 3. Let us reduce the function 

x2 - 2 
(7) 

according to Theorem 2. 
The function (7) is already a proper fraction, hence it is not necessary to perform 

the preliminary division as in Example 1. The denominator can be written in the 
fL)fffi 
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where the quadratic expression x 2 - 2x + 2 has a negative discriminant ( 4). Hence, 
the reduction ( 6) is of the form ( oc = 0) 

x2 - 2 A 1 A 2 Bx + C 
---:---------:_ = - + - + -----
x4 - 2x3 + 2x2 x x 2 x 2 - 2x + 2 

(8) 

1. Determination of the constants A1 , A 2 , B, C by the method of undetermined 

coefficients. We multiply equation (8) by x 2(x2 - 2x + 2), giving 

x 2 - 2 = A1x(x2 - 2x + 2) + A 2(x 2 - 2x + 2) + (Bx + C) x 2 (9) 
or 

Sinceequation (8) should bevalid forinfinitely many values of x, the same is true for 
equations (9) and (10). Hence, it follows (see Theorem 1.14.1) that coefficients ofthe 
same powers of x are equal. Comparing coefficients, we obtain the equations 
A1 + B = 0, -2A1 + A 2 + C = 1, 2A 1 - 2A2 = 0, 2A2 = -2, from which 

A 1 = -1 , A 2 = - 1 , B = 1 , C = 0 . 

2. Method of substitution. Equation (9) is valid for an infinite nurober of values 
of x; hence it is valid for all x, in particular for zeros of the polynomial Q(x). If 
x = 0 is substituted into (9), then equation (9) yields 

-2 = 2A2 => A2 = - 1 . 

To evaluate A1 we differentiate (9) with respect to x and get 

2x = A1(x2 - 2x + 2) + A1x(2x - 2) + A2(2x - 2) + 2x(Bx + C) + Bx2 • 

If we put x = 0 and A2 = -1 (which has been already evaluated), we obtain 0 = 
= 2A 1 + 2 => A1 = -1. 

If x = 0 were a three-fold root of the equation Q(x) = 0, then we would determine 
the corresponding third constant by repeated differentiation of equation (9) (and then 
substituting x = 0). This procedure always Ieads to the required result. 

Next, we substitute x = 1 + i ( which is one of the zeros of the quadratic poly­
nomial x 2 - 2x + 2), and obtain (note that (I + i)2 = 2i) 

2i - 2 = [B(l + i) + CJ 2i 
or 

-2 + 2i = -2B + (2B + 2C) i. 

Comparing the real and the imaginary parts we get B = 1, C = 0. 
(If the expression x 2 - 2x + 2 had appeared squared in the reduction, we would 

have evaluated further coefficients in this case also by differentiation of equation (9) 
and substitution of x = 1 + i.) 



13.3 INTEGRAL CALCULUS OF FUNCTIONS OF ONE VARIABLE 461 

Hence 

x2 - 2 -1 -1 x 
---,..------: = - + - + -----
x4 - 2x3 + 2x2 x x2 x 2 - 2x + 2 

(11) 

for all x other than 0 and 1 ± i. 
REMARK 5. The numbers AI> A 2 , B, C may alternatively be determined by substi­

tuting any four values for x and solving the resulting four equations for the four 
unknown constants A 1, A2 , B, C. 

REMARK 6. We draw the reader's attention to the fact that a rational function can 
be reduced to a sum of fractions ( 6) only if the degree of the polynomial in the numer­
ator is less than that in the denominator. Otherwise division as in Example 1 is first 
to be performed. 

REMARK 7 ( concerning practical evaluation of constants ). If oc is a simple zero of the 
polynomial Q(x) then the corresponding constant A can be evaluated by the formula 

A = P(cx) . 
Q'(oc) 

Example 4. Using (6), we may write 

1 1 A 1 A 2 B ------=--+ +--. 
(x - 2)2 (x + 1) x - 2 (x - 2)2 x + 1 

Then 

B = P( -1) = I _ ! 
Q'(-1) (3x2 -6x).x=-• 9' 

since oc = -1 isasimple zero of the polynomial Q(x). 

REMARK 8 (Integration after Reduction). Every proper rational function with real 
coefficients can be reduced by Theorem 2 in a unique way into the sum ( 6) ( of so•called 
partialfractions). Each term on the right-hand side of equation {6) can be integrated 
by elementary methods: 

f~ dx = A1 ln lx- oc11 + C (by Substitution x- oc1 = z), 
x - oc1 

f Ak dx = Ak 1 + C (k #= 1, Substitution x - oc1 = z). 
(x - oc1)k -k + 1 (x - oc1)k- 1 

Terms of the type 
Bx + C 
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are integrated as follows ( we assume the quadratic poiynomial x 2 + px + q has 
a negative discriminant p2J4 - q < 0): 

Putting x 2 + px + q = z, (2x + p) dx = dz we have: 

f 2x + P dx = 1 1 + C , if k =/: 1 ; 
(x2 + px + q)k -k + 1 (x2 + px + q)k-l 

f 2X + P dx = In (x2 + px + q) + C , if k = 1 . 
x 2 + px + q 

Next on substituting x + 1-P = z .j[q - (1-PY]. dx = .j[q - (tp)l] dz, 

For k = 1, we have 

-- = arctan z + C = arctan + C . f dz X+ 1-P 
zz+ 1 .j[q - (tp)z] 

For k > 1 the reduction formula 

(12) 

where 

I - f dz 
k+J - (1 + zl)k+l' 

is valid. 

Example 5. Using (12) we have 

f dz 1 z 2 - 1 f dz 1 z 1 
( 1 + z2)2 = 2 1 + zz + -2- 1 + zz = 2 1 + zz + 2 arctan z + C . 

Example 6. Using (11) and Remark 8 we get 

-----dx= -+-+ dx= f x 2 
- 2 ~(- 1 - 1 x ) 

x4 - 2x3 + 2x2 x x 2 x 2 - 2x + 2 

1 
= -In lxl +- + -!In (x 2 - 2x + 2) + arctan (x - 1) + C. 

X 



13.4 INTEGRAL CALCULUS OF FUNCTIONS OF ONE VARIABLE 463 

13.4. Integrals which can be rationalized 

Some types of integral can be reduced to integrals of rational functions, which are 
then integrated according to § 13.3. In particular, the following types are considered. 

I. JR(x.;;::: ~)dx, 
where R(x, t) is a rational function of the variables x, t. 

Integrals like this can be transformed into integrals of rational functions by the 
Substitution 

ax + b n dz"- b 
--- = z or x = ---
cx + d a - cz" 

Example 1. The function 

f3x + .J(2x - 1) dx (2x - 1 ~ 0, x- .J(2x - 1)3 -:1: 0) (1) 
x - .J(2x - 1)3 

is of the type mentioned, where 

R( ) = 3x + t 
x, t ' 

X- t 3 
t = J(2x - 1). 

We make the substitution 

2x - 1 = z2 (z > 0), 

from which it follows that dx = z dz and 

z 2 + 1 

f3x + .J(2x - 1) dx = f 3 -2- + z z dz = - f 3z3 + 2z2 + 3z dz' 
x - .J(2x - 1)3 z2 + I 3 2z3 - z2 - 1 ----z 

2 

and this is now an integral of a rational function. After integration we substitute 
again z = .J(2x - 1). 

REMARK I. The fraction (ax + b)f(cx + d) may occur with different (rational) 
exponents. For instance, the integrand may be a rational function R(x, t, u), where 

t = (ax + b)l/r' u = (ax + b)l/s' 
cx + d cx + d 

is tobe substituted. Such an integral can be rationalized by the substitution (ax + b): 
: ( cx + d) = tP, where p stands for the least common multiple of the numbers r and s. 
The procedure is similar when several roots are involved. 
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Example 2. The integral 

I dx 

.J(x + 1) - ~ (x + 1) 

is rationalized by the substitution x + 1 = t6 (t > 0); we get 

I dx = I 61 5 dt = 6 I t3 dt = 

.J(x + 1) - ~(x + 1) t 3 - t2 t - 1 

6I (t3 - tz) + (t2 - t) + (t - 1) + 1 d 6 (t3 tz t I 11) c = t= -+-+t+ nt- + = 
t- 1 3 2 

= 2 .J(x + 1) + 3 ~(x + 1) + 6 ~(x + 1) + 6ln l~(x + 1) - 11 + C. 

II. Binomial integrals are those of the form 

(2) 

where m, n, p are rational numbers. 

Theorem 1. Integrals (2) can be expressed in terms of elementary functions 

(algebraic functions and elementary transeendental functions, see § 11.2) if and 

only if one of the numbers 

m + 1 
p, 

n 

is an integer. 

m + 1 --+p 
n 

REMARK 2. (cx) lf pisapositive integer we evaluate the expression (a + bxn)p by 

the Binomial Theorem and we obtain an integral of a sum of powers of x. 
If p is a negative integer and 

r 
m = -, 

s 

u 
n=­

v 

where r, s (s > 0) are integers without a common factor, and similarly for u and v, 

then the Substitution 
x = zr, 

where t is the least common multiple of the numbers s, v, will rationalize the in­

tegral (2). 

(ß) If 
m+1 

n 
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is an integer, then the Substitution 

a + bxn = z 

will reduce the integral (2) to the previous case. 

(y) lf 

m +I 
--+p 

n 

465 

is an integer then we reduce the integration of (2) to the case (cx) by the substitution 

ax-n + b = z. 

Example 3. 

Case (cx), pisapositive integer. Making use of the Binomial Theorem, we have 

Jx-2f3(I + xlf6)3 dx = Jx-213(1 + 3xlf6 + 3x2f6 + x3f6) dx = 

(3) 

= Jcx-213 + 3x-112 + 3x-1/3 + x-116) dx = 3xlf3 + 6x112 + ~x2f3 + ~xSf6 + C. 

Example 4. 

Here 

(case y). Putting 

we obtain (for x > 0) 

m +I --+p=l-t= -1 
n 

2a 
-- dx = dz 

x3 

f dx f I dx I f dz 
.j(a + bx')' ~ x' J(:, + br ~ - 2a z'1' ~ 
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Example 5. The integral 

(case cx, pisanegative integer) is rationalized by the Substitution x = z12• 

111. Integrals of the form 

JR(x, .J(ax2 + bx + c)) dx (ax 2 + bx + c > 0), (4) 

where R(x, t) is a rational function of the variables x, t, are rationalized as follows: 

(cx) lf a > 0 we make use ofthe Substitution 

.J(ax2 + bx + c) + .J(a)x = z, (5) 

from which it follows that 

z2 - c 
or x = , 

b + 2.J(a)z 
ax 2 + bx + c = ax2 - 2 .J(a) xz + .:2 

dx = 2 c .J(a) + bz + .J(a) z2 dz, .J(ax2 + bx + c) = c .J(a) + bz + .J(a) z2 , 

[b + 2.J(a)z]2 b + 2.J(a)z 

dx 2dz -----
.J(ax2 + bx + c) b + 2 .J(a) z 

(6) 

(ß) If a < 0, then there are two distinct zeros x1 and x2 of the polynomial ax2 + 
+ bx + c (since we are given that ax2 + bx + c > 0 for some x and the latter 
polynomial tends to -oo as x---. ±oo), hence ax2 + bx + c = a(x- x1)(x- x2). 
If x 1 < x 2 , then 

Jx2- x 
.J(ax2 + bx + c) = .J( -a) .J[(x- x1) (x 2 - x)] = .J( -a) (x - xl) x _ x, · 

We now proceed as in case I, i.e. we employ the Substitution 

x2- x = z2 
x - x 1 

The given integral can often be transformed to the integral 

The first integral is a standard integral and the second one is easily evaluated by the 
substitution t = sin z (Example 13.2.10, p. 454). 
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On some other methods for more complicated cases see e.g. (54]. 

Example 6. To evaluate 

f dx (k =!= 0, x2 + k > 0) . 
.J(x2 + k) 

467 

Making use of Substitution (5) and equation (6), where a = 1, b = 0, c = k, 
we get 

J dx = fdz =In lzl + C =In k/(x2 + k) + xl + C . 
.J(x2 + k) z . 

See also§ 13.1, formula 11 (p. 450). 

IV. Integrals of the form 

where R(t) isarational function ofthe variable t and a isareal constant, are rational­
ized by the Substitution 

Integrals 

f dx 
R(ln x) ~ , x > 0 , 

where R(t) is again a rational function, are rationalized by putting 

In x = z. 

V. Integrals of the type 

f R(cos x, sin x) dx, 

where R(u, t) isarational function ofthe variables u and t, can always be rationalized 
by the Substitution 

tan tx = z. 

From this equation it follows (making use ofthe relation cos2 t:x. = 1/(1 + tan 2 tx)) 
that 

1 - z2 
cosx = ---, 

1 + z 2 

2z 
sinx = ---

1 + z 2 

dx = 2 dz . 
1 + z2 
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Example 7. The integral 

I 1 - sin x + cos x dx 

5 sin x cos x 

is transformed by the above Substitution into the integral 

Hence 

I 1 - sin x + cos x dx = ~ I dz = ~ ~(~ __ !_) dz = 
5 sin x cos x 5 z(l + z) 5 J 1 z 1 + z 

_ 2 1 I z I c _ 2 1 I tan !x I c --n---+ --n +. 
5 1 + z 5 1 + tan tx 

13.4 

REMARK 3. One can often choose Substitutions which are simpler than the Sub­
stitution tan tx = z. For example, the integral 

is transformed by the Substitution 

I 1 + cos 2 x dx 

cos4 x 

tan x = z, from which we have dx/(cos 2 x) = dz 

into the integral (making use of the relation cos2 x = 1/(1 + tan2 x)) 

Hence 

---- dx = (2 + z2) dz = 2z + - + C = 2 tan x + -- + C . I 1 + cos 2 x I z3 tan 3 x 
cos4 x 3 3 

In general if the function R(cos x, sin x) is odd with respect to the function sin x, 
i.e. if R( cos x, sin x) = - R( cos x, - sin x ), then it is possible to use the substitution 
cos x = z to rationalize the integral fR(cos x, sin x) dx. 

If R(cos x, sin x) is odd with respect to cos x, i.e. if R(cos x, sin x) = 
= - R(- cos x, sin x ), the Substitution sin x = z can be used. 



13.4 INTEGRAL CALCULUS OF FUNCTIONS OF ONE VARIABLE 469 

lf the function R(cos x, sin x) is even with respect to both functions, i.e. if 
R( cos x, sin x) = R(- cos x, - sin x ), the Substitution tan x = z may be employed 
(see the previous example). 

Integrals of the type 

(7) 

( where m, n are integers) are evaluated, if n or m is an odd number, by the substitution 

cos x = z or sin x = z . 

Example 8 (substitution sin x = z). 

f~ = f cos x dx = f cos x dx = f~ =! ~(-1 + _1 ) dz = 
cos x cos2 x 1 - sin2 x 1 - z2 2 Y 1 - z 1 + z 

= ! In 11 + z j + C = ! In 11 + s~n x I + C . 1 - z !1 - sm x 

(By first transforming the integrand as indicated below this integral can be solved 
by the Substitution tan (;\-1t + tx) = z. Thus: 

1 1 
--=----
cos x sin (!1t + x) 2 sin (!7t + 1x) cos (:!7t + 1x) 

2 tan (!7t + -tx) cos2 (!1t + 1x)' 
hence 

-=In ltan (!1t + tx)l + C. f dx 

COS X 

We can show that these two results are equivalent as follows: 

t In 11 + sin x I = -!In 11 + 2 sin tx cos tx j = 
1 - sin x 1 - 2 sin tx cos tx j 

1 -- + 2tantx 
-ll cos2 tx -ll 1'1 + tan2 1x + 2tantxj--zn -zn -

1 2 l 1 + tan 2 tx - 2 tan h ---- tanzx 
cos2 1x 

= -!In (1 + tan tx)z = In 11 + tan txl = In jtan (!1t + tx)j.) 
1 - tan tx 1 - tan tx 
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Example 9 (substitution sin x = z): 

= sin4 x _ sin6 x + sin8 x + C. 
4 3 8 

If both m and n in (7) are even and non-negative, then making use of the formulae 
cos2 x = 1(1 + cos 2x), sin2 x = 1(1 - cos 2x) and if necessary by their further 
application (cos2 2x = !(1 + cos 4x), etc.) we can reduce the degree and hence reduce 
the integration to the previous case. 

Example 10. 

fsin 2 x dx = 1 f(l - cos 2x) dx = t(x - fsin 2x) + C = 

= t(x - sin x cos x) + C. 
Example 11. 

fcos4 x dx = t f(l + cos 2x)2 dx = ;tx + t sin 2x + i f(l + cos 4x) dx = 

= ix + t sin 2x + 3
1
2 sin 4x + C . 

13.5. Table of Indefinite Integrals 

See, in particular, [26]. (For standard integrals see § 13.1, p. 449.) Constants of 
integration are omitted in the Table; m, n are integers, r stands for an arbitrary real 
number. 

The range of validity is indicated only in noa-trivial cases. (For example, if the 
expression xX = x(ax + b) appears in the denominator, we do not draw the readcr's 
attention to the fact that the range of validity is determined by the conditions x f= 0, 
ax + b t= 0; if the root of the expression X = ax + b is considered, then, of course, 
the range of validity follows from the condition ax + b ;:::; 0, i.e. x ;:::; - bfa for 
a > 0 and x ~ - b/a for a < 0, etc.) 

If a2 + x 2 appears in the integral, then a > 0 is assumed, since this case is most 
often met in applications. The case a < 0 is easily reduced to the previous one by 
putting a = -b, b > 0. 

(a) Rational Functions (see also Remark 1, p. 510). 

I Notation: X = ax + b (a f= 0, b f= 0). i 
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1. Jx· dx = 1 x• + 1 • 

a(n + I) 

2 fdx = 1 _1_ (n # 1). . x· a( 1 - n) . x·- 1 

3. - = - In lXI . fdx 1 

X a 

4. Jxx• dx = 1 x•+Z - b x•+ 1 • 

a2(n + 2) a2(n + I) 

5. Jxmx• dx (see Remark 13.4.2, case(cx), p. 464). 

6. - = - - -In lXI . fx dx x b 

X a a2 

9 fx dx = _!_ ( -1 + b ) (n # I,'' # 2). 
. x· a2 (n - 2) xn-Z (n - 1) x·- 1 

10. fx 2 dx = ~ (tX2 - 2bX + b2 In lXI). 
X a 

11. f x:~x = : 3 (X - 2b In lXI - ~) . 

12. fxz dx = _!_ (tn lXI + 2b - ~) . 
X3 a 3 X 2X2 

13 f x 2 dx = _!_ [ - 1 + 2b _ bz J 
. X" a 3 (n-3)X"- 3 (n-2)X"- 2 (n-I)X"- 1 

(n # 1, n # 2, n # 3). 

I4. f dx = -!_In IX!· 
xX b x 

I5. f~ = -_!_(In~~~+ ax). 
xX2 b2 x X 
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17. I~= -_!_ [Inl~l- n~1 (n- 1) ( -a)k xk] (n > 1). 
xXn bn XJ k=1 k kXk 

I dx 1 a /XI 18. -=--+-In-. 
x 2X bx b2 x' I 

21 -- - - an In - - - + L I dx 1 [ I X I X n (n) ( _ a )k xk- 1 J 
. x2Xn - bn+ 1 X X k=2 k (k- 1) Xk- 1 

(n ~ 2). 

22. -=---I ; I dx 1 m+n- 2 (m + n - 2) ( -a)k xm-k- 1 

XmXn bm+n- 1 k=O k (m - k- 1) Xm-k- 1 

the term for which m - k - 1 = 0 is to be repiaced in the sum by the term 

I Notation: Lf = bf- ag ·I 
23. -- dx = - + -In fx + g (! :I: 0) . I ax + b ax Lf I I 

fx + g f P 

24.I dx =.!..Inlfx+gi (Lf:FO). 
(ax+b)(fx+g) Lf ax+b 

25. I x dx = .!.. (~In lax + bl - ~In IJx + BI) 
(ax + b) (fx + g) Lf a f 

( a :I: 0, f :I: 0, Lf :I: 0) . 

26. I dx = .!._ ( 1 + l.ln I fx + g I) (Lf :I: 0). 
( ax + b )2 (fx + g) Lf ax + b Lf ax + b 

27. I x dx = b - a lnla + xl (a :I: b). 
(a + x) (b + x)2 (a - b) (b + x) (a - b)2 b + x 
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28. I xz dx = 
( a + X) ( b + X )2 

b2 a2 b2 - 2ab 
= (b- a) (b + x) + (b - a)2 Iü Ja + xJ + (b - a)z In Jb + xJ (a # b). 

29 I dx -I ( I I ) 2 I I a + xl 
. ( a + x )2 ( b + x )2 = ( a - b )2 a + x + b + x + ( a - b? n b + x 

(a # b). 

30 I dx -I dz (see 22; z = x + a, c = b - a, a # b). . ( a + X )m ( b + X t - zm( Z + C )n 

31. I x dx = 
( a + X ) 2 ( b + X ) 2 

= I (-a- + _b_) + a + b In~~-:~ ( a # b) . 
( a - b )2 a + x b + x ( a - b )3 b + x 

32. I x2 dx = 
(a + x)l (b + x)l 

= -1 (__:C_ + _.!C_) + 2ab Inla + xl (a # b). 
(a - b)2 a + x b + x (a - b)3 b + xi 

Notation: X= ax2 + bx + c, A = 4ac- b2 (a # 0, A # 0) ·1 

33. - = -arctan (A > 0), fdx 2 2ax + b 

X .JA .JA 

- 1 Inl2ax + b- .J(-A)I (A < 0) . 
.J(-A) 2ax + b + .J(-A) 

34_ I dx = 2ax + b + 2afdx (see 33). 
X 2 AX A X 

35. I~ = 2ax + b (-I- + ~) + 6a 2 dx X3 A 2Xz AX A2 X (see 33). 

. -- + -- n>I. 36 Idx _ 2ax + b (2n - 3) 2a f dx ( ) 
xn (n - I) Axn-l (n - I) A xn-t 
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37. Ix dx = _!__ ln \X\ - !_ Idx (see 33). 
X 2a 2a X 

38. Ix dx = - bx + 2c- !!_fdx (see 33). 
X 2 LIX LI X 

39. Ix dx = _ bx + 2c _ b(2n - 3) I~ (n > 1). 
xn (n- 1)Lixn- 1 (n- 1) LI X"- 1 

40. Ixz dx = ~- __!!____ ln \X\ + bz- 2ac Idx (see 33). 
X a 2a2 2a 2 X 

41. fx 2 dx = (b2 
- 2ac) x + bc + 2c Idx (see 33). 

X2 aLIX LI X 

42 Ix2 dx = -x + c Idx _ (n - 2) b Ix dx 
. xn (2n - 3) ax"- 1 (2n - 3) a xn (2n - 3) a xn 

(see 36 and 39) . 

I
xm dx xm- 1 (m- 1) c Ixm-z dx 

43' r = - (2n- m- 1) axn- 1 + (2n- m- 1) a xn -

- · (m =/= 2n- 1; for m = 211- 1 see 44). (n - m) b I xm- 1 dx 

(2n - m - 1) a X" 

44. Ixzn-1 dx = .!_Ix2n-3 dx- ~Ix2n-3 dx- ~Ixzn-2 dx 

X" a xn- 1 a X" a X" 

(n > 1; for n = 1 see 37). 

45. I dx = _!_ ln ~ - !!__ Idx (see 33; c =/= 0). 
xX 2c \X\ 2c X 

46. I dx = 1 - !!_ I dx + .!_ I __j.:_ ( c =~= 0, 11 > 1) . 
xX" 2c(n - 1) X"- 1 2c X" c xX"- 1 

47. - = - ln- - - + - - - - (see 33; c =/= 0) . 
I 

dx b \X\ 1 (b2 a)Idx 
x 2X 2c2 x2 cx 2c2 c X 

48. I~ = _ 1 _ (2n + m - 3) a I dx _ 
xmxn (m- 1) cxm- 1xn-l (m- 1) c xm-zxn 

- -- c=/= ,m> . ( n + m - 2) b I dx ( 0 1) 
(m -I) c xm- 1X" 
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49. f dx = f In (fx + g)2 + 
(fx + g) X 2(cf2 - gbf + g2a) lXI 

+ 2ga - bf fdx (see 33; cP - gbf + g2a =F 0). 
2(cf2 - gbf + g2a) X 

Notation: X = a2 ± x 2 (a > 0), 

Y = aretau ~ for the positive sign, 
a 

y = ! In !x + a I= { artanh (xfa) for the negative sign and for jxj < a, 
ix - a arcoth (xfa) for the negative sign and for lxl > a. 

If both signs occur in a formuia, then the upper or lower sign corresponds-to 
the case X = a2 + x2, or X = a2 - x2, respectiveiy. • 

50. f dx = .!_ y. 
X a 

54.fx~x= ±tinjXj. 

. ---+-· 55 f
x dx __ 1 

X2 2x 

f
xdx 1 

56. x3 = + 4X2 • 

--- +--57 f
x dx _ _ 1 

. xn+l 2nxn 
(n =F 0). 

f
x2 dx 

58. X = ±x + a Y. 
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59. fx2 dx = + ~ ± _!_ y. 
X 2 2X 2a 

61. fx2 dx = + _x_ + _!_fdx (n # 0). 
xn+l 2nxn - 2n xn 

68. = c In Jb + cxJ- -In JXJ ±- Y f dx 1 [ c b J 
(b+cx)X a2c2 ±b2 2 a 

Notation: X = a 3 ± x 3 (a =P 0). 
If both signs occur in a formula, then the upper or lower sign corresponds to 

the case X = a 3 + x3 , or X = a 3 - x3 , respectively. 

69. fdx = ± _1_Jn (a ± x)2 + _1_ arctan 2x + a. 
X 6a 2 a2 + ax + x 2 a2 .J3 a ..}3 

70. - = -- + - - (see 69) . f
dx x 2 fdx 
X 2 3a 3X 3a 3 X 

. -- =- n + -- arctan---. 71 f
x dx 1 1 a2 + ax + x 2 1 2x + a 

X 6a (a ± x)l - a .J3 a .J3 
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f
x 2 dx 

73. X = ± t In lXI . 

74. fxzdx =+_I __ 
X 2 3X 

75. fdx = _I_Inlx31· 
xX 3a 3 j X 

76. f dx =_I_+ _I_Inlx31. 
xX2 3a3X 3a 6 X/ 

. = --- n + -- aretau -----"----79 f 
dx I I x 2 + ax "1(2) + a2 I ax )2 

a4 + x4 4a 3 J2 x 2 - ax J(2) + a2 2a 3 J2 a2 - x 2 

(a -1' o). 

80. 4 =- aretau- (a -:F 0). f 
x dx I x 2 

a + x4 2a 2 a2 

81. f xz dx = - _1_ In xz + ax J(2) + az + I aretau ax J2 
a 4 + x 4 4a J2 x 2 - ax J(2) + a2 2a J2 a2 - x 2 

(a -:F 0). 

83. = - In --- + - aretan-f dx I I a + x I I x 
a4 - x4 4a 3 a - x 2a 3 a 

(a-:FO). 

85. = - In -- - - arctan-f 
x 2 dx 1 I a + x I I x 

a 4 - x4 4a a - x 2a a 
(a # 0). 
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(b) Irrational Functions. 

Notation: X = a2 ± b2x (a > 0, b > 0), 

b .Jx c h . . . 
Y = arctan -- 10r t e positive sign, 

a 

Y = ! ln I a + b ~ x I for the negative sign. 
a-b x 

13.5 

The upper or lower sign in the formulae corresponds to the case X = a2 + b2x, 

or X = a2 - b2x, respectively. 

87 fJ(x)dx = +~- 2a y 
. X - b2 + b3 • 

88. fJ(x)dx = + }3_ + _1 Y. 
X 2 b2X- ab3 

91. fJ(x) dx = __ 1_ 10 x + a J(2x) + a2 + _1_ arctan a .J(2x) 

a4 + x2 2a J2 x - a J(2x) + a2 a J2 a 2 - x 

(a=FO). 

92. f dx = _1_ln x + a .J(2x) + a2 + _1_ arctan a J(2x) 
(a4 + x2)Jx 2a3 J2 x - a J(2x) + a2 a3 .J2 a2 - x 

(a =1= 0). 

93. = -ln =- arctan- (a =1= 0). IJ(x) dx 1 Ia + Jxl 1 .Jx 
a4 - x 2 2a a - J x a a 

f dx 1 Ia + Jxl 1 .Jx 
94. ( 2 J = -ln J + -arctan- (a =1= 0). 

a 4 - x ) x 2a3 a - x a 3 a 
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I Notation: X = ax + b (a =F 0, b =F 0) ·I 
95. fxrdx = 1 xr+ 1 (r =F -1; for r = -1 see3). 

(r + 1) a 

96. fJ(X) dx = ~ JX3 • 
3a 

97. fx J(X) dx = 2(3ax- 2b) JX3. 
15a2 

99_ f dx = 2 JX . 
JX a 

100_ fx dx = 2(ax - 2b) JX. 
JX 3a2 

{

- 1 lniJX-Jbl for b>O, 

102. s~ = Jb .JX + Jb 
xJX 2 jx --arctan - for b < 0. 

J(-b) -b 

103. f:.jX dx = 2 JX + b s~ (see 102). 
X X .jX 

104. -- = - - - - -- (see 102). f dx JX a f dx 
x2 JX bx 2b x .JX 

105. _v_ dx = - - + - -- (see 102). f 1X JX a I dx 
x 2 X 2 X JX 

106. s~ = - JX - (2n - 3) a f dx (n > I). 
x" JX (n - 1) bx"- 1 (2n - 2) b x"- 1 .JX 

479 
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107. IJ(X 3) dx = 2 Jxs . 
5a 

110. IJX3 dx = 2 JX3 + 2b J(X) + b2 r ~ (see 102). 
X 3 J X JX 

113. I~= - 2 - +!I~ (see 102). 
x JX 3 b Jx b x Jx 

114. I x2 ~x3 = - bx ~X - b23~x - ;:2 I x ~X (see 102). 

115. x±n/2 dx = (n ± 2 =f 0). f 2xt<2±n) 

a(2 ± n) 

116. xx±nf2 dx = - - (n ± 2 =f 0, n ± 4 =f 0). f 2 (xt<4±n) bxt<2±n)) 

a2 4 ± n 2 ± n 

117. x2X±"12 dx =- - + ---f 2 (XH6±n> 2bxt<4±n> bzxt<2±n)) 

a3 6 ± n 4 ± n 2 ± n 

13.5 

(n ± 2 =f 0, n ± 4 =f 0, n ± 6 =f 0). 

I
xnt2 dx 2X"'z Ixt<n-2> 

118. = -- + b dx (n =f 0). 
X n X 

119. I~= 2 +!I dx (n =f 2). 
xxn12 (n - 2) bxt<•- 2) b xxt<n- 2) 

120.J~=- 1 - nai~· x2xnf2 bxxt(n-2) 2b xxn/2 
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Notation: X = ax + b, Y = fx + g, LI = bf- ag 
( a =P 0, f =P 0, L1 =P 0) 0 

= 2 arctan /-!X for af<O (aY>O), 

121.s~ 
)(XY) 

)( -af) "J aY 

= - 2 - artanh JJX = - 2- In l)(a Y) + ~/(JX)I 
)(af) aY )(af) 

foraf>O (aY>O)o 

1220 s~ = J(XY) - ag + bfs~ (see 121) 0 
)(XY) af 2af )(XY) 

1230 f dx = - 2 )X. 
)(X) )Y3 LI )Y 

I 2 arctan f Jx for L1f < 0, 
124. ~ = J( -Lif) J( -Lif) 

y )X 1 I lf J(X)- J(Lif)l for L1f > 0. 
J(Lif) n f )(X) + J(Lif) 

1250 fJ(XY) dx = L1 + 2aY J(XY)-~ s~ (see 121). 
4af 8af J(XY) 

126. JJ(!) dx = .!._ )(xY)-~s~ (see 121; Y > o). 
X a 2a J(XY) 

127. fJ(x) dx = 2 Jx + ~ s~ (see 124). 
Y f f Y JX 

128. f Y" dx = 2 (J(X) Y"- nLI f yn-1 dx). 
JX (2n+1)a JX 

129. f )(;; Y" = - (n -11) L1 { /.~1 + (n- Da f )(X~xY" 1} (n > 1). 

130. f)(X) Y" dx = 1 (2 J(X) yn+l + LI f Y" dx) (see 128). 
(2n + 3)f JX 

131. JJ(x) dx = 1 (- Jx + ~s dx ) (n > I) 0 
Y" (n - l)J yn-1 2 J(X) yn-1 

481 
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I Notation: X= a 2 - x 2 (a > 0).1 

132. f y'(X) dx = ~ ( x y'(X) + a2 arcsin ~). 

133. Jx y'(X) dx = -t y'X3 . 

134. f x 2 y'(X) dx = - ~ y'(X3) + a8
2 

( x y'(X) + a2 arcsin ~) . 

135. f y': dx = y'(X)- a In Ia +x y'X\· 

136. - dx = --- arcsm,-. fy'X y'X . rX 

x 2 x ·a 

137. f dx = arcsin ~. 
y'X a 

138. J~~ = - y'x. 

139. -- = - - y'(X) + - arcsin-. fx 2 dx x a2 x 

y'X 2 2 a 

140. f~ = - .!_ In\a + y'XI· 
X y'X a X 

141. J~ = - y'x . 
x 2 y'X a2 x 

I42. y'(X3) dx = - x y'(X3) + - y'(X) + - arcsin- . f 1 ( 3a 2x 3a4 x) 
4 2 2 a 

143. Jx y'(X3) dx = -t y'X 5 • 

144 f 2 '(X3) d x y'X5 a2x y'X 3 a4x y'X a6 . x . x v x = - -- + + + - arcsm - . 
6 24 16 16 a 

145. Jy'X3 dx = .jx3 + az y'(X) - a3 In~~ a + y'XJ. 
X 3 X i 
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146. -- dx = - -- - - x J X - - a arcsm -f jx3 Jx 3 3 3 2 • x 
x 2 x 2 2 a 

147. f ~~3 = a2 ~X. 

148. f~~~ = ~~. 

fx 2 dx x . x 
149. ~X3 =~X - arcsm ~. 

150. I~-= _1_- _!_ lnla + ~x,. 
x ~X3 a 2 ~X a3 x 

151. f dx = _!_ (- ~X + ~) . 
x 2 ~X3 a 4 x ~X 

I Notation: X= a2 + x 2 , a > 0 ., 

152. f~(X) dx = Kx ~(X)+ a2 arsinh ~) + C = 

= -!(x ~(X) + a 2 ln jx + ~XI) + C1 • 

153. Jx ~(X) dx = t ~X3 • 

154. Jx 2 ~(X) dx = ~ ~(X3)- ~2 (x ~(X)+ a2 arsinh ~) + C = 

x a2 

= 4~(X3)- S(x ~(X)+ a 2 ln jx +~XI)+ C1 • 

155. fx3 ~(X) dx = ~xs - a2 ~X3 . 
5 3 

156. f ~X dx =~(X)- a lnla +x~x,. 

157. - 2 dx = - .l_ + arsmh- + C = - .l_ + In jx + y'Xj + C1 • f~X /X . x /X 
X X a X 

!58. f~-: dx = - ~:- _!_ lnl:a + ~XI· 
x 2x 2a x 

483 
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159. I~ = arsinh.:: + C = ln lx + .JXI + C1 • 

.JX a 

160. I~~ = .jx. 

161. -- =- .j(X)-- arsmh- + C =- .j(X) --In x + vX + C1 • I
x2 dx x a2 . x x a2 I I I 
.JX 2 2 a 2 2 

162. Ix3 dx = .j(X3) - a2 .JX . 
._}X 3 

163. r ~ = - .!_ lnla + .jx,. J X ._}X a X 

164. I~ = - ,j X . 
x2 .JX a2x 

165. I dx_ =- JX + _1_ln\a + .JX\· 
x3 IX 2a 2x 2 2a 3 x 

'V 

166. I.J(X3) dx = ! (x J(X3) + 3a2x .J(X) + 3a4 arsinh .::) + C = 
4 2 2 a 

=- x .j(X3 ) +- .J(X) +-In lx + .JXI + C1. 1 ( 3a 2 x 3a4 
) 

4 2 2 

167. Ix .j(X3) dx = t JX 5 • 

168 I 
z I(X3) d - x .jxs a2x .jx3 a4x "IX a6 . h x C -

. x v x - -- - - - - arsm - + -
6 24 16 16 a 

= x .jxs - a2x .JX3 - a4x .JX - a6 In lx + .JXI + C . 
6 24 16 16 I 

169. Ix3 .J(X3) dx = .jx7 - a2 ._;xs. 
7 5 

170. I .J;3 
dx = .J;3 + a2 J(X)- a 3 Inla +x.JX\· 

171. - dx = -- + -tx .j(X) + ta2 arsinh- + C = IJX3 ,jX3 x 
x 2 x a 

Jx3 
= - -- + -tx .j(X) + -ta2 In lx + )XI + C1 • 

X 
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172. f.jx 3 dx = - Jx3 + t J(X)- fa In Ia + .jxl· 
x 3 2x2 i x : 

173. I ;;3 = a 2 ~X· 

174. IJ~~ =- Jx· 
175. -- =-- + arsmh- + C =--+In x + JX + C1 • I x 2 dx x . x x I I 

.jX3 .jX a JX 

176. Ix3 dx = .j(X) + ~ . 
.JX3 .jx 

177. I~= _1_- ...!_lnla + Jxi· 
x .jX3 a2 .JX a 3 x 

178. f dx = - ...!_ (.jx + ~) . 
x 2 .jX3 a 4 x JX 

179. I dx = - 1 - 3 + ..i_ In I a + J X I· 
x3 JX3 2a 2x 2 .JX 2a4 JX 2a 5 x 

Notation: X = x 2 - a2 , a > 0. 

485 

If arcosh (xfa) occurs in a formula, x belanging to the interval [ a, oo) is as­
sumed. For x E (- oo, - a] the function arcosh (xfa) is to be replaced by 
-arcosh ( -xfa). 

180. f J(X) dx = ~ ( x .j(X) - a2 arcosh ~) + C = 

= t(x .j(X) - a2 In lx + JXI) + C1 • 

181. Ix .j(X) dx = t .JX3 • 

I X a2 ( X) 182. x2 J(X) dx = 4 .j(X3 ) + S x J(X) - a2 arcosh-;; + C = 
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183. x 3 J(X) dx = -'-~- + '-~ . f IX5 a2 IX3 

5 3 

184. f J: dx = J(X)- a arccos 
1
:

1
. 

185. fJX dx = - JX + arcosh :_ + C = - JX +In lx + JXI + C1 • 

x 2 x a x 

186. -dx =-- + -arccos-. f JX JX 1 a 

x3 2x2 2a lxl 

187. - = arcosh - + C =In lx + JXI + Ct . f dx x 

JX a 

188. f:~ = JX. 

I89. -- =- J(X) + - arcosh- + C = - J(X) + -In lx + JXI + C1 • fx 2 dx x a2 x x a 2 

Jx 2 2 a 2 2 

190. f x3 dx = JX3 + az JX. 
Jx 3 

191. f x ~X = ~ arccos 
1
:

1
. 

192.f~ =JX. 
x 2 JX a 2 x 

193. f~ = JX + - 1- arccos !!_. 
x3 JX 2a 2x 2 2a 3 lxl 

194. fJ(X 3 ) dx = I (x J(X3) - 3a2 x J(X) + 3a 4 arcosh :_) + C = 
4 2 2 a 

= - x J(X3) - - J(x) + - In lx + JXI + C1 . I ( 3a 2x 3a4 ) 

4 2 2 

195. Jx J(X3 ) dx = f; JX5 • 

196. x 2 J(X3 ) dx = -- + " - + - arcosh - + C = f x JX 5 a2x IX 3 a4x JX a6 x 

6 24 16 16 a 

- x Jxs a2x Jx3 a4x JX a6 1 I 'XI C 
---+ - +-nx+'\1 + 1 • 

6 24 16 16 
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f
.JX3 .jX3 a 

198. ~ dx = - 3-- a2 .j(X) + a3 arccos lxl' 

199. - dx = - - + !x .j(X) - fa 2 arcosh- + C = f
.jX3 .jX3 x 
x 2 x a 

200. f.jx 3 dx = - .jx3 + 3 .jx - t a arccos.!:.. 
x 3 2x2 2 lxl 

201. f ;;3 = - az Jx · 
202. f~~~ =- .j~. 

fX 2 dx X X X 
203. .jX3 = - .jx + arcosh ~ + C = - .JX +In lx + .JXI + C1 • 

204. fx3 dx = .j(x) - ~ . 
.jx3 .jx 

f dx 1 I a 
205. x .jX3 = - a2 .jX - a 3 arccos ~. 

Notation: X = ax2 + bx + c, LI = 4ac - b2 , k = 4afL1, a i= 0, LI i= 0. 
If LI > 0, then ax2 + bx + c has the same sign for all x and .JX is real either 

for all x, if a > 0, or for no x, if a < 0. 
If LI < 0, then the equation ax2 + bx + c = 0 has two distinct real roots 

oc1 < oc2 and .jX is real either for x E [ och oc2] if a < 0, or for x E (- oo, oc1] and 
XE [ OC2 , 00) if a > 0. 
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- 1 In j2 .J(aX) + 2ax + bj + C for a > 0, 
.Ja 

f 
dx 1 0 2ax + b 

2080 .JX = .Ja arsmh .Jj + C1 

l 1 0 2ax + b 

for a > 0, A > 0 , 

- .J( -a) arcsm .J( -j) for a < 0, j < 0 0 

2090 f ~ = 2(2ax + b) 0 
X .JX !J .JX 

2100 f~ = 2(2ax + b) (!__ + 2k) 0 
X 2 .JX 3A .JX X 

21 l.f dx = 2(2ab+b) +2k(n-1)f dx 
0 

xt<zn+lJ (2n- 1) Axt<zn-lJ 2n- 1 xt<2n-1J 

2120 f.J(X) dx = (2ax + b) .JX + __!__ f dx (see 208) 0 
4a 2k .JX 

2130 fx .J(X) dx = (2ax + b) .JX (x + 2_) + ~ f dx (see 208) 0 
8a 2k 8k2 .JX 

13o5 

2140 Jx2 .J(X) dx = (2ax + b) .JX (x2 + 5X + __!2.) + - 5- f~ (see 208) 0 
12a 4k 8k2 I6e .JX 

2150 fxt(2n+ 1) dx = (2ax + b) xt<2n+ 1) + 2n + 1 Jxt(2n-l) dx 

4a(n + 1) 2k(n + 1) (see 208 and 212) 0 

2160 fx dx = .JX - .!?__ f dx (see 208) 0 
.JX a 2a .JX 

2170 f xdx = _ 2(bx + 2c) 0 
X .JX A .JX 

f 
x dx 1 b f dx 

2180 xt<zn+i) = - (2n- 1)axt(2n-l)- 2a xt<2n+1) (see 211) 0 

2190 fxz dx = (~- ~) .J(X) + 3bz - 4ac f~ (see 208) 0 
.JX 2a 4a2 8a 2 .Jx 

2200 f xz dx = (2b2- 4ac) x + 2bc +!_I dx (see 208) 0 
X .JX a!J .JX a .JX 
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221. Jx -J(X) dx =X -JJI - b(2ax + b) -J(X) - ____!!_ f dx (see 208). 
3a 8a2 4ak -JX 

222. xX -J(X) dx = -- - - X -J(X) dx (see 213). f x 2 -Jx b J 
Sa 2a 

223. xxt<Zn+l)dx = -- xt<Zn+l)dx (see215). f xt<2n+3) b f 
(2n + 3) a 2a 

224. x2 -J(X) dx = x - - -- + -J(X) dx (see 212). f ( 5b) X -JX 5b2 - 4acf 
6a 4a 16a2 

f - -1 1nJ 2 -J(cX) + 2c + bl + C for e > 0, 
-Je X X 

225. J-d_x_ = j - -1 arsinh bx + 2c + C1 for c > 0, L1 > 0, 
x-JX l -Je x-JL1 

l 1 . bx + 2e 
--arcsm---
-J(-e) x-J(-Li) 

226. s~ =- -JX- !!_s~ (see225). 
x2 -JX ex 2e x -JX 

for e < 0, L1 < 0 
(for e = 0 see 231). 

227. f-J(X)dx = -J(X) + !?_s~ +es~ (see208and225). 
x 2 -JX x -JX 

228. I-J(X)dx =- -J(X) + af dx + !?_s~ (see208and225). 
x2 x -JX 2 x -JX 

f
Xt(2n+l) x·H2n+ll b f sxt<zn-1) 

229. dx = + - xt(Zn-l) dx + c dx 
X 2n+l 2 X 

489 

(see 212 and 227). 

the constants A 0 , A 1, ••• , An can be determined by differentiation and then by the 
method of undetermined coefficients (by equating coefficients ). 

231. 2 = - - -J(ax2 + bx) (b t= 0). I dx 2 

x -J(ax + bx) bx 
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232. = arcsm -- (a =F 0). f dx . x- a 

~(2ax - x2) Iai 

233. = - ~(2ax - x2 ) + a arcsm -- (a =F 0). f xdx .x-a 

~(2ax - x2 ) Iai 

234. I~(2ax - x2) dx = x - a ~(2ax - x2 ) + a2 arcsin x - a (a =;. O). 
2 2 Iai 

235. f dx = 1 aretau x ~( ag - bf) 
(ax2 + b) ~(fx2 + g) ~(b) ~(ag - bf) ~(b) .j(fx2 + g) 

(ag - bf > 0), 

= 1 ln~~(b) ~(jx2 + g) + x .J(bf- ag)l (ag - bf < 0). 
2 ~(b) .J(bf- ag) ~(b) ~(fx2 + g) - x ~(bf- ag) 

236. f':J(ax + b) dx = n(ax + b) ':j(ax + b) (a =;. 0). 
(n + I) a 

237. I dx dx = n(ax + b) 1 (n =F 1; a =F 0). 
~(ax + b) (n- 1) a ':.j(ax + b) 

238. I dx =- 2lnla + ~(x" + a2)1 (x > 0). 
x ~(x" + a2 ) na ~x" 

239. = - arccos- (x > ':j a2) . f dx 2 a 

x ~(x" - a2 ) na ~x" 

240. f .J(x) dx = i arcsin )(~)3 (0 ~ x < a). 
~(a3 - x3 ) a 

REDUCTION FORMULAE FOR BINOMIAL INTEGRALS 

241. Jxm(ax" + b)P dx = 

= 1 [xm+ 1(ax" + b)P + npbfxm(ax" + b)p-l dx] 
m + np + 1 

(m + np + 1 =F 0), 

= l [-xm+l(axn + b)P+l + (m + n + np + l)fxm(ax" + b)p+l dx] 
bn(p + 1) 

(bn(p + 1) =F 0), 
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= I [xm+I(axn + b)p+l- a(m + n + np + I)Ixm+n(axn + b)Pdx] 
(m + I) b 

((m + 1)b i= 0), 

-----1) [xm-n+I(axn + b}P+l- (m- n + 1) bixm-n(axn + b)Pdx] 
a(m + np + 

(In 241 m, n, p arerational numbers, x > 0.) 

( c) Trigonometrie Functions. 

J a i= 0 is assumed in all cases . I 

(See also 402-405, 417-422, 440-444.) 

(ct) Integrals Containing theSine Only. 

I. 1 
242. sm ax dx = - -;; cos ax . 

243. fsin 2 ax dx = tx - _!_ sin 2ax. 
4a 

244. Jsin 3 ax dx = - !. cos ax + _!_ cos3 ax. 
a 3a 

245. Isin4 ax dx = ix - _!_ sin 2ax + -1- sin 4ax . 
4a 32a 

(a(m + np + 1) i= 0). 

246 
I 

. n d sinn- 1 ax cos ax n - 1 f . n _ 2 d . sm ax x = - + -- sm ax x . 
na n 

. x sm ax x = -- - . 247 I . d sin ax x cos ax 

a2 a 

248. Ix 2 sin ax dx = 2x sin ax - (x2 
- 3._) cos ax . 

a 2 a a 3 

. x s1n ax x = - - - sm ax - - - - cos ax . 249 I 3 • d (3x 2 6 ) . (x3 6x) 
a2 a 4 a a3 
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250. Jx" sin ax dx = - :" cos ax + ~ f-""- 1 cos ax dx (see 289). 

251. Jsin ax dx = ax _ (ax)3 + (ax) 5 _ (ax)1 + ... 
X 3 . 3! 5 . 5! 7. 7! 

(the series is convergent for all x; seealso §§ 13.12 and 15.7). 

252. Jsin ax dx = _ sin ax + a fcos ax dx (see 290). 
x 2 X X 

253. Jsin ax dx = __ 1_ sin a~ + _a_ Jcos ax dx (see 292; n > 1). 
x" n-1x"- 1 n-1 x"- 1 

254. -.-- = -In tan - . f dx 1 I axl 
sm ax a 2 

255. --- = - - cot ax . f dx 1 

sin2 ax a 

256. I~=- cosax + _!_lnjtan axJ. 
sin3 ax 2a sin2 ax 2a 2 1 

257. f~ = _ 1 cos ax + n-~f dx (n > 1). 
sin" ax a(n- 1) sin"- 1 ax n- 1 sin"- 2 ax 

. ---- ax+--+ + + + ... + 258 f x dx _ 1 ( (ax)3 7(ax)5 31(ax)1 127(ax)9 

sin ax a2 3. 3! 3 . 5 . 5! 3 . 7. 7! 3 . 5 . 9! 

+ - B". (ax)2"+1 + .. . (!xl < 1tfa; see Remark 3, p. 511). 
2(22 .. -1 1) ) 

(2n + 1)! 

f xdx x 1 1 . I 259. -.-2 - = - - cot ax + -In sm ax . 
sm ax a a2 

260. f x dx = _ x cos ax _ 1 + 
sin" ax (n- 1) a sin"- 1 ax (n - 1) (n - 2) a2 sin"- 2 ax 

+ -- (n > 2). n-2f xdx 
n - 1 sin"- 2 ax 

261. . = - - tan - - - . f dx 1 (1t ax) 
1 + sm ax a 4 2 

f dx 1 (1t ax) 262. = - tan - + - . 
1 - sin ax a 4 2 
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263. . = - - tan - - - + - In cos - - - . I x dx x (1t ax) 2 I (1t ax) I 
1 + Sill ax a 4 2 a2 4 2 

264. . = - cot - - - + - In Sill - - - • I x dx x (1t ax) 2 I . (1t ax) I 
1 - Sill ax a 4 2 a2 4 2 

265 I 
sin ax dx _ + 1 (7t _ ax) . - _ x + - tan - + - . 
1 ± sin ax a 4 2 

266. = - tan - + - + - In tan - . I dx 1 (7t ax) 1 l axl 
sin ax(l ± sin ax) a 4 2 a 2 

I 
dx 1 (1t ax) 1 3 (1t ax) 267" (1 + sin ax)2 = - 2a tan 4- 2 - 6a tan 4- 2 · 

268. = - cot - - - + - cot - - - . I 
dx 1 (7t ax) 1 3 (1t ax) 

( 1 - sin ax )2 2a 4 2 6a 4 2 

I 
sin ax dx 1 (7t ax) 1 3 (7t ax) 269" (1 + sin ax)2 = - 2a tan 4- 2 + 6a tan 4- 2 · 

270_ I sin ax dx = _ _!__ cot (~ _ ax) + _!_ cot3 (~ _ ax) . 
( 1 - sin ax )2 2a 4 2 6a 4 2 

271. I dx = 1 arcsin ( 3 sin2 (ax) - 1) (sin 2ax > 0). 
1 + sin2 ax 2 -./(2) a sin2 (ax) + 1 

272. = -- = - tan ax . I 
dx Idx 1 

1 - sin2 ax cos2 ax a 

273 f · . b d sin ( a - b) x sin ( a + b) x 
• Sill ax Sill X X = ----·- - --'-----'--

2( a - b) 2( a + b) 
(JaJ "I: lbJ; for JaJ = JbJ see 243). 

. = arctan 10r > c , 274 I 
dx 2 b tan (tax) + c (c b2 2 ) 

b + c sin ax a .J(b2 - c2) .j(b2 - c2) 

_ 1 In I b tan (tax) + c - .J(c2 - b2)1 (for b2 < c2). 

a .j(c2 - b2 ) b tan (tax) + c + .j(c2 - b2) 

275. I sin ax_ dx = ~ - ~I dx_ (see 274). 
b + c Sill ax c c b + c Sill ax 

276. I dx = _!__In I tan ax,_ ~ f dx (see 274). 
sin ax( b + c sin ax) ab 2 , b b + c sin ax 
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277. f dx = ccos ax + 
(b + c sin ax)2 a(b2 - c2 ) (b + c sin ax) 

+ (see 274). b f dx 
b2 - c2 b + c sin ax 

278. f sin ax dx = b cos ax + 
(b + c sin axY a(c2 - b2 ) (b + c sin ax) 

+ (see 274). c f dx 
c2 - b2 b + c sin ax 

279. f dx = 1 arctan J(bz + cz) tan ax (b =F 0). 

b2 + c2 sin2 ax ab J(b 2 + c2) b 

. = arctan -'---'-----"---280 f dx 1 J(b 2 - c2 ) tan ax 

b2 - c2 sin2 ax ab J(b2 - c2) b 

(b 2 > c2 , b =F 0), 

_ 1 lniJ(c2
- b2)tan(ax) + bl (c2 > bz, b =F O). 

2ab J(c2 - b2 ) J(c2 - b2 ) tan (ax) - b 

(ß) Integrals Containing the Cosine Only. 

281. fcos ax dx = ~ sin ax. 

282. Jcos2 ax dx =! x + _!_ sin 2ax. 
2 4a 

283. Jcos3 ax dx = .!_ sin ax - _!_ sin3 ax . 
a 3a 

284. fcos4 ax dx = ~ x + _!_ sin 2ax + - 1- sin 4ax . 
8 4a 32a 

285 f " d cos"- 1 ax sin ax n - 1 I n-2 d 
. cos ax x = + -- cos ax x . 

na n 

. x cos ax x = -- + . 286 f d cos ax x sin ax 

a2 a 

287. x2 cos ax dx = - cos ax + - - - sm ax . f 2x (x2 2) . 
a2 a a 3 
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288. x 3 cos ax dx = - - - cos ax + - - -- sin ax . I (3x2 6) (x 3 6x) 
a 2 a 4 a a3 

I xn sin ax n I . 289. xn cos ax dx = a - ~ xn- 1 sm ax dx (see 250) . 

290. Icos ax dx = In lax I - (ax)2 + (ax)4 - (ax)6 + ... 
X 2 . 2! 4 . 4! 6 . 6! 

(the series is convergent for all x; seealso §§ 13.12 and 15.7). 

291. Icos ax dx = _ cos ax _ a Isin ax dx (see 251). 
x 2 X X 

292_ Icos ax dx = _ cos ax _ _ a_ Isin ax dx (n > I; see 253). 
xn ( n - I) xn- 1 n - I xn- 1 

I dx 1 I (ax n)l 293. -- = -In tan - + - ,. 
cos ax a 2 4 

294. = - tan ax . I dx 1 

cos2 ax a 

295 I dx sin ax I I I (n: ax)/1 

. cos3 a~ = 2a cos2 ax + 2a n tan 4 + 2 · 

. ---- +-- n> . 296 I dx _ I sin ax n - 2 I dx ( I) 
cosn ax a(n - I) cosn- 1 ax n - I cosn-l ax 

297. I x dx = _!__ ((ax)2 + (ax)4 + 5(ax)6 + 6I(ax)8 + 1,385(ax)10 + ... 
cos ax a2 2 4. 2! 6. 4! 8. 6! IO. 8! 

· · · + + . . . lxl < - , see Rernark 4, p. 511 . 
En. (ax)2n+2 ) ( 1t • ) 

(2n + 2) (2n!) 2lal 

298. = - tan ax + -In icos axl . I X dx X 1 

cos2 ax a a2 

299_ I x dx = x sin ax _ 1 + 
cosn ax (n - I) a cosn-l ax (n - 1) (n - 2) a2 cosn- 2 ax 

n- 2I x dx 
+ 11 ---l cosn- 2 ax 

(n > 2). 

300. I dx = .!._ tan ax . 
I + cos ax a 2 
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301. f dx = - !_ cot ax. 
1 - cos ax a 2 

302. = - tan - + - In cos - . f x dx x ax 2 I axl 
1 + cos ax a 2 a 2 2 

303. = - - cot - + - In sm - . f x dx x ax 2 I . ax j 
1 - cos ax a 2 a2 2 1 

304_ f cos ax dx = x _ !_ tan ax . 
1 + cos ax a 2 

305_ f cos ax dx = _ x _ !_ cot ax . 
1 - cos ax a 2 

306. = - ln tan - + - - - tan - . f dx 1 I (7t ax) I 1 ax 
cosax(l+cosax) a 4 2 a 2 

307. =-In tan - +- -- cot-. f dx 1 I (7t ax) I 1 ax 
cos ax ( 1 - cos ax) a 4 2 a 2 

308. = - tan - + - tan - . f dx 1 ax 1 3 ax 

(1 + cos ax)l 2a 2 6a 2 

309. =- -cot-- -cot -. f dx 1 ax 1 3 ax 

( 1 - cos ax )2 2a 2 6a 2 

310_ f cos ax dx = _!__ tan ax _ _!__ tan3 ax. 
( l + cos ax )2 2a 2 6a 2 

31 1. f cos ax dx = _!__ cot ax _ _!__ cot3 ax . 
(1 - cos ax)l 2a 2 6a 2 

12. = arcsm (sin ax cos ax > 0) . 3 I dx 1 . (1 - 3 cos2 ax) 
1 + cos2 ax 2 .,)(2) a 1 + cos2 ax 

313. = --=--cotax. I dx f dx 1 
1 - cos2 ax sin2 ax a 

. cos ax cos x x = + _ __:___ _ _:__ 314 I b d sin(a-b)x sin(a+b)x 

2(a - b) 2(a + b) 

(JaJ -1' JbJ; for JaJ = JbJ see 282). 
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. = arctan 10r > c , 315 I dx 2 (b- c)tan!ax (c b2 2) 

b + c cos ax a -J(b2 - c2 ) .J(b2 - c2) 

= 1 111 ,(c- b)tan}ax + .J(c2 - b2 ) (forb2 < c2). 

a .J(c2 - b2 ) (c - b) tan 1-ax - .J(c2 - b2 ) 

316. I cos ax dx = ~ - 'l_ I dx (see 315). 
b + c cos ax c c b + c cos ax 

317. I dx = ..!__ ln I tan (ax + ~)/- 'l_I dx (see 315). 
cosax(b+ccosax) ab 2 4 c b+ccosax 

318·I dx = csinax _ b I dx 
(b + c cos ax)2 a(c2 - b2 ) (b + c cos ax) c 2 - b2 b + c cos ax 

(see 315) (b 2 =1= c2). 

319_ I cos ax dx = b sin ax _ c f dx 
(b + c cos ax)2 a(b2 - c2) (b + c cos ax) b2 - c2 b + c cos ax 

(see 315) (b 2 =1= c2). 

320. I--- dx = 1 arctan b tan ax (b > 0). 
b2 + c2 cos2 ax ab -J(b2 + c2) .J(b2 + c2 ) 

. = arctan > c > , 321 I dx 1 b tan ax (b 2 2 O) 
b2 - c2 cos2 ax ab -J(b2 - c2) .J(b2 - c2) 

_ 1 ln I b tan ax - .J(c2 
- b2

) I (c2 > b2 > O). 
2ab -J(c2 - b2 ) b tan ax + .J(c2 - b2 ) 

(y) Integrals Containing both Sine and Cosine. 

322. Jsin ax cos ax dx = __!.__ sin 2 ax . 
2a 

f. x sin 4ax 
323. sm2 ax cos2 ax dx = - - . 

8 32a 

324. Jsin' ax cos ax dx = 1 sinr+l ax (r =1= -1). 
a(r + 1) 

325. Isin ax cos' ax dx = 
1 

---·- cos r+l ax (r =I= -1). 
a(r + 1) 
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326. sinn ax cosm ax dx = - + --- sinn- 2 ax cosm ax dx = I sin"- 1 ax cosm+I ax n- 1 I 
a(n + m) n + m 

= + --- sm ax cos ax x . 
sinn+ I ax cosm-I ax m - 1 f. " m- 2 d 

a(n + m) n + m 

327. . = -In ltan ax . f dx 1 I 
sm ax cos ax a 

328. = - 1n tan - + - - -- . f dx 1 [ I (rc ax) I 1 J 
sin2 ax cos ax a 4 2 , sin ax 

329. = - In tan - + ----- . f dx 1 ( I axl 1 ) 
sin ax cos2 ax a 2 cos ax 

330. = - In tan axJ - . f dx 1 ( I I ) 
sin3 ax cos ax a 2sin 2 ax 

331. = - In Jtan axJ + . f dx 1 ( I ) 
sin ax cos 3 ax a 2cos2 ax 

332. f dx = - ~ cot 2ax . 
sin2 ax cos 2 ax a 

333. f dx = 1 f dx 
sinaxcos"ax a(n- 1)cosn-I ax + sinaxcosn- 2 ax 

(see327,329,331; n >I). 

334. f dx = 
sinn ax cos ax 

I f dx 
a(n - 1) sinn- I ax + sinn-z ax cos ax 

(see 327, 328, 330; n > I). 

335. f dx = 
sin" ax cosm ax 

----. + -----1 n + m- 25 dx 
a(n - 1) sinn- I ax cosm-I ax n - I sinn- 2 ax cosm ax 

(n > I) , 

----. + -----1 I n + m - 2 f dx 
a(m- 1) sinn-! ax cosm-I ax m - I sin" ax cosm- 2 ax 

(m > 1). 
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336. fsin ax dx = 1 . 
cos 2 ax a cos ax 

338. fsin ax dx = 1 (n > 1; for n = 1 see 364). 
cos"ax a(n- l)cos"- 1 ax 

" fsin 2 ax dx 1 . 1 I (TC ax)l 3_,9. = - - sm ax + -In tan - + - . 
cos ax a a 1 4 2 1 

340. fsin 2 ax dx = !_ [ sin ax _!In I tan (~ + ax)IJ. 
cos3 ax a 2cos 2 ax 2 4 2 ! 

341. fsin 2 ax dx = sin ax 
cos" ax a(n- 1) cos"- 1 ax 

1 f dx 
n - 1 cos"- 2 ax 

(see 293-296; n > 1). 

342. 
f

sin"ax ___ sin n- 1 ax + fsin"- 2 ax dx (n > 1,. f 6) or n = 1 see 3 4 . 
cosax a(n-1) cosax 

343. dx = - dx f sin" ax sin"+ 1 ax n - m + 2 f sin" ax 

cosm ax a(m- 1) cosm- 1 ax m- 1 cosm- 2 ax 
(m > 1), 

--------------- + -----sin"- 1 ax n - 1 fsin"- 2 ax dx 

a(n- m)cosm- 1 ax n- m cosmax 

(m #- n; for m = n see 367), 

344. f cos ax dx = 
sin 2 ax 

345. fcos ax dx = 

sin3 ax 

~ (m > 1). sin"- 1 ax _ n_~ _ _l_fsin"- 2 ax dx 

a(m- 1) cosm- 1 ax m- 1 cosm- 2 ax 

a sin ax 

cot2 ax -----::-- + C =- --- + C 1 • 

2a sin 2 ax 2a 

346. fcos ax dx = - (n > 1; for n = 1 see 373). 
sin"ax a(n- 1)sin"- 1 ax 

347. . = - cos ax + ln tan- . f cos2 ax dx 1 ( I ax I) 
sm ax a 2 
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348_ fcos 2 ax dx = _ _!__ (cos _ax _ In I tan ax J). 
sin 3 ax 2a sin 2 ax 2 / 

349_ fcos 2 ax dx = 1 ( cos ax f dx ) 
sin" ax - (n - 1) a sin"- 1 ax + sin"- 2 ax 

(see 254-257; n > 1). 

350.fcos"axdx = cos•-1ax +fcos•-2axdx (n > 1; for n = 1 see373). 
sin ax a(n - 1) sin ax 

351. fcos" ax dx = 

sin111 ax 

--- (m > 1), cos"+ 1 ax n - m + 2 fcos" ax dx 

a(m- 1) sinm-l ax m- 1 sinm- 2 ax 

--------------+ -----cos"- 1 ax n - 1 fcos"- 2 ax dx 

a(n- m)sinm- 1 ax n- m sinmax 

(m "# n; for m = n see 376), 

cos•-t ax n - 1 fcos"- 2 ax dx 

a(m - 1) sinm- 1 ax m - 1 sinm- 2 ax 
(m > 1). 

352. f dx = + 1 + _!__ In I tan ax I· 
sin ax(l ± cos ax) - 2a(1 ± cos ax) 2a 1 2 

353. I dx = + 1 + _!_ In I tan (:: + ax) I· 
cos ax(l ± sin ax) 2a(1 ± sin ax) 2a , 4 2 

354_ I sin ax dx = !_In II 1 ± cos ax I· 
cos ax(1 ± cos ax) a cos ax 

355_ f cos ax dx = _ !_ In 11 ± cos ax I· 
sin ax ( 1 ± sin ax) a sin ax 

. = + - n tan - + - . 356 I sin ax dx 1 1 I I (1t ax) I 
cos ax (1 ± sin ax) 2a(l ± sin ax) - 2a 4 2 

357. I dx = 1 In I tan ax + 91 , 
b sin ax + c cos ax a .J(b2 + c2) 2 

where 
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358. = - -In jb + c cos axj. f sin ax dx 1 

b + c cos ax ac 

359. . = -In b + c sm axj . f cos ax dx 1 I . 
b + c sm ax ac 

360. f dx = f d(x + 9/a) 
b + c cos ax + f sin ax b + ~(c2 + F) sin (ax + 9)' 

where sin 9 = c , cos 9 = f (see 274). 
~(c2 + F) ~(c2 + F) 

361. = - aretau - tan ax . f dx 1 (c ) 
b2 cos2 ax + c2 sin2 ax abc b 

362.f dx =-1-Inj1ctan(ax)+bl· 
b2 cos 2 ax - c2 sin2 ax 2abc c tan (ax) - b 

363 f · b d cos ( a + b) x cos ( a - b) x 
. Sill ax COS X X = - - ---'------"--

2( a + b) 2( a - b) 

(a 2 # b2 , for a = b see 322). 

(ö) Integrals Containing the Tangent and Cotangent. 

364. Jtan ax dx = - ~In jcos axj . 

f tan ax 
365. tan 2 ax dx = -a- - x . 

366. tan3 ax dx = - tan2 ax + -In jcos axj . f I I 

2a a 

367. Jtan" ax dx = 1 tan•-t ax - Jtan"- 2 ax dx. 
a(n - 1) 

368. Jx tan ax dx = 

ax3 a3x5 2asx7 17a1x9 22"(22"- 1) Bna2n-tx2n+l 
=-+--+--+--+ ... + + ... 

3 15 105 2,835 (2n + 1)! 

( jxj < ~; see Remark 3, p. 511). 
2jaj 
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369. ftan :x dx = 

(ax)3 2(ax)5 17(ax)7 22"(22"- I) Bn. (ax)l"- 1 = ax + -- + --- + + ... + + ... 
9 75 2,205 (2n - 1)(2n)! 

. x- tan ax. 370 
f

tan"axd - 1 n+l 

cos2 ax a(n + 1) 

( lxl < ~ ; sce Remark 3, p. 511). 
2lal 

3 f dx x 1 1 I . I 71. = ± - + - n sm ax ± cos ax . 
tan ax ± 1 2 2a 

372. =-+-In sm ax ± cos ax . f tan ax dx x 1 I . I 
tan(ax) ± 1 2 2a 

373. fcot ax dx = ±In lsin axl . 

I 2 cot ax 
374. cot ax dx = - -a- - x . 

375. fcoe ax dx = - _!_ cot2 ax - ~In lsin axl . 
2a a 

376. fcot" ax dx = - 1 - cot"- 1 ax - fcot"- 2 ax dx (n =ft 1). 
a(n - 1) 

f X ax3 a3x5 22"Bna2n-1x2n+l 
377. xcotaxdx =---- --- ... - -~----

a 9 225 (2n + I)! 

(/xl < n/la/; see Remark 3, p. 511). 

378. fcot ax dx = _ __!_ _ ax _ 0xY _ 2(ax)~ _ ... _ 22n~n. (ax)2n-1 
x ax 3 135 4,725 (2n - I) (2n)! 

(lxl < n/la/; x =ft 0; see Remark 3, p. 511). 

. x - cot ax. 379 Icot" ax d _ _ I n+t 

sin 2 ax a(n + 1) 

380. f dx = f tan ax dx (see 372). 
1 ± cotax tan(ax) ± 1 
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381. = . - tan•+l ax (r # -I). f tan' ax 1 

cos 2 ax a(r + 1) 

382_ fcot' ax = 
sin 2 ax 

1 
--- cot'+l ax (r # -1). 
a(r + 1) 

( d) Other Transeendental Functions. 

I a # 0 is assumed I 

(cx) Hyperbolic Functions. 

383. fsinh ax dx = ~ cosh ax . 

384. f cosh ax dx = ~ sinh ax . 

385. fsinh2 ax dx = _!__ sinh ax cosh ax - tx . 
2a 

386. fcosh2 ax dx = _!__ sinh ax cosh ax + tx . 
2a 

387. fsinh" ax dx = _!_ sinh"- 1 ax cosh ax - n - 1 fsinh"- 2 ax dx . 
an n 

388. = - -- n # . f dx cosh ax 2 - n f dx ( 1) 
sinh"ax a(1- n)sinh"- 1 ax 1- n sinh"- 2 ax 

389. fcosh" ax dx = _!_ sinh ax cosh"- 1 ax + n - 1 fcosh"- 2 ax dx. 
an n 

390_ f dx = _ sinh ax + 2 - n f dx (n # 1). 
cosh" ax a( 1 - n) cosh"- 1 ax 1 - n cosh"- 2 ax 

391. -.-- = -ln tanh- • f dx 1 I axl 
smh ax a 2 

f dx 2 
392. = - arctan eax . 

cosh ax a 

503 
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393. Jx sinh ax dx = !_ x cosh ax - ...!._ sinh ax . 
a a2 

394. Jx cosh ax dx = !_ x sinh ax - ...!._ cosh ax . 
a a2 

395. Jtanh ax dx = ; In cosh ax . 

396. Jcoth ax dx = ; In jsinh axl . 

f tanh ax 
397. tanh 2 ax dx = x - a . 

I coth ax 
398. coth2 ax dx = x - a . 

399. Jsinh ax sinh bx dx = 1 ( a cosh ax sinh bx - b sinh ax cosh bx) 
a2- b2 

400. fcoshaxcoshbxdx = 1 (asinhaxcoshbx- bcoshaxsinhbx) (a2 =1: b2). 
az- b2 

401. Jcosh ax sinh bxdx = 1 ( a sinh ax sinh bx - b cosh ax cosh bx) 
a2- bz 

cosh ax smh ax dx = + C = + C 1 • f . cosh2 ax sinh2 ax 

2a 2a 

402. Jsinh ax sin ax dx = _!... ( cosh ax sin ax - sinh ax cos ax) . 
2a 

403. Jcosh ax cos ax dx = _!... (sinh ax cos ax + cosh ax sin ax). 
2a 

404. Jsinh ax cos ax dx = ...!.. ( cosh ax cos ax + sinh ax sin ax) . 
2a 

405. Jcosh ax sin ax dx = ...!.. ( sinh ax sin ax - cosh ax cos ax) . 
2a 
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(ß) Exponential Functionso 

I e"x 
4070 xe"x dx = - (ax - 1) o 

a2 

505 

4100 - dx = In lxl + -- + -- + -- + · · · Ieax ax (ax) 2 (ax) 3 

X 1 . I! 2 . 2! 3 . 3! 
(x -1: 0; seealso § 15. 7) . 

411. - dx = -- - - + a - dx (n > 1) . I e"x 1 ( e"x I e"x ) 
x" n - 1 xn-1 xn-1 

412. = - - -In lb + ce"xl (b i: 0). I dx x 1 

b + ce"x b ab 

413. = -In lb + ce"xl (c i: 0). I eax dx 1 

b + ce"x ac 

I dx 1 ( axjb) 414. = --- aretau e -
be"x + ce-ax a J(bc) c 

(b > 0, c > 0)' 

- 1 In I c + eax J(- bc) I (bc < 0). 
2a J( -bc) c- e"x J( -bc) 

415. = . I xe"x dx e"x 

(1 + ax)2 a 2(1 + ax) 

f e"x In X 1 feax 
416. e"x In x dx = -- - - - dx (x > 0; see 410). 

a a x 

417. e"x sin bx dx = (a sin bx - b cos bx). f e"x 

a2 + b2 

418. eax cos bx dx = (a cos bx + b sin bx) 0 f e"x 

a2 + b2 
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419. e"xsin"xdx =_ ,· (asinx- ncosx) + f eax sin"- 1 X 

a2 + n-

+ e"xsin"- 2 xdx (see406and417). 
n(n- l)f 
az + nz 

420. eax COS" X dx = (a COS X + II sin x) + f e"xcos"- 1 x 

az + nz 

+ eax cos"- 2 x dx (see 406 and 418). 
n(n- 1)f 
az + nz 

421. xeax sin bx dx = (a sin bx - b cos bx) -f xe•x 

az + bz 

422. xeax cos bx dx = . (a cos bx + b sin bx) -f xeax 

az + bz 

I bax 
423. bax dx = -- (b > 0, b =/= I). 

a In b 

424. Jxbax dx = xb"x - b"x (b > 0, b =/= 1). 
a In b a 2(ln b)Z 

(y) Logarithmic Functions. 

I x > 0 is assumed ! 

425. Jln x dx = x In x - x . 

426. J(ln x)2 dx = x(ln x)Z - 2x In x + 2x. 

427. J(In x)3 dx = x(ln x)3 - 3x(ln x)Z + 6x In x - 6x. 

13.5 
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428. I(In x)" dx = x(ln x)"- n I(ln x)"- 1 dx. 

429. - = In Jln xJ + In x + ---- + -- + ... I dx (In x)2 (In x) 3 

In x 2 . 2! 3 . 3 ! 

(x > 0, x "# 1; seealso § 13.12 and 15.7). 

430. -- = - + -- (n >I; see429). I 
dx x I f dx 

(In x)" (n - 1) (In x)"- 1 n - I (In x)"- 1 

431. x' In x dx = x'+ 1 -- - (r "# -I). I [ In x I J 
r + 1 (r + 1)2 

432. x'(lnx)"dx = --- x'(Inx)"- 1 dx (r"# -1; see431). f x'+ 1(ln x)" n f 
r+I r+l 

f(ln x)" (In x)"+ 1 
433. -- dx = -"------'--

x n +I 

434. Ix' dx = fe-y dy, where y = -(r + 1) In x (r "# -1; see 410, 436). 
In x y 

f x' dx x' + 1 r + 1 I x' dx 
435" (In x)" = - (n - 1) (ln x)"- 1 +;-_:::I (In x)"- 1 (n > 1) · 

I dx 
436. -- = In Jln xJ . 

x In x 

437. --=In Jin xJ - (n - 1) In x + -I dx ( n - 1 )2 (In x )2 

x" In x 2. 2! 

(n - 1)3 (In x)3 
- + .. . (x > 0, x "# 1). 

3. 3! 

438. f dx = -I (n > 1). 
x(ln x)" (n - I) (In x)"- 1 

439. f dx = -1 -~I dx (n > 1). 
x'(ln x)" x'- 1(n - I) (In x)"- 1 n - 1 x' (In x)"- 1 

f . x3 Xs 22n-1 B.x2n+l 
440. In sm x dx = x In x - x - - - - - ... - -

18 900 n(2n + 1)! 

(0 < x < 1t; see Remark 3, p. 511) 
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441. IIn eos x dx = 
6 60 315 

22n-1(22n _ 1) BnX2n+l 

n(2n + 1)! 

( -!7t < x < !1t; see Remark 3,p. 511). 

442. In tan x dx = x ln x - x + - + - + ... + + ... I x3 ?xs 2zn(2zn-1 _ 1) Bnxzn+l 

9 450 n(2n + 1)! 

(0 < x < -!1t; see Remark 3, p. 511). 

443. Isin In x dx = i (sin ln x - eos ln x). 

444. Ieos In x dx = i (sin ln x + eos ln x). 

f 1 1 feax 445. eax ln X dx = - eax ln X - - - dx 
a a x 

(see 410). 

(o) Inverse Trigonometrie Functions. 

446. Iaresin ~ dx = x aresirr ~ + .J(a 2 - x 2) (a > 0). 
a a 

447. Jx aresirr ~ dx = (x
2 

- a
2

) aresirr ~ + ~ .J(a 2 - x 2 ) (a > 0). 
a 2 4 a 4 

448. Jx 2 aresirr ~ dx = x
3 aresirr ~ +! (x 2 + 2a 2 ) .J(a 2 - x 2 ) (a > 0). 

a 3 a 9 

. X d arcsm- x 

449. I x a 
x 1 x 3 1 . 3 x 5 

=-+ -+ - + 
a 2 . 3 . 3 a3 2 . 4. 5. 5 a 5 

+ 1.3.5 x7+ ... (ixl~laJ). 
2.4.6.7.7a7 

. X 
aresm- dx I a 1 . x 1 I a + .J(a 2 

- x 2
) I 450. = - - arcsm - - - ln 

x 2 x a a x 

I X X 
451. arceos- dx = x arecos- - .J(a 2 - x 2 ) (a > 0). 

a a 

(a > o). 
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452. x arccos- dx = --- arccos--- J(a 2 - x2 ) (a > 0). I X (x2 a2) X X 
a 2 4 a 4 

453. x 2 arccos- dx = - arccos- - - (x2 + 2a 2 ) J(a 2 - x2) (a > 0). I X X3 X 1 

a 3 a 9 

arccos ~ dx 

454. f x a 
1t x 1 x 3 1 . 3 x 5 

= -In lxl - - - - - - -
2 a 2 . 3 . 3 a3 2 . 4. 5 . 5 a 5 

1.3.5 x7 

2.4.6.7.7a7 
(lxl ;;a; Iai, x :F 0). 

arccos~ dx f a 1 x 1 I a + '(a 2 - x2) I 455. = - - arccos - + - In Y 
x 2 x a a x 

456. arctan- dx = x arctan- - -In (a 2 + x2). f X X a 

a a 2 

457. x arctan- dx = !(x2 + a2 ) arctan- - -. I x x ax 

a a 2 

458. x2 arctan- dx = - arctan- - - +-In (a 2 + x2). I x x 3 x ax2 a 3 

a 3 a 6 6 

459. x" arctan - dx = -- arctan- - -- . f X Xn+l X a fXn+l dx 

a n + 1 a n + 1 a2 + x 2 

X 
arctan- dx 

(a > 0). 

460. f x a (lxl ;;a; Iai) · 

arctan ~dx 
461. f a 

x2 

X 
arctan- dx 

1 x 1 a2 + x 2 
-- arctan-- -In----. 

x a 2a x 2 

509 

462. f a 
x" 

= - arctan - + -- ( n > 1) . 1 x af dx 
(n - I) x"- 1 a n - 1 x"- 1(a 2 + x2) 

463. arccot- dx = x arccot- +-In (a 2 + x2). f X X a 

a a 2 
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464. x arccot- dx = t(x 2 + a 2) arccot- + -. f x x ax 

a a 2 

465. x 2 arccot- dx = - arccot- + -- - -In (a 2 + x 2). f x x 3 x ax2 a 3 

a 3 a 6 6 

466. x" arccot - dx = -- arccot - + -- . f x x"+ 1 X a fxn+l dx 

a n + 1 a n + 1 a2 + x 2 

(lxJ ~ JaJ, x #:. 0). 

X 
arccot- dx 

468. f a xz 

X 
arccot -- dx 

469. f a 
x" 

1 x 1 a2 + x 2 
- - arctan - + - ln ---

x a 2a x 2 

= - ---- arccot- - --1 x a f dx 
(n - 1) x"- 1 a n - 1 x"- 1(a 2 + x2 ) 

(e) Inverse Hyperbolic Functions. 

470. farsinh:: dx = x arsinh:: - -J(x2 + a 2) (a > 0). 
a a 

471. Jarcosh:: dx = x arcosh:: - -J(x2 - a 2 ) (x > a > 0). 
a a 

472. Jartanh:: dx = x artanh:: + ~ ln (a 2 - x2 ) (JxJ < JaJ) . 
a a 2 

473. farcoth:: dx = x arcoth:: + ~ ln (x 2 - a 2) (JxJ > JaJ). 
a a 2 

(n > 1). 

REMARK 1. Some simple reductions of rational functions to partial fractions: 

1 1 ( b g ) 
(a + bx) (! + gx) = bf- ag a + bx - f + gx ; 

1 A B C 
--------- = --- + -- + --' 
~+0~+~~+0 x+a x+b x+c 
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where 

A= 1 
(b - a)(c - a)' 

1 1 
B=---- , C= ; 

(a - b)(c- b) (a - c)(b- c) 

1 A B C D 
. =--+--+--+--, 
(x + a)(x + b)(x + c)(x + d) x + a x + b x + c x + d 

where 

1 
A= , 

(b- a)(c- a)(d- a) 

1 
B= ' 

(a - b) (c - b)(d - b) 

C= __ 1 ___ _ 

(a - c)(b - c)(d - c) ' 
1 

D= --; 
( a - d)( b - d) ( c - d) 

REMARK 2. On integrals of the type 

f xm( a + bx")P dx 

(binomial integrals) see § 13.4. See also p. 490. 

REMARK 3. The Bernoulli coefficients B.: 

1 I 1 

I 
7 174,611 

Bl - B4 - B1 - B1o --
6 

I 
30 6 330 

I 

I 

1 5 3,617 854,513 
Bz - Bs - Bs -- Bu --

30 66 510 138 

I 1 

I 
691 43,867 

B3 
I 

- B6 -- B9 ----
42 2,730 798 

REMARK 4. The Euler coefficients E.: 

I 

I 

El 1 E3 61 

I 
Es 50,521 E1 199,360,981 

Ez 5 

I 
E4 1,385 E6 2,702,765 

511 

I 
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13.6. Definite Integrals. Cauchy-Riemann Definition. Basic 
Properties. Mean Value Theorems. Evaluation of a Definite Integral 

Suppose we are given a function y = f(x) which is continuous in the interval [ a, b]. 
Let us divide the interval ( a, b] at the points x 1, x 2 , ... , Xn- 1 into n ( closed) subinter­
vals Ax 1, Ax 2 , ... , Axn (Fig. lJ.l) which need not be equally long. Since f(x) is 

113 l_ -------------- --r---?--.r-"'1 

112 ----------.------T 
I 

114 ---------- : 

0 a 

I 
I 
I 
I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

Axt ! t:.x2 i 
b X 

Fig. 13.1. 

continuous in [ a, b ], it assumes its maximum value M and minimum value m in 
[ a, b ], and it takes on also its maximum value M 1 and minimum value m1 (M1 ;;;:; M, 
m1 ~ m) in each of the subintervals Ax1• Let us denote by d the chosen partition 
of the interval ( a, b] and write 

n n 

S( d) = L M 1 Ax1 , s( d) = I m 1 Ax1 • (1) 
i=1 i= 1 

The numbers S(d) and s(d) are called the upper Darboux sum and the lower Darboux 
sum (corresponding to the function f(x) and to the chosen partition), respectively. 
The geometric meaning of the upper Darboux sum is apparent from Fig. 13.1. The 
geometric meaning of the lower Darboux sum is similar. If another partition d of 
[ a, b J is chosen, then, generally speaking, other Darboux sums S( d) and s( d) corre­
spond to it. The greatest lower bound (Definition 1.3.3, p. 43: of the values of all 
upper Darboux sums is called the u p per in tegra I of the function f( x) in the interval 
[a, b], 

i~f s(d) = J!(x) dx ; (2) 

similarly the least upper bound of the values of aii lower Darboux sums is called 
the lower integral of f(x) in [a, b], 

s~p s(d) = l!(x) dx. (3) 

REMARK 1. We need not assume the continuity of f(x) in order to be able to 
define the upper and lower integral; it suffices to assume that f(x) is bounded in 
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[a, b]. Instead of maxima and minima of f(x), least upper bounds and greatest lower 
bounds in the corresponding intervals are then to be considered. 

Definition 1. If 

l'b fb f !(x) dx = _j(x) dx, 

then the common value of these integrals is called the (definite) integral of the func­
tion f(x) over the interval [a, b] and the function f(x) is said tobe integrable in 
[ a, b] according to the Cauchy-Riemann definition. We write 

f!(x) dx. 

Theorem 1. Any function piecewise continuous in [ a, b] (Definition 11.3.6) is 
integrable in [ a, b ]. In particular, any function continuous in [ a, b] is integrable 
in [ a, b ]. (In § 13.14 an example of a function is given which is not integrable a~:cord­
ing to the Cauchy-Riemann definition.) 

REMARK 2. The Lebesgue and Stieltjes definitions of an integral are briefiy men­
tioned in §§13.14 and 13.15. 

REMARK 3. The following sums are often considered instead of Darboux sums 
( cf. Theorem 2): Let us choose, for a fixed partition d in the interval [ a, b ], an 
arbitrary point ck in each interval Llxk and Iet us write 

n 

u(d) = zJ(ck) Llx~c {4) 
k=l 

(this sum depends on how we have chosen d and the points ck in Llx~c)· Obviously 

s(d) ;:;;; u(d) ;:;;; S(d). 

The greatest of the lengths of the intervals .ilx1 is called the norm n(d) of the 
pärtition d. 

Theorem 2. Let us consider a sequence of partitions d1 , d2 , d3, ••• such that 

Iim n(dk) = 0. If f(x) is integrable in [a, b ], then 
k-+oo 

ff(x) dx = lim S(dk) = Iim s(dk) = lim u(dk). 
a k-+ oo k-+ ctJ k-+ co 

REMARK 4. Briefiy speaking: The integral of the function f(x) in [ a, b] is the Iimit 
of upper Darboux sums provided that the norms of partitions tend to zero. Similar 
statements are valid concerning lower Darboux sums and sums (4). 

Theorem 3. If f 1(x) and flx) are integrable in [ a, b ], then the same is true for 
the functions ktf1(x) + k 2 fix), / 1(x)f2(x), j/1(x)j (and of course for lfix)l), and 
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the relations 

hold. (The equation 

f!(x) g(x) dx = f!(x) dx s:g(x) dx 

is not, in general, valid! For the function 

to be integrable it is sufficient that f 1 and f 2 be integrable and 

in [ a, b ], i.e. Jz(x) is bounded below by a positive constant or bounded above by 
a negative constant.) 

Theorem 4. If f(x) is integrable in [ a, b J and if a < c < b, thenf(x) is integrable 
in both [a, c] and [c, b] and 

f!(x) dx = f!(x) dx + f!(x) dx 

( and conversel y ). 

Definition 2. For b < a the integral 

is defined by the equation 

f!(x) dx = - f!(x) dx. 

REMARK 5. In the sequel (Theorems 5, 7, 8, 10, 11, 12) the functions considered are 
assumed to be integrable in [ a, b ]. 

Theorem 5. If 

f(x)~O in [a,b], 
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then 

f!(x) dx ~ 0. 

Jf, moreover, f(x) is continuous at least at one point c ofthat interval and if 
f(c) > 0, then 

f!(x)dx > 0. 

Theorem 6. If f(x) is continuous in [ a, b J and J:f 2(x) dx = 0, then f(x) = 0 

in [a, b]. 

Theorem 7. If f(x) ~ g(x) in [a, b], then f!(x) dx ~ J:g(x) dx. 

Theorem 8. Let 

m ;;i;f(x);?, M and g(x) ~ 0 in [a, b]. 

Then 

(5) 

REMARK 6. In particular, if g(x) = 1, then 

m(b- a);?, f!(x)dx;?, M(b- a). (6) 

If 
Jf(x)J ~ K in [a, b], 

then 

I f!(x) dx I;?, K(b - a). (7) 

REMARK 7. The inequality (5) is convenient for estimating the integral 

f!(x) g(x) dx 

{for example in the case where the integration of the product f(x) g(x) is rather 
complicated). 

The inequality ( 6) can also be used to estimate an integral. 

Example 1: Let us estimate 

f1 dx 

0 10 + .J(x2 + 3) - 0·1 cos 7 x - x4 • 
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In the interval considered the inequalities 

1 1 1 
10 + -J(1 + 3) < f(x) < 10 + -J(3)- 0·1 - 1 < lO 

obviously hold. Hence 

1 J1 dx 1 
12 < 0 10+.J(x2 +3)-0·1cos7 x-x4 < 10. 

Theorem 9 (The First Mean Value Theorem). If f(x) is continuous in [a, b], 
then there is at least one point c E (a, b) suchthat 

f!(x) dx = (b - a) .f(c). (8) 

(The value f(c) defined by equation (8) is called the mean value of the function f(x) 
in the interval [ a, b ]). 

More generally: If f(x) is continuous in [ a, b ], g(x) integrable in [ a, b] and g(x) ~ 
~ 0 or g(x) ~ 0, then there exists at least one point c E (a, b) suchthat 

f!(x) g(x) dx = f(c) J:u(x) dx. 

Theorem 10 (The Second Mean Value Theorem). Let g(x) be monotonic (i.e. 
either increasing or decreasing) in [ a, b ]. Then there is at least one point c E (a, b) 
such that 

f!(x) g(x) dx = g(a) f!(x) dx + g(b) f!(x) dx. 

Theorem 11 (The Schwarz or Schwarz-Cauchy inequality). 

Theorem 12. The function 

G(x) = f!(t) dt 

is a continuous function of the variable x in the interval [ a, b ]. G(x) possesses 
a derivative at every point for which f(x) is continuous, and the derivative equals 
the value of the function f(x) at that point, i.e. 

- = - f(t) dt = f(x) . dG d f"' 
dx dx a 
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REMARK 8. If f(x) is continuous in (a, b), it follows that G(x) isaprimitive of this 
function in ( a, b ); und er the same assumptions, 

- f(t) dt = -f(x). d fb 
dx x 

Theorem 13. lf f(x) is continuous in [ a, b] and if F(x) is a primitive of f(x) in 
(a, b) (continuous in [a, b]), then 

f!(x) dx = F(b) - F(a). (9) 

REMARK 9. This equation is of fundamental importance for the ~valuation of the 
definite integral. In applications, the right-hand side of equation (9) is usually denoted 
by 

[F(x)]~ or F(x) [. hence f!(x) dx = [F(x)]~ = F(x{. (10) 

Example 2. 

fs x2dx = [x3]5 =53- (-2)3 = 133 = 44!. 
-2 3 -2 3 3 3 

Theorem 14. lf f(x) is continuous in [a, b] and f(x) ~ 0 in [a, b], then the in­
tegral 

is equal to the area of the region bounded by the x-axis, by the graph of thefunction 
y = f(x) and by the lines parallel to the y-axis through the points x = a, x = b. 

REMARK 10. The area is always positive ( or zero ). If f(x) < 0 holds in the interval 
[c, d] which is a subinterval of [ a, b ], then the integral over [ c, d] is negative. If we 
want to determine the area of the region in question, we have to change the sign ofthe 
integral in this subinterval. Hence, if the graph of the function y = f(x) crosses the 
x-axis in the interval [ a, b ], we determine the coordinates of the intersections and 
divide the interval [ a, b] into intervals in which f(x) is either negative, or positive. 

Example 3. To find the area of the region shaded in Fig. 13.2, we write P = P 1 + 
+ P 2 , where 

P 1 = I sin x dx = [- cos x ]~ = - (- 1 - 1) = 2 , 

J21t 

P 2 = - " sin x dx = [cos x]~" = 1 - ( -1) = 2, 
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hence P = 4. The second integral had to be taken with negative sign, since sin x ~ 0 
in [ 7t, 27t]. Direct calculation over the whole interval 0 to 27t gives zero: 

f211 

0 
sinxdx = [-cosx]~" =- (1- 1) = 0. 

Fig. 13.2. 

REMARK 11. If f(x) is an (integrable) even function, i.e. if f( -x) = f(x), then 
.f':a f(x) dx = 2 f~ f(x) dx; if f(x) is odd, i.e. if f( -x) = -f(x), then 
f':af(x) dx = 0. 

Example 4. 

x2 dx = 2 x2 dx = 2 - = 18 ; f3 f3 [x3]3 
-3 0 3 0 

fll/4 

tan x dx = 0. 
-n/4 

REMARK 12. The so-called Newton's definite integral is defined by equation (9). 
Hence, Newton's definition assumes (only) the existence of a primitive. The equi­
valence of Riemann's and Newton's definition for the case where f is continuous 
follows from Theorem 13. 

y 

0 1 2 X Fig. 13.3. 

REMARK 13. The function remains integrable and the value of the integral does 
not change if the values of the function are changed at a finite number of points of 
[ a, b ]. For example, the integral of the function 

f(x) = {1 for 0 ~ x ~ 1 , 
2 for 1 < x ~ 2 
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(Fig. 13.3) is calculated as follows: 

f!(x) dx = f> . dx + f2. dx = 1 + 2 = 3 . 

The second integral is evaluated in the same way as if/(1) were equal to 2. 

REMARK I4. On geometrical and physical applications of the definite integral see 
§ I4.9. 

13.7. Substitution and Integration by Parts for Definite Integrals 

Theorem 1 (Integration by Parts). If u'(x) and v'(x) are continuous in [ a, b] 
(then also u(x) and v(x) are continuous in [a, b], Theorem 11.5.2), then 

fu'vdx = [uv]!- J:uv' dx. 

In another form 

fvdu = [uv]!- fudv. 

(The notation [uv]! means u(b) v(b)- u(a) v(a).) 

Example 1. 

I x sin x dx = [- x cos x ]~ + I cos x dx = 1t + [ sin x ]~ = 1t • 

REMARK I. If u(x), v(x), u'(x), v'(x) are only piecewise continuous in [ a, b] 
(Definition I 1.3.6) and if ck (k = I, 2, ... , n) derrote the points of discontinuity of the 
functions u(x), v(x) in (a, b), then 

fb II fb 
u'vdx = [uv]! + :L[uv]~:~g- uv'dx = 

" k=l " 

(I) 

n-1 fb = [uv]c1 -o + "[uv]ck+t-O + [uv]b - uv' dx a L" ck+O c,.+O • 
k=l " 

(2) 

where 

u(ct - 0) = lim u(x), u(ct + 0) = lim u(x) 
x-+c"- x-+c~c+ 

( Remark I 1.4.2) and similarly for the function v. We can alternatively first break up 
the integral into a sum of integrals 

fb fCl fc2 fb = + + ... + ' 
a a ca Cn 
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and then apply the integration by parts to individual integrals. One has to apply the 
correct Iimits to the corresponding functions. For instance 

fC2 fC2 
u'v dx = [uv]~~~g - uv' dx etc. 

Cl Cl 

(3) 

Example 2. I..et 

f(x) = { x s~n x for 0 ~ x ~ !1t, 
2x sm x for !1t < x ~ 1t ; 

Then 

f" ['2 f" f(x) dx = x sin x dx + 2x sin x dx = 
0 0 ~2 

f"/2 f" 
= [ -x cos x]~12 - 0 + cos x dx + [ -2x cos xJ:12 +o + 2 cos x dx = 

0 "'2 

= 0 + 1 + 21t - 2 = 21t - 1 . 

Theorem 2 (Method of Substitution, Case (a), Substitution h(x) = z). Let f(x) be 
of the form f(x) = g(h(x)) h'(x), where h'(x) is continuous in [ a, b] and g(z) is 
continuous for all z = h(x) if x E [ a, b]. Then 

ff(x) dx = f11g(h(x)) h'(x) dx = fh<b>g(z) dz. (4) 
a a lo(a) 

Theorem 3 (Method of Substitution, Case (b), Substitution x = rp(z)). Let A ~ 
~ a < b ~ B, let f(x) be continuous in [ A, B], rp'(z) continuous in [IX, ß] and for 
z E [IX, ß] let x = rp(z) belong to the interval [ A, B], rp(1X) = a, rp(ß) = b. Then 

f!(x) dx = J:f( rp(z)) rp'(z) dz . (5) 

REMARK 2. There are often several possible ways of satisfying the equations 
rp(1X) = a, rp(ß) = b when applying Theorem 3. lt is immaterial which one is chosen 
as long as the conditions of the theorem are satisfied. This point is illustrated in 
Example 3. 

Example 3. Using the Substitution x = z 2 , we obtain 

J4 f2 f2 f-2 f-2 x dx = 2 z3 dz = 2 z3 dz = 2 z3 dz = 2 z3 dz , 
1 1 -1 1 -1 

as can be immediately verified by calculation. Either of the roots of the equation 
z2 = 1 or z2 = 4, respectively, may be chosen as a new Iimit of integration. 

Example 4. Let us evaluate f: 1 J(1 - x2 ) dx. 
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We make use of the Substitution x = sin z (Theorem 3). Let us choose rx = -!1t, 
ß = !1t. Obviously cp(rx) = a, cp(ß) = b, since sin ( -!1t) = -1, sin !1t = 1. The 
conditions of Theorem 3 are satisfied and we have 

Jl fn/2 fn/2 
.J(1 - x2 ) dx = .J(1 - sin2 z) cos z dz = cos2 z dz = 

-1 -n/2 -n/2 

1 f"12 1 r sin 2z]"12 
= - ( 1 + cos 2z) dz = - 1 z + -- = !1t · 

2 -n/2 2 L 2 -n/2 

(.J(1 - sin2 z) = + cos z, because .J(1 - sin2 z) is non-negative and cos z ~ 0 
for z E [ -!1t, !1t].) 

Example 5. Evaluate f012 sin3 x cos x dx. 

We use Theorem 2, for the function sin3 x cos x is of the form g(h(x)) h'(x), where 
h(x) = sin x, g(z) = z3 • Hence, by the Substitution sin x = z we get 

J"1\in3 x cos x dx = J1 z3 dz = [z4
]

1 = ~ . 
0 0 4 0 4 

REMARK 3. The following examples indicate common errors m integration by 
Substitution. 

Example 6. The integral f1 .J(x2 - 1) dx may not be integrated by the substitution 
x = sin z since x = sin z could not run through the interval [1, 4], when z runs 
through any interval [ rx, ß]. However, the given integral may be evaluated by Sub­
stitution .J(x2 - 1) = z - x (§ 13.4 Substitution (5)). In this case we have 1 ~ x ~ 4, 

1 ~ z ~ 4 + .J15. 

Example 7. Evaluate the integral 

Substitution: 

tanx=z, 

Hence 

f" 1 + tan2 x 
-----dx, 

0 1 + k2 tan2 x 
k>O,k'f;l. 

1 
-- dx = dz, (1 + tan2 x) dx = dz ; tan (0) = 0, tan (1t) = 0. 
cos2 x 

-----dx= =0. f" 1 + tan 2 x fo dz 

0 1 + k2 tan2 x 0 1 + k2z2 

Obviously, the result is wrong, for an integral of a positive function is positive 
(Theorem 13.6.5) and we cannot obtain zero as a result. The mistake lies in the sub­
stitution tan x = z and in the fact that tan x is discontinuous at the point x = !1t in 
the interval [0, 1t]. For the correct solution see Example 13.8.14, p. 533. 
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13.8. Improper Integrals 

Improper integrals are a generalization of the Cauchy-Riemann integral (§ 13.6) 
which has been defined for a bounded function and a finite interval. 

Definition 1. Let f(x) be integrable according to the Cauchy-Riemann definition 
in any interval [ a, c ], a < c < b. (We do not require that f(x) be bounded in the 
whole interval [ a, b ]; it may be unbounded in the (left) neighbourhood ofthe point b.) 
If there exists the finite limit 

lim ft(x) dx = A, 
c-+b- a 

(I) 

we say that the integral 

(2) 

is convergent ( converges, exists ), and we write 

f!(x) dx = A. 

If the Iimit (I) does not exist or if it is infinite, integral (2) is said to be divergent 
or to diverge ( or we say that it does not exist). 

Example 1. 

f1 dx = limfc dx = lim [ -2~(1- x)]g = 
o ~(I - x) c->1- 0 ~(1 - x) c->1-

= lim [ -2 ~(I - c) + 2] = 2. 
c-+1-

Hence this integral is convergent. 

Example 2. 

f1 ~- = lim Je~= lim[ -ln(I- x)]g = lim [ -ln(I- c)J = +oo. 
0 1 - X c->1- 0 1 - X c->1- c->1-

The integral is divergent. (We say in this case that its value is + oo.) 

REMARK 1. Similarly, if f(x) is integrable in any interval [c, b ], a < c < b (in 
(a, c) it need not be bounded), and ifthere exists thefinite limit 

lim fbf(x) dx = B, 
c-~oa+ c 

(3) 
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then the integral 

is said to be convergent (to converge, to exist); we write 

f!(x) dx = B. 

Otherwise the integral is said to be divergent, or to diverge ( or we say that it does 
not exist). 

Definition 2. If d is a fixed point of the interval (a, b) and if f(x) is integrable in 
arbitrary intervals [ a, a'], [ b', b] with a < a' < d < b' < b (in the neighbourhood 
of the point d f(x) need not be bounded), then the integral 

(4) 

is said tobe convergent (to converge, to exist) if the integrals 

f!(x) dx, f!(x) dx (5) 

both converge. Their sum is then called the value of the given integral. If at least 
one ofthe integrals (5) is divergent, the integral {4) is said tobe divergent. 

REMARK 2. If f(x) is not bounded in the neighbourhood of the point a as weil 
as in the neighbourhood of the point b, we consider the integrals 

f!(x) dx, f!(x) dx, 

where c is an arbitrary point of the interval (a, b). We proceed in a similar way, if 
f(x) is not bounded in the vicinity of a finite number of points of the interval [ a, b ]. 

Example 3. 

f
2 dx = fo dx + f2 dx 
-1 X -1 X 0 X 

provided that the integrals on the right-hand side are both convergent. However, they 
are both divergent: 

f o dx = lim Je dx = lim [ln lxiY- 1 = lim In Iei = - oo 
-1 X c-+0- -1 X c-+0- c-+0-
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and similarly 

Hence the given integral is divergent. 

REMARK 3. It is sometimes convenient to deal with the so-called Cauchy principal 
value of the integral. If f(x) is not bounded in the neighbourhood of the point d 
( a < d < b ), then the Cauchy principal value is defined as follows: 

f f(x) dx = lim (fd-f(x) dx + fb f(x) dx) . 
a d-+0 a d+J 

Thus, symmetric b-neighbourhoods of the point d are considered and the Iimit 
process for b ~ 0 is carried out. If the improper integral exists, then it also exists 
considered as the Cauchy principal value, but not conversely, in general. 

Example 4. 

f2 dx (f-J dx f2 dx) -=lim -+ - =Iim(Inj-c>j-Inj-II+ln2-lnb)= 
-1 X d-+0+ -1 X J X d-+0+ 

= lim (In b - 0 + In 2 - ln b) = In 2 . 
6-+0+ 

The given integral is convergent considered as the Cauchy principal value, but it is 
not convergent if taken in the usual sense. (Example 3). 

REMARK 4. If we can determine a primitive of a given function, then we can -
as a rule - easily determine the Iimit (I) or (3) and thus evaluate immediately the 
integral (Examples 1 and 2). In some cases it may be difficult to find the primitive. 
We then try to evaluate the integral approximately. To do this, we must first 
know whether the given integral is convergent or not. The following tests enabie us 
to decide this question. (The corresponding Theorems 1-7 are stated for the case 

I 

where f(x) is unbounded only in the neighbourhood of the pointband is integrable 
in any interval [a, c], a < c < b; other cases are treated similarly.) 

Theorem 1 (The Bolzano-Cauchy Condition). The integral 

(6) 

is convergent if and only if, for arbitrary e > 0, a b > 0 can be found such that 
for every pair of positive numbers b1, b2 , satisfying b1 < b, b2 < b, the inequality 

holds. 
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Theorem 2. lf 

J:lt(x)l dx 

is convergent, then so is integral (6). In this case integral (6) is said tobe absolutely 
convergent. 

Theorem 3. Let us assume 0 ~ tfr(x) ~ cp(x) in [ a, b). lf the integral 

I:cp(x) dx 

is convergent, then the same is true for the integral 

J: t/J(x) dx. 

lf integral (8) is divergent, then integral (7) is also divergent. 

(7) 

(8) 

Theorem 4. If the inequality if(x)l ~ cp(x) holds in [a, b) and if integral (7) 
is convergent, then integral (6) is also convergent (and its convergence is absolute). 
(The function cp(x) is called a majorant of f(x) in [a, b).) 

Example 5. The integral 

f1 sinx d 

0 .J(l - x) x 

is convergent, for 

I sin x I< 1 
.J(l - x) = .J(l - x) 

and the integral of the right-hand side is convergent by Example 1. 

Theorem 5. Let the finite Iimit 

exist.lf 

(9) 

is convergent, then also 

J:lt(x)l dx (10) 
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is convergent (and hence the same is true for integral (6)). Jf I -:f. 0, then if (9) is 
divergent so also is (10). (At the sametime integral (6) may be convergent.) 

Theorem 6. If integral (6) is convergent and g(x) is a bounded monotonic func­
tion in [ a, b ], then 

f!(x) g(x) dx (11) 

is also convergent. Further: Jffor every c E (a, b) the inequality 

holds and if g(x) is monotonic in [ a, b] and 

lim g(x) = 0, 
x-b-

then integral (11) is convergent. 

Theorem 7. Let the inequality 

IJ(x)! ~ (b ~ x)'" (12) 

hold in a neighbourhood of the point b (for x < b), where M is a constant and 
IX < 1. Then the integral (6) is (absolutely) convergent. lf 

lf(x)i ~ M (M > 0, IX ~ 1) , 
-(b-x)" 

(13) 

then the integral 

nf(x)l dx 

is divergent (while, however, integral (6) may be convergent). 

REMARK 5. In the case wheref(x) is unbounded in the neighbourhood of the point a 
(instead of the point b) (cf. the end of Remark 4), then, of course, we write x - a in 
place of b - x in (12) and (13). 

Example 6. Let us consider the convergence of the integral 

The function f(x) = ln2 x is not bounded in the neighbourhood of the point x = 0. 
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However (by l'Hospital's rule, see Example 11.8.4), if 0 < oc < 1, we have 

2ln x 

I. "'I 2 I" In 2 x I" ImX n X= Iffi --=Im 2 1· "'I -- Imx nx= 
X 

x-+0+ x-+0+ 1 x-+0+ oc OC x-+0 + 

x"' 

527 

Hence the function x"' ln2 x is bounded in a (right) neighbourhood of the point 
x = 0, i.e. 

and therefore the integral considered is convergent by Theorem 7. 

REMARK 6. For details and for many examples see e.g. [54], [158]. See also §13.14. 

REMARK 7. We also speak about improper integrals in the case where the integra­
tion is carried out in an infinite interval. 

Definition 3. Let f(x) be integrable in every interval [ a, b ], b > a. If there exists 
the finite Iimit 

lim if(x) dx = A , 
b-++ooJa 

(14) 

we say that the integral 

(15) 

is convergent ( converges, exists) and write 

f~f(x) dx = A. 

If the Iimit (14) does not exist or is infinite, we say that integral (15) is divergent 
( diverges, does not exist). 

Similarly, the integral 

is defined. 
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Example 7. 

The integral is convergent. 

Definition 4. Let us assume - oo < a < + oo. If both integrals 

f~f(x) dx, r f(x) dx 
w -00 

(16) 

are convergent, then the integral 

(17) 

is said to be convergent and the sum of integrals (16) to be its sum. If at least one 
of integrals (16) is divergent, integral (17) is said tobe divergent. 

REMARK 8. If the integral (17) is divergent in the sense of Definition 4, it may be 
convergent as the Cauchy principal value, 

(18) 

(assuming the Iimit (18) exists and is finite). 

Example 8. The integral 

is divergent in the common sense, for e.g. 

+oo. 

However, if we take 

x dx = lim x dx = lim - - - = 0 , Joo Ja (a2 a2) 
-oo a--++oo -a a--++oo 2 2 

it is convergent as the Cauchy principal value. 

REMARK 9. Concerning improper integrals in infinite intervals, a remark similar 
to Remark 4 may be added. Theorems similar to Theorems 1-7 may be used to 
decide on the convergence or divergence. In what follows the integrability in every 
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finite interval [ a, b J is assumed. Theorems 2-6 keep exactly the same form, the 
only difference being in writing oo in place of b (the analogy of the second assertion 
ofTheorem 6 will be stated additionally in Theorem 10). Theorems 1 and 7 need a 
slight modification: 

Theorem 8 (The Bolzano- Cauchy Condition ). The integral 

is convergent if and only if, for arbitrary e > 0, there is a number B such that, 
if b1 > B, b2 > B, then the inequality 

holds. 

Theorem 9. Let 

Jfbz I I /(x) dx < e 

M 
lf(x)l ~ ~, M = const., oc > 1 , 

X 

hold for every x ~ a. Then the integral 

is convergent. If 

then 

M 
lf(x)l ~ -;, M = const. > 0, a: ~ 1 , 

X 

is divergent (while integral (19) may be convergent). 

(19) 

REMARK 10. lff(x) is not integrable in every interval [a, b] (b > a) (for example, 
if it is not bounded in a ( right) neighbourhood of the point a ), we define 

(where c is an arbitrary point, c > a) provided that the integrals on the right-hand 
side are both convergent. If at least one of these integrals is divergent, the given 
integral is said to be divergent. 
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lf the Iimits of integration are improper and if, moreover, f(x) is not bounded in 
the vicinity of points a1 < a2 < ... < an, we define 

s::(x) dx = s::(x) dx + S:!(x) dx + ... + f!(x) dx (20) 

provided all integrals on the right-hand side of equation (20) are convergent. If at 
least one is divergent, the integral s~aJ(x) dx is said to be divergent. 

Example 9. The integral 

foo dx 

o x" 
(21) 

is divergent for every IX. To show this, Iet us choose a > 0. Integral (21) (see Remark 
10) is convergent if and only if integrals 

fa dx 

" ' oX 

foo dx 

x" a 

(22) 

(23) 

are both convergent. By Theorem 9, integral (23) is convergent if IX > 1 and diver­
gent if oc ~ 1. However, if IX > 1, then by (13) and by Remark 5 integral (22) is 
divergent. 

Theorem 10. Let us assume that f(x) has a bounded primitive F(x) for x > a. 
(Hence jF(x)j < K holdsfor all x > a). Let g(x) be a monotonicfunctionfor x > a 
such that Iim g(x) = 0. Then the integral 

J:f(x) g(x) dx 

is convergent. 

Example 10. The integral 

(24) 

is convergent. First Iet the function h(x) = sin xfx be defined at the point x = 0 by 
the equation h(O) = 1, then it is continuous at x = 0 (see Theorem 11.4.9); hence 
the point x = 0 does not cause difficulty. For all x there is a bounded primitive 
F(x) = - cos x of f(x) = sin x; the function g(x) = 1/x is monotonic for x > 0 
and has zero as its Iimit as x -+ + oo. Hence, by Theorem 10, the integral (24) is 
convergent. (Its value is nf2, see Example 13.9.5.) 
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REMARK 11. Making use of the inequality Jsin xJ ~ Jxl in the neighbourhood of the 
point x = 0, and of Theorems 7 and 10, it can be shown that the integral 

Ico sin X dx 
x« 

0 

is convergent for all oc such that 0 < oc < 2. 

REMARK 12. 1t follows directly from the definitions of improper integrals, that if 
the integrals of the functions f 1(x) and f 2(x) are convergent, then the same is true 
for the integral of their sum and of their difference, and also of the functions kf1(x), 
kf2 (x), where k is a constant. 

REMARK 13. The rules of Substitution and integration by parts may often be 
employed with success for the evaluation of improper integrals. 

We state corresponding theorems for the case where the functions considered are 
unbounded only in the neighbourhood of the point b (b = + oo is also admitted). 
The other cases are similar. 

Theorem 11. The equation 

f!'(x) g(x) dx = [f(x) g(x)J: - f!(x) g'(x) dx (25) 

is valid provided that the convergence of at least two members of this equation is en­
sured. The continuity of f'(x) and g'(x) in [a, b) is assumed. 

REMARK 14. The expression [f(x) g(x)J: is to be understood as the Iimit 

limf(c) g(c)- f(a) g(a). (26) 
c-+b-

Convergence of the central member of equation (25) is understood to mean the exis­
tence of the finite Iimit (26). 

Example 11. 

J~xe-.x dx = - [xe-.x]~ + f~e-x dx = 0- [e-.x]~ = 0- 0 + 1 = 1, 

for lim xe-.x = 0 (see Theorem 11.4.9). 
x-+ + oo 

Example 12. 

(27) 
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This equation is nonsense, for 

I. COS X 
Im--= +oo 

x-+0+ X 

. COS X ~ 
and the relat10n -- > 2-- x2 x2 

13.8 

holds in a sufficiently small neighbourhood of the origin, hence the second integral 
is divergent by Theorem 7. In spite of this, the integral on the left-hand side of equa­
tion (27) is convergent (see Example 10). This example showshowformal use of the 
method of integration by parts may fail for the evaluation of im proper integrals. 

Theorem 12. Let f(x) be continuous in [a, b). Let x = cp(z) be an increasing 
function in the interval (IX, ß), having a continuous derivative cp'(z) in (IX, ß);further, 
Iet lim cp(z) = a, lim cp(z) = b (or lim cp(z) = + oo, if b = + oo ). Then the 

z~a+ z~p- z~p-

equation 

f!(x) dx = J!( cp(z)) cp'(z) dz (28) 

holds, provided at least one of integrals (28) is convergent. If one of them is 
divergent, so is the second. 

Theorem 12 may be stated for other similar cases, for instance for the case when 
cp(z) is decreasing in (IX, ß), lim cp(z) = b, lim cp(z) = a while e.g. b = + oo may 

x.....,a+ z-+JJ-

be admitted. See the following example. 

Example 13. The integrals 

foo dx 

o 1 + x4' 
(29) 

are convergent by Theorem 9, since for x sufficiently large the integrands are both 
smaller than 1/x2• By the substitution 

we obtain 

1 
X=-' 

z 
dx = 

foo x2 fo 1Jz2 dz foo dz 

0 1 + x4 dx = - 00 l + 1/ z4 • z2 = 0 1 + z4 • 
(30) 

(Determination of limits: If x-+ 0+, then z-+ +oo; if x-+ +oo, then z-+ 0+.) 
Hence, both integrals (29) have the same value. This fact may be used for their 
evaluation. Forming the sum of both integrals, we get 
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By the substitution x- 1/x = t, (1 + 1Jx2) dx = dt, x2 + 1Jx2 = t2 + 2 we obtain 

foo 1 + 1jx2 Ioo dt [ 1 t ] 00 1 [1t ( 1t)] 1t 
o x2 + 1Jx2 dx = -oo t2 + 2 = .J2 arctan .J2 -oo = .J2 2 - - 2 = .J2. 

(Determination of limits: If x- 0+; then x - 1/x ~ - co; if x- + oo, then 
x - 1/x - + co.) Hence 

I
oo dx Joo x2 1t 
o 1 + X 4 = 0 1 + x4 dx = 2 .J2 · 

Example 14. Let us evaluate the integral 

----dx, k>O, k=F 1. f" 1 + tan2 x 

0 1 + k 2 tan2 x 

Wehave 

By the substitution 

tanx=z, 
1 

-- dx = dz, (1 + tan2 x) dx = dz 
cos2 x 

and by the further Substitution kz = t we obtain 

11 = = - -- = - [ bm arctan t- arctan OJ =-.-. foo dz 1 foo dt 1 . 1 1t 
0 1 + k2 z 2 k 0 1 + t2 k 1--. + oo k 2 

In a similar way we obtain (since lim tan x = - co) 

Hence 

x-->,./2-

12 = = - -- = - [arctan 0- lim arctan t] = f
o dz 1 fo dt 1 

-oo 1 + k 2 z2 k -oo 1 + t2 k 1-->-oo 

I= 'f!.. 
k 

REMARK 15. The Schwarz (or Cauchy-Schwarz) inequality 

is often useful when deciding on the convergence of improper integrals. The Iimits 
a and b need not be finite. If the integrals on the right-hand side are both convergent, 
then the integral on the left-hand side is also convergent. 
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13.9. Integrals lnvolving a Parameter 

It is often convenient to consider integrals depending on a parameter (cf. Remark 

13.2.6 where a primitive was found by differentiating an integral with respect to 

a parameter ). 
Formaldifferentiation with respect to a parameter does not always lead to correct 

results. lt can be shown (see Example 5 below) that 

foo sin ctX d _ 1t ( O) -- x-- ct=l= . 
o X 2 

(1) 

If we differentiate equation (1) with respect to ct, we get 

f~cos ctx dx = 0 (2) 

and this is obviously wrong because the integral on the left-hand side of equation 

(2) is not convergent. (The Iimit 

1. fb d I' [1 . Jb 1' 1 . b lill COS ctX X = 1m - Slll ctX = lm - Slll ct 
b-+oo 0 b-+oo IX 0 b-+oo IX 

does not exist.) However, the following theorems are valid: 

Theorem 1. Letf(x, IX) be continuous (as afunction oftwo variables) in the reetangle 

O(a ~ x ~ b, IX 1 ~ IX ~ IX2 ; a, b, IX1, IX2 arefinite numbers). Then the function 

g(1X) = f!(x, cx) dx (3) 

is a continuous function of the variable IX in the interval [ IX 1, oc 2] (at oc 1 it is conti­

nuous from the right, at oc 2 from the left), i.e. the relation 

lim fbf(x, oc) dx = fb limf(x, a) dx = ff(x, ct 0 ) dx 
(1-+ot:o a a a-ao a 

(4) 

holds for every oc0 E [ oc 1 , oc2 ]. 

Theorem 2. If, in addition, offooc is continuous in 0, then the function g(a) 
possesses a derivative in [ oc 1 , oc 2 ] (at oc1 the right-hand derivative and at oc 2 the left­

hand derivative) and 

- = - (x, ct) dx, dg Jb at 
dct a Oct 

(5) 

i.e. 

- f(x, oc) dx = - (x, ct) dx. d Jb Jb 81 
doc a 0 01X 

(6) 
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Theorem 3. If f(x, ct) is continuous in O, then the relation 

(7) 

i.e. 

J::(J!(x, ct) dx) dct = f (J:(cx. ct) dct) dx (8) 

holds for every ct0 E [ ct1 , ct2]. 

REMARK 1. The assertion of Theorem 3 remains valid under far more genera1 
assumptions (see Theorem 14.3.1). 

Theorem 4 (The Limits of Integration Depending on a Parameter). Let x = cp1(a), 
x = r.p2 ( a) be functions having continuous derivatives in [a1, a2]. Let us denote by P the 

domain a, ;;i a ;;i a2, cp,(a) ;;i x ~ 'P2(a), cp1(a) < cp2(a) (see Fig. 13.4). If f(x, a) 
and 8 f I oa( X' a) are continuous in p, then the function 

f<Pz(a) 

g(ct) = f(x, ct) dx 
<Pt(ll) 

(9) 

has a derivative in [ IX~o ct2 ] (at ct1 the right-hand derivative, at ct2 the left-hand 
derivative) and the relation 

(10) 

holds (see Example 2). 

X 

p 

Fig. 13.4. 0 a 

REMARK 2. The theorems mentioned above, particularly Theorem 2, may advan­
tageously be used for the evaluation of definite integrals. (For the determination of 
primitives, using the method of a parameter, see Theorem 13.2.5.) 

Example 1. We have (§ 13.10, formula 14) 

r' 2 dx = _1t_ (a > 0, b > 0) . Jo a2 cos2 x + b2 sin2 x 2ab 
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Differentiation with respect to a or b yields formulae for more complicated integrals 
(the assumptions of Theorem 2 are obviously satisfied for a > 0, b > 0): 

- dx = fn/Z 2b sin2 X 1t 

0 (a 2 cos2 x + b2 sin2 xY - 2ab2 • 
(11) 

Dividing the first equation by - 2a and the second by - 2b and summing, we get 
(since cos2 x + sin2 x = 1) 

(12) 

Example 2. 

fal+l 

g(a) = a (x3 + ax) dx . 

The assumptions of Theorem 4 are obviously satisfied, hence we obtain by (10) 

This example is only an illustrative one. The same result may be established 
by direct evaluation of the integral g(a) and by differentiating the result with respect 
to a. 

REMARK 3. lmproper integrals involving a parameter are of considerable 
importance, especially those having infinite Iimits. In order to formulate the corre­
sponding theorems, we introduce the concept of the uniform convergence of an 
(improper) integral (in what follows, the integrability of the functions considered 
in every finite interval is assumed): 

Definition 1. The integral 

f~f(x, a) dx (13) 

is said to be uniformly convergent in the interval cx1 ~ a ~ a2 (in the case where, 
for example, a2 = + oo, we shall consider the semi-open interval a 1 ~ cx < a2), 
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if to every e > 0 there exists a nurober B0 (depending, in general, on the choice of e 
but independent of o:) such that the inequality 

(14) 

holds for any B > B0 • 

Theorem 5. If for all o: E [ o: 1 , o:2 ] the inequality jJ(x, o:)j ~ cp(x) holds and if 
f;:' cp(x) dx converges, then the integral (13) is uniformly convergent in the interval 

(Xl ~ (X ~ 0:2. 

Example 3. According to Theorem 5 the integral 

(15) 

is uniformly convergent in every interval [ <5, oo ), <5 > 0. For, if o: ~ <5, then 
je-"" sin xj ~ e-"" and the integral f~ e-~x dx converges. (However, [I = 0 may not 
be admitted, because f~ sin X dx does not converge at all!) 

Theorem 6. Let g(x, o:) be continuous for x ~ a, o: 1 ~ o: ~ o:2 and Iet h(x) be 

continuous and monotonic for x ~ a, and lim h(x) = 0. Let G(x, oc) be a primitive 
x-+oo 

(with respect to the variable x) of the function g(x, o:). If G(x, o:) is bounded (i.e. 
jG(x, o:)j ~ K for all o:1 ~ o: ~ o: 2 , x ~ a, K being a constant), then the integral 

is uniformly convergent in the intert'al [ o: 1, o:2]. 

Example 4. We shall prove that the integral 

Joo -u sin X d 
e -- x 

a X 
(16) 

is uniformly convergent in the interval 0 ~ o: < + oo. (For o: < 0 it is obviously 
divergent. For cx = 0 it is convergent by Example 13.8.10.) 

lt suffices to examine the convergence of the integral 

Joo -ax sin X d O e -- x, a> , 
a X 

(17) 

for if we define the function {sin x)fx at the point x = 0 to be equal to I, then the 
function e-"'"(sin x)fx is everywhere continuous. 
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Let us write g(x, cx) = e-~x sin x, h(x) = 1/x. Then 

G(x, cx) = _ e-~x(cx sin x + cos x) 

1 + cx 2 

13.9 

(Example 13.2.4). The functions g(x, cx) and h(x) are continuous if cx ~ 0, x ~ a > 0, 
h(x) is decreasing and lim h(x) = 0. Further, obviously, if a ~ 0 and x ~ a, then 

x-oo 
/G(x, a)/ < 2. Hence, by Theorem 6, integral (17), and hence also integral (16) is 
uniformly convergent for all cx ~ 0. 

Theorem 7. Let f(x, cx) be continuous in the semi-infinite strip a 1 ~ a ~ cx 2 , 

x ~ a. Assurne further that the integral 

g(cx) = f:f(x, cx) dx 

is uniformly convergent for all a E [ a1, a2 ]. Then 

(a) g(a) is continuous in [ a1 , a2] (at the point a1 from the right, at the point cx 2 

from the left). 

(b) The relation 

(18) 

i.e. 

(19) 

holdsfor all cx0 E [a1, a2 ]. (In the case (a) the intervalfor a need not befinite.) 

Theorem 8. Letf(x, cx) be continuous in the region x ~ a, cx ~ a1 .Let the integrals 

g(a) = foof(x, cx) dx, h(x) = f00
f(x, a) da 

a "'' 

be both uniformly convergent, the first with respect to cx, the second with respect 
to x,from arbitrary finite intervals [ cx 1 , a2] or [ a, b] respectively. 

Let at least one of the integrals 

be convergent. Then both the integrals 
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are convergent and the equality 

I: (I!(x, a) da) dx = I: (I:f(x, a) dx) da (20) 

holds. 

Theorem 9. Let the functions f(x, a) and offoa(x, a) be continuous in the semi­
infinite reetangle a 1 ~ a ~ a2 , x ~ a. If the integral 

g(a) = I:f(x, a) dx 

converges for all a1 ~ a ~ az and if the integral 

foo of (x, a) dx 
a oa 

is uniformly convergent for a E [ a 1 , a2], then the function g(a) has a derivative in 
[a1 , a2] (at a1 jrom the right, at a2 jrom the left) and the relation 

- = - (x, a) dx , dg Ioo of 
da a oa 

i.e. 

- f(x, a) dx = - (x, a) dx , d Ioo foo of 
da a a oa 

holds. 

Example 5. Wehave to evaluate the integral 

I
oo sin X dx • 

0 X 

(21) 

(22) 

We shall use the result concerning integral (16). If the function <p(x) = sin xfx is 
defined at the origin by the equation <p(O) = 1, then the function e-"" sin xfx is 
continuous for all x and a. The function 

~ (e-""sin x) = - e-"" sin x 
oa X 

is also continuous for all x and r:t. According to Example 3, the integral 

I~e-"" sin x dx 
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is uniformly convergent for all IX ;?; c5 > 0 and is equal to 1/(1 + 1X2), as can be easily 
verified using integration by parts. Hence, by Theorem 9, we have 

d foo -axsin X d foo -ax . d - e -- X = - e Sill X X = 
diX 0 x 0 

1 
(23) 

1 + IX2 

for all IX ;?; c5. Consequently, 

f
00e-a"sin x dx = - aretau IX+ ~ (IX ~ c5). 
o X 2 -

(24) 

The value !1t as the constant of integration follows from the relation 

foo _ sin X 
e ax -- dx -+ 0 as IX -+ + 00 

0 X 

( which is true since 

lsi: xl ~ 1 

and thus 

lf~e-axsi: X dxl ~ f~ le-a"si: XI dx ~ f~e-a" dx = D. 
By Example 4 the integral 

( ) foo -axsin X d 
giX = e -- x 

0 X 
(25) 

is uniformly convergent for all IX ;?; 0. Hence, by Theorem 7, the function g(1X) is 
continuous from the right at the point IX = 0, i.e. 

I. foo -axsin X d _ (O) _ foo sin X d Im e -- X - g - -- X • 
a-+0+ o X o X 

(26) 

It follows from (26) and (24) that 

(27) 

REMARK 4. We had to divide the procedure just carried out into two steps: By 
differentiation with respect to the parameter IX we were led to equation (24) (Theorem 
9) and then we made use of the continuity (from the right) of the function g(1X) at the 
point IX = 0 (equation (26)). Theorem 9 was not directly applicable in view of the 
divergence of the integral fg' e-ax sin x dx for IX = 0. 
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REMARK 5. Sometimes we meet the case where the Iimits of integration arefinite 

but the function f(x, a) or of (x, a) is not bounded in the neighbourhood of the 
oa 

segment x = b, a1 ~ rx. ~ a2 • In the same way as in Definition 1, the integral 

g(a) = f!(x, a) dx (28) 

is said to be uniformly convergent for alla E [ a1, a2 ] if for every e > 0 there exists 
c50 > 0 ( the same for all a E [ a 1, a2]) such that the inequality 

lf:_f(x, a) dxi < a 

holds for every c5, 0 < c5 < c50 • 

In this case, Theorems 5, 7 and 9 are quite similar; one has only to replace oo by b 

and to examine the continuity of the functions f(x, oc) and of (x, a) in the domain 
aa. 

a1 ~ a ~ a2, a ~ x < b. 

These theorems may be generalized for the case where f(x, a) or 0~ (x, a:) is 
oa 

not bounded in the neighbourhood of the curve x = tp(a) or in the m:igiibourhood 
of several such curves. If the Iimits of integration areinfinite and at the sametime th:: 

functions f(x, a) or of (x, a) are not bounded on some curves, then we divide 
OIX 

the given integral into two or more integrals and examine er:ch of them separately, 
by a method similar to that of Remark 13.8.10. 

13.10. Table of Definit~ Integrals 

Throughout this paragraph m, n are positive integers, r a real number, C = 
= 0.577,215,664,9 ... is the so-called Euler's constant, r(x) is the gammafunction, 

r(x) = f: e -tt"- 1 dt (x > 0)' 

B(p, q) is the beta function, 

(see § 13.11). 

B(p, q) = r(p) r(q} (p > o, q > o) 
r(p + q) 
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In particular, for x = n 

r(n) = (n - 1)! 

holds and for 0 < x < 1 we have 

1t 
r(x) r(1- x) = -.-. 

sm nx 

1. x•e-axdx = for a > 0, r > -1. foo r(r + 1) 
o a•+l 

In particular for r = n (n isapositive integer) this integral is equal to n!/a"+ 1. 

2. f00x•e-axl dx = r(-tr + !) for a > 0 r > -1 . 
o 2at<r+ 1) ' 

In particular, for r even (r = 2k) and positive this integral is equal to 

1 . 3 ..... (2k - 1) ~1t 
2k+la(2k+l)/2 

for r odd (r = 2k + 1) it is equal to k!/2ak+l. 

3. f00e-a2 x 1 dx = ~7t (a > 0) (Laplace- Gauss integral). 
0 2a 

4. foo e-a>x>+bx dx = ~1t eb,/4a2 (a > 0). 
-oo a 

(a > 0). 

(a > 0). 
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JOD e-ax Sifi bx b 
11. dx = arctan-

0 x a 
(a > 0). 

12. J: e-x In x dx = - C = -0·577, 215, 664,9 .... 

13. sin2d 1 x cos211 + 1 x dx = = -!B(a. + 1, ß + 1). Jn/2 r(a. + 1) r(ß + 1) 

o 2r(a. + ß + 2) 

This formula can be used, for example, to evaluate the integrals 

.J(sin x) dx, V(sin x) dx, 3 , etc. Jn/2 f"/2 f"/2 dx 

o o 0 t'(cos x) 

If a and ß are nonnegative integers, this integral is equal to 

a.! ß! 
(see 24). 

2(a. + ß + 1)! 

1t 

2ab 

15. I" sin mx sin nx dx = f" cos mx cos nx dx = {0 for 
0 0 !1t for 

16. I" sin mx cos nx dx = {0 for 
o 2mf(m2 - n2) for 

m- n 

m-n 

I" J2
" {0 17. sin mx sin nx dx = = 

-n o rc 

I" I2" {0 18. cos mx cos nx dx = = 
-n 0 1t 

J" I2n 19. sinmxcosnxdx= =0. 
-n 0 

for 

for 

for 

for 

20. sin2 x dx = cos2 xdx = -- . fn/2 In/2 1t 

0 0 4 

m # n, 

m = n. 

m # n, 

m = n. 

m:Fn, 

m = n. 

even, 

odd. 

21 fn/2 . 2n d J"/2 2n d I . 3 . 5 ..... (2n - I) 1t 
• Slll X X = COS X X = ---------- - . 

o 0 2 . 4 . 6 ..... 2n 2 

22 fn/2. 2n+l d I"/2 2n+l d 2.4.6 ..... 2n 
. Slll X X = COS X X = . 

o o I. 3 . 5 ..... (2n + I) 

543 
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• Sln X COS X X = - . 23 [
12 • 2m ln d 1 . 3 ...•. (2m - 1). 1 . 3 ..... (2n - 1) 7t 

0 2.4 ..•.. (2m + 2n) 2 

24. r12sin2m+l X cos2n+l X dx = ! m! n! (m, n nonnegative integers). 
Jo 2(m+n+1)! 

25_ f"" sin ax dx = {!1t (a > 0) , 
o x -!7t (a < 0) . 

26. f .. cos ax dx = + oo (a > 0 arbitrary; the integral is divergent). 
0 X 

27. = (taken as the Cauchy pnnc1pal va1ue). foo tan ax dx {!1t (a > 0) . . 
0 x - !1t ( a < 0) 

28. f"" cos ax - cos bx dx = In~ (a > 0, b > 0). 
0 x a 

"" . {!1t for Iai < 1 , 
29. I sm x cos ax dx = t7t for Iai = 1 ' 

0 x 0 for Iai > 1 . 

30. -- dx = -- dx = - (Fresnel's mtegrals) . foo sin X f"" cos X J1t . 
o .Jx 0 .Jx 2 

13.10 

31. f"" x sin bx dx = ± ~ e -fabf ( the sign is to be taken to agree with that of b ). 
o a2 + x2 2 

32. f"" cos ax dx = ~ e-faf . 
o 1 + x2 2 

34. sin (x2 ) dx = cos (x2) dx = - (Fresnel's integrals). f +oo f+oo J1t 
-oo -oo 2 

35. r/2 sin X dx = _!_In 1 + k (lkl < I). 
J 0 .J(l - k2 sin2 x) 2k 1 - k 

[
12 cos x dx 1 

36. .J( 2 . 2 = - arcsin k (lkl < 1). 
1 - k sm x) k 

37. sm x x =- (K- E) (lkl < 1; E, K see § 13.12, p. 552). fR/2 • 2 d 1 

o .J(l - k 2 sin2 x) k2 
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f"12 COS2 X dx 1 
38. '( 2 . 2 ) = z [E-(I-k2)K] (lkj < 1; E,K,see§13.12,p. 552). 

0 y 1 - k sm x k 

. = -- a ISanon-negative mteger, b < 1 . 39 f
" cos ax dx nba ( . . . I I ) 
o 1 - 2b COS X + b2 1 - b2 

40. J: 1n jin xl dx = - C = -0·577, 215,664,9 .... 

41. fl ~ dx = 1t2 • 

o X- 1 6 

f1 In x n2 

42" 0 x + 1 dx = - 12 · 

43. f1 ~ dx = 7t
2 

• 
0 x 2 - 1 8 

44. J1 In (1 + x) dx = ~In 2. 
0 x 2 + 1 8 

45. I: (In ~) a dx = r( a + 1) ( -1 < a < oo) . 

Jx/2 fn/2 1t 
46. ln sin x dx = ln cos x dx = - - In 2 . 

0 0 2 

f" . 1t2 In 2 
47. xinsmxdx =- --. 

0 2 

fn/2 
48. 

0 
sin x ln sin x dx = ln 2 - 1 . 

49. In (a ± b cos x) dx = 1t In - for a ~ b > 0. f" a + .J(a2 b2 ) 

0 2 

50. f'\n(a 2 - 2abcosx + b2)dx = { 2nlna (a ~ b > O), 
o 27tln b (b ~ a > 0). 

51. J:'\n tan x dx = 0. 

52. In(l + tanx)dx = -In2. fn/4 1t 

0 8 
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= r(cx + 1) r(ß + 1) = B(cx + 1, ß + 1) (see 13). 
r(cx + ß + 2) 

54. foo dx 
0 (1 + x) x" 

1t 

sin arr 
(0 < a < 1). 

55. Ioo _x_•_--1 dx = __ rr_ 
0 1 + xb b . arr 

(0 < a < b). 
sm-

b 

56. t dx = y'(rr)rC) 

f. "(I->') ar (~) (a # 0). 

57. = --- (0 < a < trr). f1 dx a 

0 1 + 2x cos a + x 2 2 sin a 

58. foo ___ d_x __ _ 

0 1 + 2x cos a + x 2 

a 

sin a 
(0 < a < -!rr). 

13.11 

13.11. Euler's Integrals, the Gamma Function, the Beta Function. 
The Gauss Function. Stirling's Formula 

Definition 1. The function 

(1) 

is called the gamma function or Euler's integral (function) of the second kind. 

Theorem 1. The gamma function is defined by integral (1) for x > 0. If x ~ 0 
the integral (1) is divergent. The function (1) is continuous for x > 0. It has deriva­
tives of all orders; these derivatives are obtained by formal differentiation with 
respect to x under the integral sign: 

(2) 
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Further, the relations 

lim r(x) = + 00. lim r(x) = + 00 (3) 
x-++oo x-+0+ 

hold. The gamma function has its local minimum between the points x = 1 and 
x = 2 (x = 1·46). 

Theorem 2. Basic relations: 

r(x + 1) = X r(x); (4) 

1t r(x) r(I - x) = -.- (0 <X< I); 
Sill 1tX 

r(x) r(x + !) = Jn r(2x) ; 
22x-l 

(5) 

r(I) = 1, r(2) = I, in general 

r(n) = (n - 1)! for every natural n. (6) 

(With the aid of the gamma function we often extend the definition of the factorial 
function by the equation x! = r(x + 1) for positive real numbers other than natural.) 

r(!) = Jn, r(1) = 1 Jn, r(-i) = 1-1 Jn, ... ; (7) 

9 
In r(x) = (x - 1-) In X - X + 1n J(2n) + - (x > 0, 0 < 8 < 1); (8) 

4x 

r(x) = lim (n - I)! nx; 
n-+oox(x + 1)(x + 2) ... (x + n - 1) 

(9) 

1 I 
r(x) = -c . ' 

xex ile-xfn(1+~) 
n=l n 

(10) 

where C is the so-called Euler's constant; C = 0·577,215,664,9 .... 

REMARK 1. The limit on the right-hand side of equation (9) exists (for the infinite 
product on the right-hand side of equation (10) is convergent and its value is dif­
ferent from zero) not only for positive x, but for all x other than 0, - 1, - 2, .... The 
function r(x) is thus defined for all X other than 0, -1, -2, .... (Sometimes, this 
extension of the gamma function is denoted by the symbol IT(x - 1).) 

For the gamma function extended in this way the basic relations given above 
remain valid for all x, with the exception of those values for which the corresponding 
expressions have no meaning. 
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The graph of the gamma function is plotted in Fig. 13.5. Some values of the gamma 
function for 0 < x ~ 2 can be found in Table 13.1. By equation (9) or (10), the func­
tion r(x) is defined also for complex values of x other than 0, -1, -2, ... The 
gamma function, thus considered as a function of a complex variable, is holomorphic 

1 rrxJ pTlx)"' rtx + J 

4 
I 

/ I 
3 V 

\ rtxJ v 2 

\ / 1 -~-

y 
-4 -3 -2 -1 0 1 2 3 4 X 

-4 -3 -2 -1 0 1 2 ... 
"' 

\ -1 

-2 
TTfxJ 

-3 

n -4 

I \ Fig. 13.5. 

TABLE 13.1 

Table of the gamma function for 0 < x ;:::;; 2 

~ r(x) X r(x) I X r(x) X r(x) 

--
I I 

0·00 undefined 0·50 1·772 45 1-00 1·000 00 1·50 0·886 23 
05 19·470 09 55 1·616 12 05 0·973 50 55 888 87 
10 9·513 51 60 1-489 19 10 951 35 60 893 52 
15 6·220 27 65 1·384 80 15 933 04 65 900 12 
20 4·590 84 70 1·298 06 20 918 17 70 908 64 

0·25 3·625 61 0·75 1·225 42 1·25 0·906 40 1·75 0·919 06 
30 2·991 57 80 1-164 23 30 897 47 80 931 38 
35 2·54615 85 1-112 48 35 89115 85 945 61 
40 2·218 16 90 1-068 63 40 887 26 90 961 77 
45 1·968 14 95 1·031 45 45 885 66 95 979 88 

0·50 1·772 45 1·00 1·000 00 

I 
1·46 0·885 60 2·00 1·000 00 

(minimum) 



13.11 INTEGRAL CALCULUS OF FUNCTIONS OF ONE VARIABLE 549 

(regular) in the complex domain with the exception of the points 0, -1, -2, ... , 
where it has simple poles. 

REMARK 2. The evaluation of many integrals Ieads to the gamma function (see 
e.g. [54], [158]). For example 

f~ e-x~ dx = tr(t) =-! ,J1t {by the substitution x2 = z); 

f~e-x~ x2k dx = tr ck: 1) = 1. 3. 5. ;~~·1 (2k- 1) .J1t (k = 1, 2, 3, ... ); 

J00e-nt t"- 1 dt = r(x) (x > 0) (by the SUbstitution nt = z); 
o n" 

sin'- 1 xcos3 - 1 xdx=- 2 (r>O,s>O); fft/2 1 r(tr) r(~s) 

o 2rGr+!~ 

r'\in•- 1 X dx = f"' 2cos'- 1 X dx = ,J(1t) r(tr), r > 0. 
J o o 2r(!r + t) 

Definition 2. The beta function is defined by the integral 

B(p, q) = xP- 1(1 - x)q- 1 dx = + (p > 0, q > 0). f1 foo xp-1 dx 

o o (1 + x)P q 
(11) 

The beta function is often called Euler's integral (function) ofthefirst kind. 

Theorem 3. The relation 

B(p, q) = B(q, p), (12) 
holds. 

REMARK 3. This function is also tabulated and the evaluation of some integrals 
may be reduced to it. The beta function is related to the gamma function by the 
equation 

B(p, q) = r(p) r(q) . 
r(p + q) 

Example 1. By the substitution xm = z we have 

J1 
11 

1 m dx = ..!_f\1 - zt 1'"z(l/m)-l dz = ..!_ B(_:, 1 - !) . 
0 y/(1 - x ) m 0 m m n 

In particular for n = 2 and m = 4 we obtain (using (13)) 

Jt 1 dx = ! B (! t) = ! r(!) r(t) . 
0 ../(1 - x4) ' 4 r(i) 

(13) 
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Definition 3. The Gauss function 'Pis defined by the reiation (we write II(x) = 
= r(x + I)) 

lf'(x) = d In II(x) = II'(x) (= r'(x + 1)), x > -1. 
dx II(x) r(x + I) 

Theorem 4. The relation 

lf'(x) = Iim (In n- _I_- _I_- ... - _I_) 
n-+ro I + X 2 + X n + X 

holds. In particular 

lf'(O) = lim (In n - ! - ! - ... - !) = - C, 
n-+ro I 2 n 

where C = 0.577,2I5,664,9 ... is Euler's constant. 

1 I I 
lf'(k) = - C + - + - + ... + - (k a positive integer). 

I 2 k 

Theorem 5. Stirling's formula: 

n! = n" J(2rrn) e-n+S/4 " (0 < 9 < I); 

for large n the approximate formula 

n! ~ n"e-" J(2rrn) = (;JJ(2rrn) 

holds. 

13.12. Series Expansions of Some Important Integrals. Elliptic 
Integrals, Elliptic Functions 

For general theorems on term-by-term integration of infinite series (including 
appiications to the evaluation of integrais) the reader is referred to §§ I5.2, I5.4, 
I5.7. On applications of asymptotic expansions to the evaluation of integrals see 
§ 15.7. 

Theorem 1. Sine integral 

. f" sin t I x 3 I x 5 
S1 x = 

0 
- 1- dt = x - J 3! + S 5! - . . . (x arbitrary). 

Cosine integral: 

. f"" cos t I x 2 I x4 
Ci x = - - dt = C + In x - - - + - - - ... 

X ( 2 2! 4 4! 
(x > 0). 
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Logarithm integral: 

h x = - = C + In IIn xl + In x + - -- + - -- + ... . I"' dt 1 (In x Y 1 (In x )3 

0 In t 2 2! 3 3! 
(0 < X < 1), 

C denotes Euler's constant 

C = lim (1 + ! + ! + ... + ! - In n) = 0·577, 215, 664, 9 .... 
n-+oo 2 3 n 

Fresnel's integrals: 

- dt = 2 ~(x) 1 - - + - + -- + . .. (x > 0); f"' cos t ( x 2 x4 x 6 ) 

0 .Jt 5 • 2! 9 . 4! 13 . 6! 

- dt = 2 .J(x) - - -- + -- - -- + . . . (x > 0) ; I"'sint (x x3 x5 x7 ) 

0 .Jt 3 7. 3! 11. 5! 15. 7! 

e dt = x + -- + -- + -- . + . . . (x arbitrary) ; fx r• x3 xs x7 

0 3 . 1! 5. 2! 7. 3! 

e dt = x - -- + -- - -- + . . . (x arbitrary) I"' _,2 x3 xs x7 

0 3 . 1! 5 • 2! 7 . 3! 

(the Laplace- Gauss integral). Asymptotic expansion for large x (for details see 
§ 15.7): 

(The notation 

erf (x) = _3_ J"'e-r2 dt, erfc (x) = 1 - erf (x) = _;.._ f00e-r• dt, 
~X 0 ~X x 

is often used in the literature.) 

Integrals of the type 

f R(x, .JX(x)) dx, 

where R(x, y) is a rational function of the variables x, y and X(x) is a polynomial 
of the third or fourth order, are called elli ptic integra ls. (If the order of the polynomial 
is higher than 4, integrals of this type are called hyperelliptic.) The evaluation of 
elliptic integrals may be reduced by suitable transformations to the evaluation of 
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the so-called Legendre integrals in the normal form: 

l x dt 1'1' 
(a) u = o y'[(1- t2)(1- k2t2)] = o 

d1/; - F(k ) 
y'(1- k2 sin2 1/;) - ,<p 

(O<k<1). (1) 

(b) v= lax v(\-_k::2) dt= la'P y'(1-k2 sin2 1/;)d1/;=E(k,<p) 

(0 < k < 1) . (2) 

Theorem 2. 

1 2 1x3 4 1x3x5 6 
F(k, <p) = Jo + 2k h + 2 X 4 k J4 + 2 X 4 X 6 k J6 + ... ' 

E(k ) = J _ l.k2 J _ ~ k4J _ 1 X 1 X 3 k6 J _ .. . 
,<p 0 2 2 2x4 4 2x4x6 6 

hold, where 0 < k < 1 and <p is arbitrary (it is sufficient, of course, to consider 
0 < <p < ~1r) and 

hn = 1'1' sin2n 1/; d1/; , n = 0, 1, 2, .... 

COMPLETE ELLIPTIC INTEGRALS OF THE FIRST AND SECOND KIND 
(0 < k < 1): 

Theorem 3. The relations 

l rr/2 d1/; 11 dt 
K = F(k, ~1r) - 2 -

0 y'( 1 - k2 sin 1/;) 0 y'((1 - t2) ( 1 - k2t 2)] 

_11" 122 1x3 4 ( )
2 

-2[1+(2)k+ 2x4 k+ ... ]. 

hold. 

(3) 

(4) 
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Theorem 4. For the so~called complementary elliptic integrals 

K' = F(k', ~1r) , E' = E(k', ~1r) 

with the modulus k' = yf(l - k 2 ), the relation 

KE' + K'E - KK' = ~1T 
holds. 

THE LEGENDRE (JACOBI) ELLIPTIC FUNCTIONS 

2 u3 2 4 u5 
sn u = u- (1 + k ) I+ (1 + 14k + k ) 1 - ... , Iu I< K' ; 3. 5. 

RE MARK 1. The function x = sn u, 0 ~ u ~ K, is the inverse of the function ( 1), 
i.e. of the function 

{X 1 
u = Jo vl(1- t 2 ) (1- Pt2 )1 dt ' 

where x runs through the interval [0, 1]. The functions cn u, dn u may then be defined 
as continuous functions satisfying the relations 

and cn 0 
[183]. 

1, dn 0 = 1. For a detailed treatment (in the complex plane) see e.g. 

For k = 0 the functions sn u and cn u become the common trigonometric functions 
sin u, cos u. 

Basic relations: 

sn(-u) = -snu, cn(-u) = cnu, dn(-u) = dnu, 

d 
du snu = cnu dnu, 

d 
du cnu = -snu dnu, 

d 
du dnu = -k2snu cnu. 

The graphs of the elliptic functions are shown in Fig. 13.6 (for k 2 = ~ m 
Figs. 13.6a, b, c; for k 2 = ~in Figs. 13.6d, e, f). 

The functions sn u, cn u are periodic with period 4K; the function dn u has period 
2K. 



554 SURVEY OF APPLICABLE MATHEMATICS 13.13 

sn u 

0~ K 21< 3K 4K u 
cJ 

sn u 

K 3K 

d) 

Fig. 13.6 
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13.13. Approximate Evaluation of Definite Integrals 

If a primitive cannot be expressed with the aid of elementary or tabulated func­
tions or if it is difficult or very laborious to find the primitive, definite integrals are 
usually evaluated by means of quadrature formulae. Such an approach is unavoid­
able if the integrated function is given by a graph or a table. 

By a quadrature formula we understand here the approximation of the given 
integral 

I(!)= lb f(x) dx 

by a linear combination 
n 

In+l(f) = L Hif(aj) (1) 
j=O 

of values of the integrated function. Thus, the values of the function are supposed 
tobe known quantities. The numbers aj which are supposed to lie in [a, b] are called 
abscissae or nodes of a quadrature formula and the numbers Hj are its weights 
or coefficients. The weights and abscissae are chosen in such a way that they are 
independent of the integrated function and satisfy some requirements, especially that 
the error (or remainder) En+l defined by 

has some useful properties (e.g., that it can be easily estimated, etc.). 
In connection with the choice of weights and abscissae of a quadrature formula, 

the concept of its order is of particular importance. The order of a quadrature 
formula is defined as such integer m that En+ 1(xk) = 0 for k = 0,1, ... ,m while 
En+l (xm+l) # 0. Thus, a quadrature formula of order m integers exactly every 
polynomial of degree ~ m. 

(a) Gauss' formula is a quadrature formula (1) where the weights as well as the 
abscissae are chosen in such a way that its order is 2n + 1. Such formula exists for 
any positive integer n and is determined uniquely. Its abscissae aj are roots of the 
polynomial <Pn+l of degree n + 1 which is orthogonal, in the interval [a, b], to any 
polynomial of a lower degree, i.e. for which 

lb ~n+l(x) q(x) dx = 0 

holds for any polynornial of degree ~ n. The weights are then computed by 

(2) 
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If the integrated function f has 2n + 2 continuous derivatives in [a, b], then the error 
of the Gauss formula is given by 

E (J) - 1 /(2n+2)(n) 1b "'n2+2(x) dx ' 
n+l - (2n + 2)! A;+l ., 'I' 

(3) 

where TJ is some point from [a, b] and An+l is the coefficient at xn+l in c/Jn+l· 
In particular, if the interval of integration is [-1, 1], then c/Jn+1 is equal (up to 

a multiplicative constant, eventually) to the Legendre polynomial P n+1 (see §16.5). 
Thus the abscissae of this special Gauss quadrature formula ( called often also the 
Gauss-Legendre formula) are roots of the Legendre polynomial of corresponding 
degree. For example, for n = 2 we have P3(x) = ~ x3 - ~ x with roots 0 and 
±0.774 597. If we use, moreover, (2) (naturally with a = -1, b = 1 and c/J3 = P3 ), 

we obtain 

11

1 
f(x) dx ~ ~ !( -0.774 597) + ~ f(O) + ~ /(0.774 597) (4) 

and the corresponding error is not greater than 6.35 x 10- 5 M 6 , where 

as follows from (3). 

(b) The Newton-Gates formulae have equidistant abscissae, aj = a + jh, j = 
0, ... , n, where h = (b- a)/n. The corresponding weights are given agairr by (2), 
w here we set ( x- a0 ) .•. (x-an) for the function c/Jn+ 1 . For the error of the Newton­
Cotes formula we have 

for n even and 

En+1 = (n ~ 1)! f(n+ 1)(TJ) 1b c/Jn+l(x) dx 

for n odd. Consequently, for even n the corresponding order is n + 1 whilst for n odd 
it is only n. In the just presented form, the Newton-Cotes formulae are used only 
seldom, their importance lies in their application when constructing the so-called 
composite quadrature formulae. 

( c) A composite quadrature formula is constructed in such a way that we first 
divide the given interval into m subintervals, then use a certain quadrature formula 
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(the Newton-Cotes, Gauss, or, eventually another one) of a low order n in any of 
these subintervals and finally add the results. 

( a) The trapezoidal rule is a quadrature formula given by 

where 

1b f(x) dx = h[~ f(ao) + f(al) + ... + f(am-1) + ~ f(am)] + E(f) , (5) 

h = (b- a)fm , a; = a + jh, j = 0, 1, ... , m, 

E(f) = -(b- a) h2 f"(TJ)/12 . 

It is a composite quadrature formula in which the Newton-Cotes formula with n = 2 
is used in each subinterval. 

(ß) Simpson's rule. Here, the given interval is divided into an even number of subin­
tervals by equidistant points, similarly as in the case of the trapezoidal rule, and 
in any interval [a2;, a 2;+2], i = 0, 1, ... , ~- 1, of the length 2h the Newton-Cotes 
formula is used. The resulting formula is 

where 

1b f(x) dx = ~h[f(ao) + 4/(at) + 2/(a2) + 4f(a3) + ... 

. . . + 4/(am-3) + 2/(am-2) + 4/(am-t) + f(am)] + E(f) , 

b- a ( ) 
h = -- (m even) and E(f) = -(b- a) h4f 4 (TJ)/180 . 

m 

The number h occuring in both last quadrature formulae is usually called the 
integration step. 

( d) Romberg 's formula. The evaluation of the given integral proceeds here ac­
cording to the following so-called T-scheme: 

Too 
Tot Tto 
To2 Tu T2o 

Tom Tt,m-1 T2,m-2 , ... ,Tmo. 

The quantities Tok in the first column of this scheme are approximate values of the 
integral computed by the trapezoidal rule with the integration step h = (b- a)/2k. 
Further columns are filled up subsequently for m = 1, 2, ... by the formula 

Tmk = 1 (4mTm-1 k+1- Tm-1 k) , k = 0, 1, · · · · 
4m -1 ' ' 
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Thus, from the sequence {Tom} of approximations of the given integral by the trape­
zoidal rule, one constructs the "diagonal" sequence {Tmo}. This new sequence con­
verges substantially more rapidly than the original sequence, as usual. Rate of con­
vergence is the higher the smoother is the integrated function. 

REMARK 1. Provided the integrated function is periodic, with period b - a, the 
trapezoidal rule itself exhibits the same properties as the Romberg method. Con­
sequently, the use of the T scheme does not bring any further effect here. 

Example 1. Let us evaluate approximately 

1°·8 sin x 
I= -- dx. 

0 X 

(a) Romberg's formula: The corresponding T-scheme is 

0.758 678 
0.768 757 
0.771 262 

0.772 116 
0.772 097 0.772 096 

(6) 

Since six-digits accurate value of I is 0.772 095, the entry T2o is really better than 
any of approximations by trapezoidal rule used for its construction. 

(b) Gauss' formula with n = 2: First, we transform the interval (0, 0.8) into the 
interval (-1, 1) by the transformation y = (2x- 0.8)/0.8. We obtain 

Using ( 4), we have 

I= 0.4 !1 

-1 

sin o.8y+0.8 
0.8y+~.8 dy . 

2 

I3 = 0.772 096 ' 

thus again a very good result. 

Example 2. Let us approximate 

I= 11r sin2 x dx 

by Romberg's method. (Note that the exact value of this integral 1s 1r /2 
1.570 796 ... ). From the T-scheme, 

0 
1.570 796 
1.570 796 

2.094 395 
1.570 796 1.535 890 

we see that, in case of periodic functions, the trapezoidal rule really converges at 
least as well as Romberg's method. 



13.14 mTEGRALCALCULUSOFFUNCTIONSOFONEV~LE 559 

13.14. The Lebesgue Integral 

In pure as weH as applied mathematics, the so-called Lebesgue integral became a 
powerful tool. In this paragraph, the definition and fundamental properties of this 
integral are given, in a surveyable form, for the case of functions of one variable. At 
the end, the extension of these concepts and results to the more-dimensional case is 
briefly sketched. 

In what follows, only bounded sets of points (in E1, or in EN, respectively) are 
considered, what is quite sufficient for the aim of this book. 

Let M be a set of points in E 1 . Let us remind (see §22.1) that M is called bounded 
in E1 if it lies entirely in an interval (-R, R) with R sufficiently large. It is called 
open if every point x E M is an interior (= inner) point ofthisset and closed if it 
contains all its points of accumulation. The union of an arbitrary number of open 
sets is an open set, the intersection of an arbitrary nurober of closed sets is a closed 
set. Two sets are called disjoint if their intersection is an empty set (i.e. if they have 
no common points). 

Theorem 1. Every nonempty bounded open set M (in E1) can be obtained as 
a union of a finite or countable set of disjoint open intervals Ik the endpoints of 
which do not belong to M. 

Theorem 2. Every nonempty bounded closed set N is either a closed interval, 
or it can be obtained from a closed interval by removing a finite or countable set of 
disjoint open intervals Ik the endpoints of which belong to N. 

REMARK 1. The definition of the Lebesgue integral is based an the concept of 
the so-called Lebesgue measure which is a suitable generalization of the concept of 
length. Ta every so-called Lebesgue measurable set M the so-called Lebesgue measure 
mM ( or JLM, or mes M, or meas M) is assigned with properties similar to those 
of the length (additivity, etc.). The measure of an empty set is equal to zero, by 
definition. The measure of a bounded interval (open, closed, or half-open) is equal 
to its length. Thus m(a, b) = m[a, b] = m(a, b] = m[a, b) = b- a. If M is the open 
set discussed in Theorem 1 and h the open intervals from the same theorem, we 
define 

mM =I: ml~c. 
k 

(1) 

Thus, by (1), the Lebesgue measure of an arbitrary nonempty bounded open set 
is defined (uniquely, as can be shown), as the sum of the lengths of open intervals 
h by which that set is constituted. (In accordance with Theorem 1, this sum can 
be finite or infinite; thus, the summation in (1) runs between the limits k = 1 and 
k = n, where n isapositive integer, or between 1 and oo.) 

Now, Iet N be a closed set mentioned in Theorem 2, I the closed interval and 
Ik the open intervals from the same theorem. Similarly, as above, we define 

mN = ml- I: mlk . 
k 

(2) 
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In this way, the measure of an arbitrary nonempty bounded closed set is uniquely 
definedo 

Now, let M be an arbitrary bounded set which need be neither open nor closedo 

Definition 1. By an outer Lebesgue measure m* Mofa nonempty bounded set 
M we understand the greatest lower bound of measures of all bounded open sets 
P which contain the set M, thus 

m* M = inf mP, P bounded open sets 0 

MCP 
(3) 

By the inner Lebesgue measure m.M of this set we call the least upper bound of 
measures of all bounded closed sets Q contained in M, thus 

m.M = sup mQ, Q bounded closed sets 0 

QCM 

For every bounded set M we have 

0 ~ m.M ~ m*M 0 

(4) 

(5) 

Definition 2. lf m.M = m* M we say that M is Lebesgue measurable (briefly 
measurable); the common value of the outer and inner measures is called the 
{Lebesgue) measure mM of this set, 

mM=m*M=m.M 0 (6) 

Example 1. It can be shown that 

(i) if M is a set consisting of a finite number of points, then its measure is equal 
to zero; 

(ii) the set of all points x E [a, b] with rational coordinates is also of zero measure; 

(iii) the same holds for every countable set of points (which even need not be 
bounded); 

(iv) there exist sets which are not countable and are of measure zeroo 

REMARK 20 It can be shown that there exist sets which arenot measurableo How­
ever, the way how to construct such sets is rather difficulto The dass of (Lebesgue) 
measurable sets ( as well as of measurable functions, see below) is very broado It can 
be said - very roughly speaking - that all sets ( and functions) we meet in applica­
tions are measurableo 

REMARK 3o In mathematics as weil as in applications it is customary to say 
briefly "almost everywhere" instead of the more lengthy "with the possible excep­
tion of points constituting a set of measure zero" o For example, if we say that a 
function f is continuous in [a, b] almost everywhere, it is to be understood that ei-
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ther it is continuous in the whole interval [a, b], or that it is discontinuous at some 
points ofthat interval, but that these points constitute a set of measure zero. 

Definition 3. Let f be a (real) function defined on a (bounded) measurable 
set M. If the set of all points x E M, for which f(x) < C, is measurable for every 
choice of C, we say that the function f is (Lebesgue) measurable an M. 

In particular, every function continuous or piecewise continuous in an interval 
[a, b] is measurable on [a, b]. 

REMARK 4. If f and gare measurable functions on M, then also the functions 
af + bg (a, b arbitrary real numbers) and fg are measurable on M. Measurability 
of f implies measurability of lfl; the converse is not true, in general. 

REMARK 5 {The Lebesgue Integral of Bounded Measurable Functions). While in 
the case of the Cauchy-Riemann definition of an integral, the basic interval [a, b] 
is divided into "small parts" when upper and lower integral sums are constructed, 
in the case of the Lebesgue definition the partition into "small parts" concerns the 
range of the given function: 

Let, on a (bounded) measurable set M a measurable function f be given, 
bounded on M 

A ~ f ( x) ~ B for all x E M . (7) 

y 

X 

Fig. 13.7 

(See Fig. 13.7, where M = [a, b] has been chosen for the sake of simplicity). Let a 
partition d of the interval [A, B] by the points 

A = Yo < Yl < Y2 < · · · < Yn-l < Yn = B (8) 

be given. Let us denote by Ek the set of such points x E (a, b] for which Yk-l ~ f(x) < 
Yk and let mEk be its (Lebesgue) measure. (See Fig. 13.7, where the set E3 consisting 
of two intervals is indicated.) Let us note that measurability of Ek follows from the 
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assumption on measurability of the function f. Let us construct the upper, or lower 
integral sum S(d), or s(d), respectively, corresponding to the given partition d, 

n n 

S(d) = L YkmEk , s(d) = L Yk-lmEk . (9) 
k=l k=l 

It can be shown- and this is one of the basic results of the Lebesgue theory - that 
for every bounded measurable function on M, the greatest lower bound of the set 
of all upper integralsums (obtained when considering all possible partitions of the 
interval [A, B]) is equal to the least upper bound of the set of alllower integral sums, 
i.e. that 

inf S(d) = sup s(d) . 
d d 

(10) 

Definition 4. The common value (10) of the greatest lower bound of upper 
integral sums and of the least upper bound of lower integral sums is called the 
Lebesgue integral of a bounded measurable function on a (bounded) measurable set 
M. We write 

JM f(x)dx. (11) 

Or, to distinguish this integral from an integral according to another definition, e.g. 
from that by Cauchy-Riemann, we denote it by 

(L) JM f(x) dx. (12) 

In special cases we write 

1b f(x) dx , (13) 

etc. We also speak about a Lebesgue integrable (L-integrable) function in contrast to 
a Riemann integrable (R-integrable) one, etc. 

Thus: Every bounded Lebesgue measurable function is (Lebesgue) integrable. 

REMARK 6. As concerns bounded functions, the Lebesgue integral represents a 
substantial generalization ofthat of Riemann. The first generalization consists in 
the fact that the domain of integration can be an arbitrary bounded measurable set. 
Further, any bounded R- integrable function is L-integrable (while both integrals 
- the Riemann and the Lebesgue one- are equal). The converse is not true: Let us 
consider the so-called Dirichlet function defined in the interval [0, 1] as follows: 

f(x) = 1 if x is rational, 
(14) 

f( x) = 0 if x is irrational . 
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This function is not Riemann integrable, because the upper integral is equal to one, 
while the lower one equals to zero. On the other hand, the function (14) is Lebesgue 
integrable (the set of rational x E [0, 1] is of measure zero), the integral is equal to 
zero. 

In applications, a frequent case isthat the functions in question are both Riemann 
and Lebesgue integrable. Their values as well as methods of their evaluation are then 
the same. 

REMARK 7 (The Lebesgue Integral of Unbounded Functions}. Let f be a measurable 
function on a (bounded measurable) set M, unbounded, in general. First, let us 
consider the case f( x) ~ 0 on M. Choose an arbitrary K > 0 and define, on M, a 
function fK by 

!K(x) = f(x) if f(x) ~ I< , 

!K(x) =I< if f(x) >I< 

(Fig. 13.8). Because f is measurable on M (by assumption), so is the function fK· 
Further, since fK is bounded, the Lebesgue integral (11) exists, 

Fig. 13.8 

JM fK(x) dx. (15) 

We define 

r f(x) dx = lim r fK(x) dx . 
jM K-.oo jM 

(16) 

The limit in ( 16) exists (since the integral (15) is an increasing function of K). If 
this limit is finite, we say that the integral (16) is convergent. If it is infinite, we say 
that it is divergent and write 

For example, 

JM f(x) dx = +oo . 

1 
- dx = +oo, 
X 

(17) 
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because here ( assuming K > 1 already) 

and 

11 11/K !1 fK ( x) dx = 
0 

K dx + 
1/K 

! 1 1 
= 1 + - dx = 

1/K X 

1 
-dx= 
X 

1 
=1-ln K =l+lnK 

lim (I+ ln K) = +oo . 
K-+oo 

13.14 

Now, let f be an arbitrary unbounded measurable function on M, not necessarily 
nonnegative. Let us divide it into its "positive" and "negative" parts, 

f=f+-f-' (18) 

where { /(•) if f(x)~O, 

f+(x) = 0 
if f(x) < 0 , 

(19) 

!-(•) = { 0 

if f(x) ~ 0 , 

-f(x) if f(x) < 0 . 
(20) 

Since the functions (19), (20) are nonnegative, there exist integrals in the sense (16), 

JM f+(x)dx, 

{ f_(x) dx , 
jM 

(21) 

(22) 

each of them being either convergent, or divergent with the value +oo. In accordance 
with (18) we define 

JM f(x) dx = JM f+(x) dx- JM f_(x) dx (23) 

provided the sum on the right-hand side has a sense, thus except the case that both 
integrals (21) and (22) have the value +oo. In that case we say that the integral 

JM f(x)dx (24) 
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does not exist. If both integrals (21) and (22) are convergent (thus have a finite 
value), we say that the integral (24) ( defined by the sum (23)) is convergent. If (21) 
is divergent and (22) convergent, or conversely, we say that the integral is divergent 
and has the value +oo, or -oo, respectively. 

REMARK 8. The Lebesgue integral has many properties similar to those of the 
Riemann one. For example, 

f(x) ~ g(x) in M ===? JM f(x) dx ~ JM g(x) dx , (25) 

I JM f(x) dxl ~ JM lf(x)l dx , (26) 

JM [af(x) + bg(x)] dx = a JM f(x) dx + b JM g(x) dx (27) 

( a, b arbitrary real numbers ), provided the sum on the right-hand side of (27) has a 
sense, i.e. except the case that this sum is of the form +oo + ( -oo ), or -oo + ( +oo ). 

However, some properties of the Lebesgue integral are substantially different from 
those of the Riemann one, and this is why in modern mathematical disciplines the 
Lebesgue integral is almost exclusively used. This concerns, in particular, functional 
spaces, typical example of which are the L2-spaces (Chaps. 16 and 22) and the 
Sobolev spaces (Chap. 22), where application of the Lebesgue integral plays a fun­
damental role in the question of their completeness (Chap. 22), upon which further 
theoretical considerations as weH as applications are based. The Lebesgue integral 
plays also an important role in "classical" problems of analysis (see, e.g., theorems 
on interchange of Iimit and integration, §15.1 ). 

Definition 5. We say that a function f, measurable on a set M, is (Lebesgue) 
square integrable on M, if the integral 

(28) 

is convergent (=finite). 

Example 2. Every bounded measurable function on an interval [a, b] is square 
integrable on this interval. In particular, every function which is continuous, or 
piecewise continuous in [a, b] is square integrable on that interval. An example of 
an unbounded function which is square integrable on [0, 1], is the function 

f(x) = x-1/3 ; 

we have 

(29) 
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On the other hand, the function g(x) = x- 112 is not square integrable on that 
interval, since 

(30) 

REMARK 9. It can be shown that convergence of the integral (28) implies con­
vergence of the integral 

JM lf(x)ldx 

and, by (26), also the convergence of the integral 

JM f(x) dx . 

Further, if f and g are square integrable on M, then 
(i) an arbitrary linear combination 

of them is square integrable on M, 
(ii) the integral 

af +bg 

r f(x) g(x) dx 
JM 

(31) 

(32) 

(33) 

(by which the scalar product in the space L2 is defined, see § 16.1), is convergent 
( = has a finite value). 

As concerns the above mentioned "classical" problems, we have, using the 
Lebesgue integral: 

Theorem 3. If a sequence Un} of measurable functions converges almost ev­

erywhere on M (Remark 3) to a function f (then also f is measurable on M, as 

can be shown) and lfn(x)l ~ K for all n and all x E M, then we have (even if the 

convergence is not uniform) 

lim 
n-+oo 

JM fn(x) dx = JM f(x) dx . (34) 

By Remark 6, this theorem implies: 

Theorem 4. If the sequence Un} of Riemann integrable functions converges in 

an interval [a,b] to a Riemann integrable function fand if lfn(x)l ~ K holds for 

all n and all x E [a, b], then 

lim 
n-+oo 

1b fn(x) dx = 1b f(x) dx . (35) 

REMARK 10 (The Lebesgue Integral of Functions of More Variables}. The defini-
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tion of the Lebesgue integral of function of N variables is similar to that of functions 
of one variable. 

Let us show the basic ideas of the theory for the case N = 2. For N > 2 the 
procedure is similar. 

Instead of an open interval ( a, b), the open square Q = ( a, b) x ( a, b) is considered 
in the two-dimensional case (the open N-dimensional cube (a, b) x (a, b) x ... x (a, b) in 
the N -dimensional case). A certain modification is necessary when defining the mea­
sure of a (nonempty) bounded open set, because- in contrast to the one-dimensional 
case - it is not possible here to express every such set as a union of a finite or count­
able set of disjoint open squares. However, it is possible to express it as a union 
of a countable set of closed squares without common interior points. lf we define 
the measure of a square to which there may belong a part of its boundary, or the 
whole boundary, as the square of its side, then the measure of a nonempty bounded 
open set can be defined as the sum of measures of the just mentioned closed squares 
which constitute this set (independently of the choice of its decomposition, as can 
be shown). (A similar procedure could have been used also for the case N = 1, of 
course.) The measure of a nonempty bounded closed set M can then be defined 
(uniquely, again) as the difference of the measure of an open square M1 in which 
the set M is contained and of the measure of the ( open) set M 1 - M. On the basis 
of measures of a nonempty bounded open, or closed sets it is possible to define, 
successively, the outer and inner measures of an arbitrary nonempty bounded set, 
its Lebesgue measure, measurable functions, the Lebesgue integral of a measurable 
function (first for bounded, then for unbounded functions) and square integrable 
functions in a quite similar way as it has been done in Definitions 1-4, Remark 7 
and Definition 5 for the case of functions of one variable. 

As concerns methods of evaluation of the Lebesgue integral for the case N ~ 2, 
it is possible to apply, e.g., the Fubini Theorem which may be formulated in a much 
more general way than in the case of the Riemann integral. See, e.g., [133]. 

13.15. The Stieltjes integral 

When solving some technical ( as weil as mathematical) problems it is useful 
to apply the so-called Stieltjes integral. Here we mention briefly its definition and 
fundamental properties and show an example of its application. 

Let f(;c) and g(:c) be two (finite real) functions defined in the interval [a, b]. Let 
us divide this interval by the points 

a = :Co < ;cl < :c2 < ... < :Cn = b 

into n subintervals, in each of them choose an arbitrary point ek and construct the 
sum ( depending Oll the chosen partition d and Oll the choice of the points ek) 
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n 

t7(d,ek) =I: f(ek) [g(xk)- g(xk-1)] . (1) 
k=1 

By the norm v( d) of the chosen partition we understand the maximallength of the 
intervals considered, i.e. 

v(d) = max (xk- xk-1) . 
k 

Let, for v(d) --+ 0, the sums (1) converge to a (finite) number I, independently of 
how the points ek have been chosen in individual subintervals. In more detail: Let 

such a number I exist that to every c: > 0 such a 8 > 0 can be found that for every 

partition d of the interval [a, b] with v( d) < 8 and for every choice of the points 

ek E [xk-1,xk] we have li -t7(d,ek)i < c:. Then we say that I is the Stieltjes integral 
of the function f with respect to the function g and write 

I= 1b f(x) dg(x) , briefly I= 1b f dg . (2) 

REMARK 1. For g(x) = x we get the Cauchy-Riemann integral as a special 
case. Of course, from the point of view of applications, the Stieltjes integral is most 
interesting in the case when the function g has jumps ( discontinuities of the first 
kind, Definition 11.3.5, p. 368) in the interval considered. See Theorem 3 below. 

Theorem 1. If the function f is continuous in the interval [a, b] and if the 

function g is of bounded variation in this interval (Definition 11.3.7, p. 370), then 

the Stieltjes integral (2) exists. 

Theorem 2. If f is continuous in [a, b] and if g has a continuous derivative in 

that interval, then the integral (2) exists and the relation 

1b f dg = 1b f(x) g'(x) dx (3) 

holds. 

Theorem 3. If f is continuous in [a, b] and if g and g' are piecewise continuous 

in that interval, then the interval (2) exists. Let us denote by 

a = Xo < X1 < X2 < ... < Xp = b 

points of discontinuity of the function g in [a, b], by Sk the jump of this function at 

the point Xk, i. e. 

(4) 

so= g(a+)- g(a), sp = g(b)- g(b-). 
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Then 

jb jb p 
f dg = f(x) g'(x) dx + L f(xk) Sk . 

a a k=O 

{5) 

Thus the Stieltjes integral is the sum of a Riemann integral and of the jumps of 
the function g at the points Xk multiplied by the values of the function f at these 
points. 

I I I I I I I I I I I q I I I I I II! I I I I q 
0 L 0 a l 

Fig. 13.9 Fig. 13.10 

Example 1. Let us consider a bar of length l loaded by a continuous Ioad 
q(x), 0 ;§; x ;§; l {Fig. 13.9 where a bar with a constant Ioad is illustrated). Let 
us denote by Q(x) the totalload in the interval [O,x], thus 

Q(x) = Lc q(t) dt . {6) 

Then the total moment (all over the bar) with respect to the origin 0 (the reactions 
are not considered) can be written in the form 

M = 1' X dQ; {7) 

in fact, by Theorem 2 we have 

{01 !' Jn x dQ = Jo xq(x)dx. 

Let, moreover, a concentrated load P be acting at the point a (Fig. 13.10). The 
function {6) by which the totalload in the interval [0, x] is given, changes now into 

Q(x) = 1x q(t)dt if x < a, 

Q(x) = 1x q(t)dt+P if x ~ a. 

Also in this case M can be expressed in the closed form {7), 

M= 1' X dQ, 

what is useful in many considerations. In fact, by {8) and Theorem 3 we have 

{8) 
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what is the well-known expression forM. 

REMARK 2. More general than the Stieltjes integral is the so-called Lebesgue­
Stieltjes integral 

(integral of the function f with respect to the measure J.l). See e.g. [133]: This concept 
can well be extended to the case when f is to be integrated over a more general set 
than an interval, as well as to the more-dimensional case. 

13.16. Survey of Some lmportant Formulae from Chapter 13 

(See also Theorem 13.1.2, §§13.5 and 13.10 and some formulae in §§13.11 and 
13.12. See also applications to geometry and physics in §14.9.) 

(Theorem 13.2.1). 

2. j u'vdx=uv- j uv'dx or j vdu=uv- j udv 

(integration by parts, Theorem 13.2.2). 

3. j g(h(x)) h'(x) dx = j g(z) dz, j f(x) dx = j f(cp(z)) cp'(z) dz 

(integration by substitution, Theorems 13.2.3, 13.2.4). 

4. d 1:c d 1b dx a f(t)dt = f(x), dx :c f(t)dt = -f(x) 

(Theorem 13.6.12, Remark 13.6.8). 

5. 1b f(x) dx = F(b)- F(a) (Theorem 13.6.13). 

6. 1b [cd1(x) + c2f2(x)] dx = c1 1b !1(x) dx + c21b !2(x) dx 
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(Theorem 13.6.3). 

7. 1b u'v dx = [uv]~ -1b uv' dx or 1b v du= [uv]~ -1b u dv 

(integration by parts, Theorem 13.7.1). 

8. 1b g(h(x)) h'(x) dx = rh(b) g(z) dz ' 
a }h(a) 

9. 

10. 

11. 

12. 

13. 

14. 

1b f(x) dx = lß f(<p(z)) <p1(z) dz, where <p(a) = a , <p(ß) = b 

(integration by substitution, Theorems 13.7.2, 13.7.3). 

1a f(x) dx = -1b f(x) dx . 

1a f(x)dx = 0. 

1: f(x) dx = 2 1a f(x) dx if f is even, 

= 0 if f is odd (Remark 13.6.11). 

d 1b rb of 
da a f(x, a) dx =ja oa (x, a) dx (Theorem 13.9.2). 

d 1'1'2(a) 1'1'2(a) of 
d~ f(x, a) dx = -;:;-- (x, a) dx + <p~(a) j(<p2(a), a)-

"' cp 1 (a) cp,(a) ua 
-<pi ( a) f( <p1 ( a ), a) (Theorem 13.9.4). 

1b rb p 

a f(x) dg(x) =Ja f(x) g'(x) dx + ~ f(x~e) s~e 

(Theorem 13.15.3). 
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14. INTEGRAL CALCULUS OF FUNCTIONS 

OF TWO AND MORE VARIABLES 

By KAREL REKTORYS 

References: [4], [26], [31], [54], [59], [68], [91], [96], [112], [119], [122], [123], [127], 
[142], [146], [148], [158]. 

When using the concepts of a curve, a surface, a region and a function in this 
chapter, we suppose that they are of the type defined in §14.1. Closed domains (i.e. 
which contain the boundary S) are denoted by a bar: 0 = n + S. 

14.1. BasicDefinitions and Notation 

Definition 1. By a simple finite piecewise smooth curve (arc) in the xy-plane 
we mean a set of points (x, y) given in parametric form by the equations 

x = <,o(t), y = 1/J(t) (a ~ t ~ ß) , (1) 

where 
1. <,o(t) and 1/J(t) are continuous in [a, ß] and have piecewise continuous derivatives 

in [a,ß]; 
2. x'(t) and y'(t) do not vanish simultaneously for any t E [a, ß] (at points of 

discontinuity and at the end points of the interval [ a, ß] we understand here by x' ( t) 
and y'(t) the values of their continuous extensions from the right or the left); 

3. for any pair t1 f t2 from [a, ß] (with the possible exception of the pair t 1 = a, 
t2 = ß), the equations 

do not simultaneously hold. 

REMARK 1. Condition 3 expresses the simplicity of the curve, which means that 
the curve does not intersect itself. If <,o( a) = <,o(ß) and if at the same time 1/J( a) = 
1/J(ß), we say that the curve is closed. 

The terms curve and arc are not uniformly used in the literature. Often the term 
• curve is used for a closed curve and the term arc for an open curve. 
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The continuity of functions cp, 'lj; which is required in condition 1 expresses the 
fact that the curve is connected; the piecewise continuous derivatives express that 
it consists of a finite number of arcs with continuously changing tangent. If the 
derivatives are continuous everywhere (and in the case of a closed curve moreover 
the relations cp'(a) = cp'(ß), '!f;'(a) = '!f;'(ß) hold), then the curve has everywhere a 
continuously changing tangent and is said tobe smooth. Condition 2 excludes various 
singularities, e.g. the "curve" x = a, y = b (degenerating into a point), etc. 

The above mentioned curves are rectifiable, i.e. they have a finite length 

Thus, geometrically, a simple finite piecewise smooth curve is a curve of finite 
length, not intersecting itself and consisting of a finite number of arcs with continu­
ously changing tangent. In applications, we deal almost exclusively with such types 
of curves ( as far as curves of finite length are considered). 

Example 1. The circumference of a square is a simple finite piecewise smooth 
closed curve. The circumference of a circle or of an ellipse is a simple finite smooth 
closed curve. 

In a similar way a simple finite piecewise smooth curve in three-dimensional space 
can be defined, given parametrically by the equations 

x = cp(t) , y = 'if;(t) , z = x(t) (a ~ t ~ ß) . 

REMARK 2. For x = t we get from (1) y = 'if;(x) and the curve is the graph of 
the function y = 'if;(x). 

REMARK 3. A rather more general concept is the so-called Jordan curve in the 
plane which is a simple rectifiable closed curve (not necessarily smooth or piecewise 
smooth). Every Jordan curve divides the plane into two parts, the bounded part of 
which is said to be the interior of the curve (the so-called Jordan region), and the 
unbounded part the exterior of the curve. 

Definition 2. Let n be a bounded region in the plane (see Definitions 22.1.6 and 
22.1.9; n need not be simply connected). If its boundary consists of a finite number 
of simple finite piecewise smooth closed curves, then the region n is said to be of 
type A. 
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A closed region of type A is defined similarly. 

REMARK 4. In applications we almost exclusively meet regions of type A, as far 
as bounded regions are considered. 

Examples: the square, the polygon, the interior of an ellipse, the annulus, etc. 

Definition 3. Let a function f(x, y) be defined on a region D of type A. The 
function f(x, y) is said tobe of typeBin D, if it is bounded in D and continuous in 
n with the possible exception of a finite number of points or of points constituting 
a finite number of simple finite piecewise smooth curves. Similarly we define the 
function f ( x, y) of type B in a closed region (2 of type A. 

REMARK 5. un is a closed region oftype A, then obviously every function f(x, y) 
which is continuous in n is of type B in IT. 

REMARK 6. Clearly, if f(x, y) is of type B in IT, it is of type B also in n. Con­
versely: If f( x, y) is of type B in n and if we define it on the boundary of the region 
n in such a way that it remains bounded (otherwise arbitrarily), then f(x,y) is of 
type B in IT. 

Example 2. The reetangle IT ( -a ~ x ~ a, -b ~ y ~ b) 1s a closed region of 
type A. We define the function f(x,y) as follows (Fig. 14.1): 

y 

X 

Fig. 14.1. 

f(x, y) = 1 for 0 ~ x ~ a , 0 ~ y ~ b , 

f(x, y) = 0 for the other points of the reetangle IT . 

The function f(x, y) is of typeBin IT, for it is bounded and continuous everywhere 
in IT with exception of the line segments 

x = 0 , 0 ~ y ~ b and y = 0 , 0 ~ x ~ a . 
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REMARK 7. In a manner similar to that of Definition 1, we define a simple finite 
piecewise smooth surface 

x=cp(u,v), y='I/J(u,v), z=x(u,v). (2) 

The interval [a, ß] in Definition 1 is replaced here by a closed region n of type A 
(Definition 2) in which the functions (2) are continuous and have piecewise con­
tinuous (Remark 12.1.8) partial derivatives of the first order. The condition 2 in 
Definition 1 is replaced by the condition that at no point ( u, V) in the region n the 
determinants 

ax ax ax ax ay ay 

au ' av au ' av au ' av 
(3) 

ay ay az az az az 

au ' av au ' av au ' av 

vanish simultaneously. 

REMARK 8. Intuitively: A simple finite piecewise smooth surface is a surface of 
finite area, not intersecting itself and consisting of a finite number of parts with a 
continuously changing tangent plane. 

REMARK 9. If in (2) x = u, y = v, we obtain the equation of the surface in 
the explicit form z = x(x, y). This surface is naturally simple, finite and piecewise 
smooth if the function x(x, y) is continuous in n and has there piecewise continuous 
partial derivatives of the first order. 

Definition 4. A bounded three-dimensional region 0 (not necessarily simply 
connected) is said to be of type A if its boundary is formed by a finite number of 
simple finite piecewise smooth closed surfaces. Similarly we define a closed three­
dimensional region of type A. Instead of "three-dimensional region of type A" we 
shall often say "solid of type A". 

Example 3. Example of solids of type A are the cube, the sphere, the ellipsoid, 
etc. 

Definition 5. Let a function u = f(x, y, z) be defined in a solid 0 of type A. 
If f(x,y,z) is bounded in n and, at the sametime continuous with the possible 
exception of a finite number of points or of points constituting a finite number of 
simple finite piecewise smooth curves or surfaces, we say that f(x,y,z) is oftype B 
in 0. Similarly we define the function f(x, y, z) of typeBin a closed solid n. 
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REMARK 10. Remarks sirnilar to Remarks 5 and 6 hold in this ease as well. 

REMARK 11. In the following text we use the concepts of a curve, a surface, a 

region and a function in the above mentioned sense (we eonsider regions of type A, 

funetions oftype B, ete.). 

REMARK 12. Ifwe say that f(x,y) is continuous on a curve c, we mean that the 
funetion f(x, y) is eontinuous at eaeh point (x 0 , y0 ) of the eurve c in the usual sense 
(aeeording to the E- and 6-definition), with the differenee that in the 6-neighbourhood 
of the point ( xo, Yo) in question we eonsider only the points of the eurve c. Sirnilarly 
we eonsider the continuity of the function f( x, y, z) on a surface. 

14.2. The Double Integral 

Let a eontinuous funetion z = f( x, y) be defined in a closed reetangle 
R (a ~ x ~ b, c ~ y ~ d), let k ~ f(x, y) ~ K on R. Let us divide the interval [a, b] 

into subintervals .6.x1, ... , .6.xm, the interval [c, d] into subintervals .6.y1, ... , .6.yn 
(as in Fig. 14.2, where we have ehosen m = 4, n = 3). Weshall denote the closed 
reetangle with the base .6.x; and the height .6.yi by R;j. Let the just eonstrueted 
partition of the reetangle R into reetangles R;j be denoted by p. Let us eonstruet 
the so-ealledupper and /ower integral (or Darboux) .sums S(p), s(p), eorresponding 
to that partition, 

(1) 

where K;j, or k;j is the maximal, or the minimal value of the funetion f( x, y) in R;j, 

respectively, and .6.x; .6.yk is the area of the reetangle R;j. The set of all upper sums 
for all possible partitions p is bounded below (for the inequality S(p) ~ m(b- a)x 
X ( d- c) always holds). Its greatest lower bound (Definition 1.3.3) is ealled the upper 

double integral of the funetion f(x, y) in R, 

i~f S(p) = J l f(x, y) dx dy ; 

the least upper bound of the set of alllower sums, 

s~p s(p) = j h f(x,y)dxdy, 

is ealled the lower double integral. 
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R3z 

0 a ~X1 ~X2 ~X3 

Fig. 14.2 

Similarly the upper and the lower integrals are defined in the ease where we 
assume mere boundedness instead of eontinuity of f( x, y) in R. Then in the sums 
( 1) K;j, or k;j need not be the maximum, or minimum, but, in general, the least 
upper bound, or the greatest lower bound of the values of the funetion f(x, y) in 

R;k, respeetively. 

Definition 1. If the upper and lower integrals are equal, then their eommon 
value is ealled the double integral of the function f(x, y) in ( or on, or over) the 

reetangle R, 

j l f(x,y)dxdy, (2) 

and the funetion f(x, y) is said tobe integrable in (or on, or over) R in the Gaueky­

Riemann sense. 

RE MARK 1. The geometrie meaning of the integral ( 2) for the ease that f ( x, y) 
is continuous and positive in R: (2) is the volume of the solid whose lower base is 
formed by the reetangle R, upper base by the surfaee z = f( x, y) above the region 
R and the lateral surfaee by lines parallel to the z-axis (Fig. 14.5, §14.3). 

Theorem 1. Every function z = f(x, y) which is continuous in R (a ~ x ~ b, 

c ~ y ~ d) is integrable in R. 

Theorem 2. Every function f(x, y) which is of type B in R (Definition 14.1.3) 
is integrable in R. 

REMARK 2. Theorem 2 offers the possibility of defining the integral for other 
regions than a reetangular one. Let Q be a closed region of type A (Definition 14.1.2) 
and let a funetion f(x, y) of type B be defined in Q. As n is a bounded region, we 
ean eonstruet a closed reetangle R (a ~ x ~ b, c ~ y ~ d) in whieh this region is 
eontained (Fig. 14.3). Let us define the funetion g(x,y) in Ras follows: 

g(x, y) = f(x, y) for (x, y) E Q, 

g(x, y) 0 for other points of R (shaded area in Fig. 14.3). (Thus, the function 
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g(x, y) coincides with f(x, y) in n and at other points of R is equal to zero.) We 
define 

j in f(x,y)dxdy = j l g(x,y)dxdy. (3) 

Thus, in this sense, every function of type B is integrable on n. In particular, 
every function continuous in n is integrable on n. 

Fig. 14.3. 

REMARK 3. The geometric meaning of the integral j l f(x, y) dx dy if f(x, y) 

is continuous and positive in n is that it is the volume of the body the "lower base" 
of which is formed by the region n, the "upper base" by the surface z = f(x, y) and 
the lateral surface by lines parallel to the z-axis. 

REMARK 4. The integral 

j in f(x,y)dxdy 

may be defined in many other ways different from that used above. Another way of 
defining the integral is clear from Fig. 14.4. In the sums (1) only such rectangles R;j 

occur which lie entirely in the region n (shaded area in Fig. 14.4). 
Other definitions do not use a reetangular network, but divide the region n into 

(small) regions which are in a certain sense arbitrary. 

The definition of the Lebesgue integral is based, as in the case of the one­
dimensional integral, on the definition of the measure of a two-dimensional region. 
See Remark 13.14.10. 

We give now the basic theorems for the Cauchy-Riemann integral. First we de­
fine: 

Definition 2. By the norm v(p) of the partition p we mean the greatest of the 
lengths of the intervals .6-x;, .6-yk, 
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y 

/ %'; w w. \ 
/ @ ~ w ~ ~ J 

@ ~ w ;;/'~ ~ / 
I~ @ ~ w m/ / 
\f@ w ~ / 

w / 
........ _,..... 

Fig. 14.4. 0+------------x 

REMARK 5. Let us choose, in every reetangle R;;, an arbitrary point P;;(e;,1J;). 
Form the sum 

u(p) =I: f(e;, 111) ßx; ßy1 
iJ 

depending on the chosen partition p and on the choice of the points (e;, 1Ji) in Rij. 

Theorem 3. Let p1 ,p2, ... be a sequence of partitions such that 

lim v(pn) = 0 . 
n--+oo 

Then, if f(x, y) is integrable in R, we have 

!, { f(x,y)dxdy = lim S(pn) = lim s(pn) = lim a(pn), k n--+oo n--+oo n--+oo 

i.e. the integral is the Iimit of the upper sums, of the lower sums, or of the sums u, 
respectively, if the norm of the partition cbnverges to zero. Regarding the sums u, 
the choice of the point (ei, 1Ji) in R;; is immaterial. 

It follows from Remark 2 that a similar theorem holds true for an arbitrary region 
oftype A. 

Theorem 4. lf f(x, y) is integrable in a region Q of type A (Definition 14.1.2), 
then it is integrable also in every part of the region Q which is of type A. IJ, in 
particular, 0 = 01 + 0'2, where n,n1,n2 are regions oftype A and f21,f22 have no 
common points, then 

Jl f(x,y)dxdy= Jl
1 

f(x,y)dxdy+ Jl
2 

f(x,y)dxdy. 

Theorem 5. If the functions !l(x,y), f2(x,y) are integrable in n, then the 
functions 
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are also integrable in n and the relations 

hold. 

j ln [cd1(x, y) + c2h(x, y)] dx dy = 

= c1 j l fi(x,y) dxdy + c2 j l h(x,y) dxdy, 

1j l fi(x,y)dxdyi ~ J fni!I(x,y)idxdy 

The equation 

J l fi(x,y) h(x,y)dxdy = j l fi(x,y)dxdy. j l h(x,y)dxdy 

14.2 

does not hold, in general! A sufficient condition for the integrability of the function 

fi(x, y) 
h(x,y) 

is that the functions / 1 and h are integrable and either 

0 < k ~ h(x, y) , or h(x, y) ~ I<< 0 , 

i.e. if h is positive and bounded below in Q by a positive constant or negative and 
bounded above by a negative constant, respectively. 

Theorem 6. Let f(x, y), g(x, y) be integrable in Q, 

k~f(x,y)~I<, g(x,y)~O in Q. 

Then 

k j l g(x,y)dxdy ~ j l f(x,y) g(x,y)dxdy ~ ]{ J k g(x,y)dxdy. 

Theorem 7 (Mean- Value Theorem). If the function f(x, y) is continuous in a 
closed region Ü of type A, then there exists at least one point (x0 , y0 ) E Ü such that 

j l f(x,y)dxdy = Pf(xo,Yo), 
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where p is the area of the region n. 

Theorem 8. Neither the integrability ofthe function nor the value ofthe integral 

is changed if the value of the function f( x, y) is changed at a finite number of points 

or on a finite number of piecewise smooth finite curves. 

14.3. Evaluation of a Double Integral by Repeated Integration 

Theorem 1 (often called Fubini's Theorem). Let R be a closed reetangle 

a ~ x ~ b,c ~ y ~ d. If f(x, y) is of type B in R (see Definition 14.1.3), then 

ff j(x, y) dx dy = f [ft(x, y) dy J dx = f [ft(x, y) dx J dy. (1) 

REMARK 1. Thus, in particular, Theorem 1 holds for functions continuous in R. 

It should be noted that in the general case the function 

F(x) = ft(x, y) dy 

need not be defined for a/1 x E [a, b] (the function f(x, y) need not be integrable as a 

function of the variable y for all these x ). The same holds for the corresponding integral in 

the last terrn in (I). 

REMARK 2. In accordance with (I) the integral 

ffj(x, y) dx dy is often denoted by fft(x, y) dx dy or ff!(x, y) dy dx. 

Instead of 

we employ the notation 

respectively. 

REMARK 3. Geometrie interpretation of Theorem 1 (Fig. 14.5; for simplicity 

let us suppose thatf(x, y) is continuous and positive inR; see Remark 14.2.1). For 

a constant x, the integral 
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lf(x, y) dy = F(x) 

(where we have integrated only with respect to y) gives the area of the cross-section 
of the solid shown in Fig. 14.5. For small ßx, 

F(x) ~ or Ax [f(x, y) dy 

denotes the volume of a small layer of the solid under consideration. Summing up the 
volumes of these layers (:EF(x;) ßx;) we get the approximate volume of the solid. By 
going to the Iimit, this sum changes into the integral. 

We arrive at the same result ( see the second of equations ( 1 )) if we "cut" the solid 
into layers by the planes y = const. 

REMARK 4. The integrals on the right-hand side ofequation (1) are called repeated 
integrals. Theorem 1 is a generalization of Theorem 13.9.3 .. 

REMARK 5. According to Remark 14.2.2, Theorem 1 holds for arbitrary closed 
regions n of type A and for functionsf(x, y) of type B in n. Usually we deal with 
the following simple case: Let y = h1(x), y = h2(x) be continuous functions with 
continuous or piecewise continuous derivatives in [a, b] suchthat h2(x) > h1(x) in 
(a, b). Let k = min h1(x) in [a, bJ, K = max h2(x) in [a, bJ. Let n be the region 
(obviously of type A) the boundary of which is formed by the functions y = h1(x), 
y = hz(x) and the lines x = a, x = b parallel to the y-axis. Denote the reetangle 

y 

Fig. 14.6. 
a x 
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a ~ x ~ b, k ~ y ~ K by R (Fig. l4o6)o By equation (3) of Remark 140202 and 
Theorem 1, we have 

ff :(x, y) dx dy = ff Rg(x, y) dx dy = fii:g(x, y) dy J dx. 

The definition of the function g(x, y) (see Remark 140202), however, implies 

fKg(x, y) dy = IYf(x, y) dy, where y1 = h1(x), Y2 = h2(x) 
1 Yt 

(Figo 14o6)o Thus 

IJ f(x, y) dx dy = fb[fh 2<xlf(x, y) dy] dx o 
!1 a hdx) 

(2) 

Similarly: If the boundary of the region n consists of the curves x = <Plv), x = 
= <PiY) ( with similar properties as before) and of the !in es y = c, y = d parallel to 
the x-axis then 

IJ f(x, y) dx dy = fd[f"' 2<Ylf(x, y) dx] dy o 

!1 c 'Pl(Y) 

(3) 

ly 

0 X X Figo 14070 

We can go on similarly if the boundary of the region n is more complicatedo For ex­
ample, for x chosen as in Figo 1407, we have 

Id IY2 fY• g(x, y) dy = f(x, y) dy + f(x, y) dy o 

c Yl Yl 

In cases like this we evaluate the Iimits y 1 , Jl, 0 o 0 from the equation of the boundary 
of the region f! (see Example 2). 

Example 1. Determine the volume V o[ the ellipsoid with semi-axes a, b, Co 

The volume V is equal to twice the volume of the upper half-ellipsoid which is 
bounded by the plane z = 0 and by the surface 
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(4) 

the equation of which is obtained from the equation of the ellipsoid 

for z ~ 0. 

The base f2 of the half-ellipsoid is bounded by the ellipse 

(5) 

the equation of which is obtained from ( 4) for z = 0 (because the base lies in ti".is 

plane). Thus 

(6) 

Using ( 1) we transformed the double integral into a repeated integral. The Iimits 

y 1 , Yz have been determined (for a given x) from (5) (see Fig. 14.8). 

In (6), we integrate with respect to y keeping x .fixed. Writing -.}(1 - x 2 fa 2 ) = 

= m ~ 0, we obtain (using the substitution y = bm sin t, dy = bm cos t dt; see 

Example 13.2.10) 

fb./(1-x2fa2) )(1 - x2 - y2) dy =Ibm J(m2 - y:) dy = bm2f"'2 cos2t dt = 

-b.j(1-x2ja1) a2 b2 -bm b -n/2 

-a 0 

Fig. 14.8. -b 
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Substituting into ( 6), we have 

V= 2c f~atrrb (1- ::)dx = rrbc[x- 3~2la= 4rrabc. 

REMARK 6. It would have been wrang to proceed in the following way: 

for according to Remark 14.2.2 g(x, y) = 0 if the point (x, y) does not lie in n. 
Here, of course, this circumstance is obvious from the fact that at these points the 

functionf(x, y) ceases to have meaning as a real function. For example, at the point 

with Coordinates x = a, y = b we would have got 

1 - - - - = .)(1 - 1 - 1) = .J( -1). J( xz yz) 
az bz 

-2 

y 
=--r---=----- ----.., 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.2 X 

Fig. 14.9. 

Example 2. Somewhat more difficult is to determine the Iimits of integration in 
the case of the integration of a function f ( x, y) of type B in the annulus f2 shown in Fig. 
14.9. For the inner radius r and outer radius R we have r = 1, R = 2. If -2 < x < -1 or 
1 < x < 2, we obtain, for a chosen x, two values Yj, Yz: 

If, however, -1 < x < 1, then for a given x we have four values y1 , y 2 , y 3 , y4 : 

Y1 = -../(4- x2), y 2 = -.J(l - x 2), Y3 = .j(l - x2), Y4 = .)(4- x 2). 

Thus 

ff f-l [f-(4-.xl) J 
f(x, y) dx dy = f(x, y) dy dx + 

n -2 -J<4-x2> 
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fl [f-../(1-x') fy(4-x2
) J 

+ _
1 

-v<
4

-x
2
/(x, y) dy + ..;o-x/(x, y) dy dx + 

f2 [Jv(4-x2
) .. ] + f(x, y) dy dx. 

1 -y(4-x2 ) 

14.4. Method of Substitution for Double Integrals 

Theorem 1. Let the closed region N (of variables u, v) be mapped in a one-to-one 

correspondence by the equations 

x = x(u, v), y = y(u, v) (1) 

on the closed region M (of variables x, y). Let M and N be of type A (see Definition 
14.1.2) and f(x, y) of type B in M (see Definition 14.1.3). If the functions x(u, v), 

y(u, v) have continuousfirst partial derivativesinN and the Jacobian 

D(u, v) = 

in N is different from zero, then 

OX 
ou 
oy 

ou 

ox 

ov 
oy 

ov 

(2) 

ff j(x, Y) dx dy = ff j(x(u, v), y(u, v)) jD(u, v)j du dv . (3) 

REMARK 1. Note that the absolute value of D(u, v) appears in (3). For the most 
frequently used substitution 

x = p cos cp , y = p sin cp (4) 

(polar coordinates ), the Jacobian is 

ox OX 
op ocp 

cos cp, -p Slll cp 

D(p, cp) = =P~O (5) 
oy oy I sin cp, p cos cp 
op ocp 

so that, in this case, it is not necessary to pay special attention to the absolute value. 

Example 1. Letf(x, y) be oftype Bin the closed circle M, x 2 + y 2 ~ 25. We make 
use of the Substitution (4); p will run between the Iimits 0, 5, cp between the Iimits 0, 21t 
(Fig. 14.10). Let us investigate if equation (3), i. e. the equation 
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f f j(x, y) dx dy = J: J:"J(p cos cp, p sin cp) p dp dcp (6) 

holds. The assumptions of Theorem 1 are not satisfied. For, firstly, if the mapping 
has to be one-to-one for p > 0, then cp has to run through the interval [0, 2rt) and 
not through the interval [0, 21!"] so that N is not a closed region. Secondly, to the point 
(0, 0) E M there corresponds in N the entire line segment r = 0, 0 ~ <p < 21!". 
Moreover, D(p, <p) = 0 for p = 0. In spite of this we can show that (6) holds. To 
the shaded sector S of the annulus in Fig. 14.11 there corresponds the closed reetangle 
er~ p ~ 5,0 ~ <p ~ 21!"- 8 (er> 0, 8 > 0). Now, all the assumptions ofTheorem 1 are 
satisfied, so that the relation 

ff f5f2n-o 
j(x,y)dxdy= er 

0 
f(pcoscp,psincp)pdpdcp 

9 
51------. 

5 X 0 

Fig. 14.10. 

X 0 21f-Ö op 

Fig. 14.11. 

(7) 

holds. Sincef(x, y) is oftype Bit is bounded in M, hence the integral ffs differs from 
f f M by as Iittle as we please if c5 and q are sufficiently small. Letting c5 --+ 0 and then 
I!--+ 0, we obtain ( 6). Thus, if f(x, y) is of type B, then equation ( 6) holds. 
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Example 2. Let us determine the moment of inertia I of the homogeneaus sphere 
of constant density eo and of radius R with respect to an axis passing through its 
centre. 

We choose the centre of the sphere as the origin of the coordinate system and the 
axis mentioned as the z-axis. The equation of the spherical surface is 

x2 + y2 + z2 = R2 

whence, for the upper hcmispherical surface, we have 

The moment of inertia I with respect to the z-axis will be equal to twice the moment 
of the upper hemisphere. Thus (by formula (14.9.70), p. 628), we have 

We integrate over the circle M with centre at the origin and with radius R. 

Using polar Coordinates 

x = p cos <p, y = p sin <p (0 ~ P ~ R, 0 ~ <p < 27t), (8) 

we have by ( 6) 

I = 2eo s: J:~ 2 .J(R2 - p 2) p d pd<p = 2e0 s: (J:~ 2 .J(R2 - p 2) p d<p) dp = 

where we have used the substitution .J(R2 - p2) = t. 

REMARK 2. In Example 2, we integrated over the circle and used Substitution (8). 
Often we integrate over the interior of the ellipse 

(9) 

Then, substitution (8) is not convenient as the upper Iimit for r turns out to be de­
pendent on <p. In this case we use the Substitution 

x = ar cos <p, y = br sin tp (0 ~ r ~ 1, 0 ~ <p < 21t) (10) 
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(r having here a constant upper Iimit, equal to one, since for r = 1 equations (10) 
give just the parametric equations of the ellipse (9); if r < 1, then x2fa 2 + y2fb 2 < 1 
and the point (x, y) lies inside the ellipse, for r > 1 outside the ellipseo) For the Jaco­
bian (2) we obtain 

D = abr 0 (11) 

The remarks made about the justification of equation (6) apply here also (see Example 
1). 

Example 3. For the volume V0 of the upper semiellipsoid with the semi-axes 
a, b, c we obtain by (10) and (11) 

Vo= Jfo ( x2 y2 ) 1112". c J 1 - - - - dx dy = c 
a2 b2 o o 

= abc x 21r 11 
t 2 dt = ~1rabc o 

(We made use of the Substitution 1 - r 2 = t 2 , t > Oo) Thus, the total volume V is 

V= ~1rabc o 

The evaluation is obviously easier than in Example 140301. 

14.5. Tripie Integrals 

Tripie integrals are defined in a way similar to double integrals: Let a bounded 
function u = f(x, y, z) be given in a reetangular parallelepiped Q (a ~ x ~ b, 
c ~ y ~ d, e ~ z ~ f)o We divide this parallelepiped by planes parallel to the Co­

ordinate planes into small parallelepipeds and denote the least upper bound and 
greatest lower bound of the function f(x, y, z) on the parallelepipeds .Ö.x; .Ö.yk .6.z1 
by Mikl and mikl, respectivelyo (lf f(x,y,z) is continuous in Q, then the least upper 
bound is also the maximum and the greatest lower bound is also the minimum of 
the values of the functiono) We construct the upper and lower integralsums 

respectively, summing up over all the parallelepipeds into which the parallelepiped 
Q is divided by the chosen partition po The greatest lower bound of the set of all 
uppersums (for all possible partitions p) is called the upper integral, the least upper 
bound of the set of alllower sums - the lower integral of the function u in ( or over) 
Qo 
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Definition 1. If the upper and lower integrals are equal, then the function u = 
f(x, y, z) is said to be integmble in ( or over) Q in the Cauchy-Riemann sense and 
their common value is called the triple integral of the function f in the pam/le/epiped 
Q. We write 

J J k f ( x, y, z) dx dy dz , often also J J h f ( x, y, z) d V . 

The integral of a function of more than three variables may be defined like-wise. 

REMARK 1. The interpretation of the triple integral if f(x, y, z) > 0: the mass of 
the parallelepiped Q the density of which is given by the function f(x, y, z). 

REMARK 2. The basic properties of triple integrals ( or of higher-dimensional in­
tegrals) are similar to those of double integrals (see Theorems 14.2.3-14.2.8). 

Theorem 1. Every function oftype B in Q (Definition 14.1.5) is integrable in Q. 

REMARK 3. In particular, any function continuous in Q is integrable in Q. 

REMARK 4. If f(x,y,z) is defined in a region 0 which is a closed region oftype 
A (Definition 14.1.4) but not a (rectangular) parellelepiped, then similarly as in 
Remark 14.2.2 we define 

j j in f(x,y,z)dxdydz = j j k g(x,y,z)dxdydz, (1) 

where Q is a parallelepiped containing the region n, g(x,y,z) = f(x,y,z) for all 
points (x, y, z) E 0 and g(x, y, z) = 0 for the other points of Q. 

REMARK 5. The triple integral can be defined also in many other ways. In par­
ticular it is possible, using the concept of a measurable set, to define the triple (or 
multi-dimensional) integral in the Lebesgue sense. See §13.14. 

Theorem 2. If f(x, y, z) is of type B (Definition 14.1.5) in the parallelepiped 
Q (a ~ x ~ b, c ~ y ~ d, e ~ z ~ !), then 

j j k f(x,y,z)dxdydz = 1' [1b 1d f(x,y,z)dxdyl dz = 

= 1b ld [1' f(x, y, z) dz] dxdy = 1b [1d 1' f(x, y, z) dydz] dx = 

= 1d 1' [1b f(x,y,z)dx] dydz = 1d [1b 1' f(x,y,z)dxdz] dy = 
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= ib 1' [ld f(x,y,z)dyl dxdz = 1b {ld [1' f(x,y,z)dz] dy} dx, (2) 

where in the last integral it is again possible to change the order of integration (see, 
however, also Remark 14.3.1). 

REMARK 6. If f(x, y, z) is defined in the domain Q which need not be a prism, 
then the evaluation ofthisintegral according to (1) and (2) requires careful determi­
nation of the limits of integration in the same way as in Remark 14.3.5. Here also we 
often meet the following case: In a closed regionGoftype A (Definition 14.1.2) there 
are given smooth or continuous and piecewise smooth (Remark 12.1.8, p. 405) func­
tions z = z1(x,y), z = z2(x,y) suchthat throughout G we have z2(x,y) > z1(x,y). 
Let n be the closed solid with "upper base" z = Z2(x, y) and with "lower base" 
z = z1 ( x, y). The lateral surface is formed by lines parallel to the z-axis passing 
through the boundary of the domain G (Fig. 14.12). Thus, the domain K2 is a closed 
solid of type A (Definition 14.1.4). Let a function of type B (Definition 14.1.5) be 
given in Q. Then 

!!1 !1 1z2(x,y) 

f ( x, y, z) dx dy dz = [ f ( x, y, z) dz] dx dy 
n G zl(x,y) 

(3) 

as can easily be derived from (1) and from the second of the relations (2) (see also 
Fig. 14.12). 

Another procedure, based Oll the first of the relations (2), is as follows: n lies 
between the planes z = e, z = f. Let us derrote by l{z 0 the cross-section of the solid 
n by the plane z = Zo (e ~ Zo ~ f). Then 

Jfln f(x,y,z)dxdydz= 1' [j[z f(x,y,z)dxdy]dz (4) 

(Fig. 14.13, where 0 is a sphere). 

: li 
gL_ 

X 

X y 

Fig.14.12. Fig.I4.13. 
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Example 1. Let us deterrn.ine the mass m of the sphere ü whose surface has the 
equation 

(5) 

and whose density increases with the square of the distance from the z-axis, i.e. 
p = (x 2 + y 2 ) p0 , where p0 is a constant. By Remark 1 

(6) 

By Remark 6 we have 

where G is a circle with centre at the origin and radins R, z2 = ..j(R2 - x 2 - y2 ), 

z1 = -..j(R2 - x 2 - y2 ). After integration with respect to z and substitution of the 
limits we obtain 

This integral can be evaluated either by repeated integration in the same way as 
in Example 14.3.1, or by transformation to polar coordinates as in Example 14.4.2. 
Result: m = 185 1rp0R5 ( cf. Example 2). 

REMARK 7. The given problern is evidently equivalent to that of the deterrn.ina­
tion of the moment of inertia of the homogeneaus sphere of density p0 with respect 
to the z-axis. Note that in Example 1 p0 has the dimension kg m-5 as follows from 
the equation p = (x2 + y2) p0 • 

Theorem 3 {The Method of Substitution for Tripie Integrals). Let M and N 
be closed regions of type A (Definition 14.1.4) in variables x, y, z and u, v, w, re­
spectively. Let there exist a one-to-one mapping between M and N expressed by the 
equations 

x = x(u,v,w), y = y(u,v,w), z = z(u,v,w) (7) 

and assume that the functions (7) have continuous partial derivatives of first order 
in M and that the Jacobian 

ox ox ox 

ou ' ov ' ow 

D(u,v,w) = oy oy oy 

ou ' ov ' ow 

oz oz oz 

ou ' ov ' ow 
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is different from zero in N. Further, Let f(x,y,z) be of type B (Definition 14.1.5) 
in M. Then 

JJJM f(x,y,z)dxdydz= 

= J J i f(x(u,v,w), y(u,v,w), z(u,v,w)) ID(u,v,w)ldudvdw. (8) 

REMARK 8. The transformation theorem can be extended under similar assump­
tions to n-dimensional integrals. The Jacobian will then be n-dimensional. 

REMARK 9. The transformation to spherical coordinates given by the equations 

x = r sin 8 cos qJ , y = r sin 8 sin qJ , z = r cos 8 (9) 

(§6.1) is used very frequently. Thesecoordinatesare employed when integrating over a 
sphere with centre at the origin and radius R (then 0 ~ r ~ R, 0 ~ <p < 21r, 0 ~ {) ~ 1r), 
over a hemisphere (if we deal with the "upper" hemisphere, then 0 ~ {) ~ !1r) etc. The 
Jacobian is 

D(r, qJ, .9) = r2 sin 8 . 

It is possible to establish by a limiting process similar tothat used in Example 14.4.1 
the validity of the equation 

III !(x, y, z) dx dy dz = 

= s: I:" I!(r sin 8 cos qJ, r sin .9 sin qJ, r cos 8) r2 sin 8 dr dqJ d.9 , (10) 

where K is a sphere with centre at the origin and radius R. We assume thatf(x, y, z) 
is of type B in K. 

REMARK 10. If we integrate over the ellipsoid with semi-axes a, b, c, we use instead 
of (9) the substitution 

x = ar sin 8 cos qJ , y = br sin 8 sin lf1, z = er cos .9 (11) 

with the Jacobian D = abc r2 sin 8. In this case 0 ~ r ~ 1, 0 ~ qJ < 21t, 0 ~ .9 ~ 7t. 

REMARK 11. For substitutions (9) and (11) D ~ 0. In the general case, the absolute 
value of D appears in (8). 

Example 2. By transforming to spherical coordinates we can easily evaluate 
integral (6) from Examp1e 1. Wehave 

thus by (10), 
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I I L 12o(x2 + yZ) dx dy dz = J: J:" I: g0 r2 sin2 .9 . r2 sin .9 dr d<p d.9 = 

= 21t{]0 I~r4 (J: sin3 .9 d.9) dr = 21tg0 • ! . tR 5 = 1 
8
5 1tg0 R5 • 

14.6. lmproper Double and Tripie Integrals 

14.6 

By the term improper integrals we mean integrals where eithcr the integrand, or 

the domain of integration is unbounded. The siruplest cases are those of improper 

double integrals, where the integrand is unbounded in the neighbourhood of only one 

point or where the domain of integration is the entire xy-plane. 

Definition 1. Letf(x, y) be defined in the closed region f!.of type A (Definition 

14.1.2) and let it become unbounded in the neighbourhood of the point (x 0 , y 0 ) E 11. 

At the point (x0 , y0 ) itself f need not be defined. Assume, further, that f(x, y) has 

the following property: If we remove from Ö an arbitrary (open) region w of type A 

(w E 11) containing the point (x0, y0 ), thenf(x, y) is of type B (Definition 14.1.3) in 

Ö - w ( and thus, the integral 

(1) 

exists). If there exists a nurober I suchthat for every e > 0 it is possible to find a ree­

tangle R so small that for all regions w with the above mentioned property, lying 

inside R (and containing the point (x0 , y0)), the inequality 

holds, then the integral 

ff f(x, y) dx dy (2) 

is said tobe convergent and to have the value I. 

REMARK 1. Similarly we define the three-dimensional im proper integral ( or the 

rn-dimensional improper integral) for the case of one singular point (x0 , y0 , z0 ). 

Theorem 1. The integral (2) is convergent if and only if fflf(x, y)i dx dy is 

convergent. (The convergence of the integral is absolute unlike the one-dimensional 

case of improper integrals.) 

Theorem 2. If in a given neighbourhood of the point (x0 , y 0 ) we have 

M 
if(x, Y)l ~ --; 

r 
(3) 

where M is a positive constant, r = J[(x - x 0 ) 2 + (y - y0 ) 2 ] (i.e. the distance 
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of the point (x, y)from the point (x0 , y0)) and oc < 2, then the integral 

I = ff [(x, y) dx dy 

is convergent and 

595 

(4) 

where wn is an arbitrary sequence of eire/es contained in n having centres at the 
point (x 0 , y 0 ) and radius rn, with lim rn = 0. 

Moreover, under the assumption (3) the theoremfor the replacement of the double 
integral by the repeated integral (Theorem 14.3.1) and the theorem an substitution 
(Theorem 14.4.1) are valid. 

REMARK 2. A similar assertion holds for tripJe ( or m-dimensional) integrals; it is 
sufficient to require oc < 3 ( or 1:1. < m, respectively); in the three-dimensional case r 
is given by the expression 

r = J[(x - xo)Z + (y- YoY + (z - zoY] 

(and similarly in the rn-dimensional case). 

REMARK 3. The advantage of using equation ( 4) lies in the fact that the integrals ( 4) 
can be easily evaluated as the domains con are circles. 

REMARK 4. In Theorems 1 and 2 is understood, of course, that the basic assump­
tions on the existence of the integral, mentioned in Definition 1 ( concerning the type B 
of the function f(x, y) in each region n.- co) are satisfied. 

REMARK 5. By the Iimit (4) the integral in the sense of the principal value (see 
Remark 13.8.3) is defined. A finite Iimit ( 4) may exist even if integral (2) does not converge. 

REMARK 6. The conclusions of Theorem 2 remain valid if condition (3) is replaced 
by the condition that at least one of the repeated integrals ( over the domain n) 

f[J!f(x, Y)l dy J dx, f[f!f(x, Y)l dx J dy 

converges. 

Example 1. Let us examine the integral 

I- ff dx dy 
- K .J(x2 + y2) , 

where K is the circle with centre at the origin and radius R = 1. 
The singularity is at the origin. Our function is of the form f(x, y) = 1/P, thus 

M = 1, oc = 1 in (3). By Theorem 2, the integral is convergent. Substituting polar 
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coordinates, x = pcos cp, y = psin cp, we obtain (since D(P, cp) = p, see equation 
(14.4.5)) 

2 y 2 = -.pdpdcp=21t. ff dx d J1J2
" 1 

K J(x + Y) o o P 

REMARK 7. The second important case of improper integrals concerns double 
integrals where the domain of integration is the entire xy-plane. We write 

(5) 

The exact meaning is as follows: 

Definition 2. Let f { x, y) be of type B in every bounded closed region f! of type 
A (Definition 14.1.2). If there exists a number I such that for every c > 0 it is possible to 
find a circle K with centre at the origin and radius R so large that for every closed region 
f! of type A, containing this circle, we have 

then the integral (5) is said tobe convergent and to have the value I. 

REMARK 8. Im proper triple or rn-dimensional integrals can be defined similarly. 

Theorem 3. Integral (5) is convergent if and only if s~GO f~G() IJ(x, Y)l dx dy 
is convergent. (The convergence of the integral is absolute.) 

Theorem 4. If everywhere outside a certain circle with the centre at the origin 
we have 

M 
lf(x, y)j < -, M = const, r = .J(x2 + y2), a > 2, (6) 

r" 

then integral (5) is convergent and it is possible to use the theorem on repeated 
integration (Theorem 14.3.1), and the theorem on substitution (Theorem 14.4.1). 

In addition, 

I = lim ff f(x, y) dx dy, 
R ... +ao Ka 

(7) 

where K 8 is the circle with centre at the origin and of radius R. 

REMARK 9. Remarks similar to Remarks 2-6 are also valid here. In particular, 
for the rn-dimensional integral it is sufficient to require a > m in ( 6). If using a sub­
stitution, we transform the integral (7) and take the Iimit for R -. + oo. 
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Example 2. Evaluate the integral 

A = foo e-x• dx. 

-oo 
(8) 

To this purpose we examine the integral 

(9) 

The integral (9) is convergent by Theorem 4, since, for sufficiently large r, we have 
e-r2 < M_/rk (M > 0, k > 0 being arbitrary). Thus 

= Joo [Joo e-x•e-y' dy] dx = Joo e-y• dy foo e-x• dx = A. A = A2 • (10) 
-~ -oo -~ -~ 

Further, by Theorem 4, transformation to polar coordinates x = p cos <p, y = p sin <p 

may be carried out. We obtain 

fRf2" fRl = lim e-rfpdpd<p = lim 21t.! e- .. dz = 1t. 
R-++oo 0 0 R-++oo 0 

Thus, by (10) 

A = Joo e-x• dx = .J1t. 
-oo 

Symmetry implies that 

REMARK 10. The definition of the im proper integral with infinite domain of inte­
gration can be extended to the case where the domain of integration is not the entire plane 
but an arbitrary (in a certain sense) unbounded region M. Indefinition 2 one has to take 

instead of the whole region n containing the circle K only that part which the closed 

regions M and n have in common (i.e. the intersection Mn n, Fig. 14.14). 

REMARK 11. Definition 1 may be extended as weil. The following case is of im­

portance: The function f(x, y) is unbounded in 0 in the neighbourhood of a simple 



598 SURVEY OF APPLICABLE MATHEMA TICS 14.6 

finite piecewise smooth curve k. Then the domains w in Definition are required 

to contain the curve k and the function !(X, y) is assumed to be of type B in n - (!). 

Forthis case the following theorems are valid: 

Theorem 5. lf at least one ofthe repeated integrals over the region f2 

f(fif(x, Y)l dy) dx, f(fif(x, y)j dx) dy 

Fig. 14.14. 
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I 

ff :(x, y) dx dy 
is also convergent. 

X 

Theorem 6. lf integral (12) is convergent and if the integral 

converges, tlzen this integral is equal to integral ( 12 ). 

Example 3. It is required to decide whether the integral 

where f2 is the domain shaded in Fig. 14.15, is convergent. 

(11) 

(12) 

(13) 

(14) 

This integral is im proper since the integrand is unbounded in the (right) ndghbourhood 
of the line segment y = x, 0 ;:::; x ;:::; 2p. According to Theorem 5 it is sufficient to prove 

the convergence of one of integrals ( 11 ), where the sign of absolute value may 
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be omitted for in the domain considered we have x ~ 0 and x 2 - y2 ~ 0. We get 

f 2p (fl/(2py) X ) f2p f2p 
.J 2 - 2 dx dy = ([ .J(xz - yz)];<2">) dy = .J(2py - y2) dy . 

o ., (x Y ) o o 
(15) 

X Fig. 14.15. 

The last integral is no Ionger an improper one so that it has a finite value (and thus 
(14) is convergent by Theorem 5). Let us evaluate it. By the substitution y- p = u 

and then u = pz we obtain 

= p2 fl .J(l - z2) dz = !1tp2 • 
-1 

(Example 13.7.4, p. 520). By Theorem 6 this is also the value of integral (14). If we 

had evaluated the integral 

we would have arrived at the same value. 

14.7. Curvilinear Integrals. Green's Theorem 

REMARK 1. Unless the contrary is stated in this paragraph, the term curve 

means a simple finite piecewise smooth curve according to Definition 14.1.1. If the 

curve k is oriented and is the boundary of a region !1, then this curve is said to be 
positively oriented with respect to !1 if !1 remains Oll the left-hand side of the point 
which runs through the curve k in the positive direction. We shall always choose 

the parametric representation in such a way that if t 1 < t 2 then the point A with 
the parameter h lies on k before the point B with parameter t 2 . (Briefly, we say 

that the curve k is oriented in the sense of increasing parameter). 
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REMARK 2. We say that in the equations of the curve k 

x = cp(s), y = 1/J(s) 

s derrotes the length of arc (or that s is the parameter of the length of arc) if for each 

s (with the possible exception of a finite number of points) 

Geometrically: If points A, B are given by s = 0 and s = s0 respectively, then the 

arc AB has length s0 • For an arbitrary parametric representation of the curve k , 

x = f(t), y = g(t) (a ~ t ~ ß) , 

the length of arc is given by 

Fig. 14.16. 0 

Definition 1. Let the oriented curve k be given by the equations 

X = cp(t), y = 1/J(t) , CX ~ t ~ ß. 

Let a function z = f(x, y) be given on the curve k. Let us subdivide k into n arcs 

ol> o2 , ... , On (Fig. 14.16) by points A1, A 2 , ••• , An-l with parameters t 1 < t2 < 
< ... < tn-1> let us choose arbitrarily on each arc Ot a point Ci; ( ek. tlt) and write 

the sums 
n n 

s"' = :Lt(ek. tTt) (xk- xt-1) = 'LJ(ek. tTk) [cp(tk)- cp(tk-1)], (1) 
t= 1 k= 1 

n n 

sy = :Lt(ek. tTk) (Yk- h-1) = 'LJ(ek. tlk) [1/J(tk)- 1/J(tt-1)]. (2) 
k= 1 k= 1 

n 

s. = I/( ek. tlk)(sk - St-1)' (3) 
k=l 
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where 

Let us denote by lk the Jength of the arc ok and by v(p) the greatest of these Jengths 
for the chosen partition p, i.e. v(p) = max lk; v(p) is called the norm of the partition p. 

If there exists a number I,., or Iy, or I. suchthat for an arbitrary s > 0 it is possible 
to find a ö > 0 such that 

II.r - S,.l < s' or li, - Syl < s' or li. - s.l < s (4) 

for each partition p for which v(p) < ö - independently of the choice of the points Ck 

on ok - we say that there exists a curvilinear (line) integral of the function f(x, y) 

along the oriented curve k with respect to x, or y, or s, respectively and write 

I,.= f:(x,y)dx, or Iy= f:(x,y)dy, or I.= f:(x,y)ds. (5) 

(The first two of the integrals (5) are often called curvilinear integrals of the second 

kind, the third of them is called the integral of the first kind.) 

REMARK 3. Intuitively: The integral I,. is the Iimit of the sums (1) as v(p)-+ 0. 
A similar assertion is true for I 7 and I •. 

For geometric and physical meaning see Remark 7. 

Theorem 1. If f(x, y) is continuous in the region n containing the curve k, then 

the integrals {5) exist. It is even sufficient if f(x, y) is continuous on k (Remark 
14.1.12). 

Theorem 2. If f(x, y) is continuous in fl (or on k), then 

f !(x, y) dx = f!( <p(t), 1/l(t)) <p'(t) dt, 

f !(x, y) dy = ff( <p(t), 1/l(t)) 1/l'(t) dt, 

f !(x, y) ds = f f( <p(t), 1/l(t)) J[ <p'2(t) + t/1' 2(t)] dt. 

Theorem 3. If k is given by the equation y = g(x) in [ a, b ], then 

f !(x, y) dx = f!(x, g(x)) dx 

(6) 

(7) 
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if k is oriented in such a way that (a, g(a)) is its initial point, and 

f!(x, y) dx = - f f(x)g(x)dx (8) 

if (b, g(b)) is its initial point. Furthermore 

f !(x, y) ds = f f(x, g(x)) J[I + g'2(x)] dx (a < b) (9) 

( no matter how the curve is oriented). 

Similarly: If k is given by the equation x = h(y) in [c, d], then 

f !(x, y) dy = ± f!(h(y), y) dy, 

where the plus or minus sign is taken depending on whether the initial point of the 
curve k is the point (h(c), c), or the point (h(d), d), respectively. Furthermore 

f!(x, y) ds = ff(h(y), y) J[l + h'2(y)]dy (c < d). 

REMARK 4. If the curve k isasegmentparallel to the x-axis, then fd(x, y) dy = 0; 
if it is parallel to the y-axis, then fd(x, y) dx = 0. 

Theorem 4. lf k is composed of two arcs o1, o2 , then 

f f(x, y) dx = f f(x, y) dx + f f(x, y) dx ; 
k 01 01 

similarly for 

f!(x, y) dy, f!(x, y) ds. 

Theorem 5. 

if the integrals on the right-hand side exist; similarly for the line integrals with 
respect to y and with respect to s. 

Theorem 6. Let us denote by k' the curve which is inversely oriented to k. Then 

f f(x, y) dx = - i f(x, y) dx, i f(x, y) dy = - ff(x, y) dy. 
k' J k J k' k 
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REMARK 5. For line integrals with respect tos the sign remains the same. 

REMARK 6. By the sum 

I [f(x, y) dx + g(x, y) dy] 

we mean the sum of the integrals 

f!(x, y) dx + J,.u(x, y) dy. 

603 

Example 1. Let k be the circle x = cos t, y = sin t (0 ~ t < 2rr),f(x, y) = 2 + y. 
Then (by (6)) 

f!(x, y) dx = s:·(2 + sin t)( -sin t) dt = -1t. 

This example can also be solved as follows: Let k = k1 + k2 , where k1 is the upper 
and k2 the lower semicircle (Fig. 14.17). On k1 we have y = ../(1 - x 2), on k2, 

y = -../(1 - x2). By Theorem 4 and by (7), (8) we have 

r~+~~=s~+~~+r~+~~= 
Jk k, Jkz 

- f~ 1 [2 + .J(1 - x2)] dx + f~ 1 [2 - .J(1 - x2)] dx = 

= -2J1 ../(1- x2 ) dx = -1t. 
-1 

y 

-1 

Fig. 14.17. 

REMARK 7. The geometric meaning of a curvilinear integral: I. is the area 
of the surface shown in Fig. 14.18. I" or I., is equal to the area of the (oriented) 
projection of this surface onto the xz-plane, or onto the yz-plane (Fig. 14.18), 

respectively. 

The physical meaning: If a field of force F = I P(x, y) + j Q(x, y) (i, j are the 
unit coordinate vectors) is given and if we have to calculate the amount of work 
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done in this field when moving a particle along the oriented curve k, then this work -
as we know from physics - is given by the integral (i.e. by the Iimit of sums, in a certain 
sense) of the scalar product 

L = IF dl =I [i P(x, y) + j Q(x, y)](i dx + j dy) = 

= IP(x, y) dx + I Q(x, y) dy. 

y 

X 

Fig. 14.18. Bfpl 

(10) 

Thus, the evalution of the amount of work done reduces to the evaluation of two 
curvilinear integrals. 

REMARK 8. The definition of a curvilinear integral along a curve in space is 
similar tothat of line integrals in the plane. In particular curvilinear integrals of 
a function continuous in the region n in which the given curve lies exist, and 

s1cx. y. z) dx = f:'c «p(t). if!(t). x(t)) «p'(t) dt. 

f!(x, y, z) dy = f!(«p(t), ifl(t), x(t)) ifl'(t) dt, 

f!(x, y, z) dz = f!(«p(t), ifl(t), x(t)) x'(t) dt, 

f f(x, y, z) ds = f!< «p(t), 1/l(t), x(t)) v'[ «p'2(t) + ifl'2(t) + x'2(t)] dt. {11) 

The physical meaning of the first three integrals is similar tothat of {10). 

REMARK 9. 1t can be shown that the value of integrals {11) (as weil as that of 
integrals ( 6), previously introduced) does not depend on the choice of the parametric 
representation of the curve k (naturally respecting the convention of Remark 1). 
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Theorem 7 (Green's Theorem). Let Ö be a closed region of type A {Definition 
14.1.2) with the boundary k positively oriented with respect to n (see Remark 1). 
Let the functions 

aP oQ 
P(x, y), Q(x, y), oy (x, y), ox (x, y) 

be continuous in Ö (i.e. in n + k). Then (see Remark 6) 

( (P dx + Q dy) = ff (oQ - oP) dx dy. 
Jk n ox oy 

{12) 

If n is a multiply connected region, then fk means the sum of the curvilinear 
integrals along individual parts of the boundary. 

REMARK 10. lf 
Q(x, y) = 0 or P(x, y) = 0, 

we obtain particular cases of Green's theorem 

r p dx = - If oP dx dy' r Q dy = ff oQ dx dy. (13) 
Jk nOY Jk nox 

Green's theorem is often written in the following form: 

r [ -P(x, y) cos ß + Q(x, y) cos IX] ds = sr (oQ - oP) dx dy' 
Jk .. n ax oy 

or, writing -P(x, y) = T(x, y), Q (x, y) = S(x, y), in the form 

r [S(x, y) cos IX + T(x, y) cos ß] ds = ff (as + oT) dx dy' 
Jk n~ ~ 

where cos IX, cos ß are the direction cosines of the outward normal. 

Definition 2. Let k be an oriented curve in n with initial point A and end point 
B. Ifthe value ofthe integral 

I[f(x,y)dx + g(x,y)dy] {14) 

depends only on the choice of the points A, B, and not on the choice of the curve 
connecting the points A, B (and naturally, lying in the considered region n), then the 
integral (14) is said tobe independent of the path of integration in n. 

Theorem 8. Let 
oP (x, y) oQ (x, y) 

P(x, y), Q(x, y), 
oy ax 
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be continuous functions in a simply connected region n. Then a necessary and 

sufficient condition that the integral 

I[P(x, y) dx + Q(x, y) dy] (15) 

is independent of the path of integration in n is that the equation 

aP oQ 
-=-
ay ax 

(16) 

is satisfied in n. 

REMARK 11. In particu1ar: If condition ( 16) is satisfied, then the integral ( 15) along 

each closed curve k is equal to zero. 

Theorem 9. If P, Q, oPjoy, oQjox are continuous functions in a simply connected 

region n, then a necessary and sufficient condition that the expression 

Pdx + Qdy (17) 

is the total differential of somefunction F(x, y) in f2 isthat the equation 

aP oQ (18) 
ay ax 

holds in n. If this condition is satisfied, then the value of the integral (15) is given 

by the difference F(x2 , Y2)- F(x 1, y 1), where (x1 , y 1) is the initial and (x2 , y 2) 

the end point of the curve k. 

Theorem 10. Let P(x,y), Q(x,y) be continuous in a region n. Then a necessary 

and sufficient condition that the integral 

I(Pdx + Qdy) 

is independent of the path of integration in n is that there exists a function F(x, y) 
such that the expression 

Pdx + Qdy 
is its total differential. 

Example 2. According to Theorem 9 the expression 

(19) 

ISatotal differential (even in the entire xy-plane). The corresponding function F(x, y) 
may be found from the condition 

aF oF 
dF = - dx + - dy = P dx + Q dy 

ax ay. 
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(which has tobe satisfied for each dx, dy): 

From the first equation it follows that 

aF - = Q = 5- 2xy. 
ay 

x3 
F(x, y) = -- xy2 + f(y). 

3 

607 

(20) 

(21) 

By differentiation of (21) with respect to y and by comparison with the second of 
equations (20), we have 

Thus 
-2xy + f'(y) = -2xy + 5, hence f(y) = 5y + C. 

x3 
F(x, y) =-- xy2 + 5y + C, 

3 

where C is an arbitrary constant. 

The function F(x, y) may also be obtained by the formula 

F(x, y) = f" P(x, y0) dx + f' Q(x, y) dy. 
%0 '10 

In our case 

F(x, y) = f" (x2 - y~) dx + f' (5- 2xy) dy = 
%0 )'O 

3 3 
X 2 Xo 2 

= - + 5y - xy - - + YoXo - 5yo 
3 3 

and this result is of the form (22). 

(22) 

(23) 

(24) 

REMARK 12. Theorems 8, 9 and 10 are true also for Iine integrals along curves in 
space, with the only difference that instead of integral (15) we have to write the in­
tegral 

I[P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz] {25) 

and to replace equation (16), or (18) by the equations (which have to be simultane­
ously fulfilled) 

aQ aR 
-=-az ay 

(26) 
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( cf. Theorem 14.8.6, p. 614 ). The function F ( x, y, z) can be calculated by both the methods 
of Example 2, in particular 

F(x, y, z) = J" P(x, y0 , z0 ) dx + [ Q(x, y, z0 ) dy + f" R(x, y, z) dz. 
ze Yo :o 

REMARK 13 ( concerning practical evaluation). From (13) it follows that if Pisa func­
tion of x only in a simply connected region n, then the integral f" P dx, along each 
closed curve k in n, is equal to zero. Similarly, if Q is a function of the variable y 
only. 

REMARK 14. Using (13) it is possible to show that the area p of a bounded simply 
connected region n with the boundary k (positively oriented with respect to f2) may be 
expressed as follows: 

p = Ix dy , p = - J/ dx 

or, 

p = t S,. [x dy - y dx] . (27) 

The last of the integrals {27) is often used for the evaluation of the area of a sector 
(Fig. 14.19). On OA and BO the integral is equal to zero {for on these Iine segments 
x dy = y dx) so that 

p = t l [x dy - y dx], 
J1co 

Fig. 14.19. 

A 

where k0 = AB. If the equations of the curve k0 are given in the form 

x = rp(t), y = 1/l(t) (oc ~ t ~ P) 

(with positive orientation in the sense of increasing parameter), then 

p = t f [ rp(t) 1/l'(t) - 1/l(t) rp'(t)] dt. 

(28) 

(29) 
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14.8. Surface Integrals. The Gauss-Ostrogradski Theorem, Stokes's 
Theorem, Green's Identities 

REMARK 1. In this paragraph we shall deal only with surfaces having some simple 
properties. If we use the term surface, we shall always mean a simple finite 
piecewise smooth surface (Remark 14.1.7). 

REMARK 2. A surface is said to be oriented if its two sides can be distinguished 
as the exterior and interior side, respectively. This concept is intuitively very clear 
for the case of closed surfaces that constitute boundaries of solids of type A (Definition 
14.1.4). In the samesense we speak about the oriented outward and inward normal 
of a surface. Of course, for surfaces that constitute boundaries of the above-men­
tioned solids, the in ward normal is oriented inside the solid, while the outward normal 
has the reverse orientation. (Not all surfaces can be oriented (e.g. the so-called 
Mobius leaf) . 

REMARK 3. Let us consider an oriented surface z = f(x, y). The area of the pro­
jection of the surface onto the xy-plane, assigned with the plus or minus sign accord­
ing as the exterior side or the interior side is seen when observing the surface in the 
negative direction of the z-axis, * is called the oriented projection of the surface onto 
the xy-plane. The oriented projection of a surface onto the xy- plane is (by definition) 
equal to zero ifthe surface is formed by parallels to the z-axis. 

Similarly we define the oriented projection of the oriented surfaces x = g(y, z) 
and y = h(x, z) on to the yz-plane and xz-plane, respectively. The plus or minus 
sign is again chosen according as the exterior or interior side is seen when observing 
the surface in the negative direction of the x- or y-axis, respectively. 

REMARK 4. The concepts introduced in Remarks 2 and 3 are based to a large 
extent on intuition, and were therefore not given as definitions. 

Definition 1. Let two points A, B be given on a surface. Let us connect them with 
a rectifiable curve k lying on the surface. The greatest lower bound of the lengths 
of all such curves is called the distance between the points A, B measured on the 
given surface. The least upper bound of the distances between all possible pairs 
of points on the surface is called the interior diameter of the surface. 

REMARK 5. Roughly speaking: the distance between the points A, B measured 
on the surface is given by the length of the shortest curve lying on the surface and 
connecting these points. The interior diameter of a finite surface is the greatest 
possible distance between two points measured on this surface. 

For example, the spherical surface with radius r has diameter 2r; however, its 
interior diameter is equal to rrr ( the length of the meridian between "the north 
and south poles"). 

• i.e. according as to whether the outward normal makes an angle with the positive z-axis 
less or greater than Tt/2. 
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Definition 2. Let a function u = f(x, y, z) be given on the surface S(see Remark I). 

Let us divide Sinto n parts S; and denote the greatest of the interior diameters of the 

parts S; (Definition I) by v(p). Choose a point (x1, Y;, z;) in each part Si and write 

down the sum 
n 

a = 'Lf(xi, Yi• z;) si • (I) 
i= 1 

where s; is the area of the part S;. If there exists a number I s suchthat for every e > 0 

there isanother number t:5 > 0 suchthat for each partition p for which v(p) < t:5 the 

inequality 

jls- aj < e 

holds, independently of the choice of the points (x;, Yi• zi) in Si, then we say that the 

surface integral 

ff !(x, y, z) dS (2) 

over the surface S exists and that its value is Is. 

REMARK 6. Roughly speaking: (2) is the limit of the sums (1) as v(p)-+ 0. 

REMARK 7. The integral {2) is often called the surface integral of the first kind. 

Definition 3. Let a function u = f(x, y, z) be given on an oriented surface S. 

LetS be divisible into a finite number n of parts S1 which either may be represented 

in the form z = f(x, y), or are formed by parallels to the z-axis. Let p besuch a parti­

tion. By the norm v(p) ofthat partition we mean the greatest of the interior diameters 

of the parts S; (Definition I). Let us choose, in each part S;, a point (x1, y1, z1) and 

write the sum 
n 

a,.., = L:f(x1, Yi• z,) P1, (3) 
i=l 

where p1 is the oriented projection of the part S; on the xy-plane (Remark 3). lf 
there exists a number I ,.1 such that for an arbitrary e > 0 there is a t:5 > 0 such that 

for each partition p (with the above-mentioned properties) for which v(p) < t:5 the 

inequality 

holds, independently of the choice of the points (x1, y 1, zi) in Si, then we say that the 

surface integral over the oriented surface S with respect to the Coordinates x, y, 

ff :(x, y, z) dx dy, (4) 

exists and that its value is I,..,. 
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REMARK 8. Roughly speaking: (4) is the Iimit of the sums (3) as v(p) --. 0. 

REMARK 9. The integrals 

Itg(x, y, z) dy dz, fth(x, y, z) dz dx 

611 

(5) 

are defined in a similar way. Integrals ( 4), (5) are often called surface integrals of the 
second kind. Surface integrals are a generalization of curvilinear integrals in a certain 
sense. In the same way as in the case of curvilinear integrals of the second kind, the 
orientation of the surface must be known when considering surface integrals of the 
second kind. 

By the integral 

IL[f(x, y, z) dx dy + g(x, y, z) dy dz + h(x, y, z) dz dx] 

we mean the sum of the integrals (4) and (5). 

R.EMARK 10. To ensure the existence of the integrals (2), (4), (5) it is sufficient, 
under the above-mentioned assumptions regarding the surface S (Remark I), to 
assume the continuity of the functions under consideration in the region n in which 
the surface S lies (in fact continuity on the surface S itself is sufficient). 

REMARK 11. The basic properties of surface integrals are similar to those of curvi­
linear integrals (Theorems 14.7.4, 14.7.5). If the orientation of the surface is changed 
(i.e. the exterior and the interior sides of the surface are interchanged), then the 
integrals (4) and (5) change their signs. 

Theorem 1. lf the surface S is given in the explicit form z = cp(x, y), where 
cp(x, y) is a continuous piecewise smooth function in M, then the integral (2) is 
equal to the integral 

(6) 

Theorem 2. lf the surface S is given parametrically by the equations 

x = x(u, v), y = y(u, v), z = z(u, v), (u, v) e Q 

(where x, y, z are assumed to be continuous piecewise smooth functions in Q), then 
the integral (2) is equal to the integral 

SI !(x(u, v), y(u, v), z(u, v)) .j(EG - F2 ) du dv. 

(The functions E, F, Gare defined in equations (14.9.75), (14.9.76.) 

(7) 
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Theorem 3. lf S is given in the form z = <p(x, y) for (x, y) E M, then 

ff !(x, y, z) dx dy = ± ff j(x, y, ({J(x, y)) dx dy (8) 

where the plus or minus sign is to be chosen according to Remark 3 ( see Example 1 ). 

REMARK 12. Theorem 3 is useful for the practical evaluation of the integral (4). 

We divide the surface S into surfaces which may be represented in the form z = 

= qJ (x, y) and surfaces formed by lines parallel to the z-axis. In the second case the 

corresponding integrals are equal to zero (Remark 3), in the first case they are 

evaluated using (8). 

Theorem 4. Let the surface S be given parametrically by x = x(u, v), y = 

= y(u, v), z = z(u, v) for u, v E Q. Then 

ff f(x, y, z) dx dy = ± ff f(x(u, v), y(u, v), z(u, v)) D(x, y) du dv, (9) 
s Q D(u, v) 

where 

ox ox 

D(x, y) ou OV 
--= (10) 
D(u, v) ay ay 

ou ' av 

The sign in (9) can be determined as follows: We choose a point(u0 , v0) E Q such that 

in its neighbourhood Q', D(x, y)jD(u, v) =I= 0. Then the corresponding part S' of 

the surface S may be represented in the form z = qJ(x, y). Since S is an oriented 

surface, we are able, according to Theorem 3 or Remark 3, to determine the correct 

sign in the equation 

ft!(x, y, z) dx dy = ± ff M!(x, y, qJ(x, y)) dx dy. (11) 

If D(x, y)jD(u, v) > 0 in Q', we choose the same sign in (9) as in (11); if D(x, y)j 

/D(u, v) < 0 in Q', we choose the opposite sign. (See Examp1e 1.) 

REMARK 13. Theorems 3, 4 and Remark 12 are valid in a similar form for the 

integrals ( 5). Expression ( 10) has to be successively replaced by the expressions 

oy oy oz oz I -
' 

D(y, z) ou ov D(z, x) = 
ou ov 

--= or (12) 
D(u, v) oz oz D(u, v) ox OX 

-
au ov 1 ou OV 
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Example 1. Let us evaluate 

(13) 

where S is the sphere with centre at the origin and radius 1. S is a closed surface by 
which its orientation is thus given. S obviously consists of two surfaces S1 and S2 

with equations z = -J(l - x2 - y 2 ) and z = - -J(l - x2 - y 2), respectively. If we 
make use of (8), we choose, according to Theorem 3 and Rernark 3, the plus sign for S 1 

and the minus sign for S2• Hence 

where K is the circle x 2 + y 2 ~ 1. The right-hand side of the equation is easily 
evaluated by transforming to polar coordinates 

x = r cos <p, y = r sin <p (see Examples 14.4.1, 14.4.2). 

The result: 

If S is given in parametric form, 

x = sin u cos v , y = sin u sin v , z = cos u (0 ~ u ~ 1t, 0 ~ v < 21t), 

we use (9). According to Theorem 4, Iet us choose, for example, (u 0 , v0 ) = (!1t, !1t). 
There is obviously a point on S1 which corresponds to this point so that in (11) we 
have the plus sign. Furthermore, for u = a1t, V = t1t (and - as follows from conti­
nuity - also in a certain neighbourhood of this point) 

D(x,y) lcosucosv, -sinusin vl . 0 --- = = Sln U COS U > 
D(u, v) cos u sin v, sin u cos v 

so that according to Theorem 4 we choose in (9) the same sign as in (11), i.e. the 
plus sign. Thus we have 

in accordance with the previous result. 

Theorem 5 (The Gauss-Ostrogradski Theorem). Let the functions 

aP 
P(x, y, z), Q(x, y, z), R(x, y, z) and - , ax 

aQ aR 
ay ' az 
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be continuous in a closed solid V of type A (Definition 14.1.4) (which need not 

necessarily be simply connected) with the oriented boundary S so that the outward 

normal n pointsout of the solid. Then 

fff ( oP + oQ + oR) dx dy dz = ff (P dy dz + Q dz dx + R dx dy), (14) 
V OX oy OZ s 

or, if we denote the direction cosines of the outward normal by cos cx, cos ß, cos y, 

fff ( ap + oQ + oR)dxdydz=ff(Pcoscx + Qcosß + Rcosy)dS (15) 
V OX Oy OZ s 

or, if we take into consideration that oxfon = cos cx etc. 

fff ( oP + oQ + oR) dx dy dz = ff (p ox + Q oy + R oz) dS . 
V OX oy OZ s On On On 

(16) 

If V is multiply connected, then ffs means the sum of the surface integrals over 

the individual parts of the boundary. 

Definition 4. Let S be an oriented surface and Iet k be a closed simple finite piecewise 
smooth (generally spatial) curve on S. The curve k is said tobe positively oriented with 
respect toS, if- observed from the side of the outward normal (thus erected on the exterior 
part of the surface) - when traversing the curve k in the positive direction, the part of the 
surface S enclosed by the curve k, remains on the Ieft-hand side (Fig. 14.20). 

Fig. 14.20. 

Theorem 6 (The Stokes Theorem). LetS be an oriented open surface the boundary 

of which is formed by a closed simple finite piecewise smooth curve k which is 

positively oriented with respect to S. Then 

l(P dx + Q dy + R dz) = 

= j fs [ ( ~~- ~:) dxdy+ ( ~:- ~~) dydz + ( ~~- ~:) dzdx] . (17) 



14.8 INTEGRAL CALCULUS OF FUNCTIONS OF TWO AND MOREVARIABLES 615 

REMARK 14. Stokes's theorem is a generalization of Green's theorem (Theorem 
14.7.7) for simply connected regions in the xy-plane. 

From the Gauss-Ostrogradski theorem there easily follows: 

Theorem 7. If the functions P, Q, R, aPjax, aQjay, aRjaz are continuous in f!, 
then a necessary and sufficient condition that the surface integral (14) (or (15), 
or ( 16)) is equal to zero for each surface S, which is the boundary of a closed simply 

connected solid V of type A lying in the region f!, is given by the equation 

aP aQ aR . -+-+-=0 m n. 
ax ay az 

(18) 

Theorem 8. If (I 8) is satisfied jor f! simply connected, then, in f!, the surjace in­

tegral (14) (or (15), or (16) over a surface S', the boundary ofwhich is a curve k which is 
positively oriented with respect to S', depends only on k and is independent of the form of 
the surface S'. 

Theorem 9 ( Green's Identities). Let us write, as usual, Llu = a2 ujax2 + a2ujay2 + 
+ a2 ujaz 2 and let aujan be the derivative of u in the direction of the outward 

normal, i.e. 

where 

ax 

au au ax au ay au az 
-=--+--+-­
an ax an ay an az on 

az 
- = cosa, 
an 

ay 
- = cosß, 
an 

- = oos y 
an 

and cos et, cos ß, cos 'Y are the direction cosines of the ( oriented) outward normal. Let 
u(x, y, z), v(x, y, z), tagether with their derivatives up to the second order, be continuous 
in a closed solid V of type A with an oriented boundary S. Then 

--+--+-- x y z-fff (au av au av au av) d d d _ 
v ax ax ay ay az az 

- fffvu Llv dx dy dz + fLu ~: dS = 

= - fff/ Llu dx dy dz + fLv ~: dS. 

From (19) and (20) it follows that 

(19) 

(20) 
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For v = 1 we obtain 

(22) 

REMARK 15. Using the symbolism of vector analysis (Chap. 7) and the notation 
d V= dx dy dz, the previous theorems may be rewritten in a rather more concise form: 

A = iP + jQ + kR , dS = i dS cos ac + j dS cos ß + k dS cos y , 

ds = i dx + j d y + k dz . 

Equation (15) (or (14), or (16)): 

Equation ( 17): 

L Ads = Jtcurl AdS. 

Equations (19), (20): 

fffvgrad u grad v dV = - Jffvu .1\v dV + Jtu grad v dS = 

= - fff/ .1\u dV + JLv grad u dS. 

Equation (21): 

fff}u .1\v- v .1\u) dV = JL(u grad v- v grad u) dS. 

Equation (22): 

(see Chap. 7). 

14.9. Applications of the Integral Calculus in Geometry and Physics 

( Curves, plane figures, so Iids, surfaces - lengths, areas, volumes, masses, statical 
moments, centres of gravity, moments of inertia; the work of a force along a given 
curve; some special formulae; Guldin's rules; Steiner's theorem; examples.) 

REMARK 1. Exact definitions of the 1ength of a curve, of the area of a surface, etc., 
may be found in many textbooks of integral calculus. 
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REMARK 2. All formulae given below may easily be obtained from a geometrical 

or physical conception ofthe problem. For example, the formula for calculation ofthe 

volume of a solid of revolution, the lateral surface of which is obtained by rotating 

the curve y = f(x) (f(x) ;s 0, a ~ x ~ b) around the x-axis (Fig. 14.21) can be 

derived in an intuitive way as follows: We divide the interval [ a, b] into n subinter­

vals Llxl, Llx2, .•• , LlXn· Choosing a point ek in each interval Llxk, we consider the 

function y = f( x) to be constant in Llxk, i.e. y = f( (k)· By rotating the segment y = 

= !( ek) over Llxk around the x-axis, we get a circular cyiinder with the volume 

Fig. 14.21. 

1tj2(ek) Llxk. For the sum of the volumes of all these cylinders in the interval [a, b] 
we have 

II 

I 1t P( ek) ilxk . (1) 
k=1 

Now, it seems to be evident that as n -+ oo and Llxk -+ 0, we get the exact volume 

of the solid of revolution, while the sum (I) turns into the integral 

(2) 

lf the function f(x) is continuous in [ a, b ], the heuristic consideration just indicated 

yields - by Theorem 13.6.2 - the correct result. The same is true if upper or 

lower sums are used instead of the sums ( 1 ). The idea just explained may be employed 

for the derivation of all formulae given below. 

In all these formulae we assume the continuity of the function considered. lf some 

of the functions are, for example, piecewise continuous, we proceed according to 

Remark 13.6.13, p. 518. 

NoTE. The majority of formulae are contained in the first four sections, (a) 

curves, (b) plane figures, ( c) solids, ( d) surfaces. At the beginning of each of these 

sections, the types of objects are listed for which formulae are presented. For ex­

ample, in section (c) formulae for five types of solids (a) to (e) are given; these types 



618 SURVEY OF APPLICABLE MATHEMATICS 14.9 

are described at the beginning of section ( c ). Thus, for the volume of solids, five 
formulae corresponding to types (a) to (e) are given; the formulae for the mass, statical 
moment, etc., are treated similarly. 

(a) Curves. 

(cx) Plane curves. The curve k is given: 

(a) by the graph of a function y = f(x), a ~ x ~ b, 

(b) parametrically, x = cp(t), y = l/J(t), t1 ~ t ~ t2 

(notation: dcpjdt = cp, dl/1/dt = 1/1), 
( c) in polar coordinates, r = r( cp ), cp 1 ~ cp ~ cp 2 , r ~ 0. 

The specific density (mass per unit of length, kg m- 1 ) (} is given as a function of x 
or t or cp. (If (} is constant, then, of course, (} may be put in front of the integral sign.) 

LENGTII: 

(a) l = J>'[l + f'2(x)] dx = J:_;(l + y'2 ) dx, 

(b) Jll f'l 1 = -J[ <P 2(t) + J#2(t)J dt = J(x 2 + f 2 ) dt, 
II !1 

(c) 

MASS: 

(a) M = fe(x) -/[1 + f' 2(x)] dx = J:(} J(l + y'2) dx, 

(b) fl2 f'l M = Q(t) J[ <P 2(t) + ifi2(t)] dt = (} J(x2 + y2 ) dt, 
h ~ 

(c) 

STATICAL MOMENT WITII RESPECT TO TIIE X· OR y-AXIS: 

(a) S:r: = J!(x) Q(x) J[l + f' 2(x)] dx = J:YQ J(l + y'2 ) dx, 

s, = J:xQ(x) vf[l + f' 2(x)] dx = J:xe J(l + y' 2 ) dx, 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(9') 
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(b) 

f,, I,, 
s, = <P(t) e(t) ~[ ciJ 2(t) + 1fol(t)] dt = xe ~(x2 + y2 ) dt, ,, ,, 

(c) 

COORDINATES OF THE CENTRE OF GRAVITY: 

s 
Xr = ~· 

for example, 

MOMENT OF INERTIA WITH RESPECT TO THE X- OR y-AXIS: 

(a) 

(b) 

(c) 

l:x: = f! 2(x) e(x) ~[1 + f' 2(x)] dx = s:y2e ~(1 + y'2 ) dx' 

I, = J:x 2e(x) ~[1 + f' 2(x)] dx = S:x2e ~(1 + y'2 ) dx, 

I:x: = J'2
1/1 2(t) e(t) ~[ ciJ2(t) + tfo2(t)] dt = J'2Y2e ~(x2 + .Y2 ) dt. ,, ,, 

619 

(10) 

(10') 

(11) 

(11 ') 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(18') 

When computing moments of inertia with respect to the origin (i.e. about the z-axis) 
we must replace x 2 or y2 by the sum x 2 + y2 ; particularly, in (18) r2 sin2 <P or 
r2 cos2 ({) must be replaced by r2 • 
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(ß) Curves in space. A curve c is given parametrically by 

X = q~(t), y = 1/J(t), Z = X(t), t1 ~ t ~ tz: ~; = fP, etc. 

LENGTII: 

MASS: 

STATICAL MOMENT WITII RESPECT TO THE xy- OR XZ- OR yz-PLANE: 

COORDINATES OF THE CENTRE OF GRAVITY: 

s,., 
XT= M' 

MOMENT OF INERTIA WITII RESPECT TO TIIE X- OR y- OR z-AXIS: 

= rz(y2 + z2) {! .J(xZ + y2 + z2) dt' 
J r, 

14.9 

(19) 

{20) 

(24) 

(25) 

(26) 
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(27) 

If a curve is given as the intersection of two surfaces, then for the above computa­
tions it is usually better to establish its parametric representation. 

(b) Plane Figures. 

(a) n is a region bounded by a closed curve k positively oriented with respect to n 
(Fig. 14.22; see Remark 14.7.1). 

If k is given parametrically, i.e. if 

x = cp(t), y = t/l(t), t1 ~ t ~ t2 , 

then as t increases from t 1 to t 2, the point (x,y) moves along the curve k so that n 
remains on the left-hand side (Fig. 14.22). 

[l 

0 a )( 

Fig. 14.22. Fig. 14.23. 

y 

Fig. 14.24. Fig. 14.25. 

Fig. 14.26. 
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The specific density (the mass per unit area, kg m-2 ) is denoted by a(x, y). 

(b) The region n is given by a curve c according to Fig. 14.23; the curve c is the graph 
of a continuous function y = f(x), f(x) ~ 0 in [ a, b ], or is given parametrically, 

X= lp(t), y = l/J(t), tl ~ t ~ t2, 

l/l(t) ~ 0, lp(t1) = a , lp(t2) = b . 

The specific density is denoted by a(x) (kg m-2). 

(The area of the region n in Fig. 14.24 is obtained, of course, as the difference be­
tween areas of regions of the type shown in Fig. 14.23. Similarly for masses, statical 
moments, coordinates of the centre of gravity, moments of inertia, etc. The case of para­
metric representation is treated in a similar way.) 

( c) The region n is given according to Fig. 14.25, 0 < rt ( <P) < r2 ( <P) in (<Pt , <P2). The 
specific density is denoted by a( r, <P ). 

(d) If r 1 = 0 in (c) we get a sector (Fig. 14.26). (We omit theindex in ri qJ) bywriting 
r( ({J ).) 

If a = a(x) or a = const., some formulae may be simplified. (If a(x) = const., 
or a(x, y)) = const., or a(r, lp) = const., then, ofcourse, a can be put in front ofthe 
integral sign.) 

AREA: 

(a) (28) 

= r x dy = r2 lp(t) 1/l(t) dt = {29) 
J" J ,, 

= _ r y dx = _ f'2 l/J(t) cp(t) dt = {30) 
J" .. ,, 

= fi (x dy - y dx) = ff'2
[ lp(t) l/l(t) - l/l(t) cp(t)] dt. (31) 

k ~ 

In particular, for a sector, see Remark 14.7.14, p. D . 

(b) (32) 

Itz [,2 
P = 1/f(t) ciJ(t) dt = yx dt . 

,, ,, 
(33) 



14.9 INTEGRAL CALCULUS OF FUNCTIONS OF TWO AND MOREVARIABLES 623 

(c) (34) 

(d) (34') 

MASS: 

(a) M = ff
0
u(x,y)dxdy. (35) 

(b) M = fu(x)f(x) dx = fuy dx. (36) 

(c) f'P2 [f'>('P) J M = ru(r, rp) dr dq>. 
'Pt rt('P) 

(37) 

(37') 

STATICAL MOMENT WITii RESPECT TO TiiE x- OR y-AXIS: 

(a) Sx = ff :u(x, y) dx dy, S1 = ff 
0
xu(x, y) dx dy. (38) 

(b) Sx = fbu(x) jl(x) dx = t Jbuy 2 dx, S1 = fbxu(x)f(x) dx = fbuxy dx. 
" 2 " " " (39) 

(c) (40) 

S1 = J"'2cos q> [f'><'P> r2u(r, q>) dr] dq> . 
'Pt rt('P) 

(40') 

(d) For u = u( rp) we have 

Sx = ! J"' 2u(q>) r 3(rp) sin q> dq>, s •. = !J"'2u(rp) r3(rp) cos q> dq>. (40") 
'Pt '1'1 

COORDINATES OF THE CENTRE OF GRAVITY: 
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MOMENT OF INERTIA WITH RESPECT TO THE X- OR y-AXIS, OR TO THE ORIGIN (I. E. ABOUT 

THE z-AXIS): 

(a) 

(b) 

(c) Solids. 

I"'= ftta(x, y) dx dy, Iy = ff 
11
x2a(x, y) dx dy, 

Iz = ff
11
(x 2 + y2 ) a(x, y) dx dy = Ix + Iy. 

Ix =fba(x/3(x) dx = tfbay3 dx, 
Q 3 Q 

Iy = J:x 2a(x)f(x) dx = J:ax 2 y dx, 

Iz = fa(x) [13~x) + x2 f(x)J dx = 

= S:a (y: + x2y) dx = I"' + I,. 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(46'} 

(47') 

(a) The solid is a three-dimensional region T of type A (Definition 14.1.4) (Fig. 

14.27). The specific density (mass per unit volume) is denoted by e(x, y, z) ( kg m-3). 

(b) The solid Tis a special region of type A: The lower base n lies in the xy-plane, 

the upper one is the surface z = f(x, y) and the lateral surface is formed by parallels 

to the z-axis (Fig. 14.28). The specific mass is denoted by e = e(x, y). 
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(c) Tis a solid with the lower base11h(~p) < r < rirp), tp 1 < tp < tp 2) and the 
upper base z = z(r, tp ); the lateral surface is formed by parallels to the z-axis (Fig. 
14.29). The specific mass is denoted by e(r, ~p). 

(d) Tis a solid with the bases P 1 , P2 perpendicular to the x-axis. P 1 lies in the plane 
x = a, P 2 in the plane x = b. The areas p of all cross-sections perpendicular to the 
x-axis are known, p = p(x) (Fig. 14.30). The specific mass is denoted by e(x). 

z 

X 

O·r-~~----------~ 

c:::J' X 

Fig. 14.27. Fig. 14.28. 

Fig.14.29. Fig.14.30. 

X 

Fig. 14.31. 

(e) Tis a solid of revolution, whose lateral surface is formed by rotating the curve 
y = f(x), a ~ x ~ b, f(x) ~ 0, around the x-axis (Fig. 14.31). The specific mass is 
denoted by e(x). 
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In the cases where Q = const., Q can be put in front of the integral sign, of course. 

(a) V= fff/xdydz. (48) 

(b) V= ff/(x, y) dx dy. (49) 

(c) f'P2 [jr2(<p) J V= rz(r,cp)dr dcp. 
'PI TI('P) 

(50) 

(d) V= fp(x) dx. (51) 

If, especially, p(x) is a polynomial of at most the third degree, then 

(52) 

where p 1, p2 are areas ofthe bases Pt> P2 and Pm is the area ofthe mean cross-section 
(i.e. for x = !(a + b)). 

(e) (53) 

If the lateral surface of a solid of revolution is formed by rotating a curve c around 
the x-axis and c is given parametrically by x = <p(t), y = 1/J(t), t1 ~ t ~ t2 , 1/J(t) ~ 0, 
dcpfdt = cp(t) > 0, then 

If cp < 0, then 

MASS: 

(a) 

(b) 

(c) 

v = 1t r2 1/J2(t) cp(t) dt. 
J fl 

M = fff/(x, y, z) dx dy dz. 

M = ff 
0
e(x, y)f(x, y) dx dy. 

f'P2 [Jr2('1') J M = re(r, cp) z(r, cp) dr dcp. 
'PI Tl(<p) 

(53') 

(53") 

(54) 

(55) 

(56) 
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(d) M = f g( X) p( X) dx o 

(e) 

STATICAL MOMENT WITH RESPECT TO THE xy-, yz- OR ZX-PLANE: 

(a) Sxy = fff/Q(x, y, z) dx dy dz, 

Syz = fff /Q(x, y, z) dx dy dz, 

Szx = fff/e(x, y, z) dx dy dz 0 

(b) Sxy = t ffne(x, y)f2(x, y) dx dy, 

Syz = ff nxg(x, y)f(x, y) dx dy, Szx = ff ;e(x, y)f(x, y) dx dy. 

f~2 [fl(~) J (c) Sxy = t re(r, cp) z2(r, cp) dr dcp, 
~~ r1(~) 

J~l [fl(~) J Syz = r2e(r, cp) z(r, cp) dr cos cp dcp, 
~~ r1(q>) 

f'P2 [fl('l') J Szx = r2e(r, cp) z(r, cp) dr sin cp dcp 0 

'1'1 q(q>) 

(d) Syz = J:xe(x)p(x)dx. 

(e) Syz = 1tfxe(x)P(x)dx = n{xey2 dx 0 

COORDINATES OF THE CENTRE OF GRAVITY: 

Syz XT= -, 
M 

szx 
YT=-, 

M 

627 

(57) 

(58) 

(59) 

(59') 

(59") 

(60) 

( 61) 

(62) 

(63) 

(64) 

(65) 

(66) 



628 SURVEY OF APPLICABLE MATHEMATICS 14.9 

MOMENT OF INERTIA WITH RESPECT TO THE X- OR y- OR z-AXIS (see also Steiner's 
theorem, formula (118)): 

(a) 

(b) 

(c) 

(e) 

(d) Surfaces. 

IX= fff}y 2 + z2) e(x, y, z) dx dy dz' 

I,= fffT(x 2 + z2) g(x, y, z) dx dy dz, 

Iz = fffT(x 2 + y2 ) g(x, y, z) dx dy dz. 

I%= IL(x 2 + y2 ) e(x, y, )f(x, y) dx dy. 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(a) The finite simple piecewise smooth surface (Remark 14.1.7) is given parametri­
cally: 

x = x(u, v), y = y(u, v), z = z(u, v) (73) 

(u, v) E n. The density (mass per unit area, kg m-2) is denoted by u = u(u, v). 

y 
0~------------~-

~y 
X 

X 
Fig. 14.32. Fig. 14.33. 

(b) The surface z = f(x, y) over a region n (Fig. 14.32). The density is denoted by 
u = u(x, y). 

(c) Thesurfacez = z(r,<p)overaregionO(<p 1 < <p < cp 2 ,r1(cp) < r < r 2(<p)),Fig. 
14.33. The density is denoted by u(r, <p ). 
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(d) The surface of revolution obtained by rotating a curve y = f(x), a ~ x ~ b, 
f(x) ~ 0 around the x-axis. The density is denoted by a(x). 

(e) The surface ofrevolution obtained by rotating a simple curve x = <p(t), y = 1/J(t), 
t 1 ~ t ~ t2 , 1/J(t) ~ 0, d<pjdt = 4J(t) > 0 around the x-axis. The density is de­
noted by a(t). 

(f) The surface of revolution obtained by rotating a curve r = r( <p ), 0 ~ <p 1 ~ <p ~ 
~ <fJ2 ~ n around the x-axis. The density is denoted by a( <p ). 

(If a = const., a can be put in front of the integral sign.) 

AREA: 

(a) P = fL.J(EG- F2 ) du dv, (74) 

where 

E- - + - + - , G- - + - + - , _ (ox)2 (oy) 2 (oz)2 
_ (ox)2 (oy) 2 (az) 2 

au au au av ov av (75) 

F = ox ox + oy oy + oz az . 
au av au OV au av (76) 

{b) (77) 

(c) (78) 

(d) (79) 

(e) (80) 

(f) (81) 

MASS: 

(a) M = ff 
0
a(u, v) .J(EG - F2) du dv (see (75), (76)). (82) 

(b) (83) 
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(c) J'P2 [J'2<'P> j[ (oz)2 (oz ) 2
] ] M = 'Pt rt<'P> u(r, <p) r2 + r2 or + o<p dr d<p . (84) 

(d) M = 21t J: u(x)f(x) J[l + f'2(x)] dx = 21t J:uy J(l + y'2 ) dx. (85) 

(e) M = 21tf12u(t) l/f(t) J[if>2(t) + ~2(t)] dt = 21tf12uyJ(x2 + y2)dt. (86) 
ft ft 

(f) 

STATICAL MOMENT WI'fl:l RESPECT TO THE xy- OR yz- OR ZX-PLANE: 

(a) 

(b) 

Sx, = Jf ::(u, v) z(u, v) J(EG- F2) du dv (see (75), (76)), 

S,: = Jf ::(u, v) x(u, v) J(EG - F2) du dv, 

Su = JJ ::(u, v) y(u, v) J(EG - F2) du dv. 

Sxy = Jf ::(x, y)f(x, y) ~~[ 1 + (~Y + (~YJ dx dy, 

s,z = JJ ;u(x, y) J[ 1 + (~Y + (~YJ dx dy, 

S:x = JJ ;u(x, y) )[1 + (~Y + (~YJ dx dy. 

(c) sx, = J:IJ:~:::u(r, <p) z(r, <p) J[r2 + r2 (:;y + (:;YJ dr] d<p, 

s,z = J:IJ:~:::u(r,<p)r j[r2 + r2 (:;y+ (:;)]dr]cos<pd<p, 
s=x = J:IJ:::::u(r, <p) r j[r2 + r2 (:;y + (:; YJ dr] sin <p d<p. 

(d) Sx, = 0, Su = 0, S,z = 21t J:xu(x)f(x) y'[l + f' 2(x)] dx = 

= 21t J:xuy y'(l + y'2) dx. 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 
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( e) Sxy = 0 ' s%X = 0 ' Sy% = 21t J12 u(t) (,O(t) 1/l(t) y'[ cp2(t) + .P2(t)] dt = 
fl 

(96) 

(f) S:xy = 0, Su = 0, Sy., = 21tf'P1u((,O)r2((,0)sin(,OCOS(,Oy'[r2((,0)+r' 2((,0)]d(,O. 
'1'1 

COORDINATES OF THE CENTRE OF GRA VITY: 

Syz 
Xr= -, 

M 

MOMENT OF INERTIA WITH RESPECT TO THE X- OR y- OR z-AXIS: 

(97) 

(98) 

(a) I:x = ff :(u, v) [y2(u, v) + z2(u, v)] y'(EG- F2) du dv (see (75), (76)), (99) 

I, = Jf ::(u, v) [ x2(u, v) + z2(u, v)] y'(EG - F2) du dv, 

Iz = ff ::(u, v) [x2(u, v) + y2(u, v)] y'(EG - F2 ) du dv. (100) 

(b) I:x = ff ::(x, y) [y 2 + P(x, y)] J[ 1 + (ixY + (~YJ dx dy, (101) 

I1 = ff ::(x, y) [x2 + P(x, y)] j[1 + (ixY + (~YJ dx dy, (102) 

Iz = ff ::(x, y) (x2 + y2 ) j[1 + (ixY + (~YJ dx dy. (103) 
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(106) 

(d) Ix = 2rc J:u(x)f 3(x) )[1 + f' 2(x)J dx = 21t J:uy 3 )(1 + y' 2 ) dx. (107) 

(e) Ix = 21tf12u(t) t/J 3(t) J[cp 2(t) + ~2(t)] dt = 21tf12uy 3 J(x 2 + y2 ) dt. (108) 
tt tt 

(109) 

(e) The Work Done by a Force Moving Along a Given Curve. The work L 
done by a force P in moving a1ong an oriented curve c in a field of force 

P = iP1(x, y, z) + jP2(x, y, z) + kP3(x, y, z) 

is given by the sum of curvilinear integrals 

If c is given parametrically and is positively oriented with increasing parameter 
(Remark 14.7.1, p. 599), we have 

L = r:P 1(cp(t), t/l(t), x(t)) cp'(t) dt + r:P2(cp(t), t/J(t), x(t)) t/J'(t) dt + 

+ r:P3(cp(t), t/l(t), x(t)) x'(t) dt. (111) 

In the plane (where P = iP1(x, y) + jP2(x, y)): 

L = tP 1(x, y) dx + tP2 (x, y) dy = 

= r: P 1( cp(t), t/J(t)) cp'(t) dt + r: P 2 ( cp(t), t/l(t)) t/J'(t) dt. (112) 

(f) Some Special Formulae. The area of a cylindrical surface y = f(x) cut 
off by the cylindrical surface z = g(x) and by the planes z = 0, x = a, x = b 
(g(x) ~ 0 for a ~ x ~ b) is given by 

P = f:g(x) )[1 + f' 2(x)] dx = J:= )(1 + y'2 ) dx. (113) 
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The area P of a conical surface with the vertex at the origin and whose base is the 
curve 

x = x(t), y = y(t), z = z(t) (t 1 ~ t ~ t2 ) 

(i.e. the surface composed of lines joining the origin to points on this curve ): 

ft2 

P = t J[(xy - yx)2 + (xi - zx)l + (yi - zy)l] dt. 
,, 

(114) 

(g) Guldin's Rules.* Let V be a solid of revolution obtained by rotating a re­
gion f2 ( of type A, Definition 14.1.2, p. 573) with boundary H ( which does not in­
tersect the x-axis), around the x-axis. Then we have 

S = 2rtlyr, V= 2rrPYr, (115) 

where S denotes the surface area of the solid, V the volume of the solid, P the area 
of the region f2, l the length of the boundary· H, Yr the y-coordinate of the centre 
of gravity of the boundary H and Yr the y-coordinate of the centre of gravity of the 
region f2 (see Example 2). 

Guldin's rules remain true (under obvious assumptions) even in the following 
more general case: A given profile with the area P and with the length l of boundary 
is moved so that its plane remains perpendicular to the (spatial) curve described 
by its centre of gravity. Then 

(a) the area ofthe lateral surface is equal to ld, 

(b) the volume of the solid is equal to PD , 

(116) 

(117) 

where Dis the length of the trajectory traversed by the centre of gravity of the profile 
and d the length of the trajectory traversed by the centre of gravity of the boundary 
of the profile. 

(h) Steiner's Theorem (Parallel Axes Theorem). The moment of inertia IP 

of a (not necessarily homogeneous) solid with respect to a given straight line p is 
equal to the moment of inertia I, of this solid with respect to the straight line r paral~ 

lel to p and passing through the centre of gravity of the solid, plus a2 M, where M is 
the mass of the solid and a is the distance between the straight lines p and r; i.e. 

(118) 

(i) Examples. 

Example 1. Let us calculate the moment of inertia of a homogeneaus cone (Q = 
= Q0 = const.) with respect to its axis, where v is the height of the cone and r is the 
radius of the base. 

• Otherwise known as Pappus's Rules. 
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Let the axis of the cor.e be the x-axis, and let the vertex be at the origin. The lateral 
surface of the cone is obtained by rotating the segment 

r 
y=-x (O;;;x;;;v) 

V 

around the x-axis. By (72) we have 

Example 2. Let us find the volume and surface area of a torus (Fig. 14.34; the torus 
is obtained by rotating the circle shaded on the figure, around the x-axis ). 

Fig. 14.34. 
X 

According to (115) we have 

S = 2Jt. 2Jtr. R = 4Jt2 rR, 

14.10. Survey of Some lmportant Formulae in Chapter 14 

(See also physical and geometrical applications in § 14.9, also Theorem 14.8.9 
and Remark 14.8.15.) 

1. ff 
0
[cd1(x, y) + cd2(x, y)] dx dy = 

= C1 ff :~(x, y) dx dy + c2 ff ! 2(x, y) dx dy 

and similarly for triple integrals (Theorem 14.2.5). 

ff fb Ih2(X) fd l''l'l(Y) 

2. f(x,y)dxdy = dx f(x,y)dy = dyj f(x,y)dx. 
Ü. a h,(x) c 'l'l(Y) 
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(Evaluation of a double integral by successive integration, Remark 14.3.5, p. 582. 
Similar formulae valid for triple integrals are given in Remark 14.5.6, p. 591) 

3. ffj(x, y) dx dy = ff:(x(u, v), y(u, v)) !D(u, v)l du dv. 

(Substitution in a double integral, Theorem 14.4.1, p. 586; for polar coordinates 
x = p cos qJ, y = p sin qJ we have !D(p, ({J)I = P.) 

4. fff j(x, y, z) dx dy dz = 

= fff j(x(u, v, w), y(u, v, w), z(u, v, wJ) !D(u, v, w)! du dv dw 

(Theorem 14.5.3); for spherical coordinates x = r sin 9 cos qJ, y = r sin 9 sin qJ, 
z = r cos 9 we have !D(r, 9, ({J)I = r2 sin 8. 

5. J {(x, y) dx = J!c ({J(t), 1/l(t)) <P(t) dt, 

f {(x, y) dy = f!( ({J(t), 1/J(t)) r/l(t) dt, 

Jt(x, y) ds = S:f( ({J(t), 1/l(t)) J[<P 2(t) + r/J 2(t)] dt 

(Theorem 14.7.2); the curve k is given parametrically by equations 

x = qJ(t), y = 1/J(t) (a ~ t ~ ß) 

and is oriented positively for t increasing. 

For similar formulae valid for curves in space see Remark 14.7.8, p. 604. 

6. ft(x,y)dx = ± f!(x,g(x))dx, 

provided c is given by the equation y = f(x). For more detai1s see Theorem 14.7.3. 

7. J (P dx + Q dy) = JJ (aQ - ap) dx dy 
k n ax ay 

(Green's theorem, Theorem 14.7.7, p. 605). 
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8. JJf (~p + oQ + oR) dx dy dz = ff (P dy dz + Q d.:: dx + R dx dy) 
.1 v ox ay az s 

( Gauss's theorem, Theorem 14.8.5, p. 613). 

9. 1 (Pdx + Qdy + Rdz) = 

J { [(BQ_ 8P) dxdy + (8R _ 8Q) 
ls ax 8y 8y 8z 

( aP aR) J dydz + 8z - ax dzdx 

(Stokes's theorem, Theorem 14.8.6, p. 614). 



15. SEQUENCES AND SERIES 
WITH VARIABLE TERMS 

(SEQUENCES AND SERIES OF FUNCTIONS) 

ßy KAREL REKTORYS 

References: [I], [I7], [26], [28], [3I], [37], [48], [54], [59], [74], [75], [84], [89], [9I], 

[92], [99], [Ill], [Il2], [II9], [122], [148], [183]. 

15.1. Sequences with Variable Terms, Uniform Convergence, the 
Arzela-Ascoli Theorem. Interchange of Limiting Processes. 

Integration and Differentiation of Sequences with Variable Terms. 
Limiting Process under the Integration and Differentiation Signs 

Definition 1. Let a sequence of functions 

(I) 

defined in an intervai I be given. The sequence is said to converge (or to tend) point­

wise (briefty to converge)to the (Iimiting)function f(x) in I, ifforevery xo EI a finite Iimit 

limf.(x0) = f(xo) (2) 
n ... oo 

exists. 

REMARK 1. The interval I may be either open or closed, finite or infinite, etc. The 

definition remains unchanged even if the sequence (1) is given on another set than 

on an interval. 

Definition 2. The sequence (I) will be called uniformly convergent in I, if for every 

e > 0 a number n0 , independent of the choice of x EI, can be found such that for 

every n > n0 and every x EI we have 

lf.(x) - f(x)l < e. (3) 

REMARK 2. Roughly speaking, sequence (I) is uniformly convergent in I, if the 

functions jn(x) converge to f(x) "at approximately the same rate" in the whole inter­

val I. 

Theorem 1 (The Bolzano-Cauchy Condition of Convergence). The sequence of 

functions (I) is uniformly convergent in I if and only if for every e > 0 a positive 
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integer n0 exists such that 

ho/ds for every x E I and for any pair of numbers m, n with n > no, m > no. 

Theorem 2. Let the functions (1) be continuous in I and Iet the sequence (1) be 
uniformly convergent in I. Then the limiting function f(x) is also continuous in I. 

Fig 15.1. 

Example 1. Consider the sequence 

1 
f,.(x) = 1 2 2 (n = 1, 2, 3, ... ) 

+nx 

in the interval I = (- oo, oo) (Fig. 15.1). For every x =F 0, we have 

limfn(x) = 0 

(4) 

since the denominator tends to infinity as n -+ oo. For x = 0, we have /,.(0) = 1 for 
any n, and consequently, 

limf,.(O) = 1 . 
n-+oo 

Hence, the limiting function f(x) is equal to unity for x = 0 and to zero for x =F 0 
so that it is not continuous at x = 0. Bach function (4) is, however, continuous in I. 
Thus (according to Theorem 2), the sequence (4) cannot be uniformly convergent 
in I; this fact is also apparent from Fig. 15.1. However, it can be shown that (4) is 
uniformly convergent in any closed interval which does not contain the point x = 0. 

Definition 3. The sequence (1) will be called uniformly bounded in I if a constant 
M > 0 exists such that 

lf,.(x)l ~ M for every n and every x e I. (5) 

(For example, the terms of the sequence (4) are uniformly bounded by the constant 
M=l.) 
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Definition 4. The terms fn(x) of the sequence (1) are called equicontinuous in I 
if for every c: > 0 a positive 8 can be found such that 

(6) 

holds for every n and every pair of points x 1, x 2 E I such that lx2 - Xtl < 8. 

Theorem 3 (The Arze/a-Ascoli Theorem).Let ( 1) be a uniformly bounded sequence of 
equicontinuousfunctions in I. Then we can choosefrom (l)a subsequence offunctions 

(7) 

which converges uniformly in I. 

REMARK 3. The functions ( 4) are unjformly bounded in the interval (- oo, oo ), 
but they are not equicontinuous in this interval; the latter fact follows easily from 
Theorems 2, 3 and Example I and is also geometrically obvious, since as n increases 
these functions become "steeper and steeper" in the neighbourhood of the origin. 

Theorem 4 (Interchange of Limiting Processes). Let the sequence (1) converge 
uniformly in the interval (a, a + <5) (<5 > 0) to the function f(x). Let each of the 
functions fn(x) tend to a finite Iimit, 

Iim fn(x) = Cn · (8) 
.x-+a+ 

Then there exist finite Iimits 

lim cn, lim f(x) 
n-+a> x-+a+ 

and these are equal, i.e. 

lim lim fn(x) = lim lim fn(x). (9) 
n-+oo .x-+a+ .x-+a+ n-+<n 

Und er similar assumptions, Theorem 4 is also true fo; x ~ a- and for x ~ a. 

Theorem 5 (Limiting Process und er the Integral Sign ). Let the sequence (I) con­
verge uniformly in [ a, b] and Iet the functions f(t), Jn(t) be integrable in [ a, b]. 
Then 

f xf(t) dt = lim f"tn(t) dt for every x E [ a, b] , 
a n-+co a 

(IO) 

i.e. 

f x limfn(t) dt = lim f"tn(t) dt. 
a ,. .... ao n-+tO a 

(11) 
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Moreover, the sequence of functions 

is also uniformly convergent in [ a, b]. (Cf. also Theorem 7.) 

Theorem 6 (Limiting Process under the Differentiation Sign). Let (1) be conver­

gent at least at one point of the interval [ a, b]. Further, Iet the functions ( 1) have 

(finite) derivatives in [ a, b]. (At the points a and b, the derivative from the right 

or from the left are understood respectively). Let the sequence 

Jax),J~(x),J;(x), ..• (12) 

be uniformly convergent in [ a, b]. Then the sequence (1) is also uniformly con­

vergent in [a, b] and its limiting function f(x) (Definition 1) has a derivative in 

[a, b], while 

f'(x) = Iimf~(x), (13) 
n-+oo 

i.e. 

d [t· /,()]-!· df"(x) - Im 11 X - 1m -- . 
dx n-+oo n-+oo dx 

(14) 

REMARK 4. Note that the uniform convergence assumed here is that of sequence 
(12) and not of sequence (1), i.e. it is the derived sequence that is assumed to be 
uniformly convergent. 

REMARK 5. If the assumption of uniform convergence is not satisfied in Theorems 5 

and 6, then equations (10), (11) and (13), (14) need not hold. 

Example 2. For the sequence 

(15) 

we have, in the interval [0, 1], 

f(x) = limf"(x) = 0. (16) 
n-+oo 

Furthermore 

Hence 

lim f1 j"(x) dx = 1 . 
n-+c:o 0 

(17) 
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However, f(x) = 0 in [0, 1] so that 

I:f(x) dx = 0 (18) 

and (10) is not true. (By Theorem 5, the sequence {15) does not converge uniformly 
in [0, 1]; this fact may, of course, be demonstrated in an other way.) 

REMARK 6. The condition of uniform convergence may be replaced by other 
conditions; for example, we have: 

Theorem 7. Let the functions {I) tagether with the limiting function f(x) be 
integrable in [ a, b] and let lfn(x)l < M in [ a, b] (i.e. the functions fn(x) are uni­
formly bounded in [ a, b ], see Definition 3). Then {10) and {11) hold. (Cf. also Theo­
rem 13.14.4.) 

REMARK 7. Theorem 7 cannot be applied to the sequence {15), since (15) is not 
uniformly bounded; for example, for x = 1/n we have 

I" (1 ) 2 1 -n/n -1 J n - = n - e = ne . 
n n 

15.2. Series with Variable Terms. Uniform Convergence. Integration 
and Differentiation of Series with Variable Terms 

Definition 1. Let a sequence of functions 

{1) 

in an interval I be given, and for each x 0 e I Iet the series of numbers 

(2) 

be convergent. Then the series 

(3) 

is said tobe (pointwise) convergent in I and to have the sum S(x). 

REMARK 1. Fora fixed xo E J, (2) is a series ofnumbers (since ft (x0 ), h(xo), ... are 
numbers). As usual, its partial sum sn(xo) is defined by 
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Thus, for any x 0 e I the relation 

S(x0) = lim sn{x0) (4) 
n->oo 

holds. 

The convergence of the series (3) rnay also be defined as follows: We construct the 
sequence of partial sums 

Ifthe sequence offunctions s"(x) is convergent in I (see § 15.1) and has the limit S(x), 
then the series (3) is said tobe convergent in I and to have the sum S(x). Obviously, 
the two definitions are equivalent. 

Example 1. Let I be the open interval ( -1, I). For every x e I we have 

S(x) = 

In fact, it is 

in I and 

2 3 I 1+x+x +x + ... =--. 
1 - X 

( ) 2 n-1 1- xn 
Sn X = 1 +X+ X + ... +X = -1-­

-X 

S(x) = lirn s .. (x) = - 1- . 
n-oo 1- X 

Theorem 1. If the series 

(5) 

(6) 

is convergent in I, then the series (3) is also convergent in I. (If ( 6) converges, then 
the series (3) is said to be absolutely convergent in I.) 

Definition 2. The series (3) is called uniformly convergent in I, if the sequence 
of partial surns s"(x), 

s"(x) = ! 1(x) + ! 2(x) + ... + J"(x), (7) 

is uniformly convergent in I (cf. Definition 15.1.2). 

Theorem 2 (The Bolzano-Cauchy Condition of Convergence). The series (3) 
converges uniformly in I, if and only if corresponding to every 8 > 0 a positive 
integer n0 (independent of x) can befound suchthat everywhere in 1 

IJ.,(x) + fn+t(x) + ... + f.,+p(x)l < 8 

holds for every n > no and every positive integer p. 

Theorem 3 (Weierstrass's M-Test). If 
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holds for every x E I and if the series of numbers 

At +Az=AJ+ ... 

is convergent, then the series 

!1 (x) + h(x) + h(x) + ... 
is uniformly convergent in I. 

Theseries (8) is called a majorant ofthe series (3). 

643 

(8) 

Example 2. The geometrical series (5) converges uniformly, e.g. in the interval 
[ -0·9; 0·9]. As the majorant series (8), we may obviously take the series 

1 + 0·9 + 0·9 2 + .... 

On the other hand, it can be shown that the series (5) does not converge uniformly 

in the whole interval (-I, I). 

Example 3. The series 

1 1 1 
((x) =- +- + ... + - + ... 

1x 2x nx 

(the so-called Riemann zeta-function, frequently used in the theory of numbers) con­
verges uniformly in the interval [ a, oo ), where a is any number greater than 1. In fact, 
for every x ~ a we then have I /nx ::5 I/na, so that the series 

1 1 1 - +- + ... +- + ... 
1a 2a na 

( convergent according to Example 10.2. 7, p. 348) is a majorant of the given series. 
(The given series, however, does not converge uniformly in the whole interval (1, oo ).) 

Theorem 4. If the series (3) converges uniformly in I and the functions f 1(x), 

f 2 (x), ... are continuous in I, then S(x) is also a continuous function in I. 

Theorem 5. Let the functions ( 1) be continuous in I and Iet f n ( x) ~ 0 for every 
n and x E I. Then S(x) is continuous in I if and only ifthe series (3) converges uniform/y 
in I. (Thus, if f n ( x) ~ 0, then not only the continuity of S ( x) follows from the uniform 
convergence ofthe series (3), but also the convers is true.) 

Theorem 6 (Theorem on Integration of Series with Variable Terms). Let 

/ 1(x) + / 2(x) + / 3(x) + ... = S(x) (9) 

be a series of integrable functions in [a, b], which converges uniformly in [a, b]; 
then the series 

(10) 
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with 

Fn(x) = ftn(t) dt (x e [ a, b ]) 

also converges uniformly in [ a, b J and has the sum 

fs(t) dt, 

i.e. 

(11) 

Theorem 7 (Theorem on Differentiation of Series with Variable Terms). 

Let the series 

f~(x) + f~(x) + J;(x) + ... = f(x) (12) 

converge uniformly in [ a, b J and Iet the series 

co1werge for at least one x 0 E [ a, b ]; then (13) converges uniformly in [ a, b]. 

Denoting the sum of the series (13) by S(x), we have 

S'(x) = f(x), 
i.e. 

(14) 

( cf. also Theorem 8). 

REMARK 2. Observe that the uniform convergence of the derived series (12), 
not that of the series (13), is required. 

REMARK 3. In Theorems 6 and 7, the condition of uniform convergence, which 
is rather strong, may often be replaced by a weaker condition, as for example: 

Theorem 8. Let the functions (1) tagether with the sum S(x) of the series (3) be 

integrable functions in [ a, b]. Moreover, Iet the sequence of partial sums sn(x), 

be uniformly bounded in [ a, b], i.e. Iet 

jsn(x)j < M 

for every n and every x e [a, b] (M being a constant). Then (11) holds, i.e. the 

given series can be integrated term by term. 
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REMARK 4. Sometimes it is convenient to define the sum of a series in another way 
than as a Iimit of partial sums. Such series are then called summable, in a certain 
sense (see Remark 10.2.16, p. 354, where summability in the sense of Cesä.ro was 
considered). Some series may be summable while they are divergent in the usual 
sense. This concept of summability is of considerable importance, particularly in the 
theory of Fourier series. 

Example 4. The series 

is called summable in the sense of Euter ( or of Abel), if a finite Iimit 

CO 

lim L anxn 
x-+1- n=l 

exists. This Iimit is called the sum of the series {15) in the sense of Euler. 

Theseries 

1-1+1-1+1- ... 

has the sum 1/2 in the sense of Euter, because 

and 

X 1 
lim --=-

". .... 1- 1 + X 2 

(15) 

(16) 

(17) 

(18) 

In the usual sense, however, the series (17) is divergent. According to Abel's theorem 
(Theorem 15.3.4), any series which is convergent in the usual sense is summable 
in the sense of Euter ( and has the same sum ). 

15.3. Power Series 

REMARK. 1. A power series is a particular case of a series with variable terms; it is 
a series of the form 

ao + a1(x - xo) + a2(x - Xo)2 + ... , 

where the a. are constants (generally complex). 

For x0 = 0 the power series assumes the form 

{1) 

(2) 
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Theorem 1. For any series (1) a number r ~ 0 (the so-called radius of con­

vergence; the possibility r = + ro is not excluded) exists such that (1) converges 

absolutely for each x E (x 0 - r, x 0 + r), and diverges for all x lying outside the 

interval [ x 0 - r, x 0 + r]. (By the notation r = + oo we mean that the series converges 

for allfinite x.) Moreover, if q is an arbitrary number such that 0 < q < r, then 

(1) converges uniformly in the interval [ x 0 - q, x 0 + q]. 

REMARK 2. In geometrical terms, (1) converges in an interval which is symmetric 
about the point x 0 • Theseries ( 1) is therefore sometimes called a series with the centre 

at the point x 0 • For the same reason, (2) is called a series with the centre at the origin. 

REMARK 3. At the end points of the interval of convergence, i.e. at the points 
x0 - r, x 0 + r, the series may be either convergent or divergent. For example, the 
series 

xz x3 
I + x +- +- + ... (r = I) 

2 3 

is divergent at x = I, but convergent at x = -1 (Example I0.2.4, p. 345). 

REMARK 4. The radius of convergence may also be zero. For example, it can be 
shown that the series 

I + 1! x + 2! x 2 + 3! x 3 + ... 

converges only for x = 0 (see also Theorem 2). 

Theorem 2. Let either the 1imit 

Iim lan+tl = 1 or the Iimit lim ~Iai = l 

-~ ~I -~ 
exist. Then 

I 
r = -. 

l 

{If l = 0, then r = +oo; if 1 = +oo, then r = 0.) 

Example 1. For the series 

we have 

x x2 x3 

I+-+-+-+ ... 
1! 2! 3! 

I 

lim lan+d = lim (n + I)! = lim - 1- = 0. 
n-+oo lanl n-+oo _.!_ n-+oo n + I 

n! 

Hence, r = + oo. Theseries in question converges for allfinite x. 

(3) 

(4) 
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REMARK 5. If the Iimits (3) do not exist, Theorem 2 remains true provided the 
limits (3) are replaced by the limits (see Theorem 10.1.8, p. 340) 

liiii I an+ 1 I , llm ~~anl· 
,. .... oo a,. ,. .... oo 

Theorem 3. The series 

a0 + a1(x - x 0 ) + a2(x - x0)2 + ... , 

laol + lad lx- xol + la2llx - xol 2 + ··· 

(5) 

(6) 

have the same radius of convergence. (In more detail: A single r exists such 
that both the series ( 5), ( 6) are convergent for lx - x 0 I < r and divergent for 

lx- x0 l > r.) 

REMARK 6. Theorem 3 is very significant from the practical point of view, since 
the series ( 6) has positive ( or non-negative) terms and its convergence may be tested 
using the criteria of § 10.2, which are valid for series with positive ( or non-negative) 
tenns. One of consequences of Theorem 3 is also the preceding Theorem 2. 

Theorem 4 (Abel's Theorem). If the series (1) converges for x = x 0 + r (i.e. at 

the right-hand end point of the convergence inten;al, assuming that 0 < r < + oo ), 
then its sum S(x) possesses a limit from the left at the point x0 + r, and this limit 

coincides with the sum of the series (1) for x = x0 + r. A similar assertion is 

true for x = x0 - r. (Cf. Examples 15.4.1, 15.4.2.) 

Theorem 5 (Arithmetic Operations with Power Series). Lettheseries 

S 1(x) = ao + a1(x - x0 ) + a2(x - x0) 2 + ... , 

Sz(x) = b0 + b1(x - x0 ) + bz(X - Xo)l + .. . 

(7) 

(8) 

have radii of convergence r1 and r2. respectively. Let r = min(rt, r2). Then in the in­
terva/ (xo- r, xo + r) we have 

S1(x) ± S2(x) = 

= (a 0 ± b0 ) + (a 1 ± b1) (x - x0 ) + (a 2 ± b2 ) (x - x0) 2 + ... , (9) 

S1(x) Sz{x) = 

= a0 b0 + (aob 1 + a 1b0 ) (x- x 0 ) + (a 0 bz + a 1 bt + azbo) (x- x0 ) 2 + ... , (10) 

i.e. series (7) and (8) may be added, subtracted and multiplied within their common 
region of convergence (cf. also Theorems 10.2.3 ~d 10.2.22). See also fonnula 27, §15.6. 
[The series (10) is known as the Cauchy productofthe series (7), (8).] 

Theorem 6 (Inversion of a Series). Let the series 

S(x) = ao + a 1(x - x0) + a2(x - x0) 2 + ... (11) 
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have a non-zero radius of convergence and let a0 #= 0. Then in a certain neighbour­
hood of the point x0 thefunction 1/S(x) can be expanded in apower series 

(12) 

REMARK 7. The coefficients cn of series (12) may be found, for example, by the 
method of undetermined coefficients. Multiplying (12) by (11), we get 

I = [a 0 + a1(x- x0) + ... ] [c0 + c1(x- x0) + ... ] = 

(13) 

whence we have 

(14) 

Since a0 #= 0, we can successively determine c0 , c1, ••• from these equations. Cf. also 
formula 28, § 15.6. 

Example 2. We have (see formula 13, § 15.6) 

x2 x4 x6 
cos x = 1 - - + - - - + .. . (r = + oo) . 

2! 4! 6! 
(15) 

Thus, in a neighbourhood of the point x0 = 0, 

1 2 3 -- = Co + C1X + CzX + C3X + .... (16) 
COS X 

By (13) we have 

( Co) z ( C1) 3 = c0 + c1x + c2 - 2 x + c3 - 2 x + . · · , 

so that 
Co = 1, c1 = 0, c2 = f, c3 = 0, .... 

(Cf. also formula 28, § 15.6). 

Theorem 7. Let (7) and (8) be power series with r 1 > 0, r2 > 0, b0 #= 0. Then 
in a certain neighbourhood of the point x 0 thefunction S 1(x)jS2(x) can be expanded 
in a power series 

st(x) ( ) ( )2 -- = d0 + d1 X - x 0 + d2 x - x 0 + .... 
S2(x) 

(17) 
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REMARK 8. Theseries (17) may be found, for example, in such a way that the power 
series for 1/Six) is established first by Theorem 6 and Remark 7, and this series is 
then multiplied by the series for S 1(x). Alternatively, we multiply equation (17) by 
the series S2(x) and then use the method of undetermined coefficients in the same way 
as in Remark 7. 

Theorem 8 (Substituting aPower Seriesinto aPower Series). Lettheseries 

(18) 
and 

(19) 

have non-zero radii of convergence. Substituting formally the power series {19) 
for x - x 0 into (18) and arranging the resuZt by powers of t - t0 , wegetapower 

series in t - t0 • This series converges in a certain neighbourhood of the point t0 and, 

in this neighbourhood, its sum is equal to the function S(x0 + g(t)). 

15.4. Theorems on DiJferentiation and Integration of Power Series. 
Power Series in Two or More Variables 

Theorem 1. Let the series 

(1) 

have radius of convergence r. Then the series 

(2) 

obtained from (1) by term-by-term differentiation, also has the same convergence 

radius r, and its sum in (x0 - r, x 0 + r) is equal to S'(x) (i.e. to the derivative 

of the function S(x)). 

REMARK 1. Since the series (2) is again apower series with radius of convergence r, the 
series obtained from (2) by term-by-term differentiation again has radius of convergence r 
and defines the function S"(x) in (xo- r, xo + r), etc. Hence, thefunction S(x) defined 
by the series (1) with radius of convergence r possesses derivatives of a/1 orders in the 
interval (xo- r, xo + r). 

A function which may be expanded in a power series (1) in an interval (x0 - r, 
x 0 + r), is said to be analytic in this interval. Thus, every such function possesses 

derivatives of all orders in (x0 - r, x0 + r). 

Theorem 2. Let the series 

{3) 
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have radius of convergence r. Then the series 

ao(x - x0 ) + a 1 (x - x0 ) 2 + az (x - x0) 3 + ... , 
2 3 

(4) 

obtained from (3) by term-by-term integration, also has the same radius of con­

vergence r and defines, in (x 0 - r, x 0 + r), the function 

fos(t) dt, (5) 

which is a primitive of S(x). 

REMARK 2. In (5) we choose x0 as the lower Iimit of integration, since the series 

(4) has the sum zero for x = x0 , and consequently the function defined by this series 

must vanish for x = x 0 • If we choose the primitive arbitrarily (i.e. not necessarily 

equal to zero at the point x = x 0), we have to add a constant of integration to the 

series (4), in general. 

E:umple 1. Let us express the function 

S(x) = arctan x 

by a power series in a neighbourhood of the origin (i.e. by a power series with the 

centre at the origin ). 

For the derivative of this function we have 

1 2 4 6 ( ) --=1-x +x -x + ... r=1 
1 + x2 

(6) 

since the right-hand side is a geometric series with common ratio -x2• Bi Theorem 2 

(note that arctan 0 = 0) 

x3 x 5 x 1 
arctan x = x - - + - - - + . . . (r = 1). 

3 5 7 
(7) 

The series (7) converges even for x = ± 1 (it is an alternating series, Theorem 

10.2.16, p. 350) so that by Abel's theorem (Theorem 15.3.4) the equality (7) is valid 

also for those values of x. In particular, putting x = 1 we get the relationship 

1t -=1-t+t-t+ .... 
4 

Example 2. Let us find the sum of the series 

1-t+t-!+ .... (8) 
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Wehave 

2 3 1 ( ) 1-x+x -x + ... =-- r=1. 
1 +X 

According to Theorem 2, 

x2 x3 x4 
x-- +---+ ... = ln {1 + x) (r = 1). 

2 3 4 
(9) 

The series (9) converges for x = 1 (it is an alternating series) so that by Abel's 

theorem (Theorem 15.3.4) we have 

1--!+t-!+ ... =ln2. 

These methods are often used for finding sums of infinite series. 

Theorem 3 (Power Series in Two Variables). Let the double series 

00 

S(x, y) = L amnxmyn 
m,n=O 

(10) 

be absolutely convergent at a point (x0 , y 0) (cf. Remark 10.2.11, p. 351). Then (10) 

converges absolutely at any point (x, y), whose coordinates satisfy the inequalities 

lxl ~ lxol • IYI ~ IYol 
(i.e. in a reetangle 0: -jx0 j ~ x ~ jx0 j, -jy0 j ~ y ~ jy0 1). Moreover, S(x, y) is 

continuous in 0 and possesses partial derivatives of all orders inside the rectang le 

in question. These derivatives may be obtained by term-by-term differentiation 

of the series (10). For example, 

(11) 

REMARK 3. An analogous theorem is true for power series 

L amn(x - a)m (y - b)n, (12) 
m,n=O 

which may, of course, be reduced to the form (10) by the Substitution x - a = x, 
y- b = y. 

REMARK 4. An analogous theorem is valid for power series in several variables. 

REMARK 5. In contrast to power series in a single complex variable, the regions 

of absolute convergence of double series may be of different shapes. 

REMARK 6. For double power series (or for power series in several variables) 

a theorem on addition, subtraction and multiplication of series, similar to Theorem 

15.3.5, is true in the region of absolute convergence. 
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REMARK 7. In Theorem 3, the absolute convergence of the series (10) in the sense 
of Remark 10.2.11, p. 351, is under consideration. If the series (10) converges only 
in the usual sense (see (14)), then the assertion of Theorem 3 need not hold in general. 

We draw the reader's attention to the fact that in technical literature, unless other­
wise stated, by the convergence of the series 

(13) 

ordinary convergence is always understood in the sense of Remark 1 0.2.12, p. 352 i.e.: the 
series (13) converges at a point (x0 , y0 ) and has the sum S(xo, Yo), ifto each c > 0 a posi­
tive integer P exists suchthat for any pair of integers M, N with M > P, N > P, we have 

(14) 

We interpret similarly the convergence of other double series than power series, 
e.g. of a Fourier series 

00 

L a".,. sin mx sin ny . (15) 
Jll,ll=l 

(For details as to (15) see Theorem 16.3.5.) The same is true for series in several 
variables. 

15.5. Taylor's Series. The Binomial Series 

REMARK 1. According to Taylor's theorem we have 

f(x) = f(a) + f'(a) (x - a) + f"(a) (x- a)2 + ... + J<">(a) (x - a)" + R"+ 1(x); 
1! 21 n! 

the most frequently used forms ofthe remainder R,.+ 1 are given in Theorem 11.10.1, 
p. 396. 

Theorem 1./f f(x) has derivatives of all orders in the interval [a, x] ( or [x, a] provided 
x < a), then a necessary and sufficient conditionfor the series (the so-called Taylor series) 

f(a) + f'(a) (x - a) + f"(a) (x - a)2 + ... 
1! 2! 

(I) 

to converge at given point x and to have the sum f(x) is 

lim R,.+l(x) = 0. (2) 
n-+ao 
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REMARK 2. Fora = 0, the series (1) is called the Maclaurin series: 

f(x) = f(O) + f'(O) x + f"(O) x2 + .... 
l! 2! 

REMARK 3. It can happen that the series (1) converges at the point x, butthat 

lim Rn+ 1(x) =/: 0; 
n .... oo 

then, of course, its sum is not equal to f(x). 

Example 1. By Taylor's formula, we have 

X X 2 Xn 
ex = 1 +- +- + ... +- + Rn+ 1(x), 

1! 2! n! 

where 
es" 

R (x) = xn+l (0 < 8 < 1). 
n+l (n + 1)! 

For any fixed x we have !e8xl < M, where M = max (1, ex) and 

. xn+l 
hm = 0. 
n .... oo (n + 1)! 

Consequently, by Theorem 1 we have, for every x, 

x x2 
ex = 1 + - + - + . . . (r = + 00) . 

l! 2! 

653 

Theorem 2. If f(x) has derivatives of all orders in the interval [a, c] (or [c, a] 

when c < a) and if these derivatives are uniformly bounded (i.e. a constant M 

exists such that 

lf'(x)l ~ M, lf"(x)j ~ M, lf"'(x)j ~ M, ... in [a, c] or [c, a]), 

then 

f(x) = f(a) + f'(a) (x- a) + f"(a) (x- a)2 + ... 
1! 2! 

in [a, c] (or [c, a ]). 

Theorem 3 (The Binomial Series). For any real n we have 

(1+x)n=1+(;)x+(;)x2 +(;)x3 + ... (r=1), (3) 
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where 

( n) = n( n - 1) 0 0. ( n - k + 1) . 
k k! 

For example 

1 x2 3x4 
---. = (1 - x2t 1' 2 = 1 +- +- + ... (r = 1), (4) 
-J(l - x2) 2 8 

since 

( -t) = _ ! , (-1) = ( -t)( -!) = ~, etc. 
1 2 2 2 8 

Integrating the series (4) and making use of Theorem 15.4.2, we can get the power 
series for arcsin x (see formula 20, § 15.6). 

REMARK 4. Formula (3) may also be used in cases where the first term of the 
binomial on the left-hand side is not necessarily equal to 1. For example, if a > lbl > 
> 0, then 

15.6. Some Important Series, Particularly Power Series 

(See also § 13.12). 

( -1 <X< I). 

2. 1 = 1 + 2x + 3x2 + 4x3 + 5x4 + 6x5 + ... 
(1 ± x)2 

( -1 <X< 1). 

3 '( ) 1 1 2 1.3 3 1.3.5 4 ·vl+x =1+-x--x +--x- x + ... 
2 2.4 2.4.6 2.4.6.8 

( -1 ~ x ~ 1). 

4 1 1 1 1.3 2 1.3.5 3 1.3.5.7 4 
. = --X+ -X - X + X 

.J(l + x) 2 2 . 4 2 . 4. 6 2. 4 . 6 . 8 

( -1 < X ~ 1) • 

x x2 x3 
5. ex = 1 + - + - + - + ... 

1! 2! 3! 
(-oo < x < +oo). 
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x x 2 x3 
6. e-" = 1 - - + - - - + ... 

1! 2! 3! 
(-oo<x< +oo). 

7 x _ 1 Ina (Ina)2 2 (Ina)3 3 . a- +-x+--x +--x + ... 
1! 2! 3! 

( a > 0, - oo < x < + oo) . 

x2 x3 x4 
8. In (1 + x) = x - - + - - - + ... 

2 3 4 
(-1<x~I). 

x2 x3 x4 
9. In (1- x) = -x------- ... 

2 3 4 
(-l~x<I). 

1 + x ( x 3 x 5 ) 10. In -- = 2 x + - + - + ... 
1- X 3 5 

(-1<x<l). 

REMARK 1. This fonnula can be used for the computation oflogarithms if the preceding 
two fonnulae fail to be applicable (i.e. if lxl is not sufficiently small, so that convergence 
is slow). For example, for In 2 we have 

1 +X= 2, X=-!, In 2 = 2 [t + t. {!)3 + t · (t)5 + ... ] · 
1- X 

For jxj > 1 we then have 

11. In x + I = 2 (.!._+_I_+ _I_+ ···) 
X - 1 X 3x3 5x5 

(jxj > I). 

REMARK 2. For In x, however, a power series with the centre at the origin does 
not exist, since In x is not anaiytic in the neighbourhood of the origin. But we have 

[
X - 1 1 (X - })3 1 (X - 1)5 J 12. In x = 2 -- + - -- + - -- + ... 
x+1 3 x+1 5 x+1 

(x > 0). 

Furthermore: 

x3 xs x7 
13. sin x = x - - + - - - + ... 

3! 5! 7! ' 

x2 x4 x6 
COS X = 1 - - + - - - + ... 

2! 4! 6! 

(-oo<x<+oo). 

I4. sin2 x = x2 {1- ~x2 + 4
2
5 x4 - 3 ~ 5 x6 + 14,; 75 x8 - ••• ) ( -oo < x < +oo). 

Is 2 1 2 1 4 2 6 1 8 2 10 + 
• COS X = - X + 3X - 4SX + 3 1 sX - 14,1 7 sX •. • 

(-oo < x < +oo). 
I6 ° 3 3(I 1 2 1 3 4 41 6 6 7 1 8 ) 

·Sill X= X - zX + 120X - 3,024X + 604,800X - ••• 

(-oo<x<+oo). 



656 SURVEY OF APPLICABLE MATHEMATICS 15.6 

17 3 -1 3 2 7 4 61 6 547 8 703 10 
• COS X- - zX + aX - 240X + 13,440X - 172,800X + ··· 

(-oo < x < +oo). 

18 t - 1 3 2 5 1 7 7 . an x - x + 3x + 15x + 315x + ... ( - t7t < X < t7t) · 

1 x x3 2 5 19. cot x = - - - - - - - x -
X 3 45 945 

(0 < lxl < 7t). 

20 . 1 x3 1 . 3 x 5 1 . 3 . 5 x 7 
. arcsm x = x + -. - + --. - + --- . - + ... 

2 3 22 .2! 5 23 .3! 7 

x 3 x5 x1 
21. arctan x = x - - + - - - + ... 

3 5 7 

. x x3 x 5 x 7 x 2 x 4 x 6 
22. smh x = - + - + - + - + ... , cosh x = 1 + - + - + - + ... 

1! 3! 5! 7! 2! 4! 6! 

(-oo<x<+oo). 

23 t h 1 3 2 5 1 7 7 . an x = x - 3x + 15x - 315x + ... ( -i1t < X < t7t) · 

24. sin x sin y = xy[1 - ~(x2 + y 2 ) + 3 !0(3x4 + 10x2y2 + 3y4)­

- 5,~4o(x6 + 7x4y2 + 7x2y4 + y6) + 

+ 1 , 81 !,400(5x8 + 60x6y 2 + 126x4y4 + 60x2 y 6 + 5y8)- ... ] 

(- 00 < X, y < + 00) . 

25. cos x cos y = 1 - i(x2 + y 2) + 2
14(x4 + 6x2y 2 + y4) -

- 7 ~ o(x6 + 15x4y2 + 15x2y4 + y6) + 

+ 40 ,; 20(x8 + 28x6y 2 + 70x4y4 + 28x2 y6 + y 8 )- ••• 

(- oo < x,y < + oo) . 

26. sin x cos y = x[1 - ~(x2 + 3y2 ) + 1 ~ 0(x4 + 10x2 y 2 + 5y4) -

- - 1-(x6 + 2lx4x2 + 35x2y4 + 7y6 ) + 5, 0 4 0 • 

+ 362 ~880 (x8 + 36x6 y 2 + 126x4y4 + 84x2 y 6 + 9y8 ) + ... ] 

(- 00 < x, y < + 00) . 

REMARK 3. The series for sin2 x, cos2 x, sin3 x, cos3 x, sin x sin y, cos x cos y, 

sin x cos y given above may be obtained by multiplying the series corresponding 
to the individual functions (see Theorem 15.3.5). 

In general, if 

S(x) = a + bx + cx2 + dx 3 + ex4 + fx 5 + ... , 
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then: 

27. S2(x) = a2 + 2abx + (b2 + 2ac) x 2 + 2(ad + bc) x3 + 
+ (c2 + 2ae + 2bd) x4 + 2(af + be + cd) x 5 + .... 

28. _1_ = .!_ [1 - ~ x + (b2 - ~) x2 + (2bc - ~ - b3) x3 + 
S(x) a a a2 a a2 a a3 

(a:FO). 

29. -- = - 1 - 2 -X + 3 - - 2 - X + 6 - - 2 - - 4 - X + 1 1 [ b ( b2 c) 2 ( bc d b3
) 3 

S 2(x) a2 a a2 a a2 a a 3 

(a :F 0). 

30. _j[S(x)] = _j(a) 1 +--X+ ----- X + ----- +-- X + [ 1 b (1 c 1 b2) 2 (1 d 1 bc 1 b3) 3 

2 a 2 a 8 a2 2 a 4 a2 16 a 3 

+ ---------: ---+----- X + ... (a > 0). ( 1 e 1 bd 1 c2 3 b2c 5 b4 ) 4 J 
2 a 4 a2 8 a2 16 a 3 128 a4 

1 1 [ 1 b (3 b2 1 c) 2 (3 bc 1 d 5 b3 ) 3 
31. J[S(x)J = J(a) 1 - 2-;; x + 8 a2 - 2-;; x + 4 a2 - 2-;;- 16 a3 x + 

(2x)Z (2x)4 (2x)6 
33. x cot x = D0 - D2 -- + D4 -- - D6 -- + ... 

2! 4! 6! 

For x = 0, the sums of the series in 32, 33 reduce to 

Do = lim _x_ = lim xcotx = 1. 
X--+0 eX - 1 x--+0 

The numbers Dn are defined by the recurrence formula 

(n ~ 1) Dn + C ; 1) Dn-l + ... + (n : 1) D1 + D0 = 0, 

From this relation we have 

D3 = D5 = D7 = ... = 0. 

(a > 0). 

(!xl < 21t). 

(lxl < 1t) · 

D0 = 1. 
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15.7. Application of Series, Particularly of Power Series, 
to the Evaluation of Integrals. Asymptotic Expansions 

On application to the solution of differential equations, see Chaps. 16, 17, 25. 

15.7 

REMARK 1. A further usefu1 application of series is to the approximate eva1uation 
of integrals. The integrated function (whose indefinite integral cannot be expressed, for 
example, by elementary functions) is expanded in a series and integrated term by term 

according to Tl!eorem 15.4.2. 

Example 1. Let us consider 

f>: -t2 d e t . 
0 

(1) 

By formula 6, § 15.6, we have 

tz t4 t6 
e-r'= 1 --+--- + ... (r = + oo). 

1! 2! 3! 
(2) 

According to Theorem 15.4.2, the series (2) can be integrated term by term over 

any interval (since r = + oo ). Thus, 

f" -r' !x3 x 5 x 1 
e dt = x - -- + -- - -- + ... 

0 3.1! 5.2! 7.3! 

See also Remark 3 below. 

Example 2. Let us consider 

f"12 sin x 
--dx. 

o X 

Referring to formula 13, § 15.6, we have 

sin x x 2 x 4 

-=1--+-- ... 
X 3! 5! 

(r = + oo). (3) 

(4) 

(5) 

for every x :f: 0. If we define the function sin x as 1 at the point x = 0 (i.e. by its 
X 

Iimit as x -+ 0), then (5) will be true for aii x. Since r = + oo, the series (5) can by 

integrated term by term over any interval (Theorem 15.4.2). Hence, 

f" sin x a 3 a5 , 
--dx=a---+--- .... 

o X 3.3! 5.5! . 
(6) 

For a = 1tf2 it is suffi.cient to take the first five terms of ( 6) into account in order to 

ensure an accuracy of 5 decimal places (note that ( 6) is an alternating series, see 

Theorem 10.2.16, p. 350). 
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REMARK 2. If one of the Iimits of integration coincides with an end point of the 
interval of convergence, Abel's theorem can be used (Theorem I5.3.4; cf. also Exam­
ple I5.4.2). See also § I3.I2 (application of series to the evaluation of elliptic integrals). 

REMARK 3 ( Application of Divergent Series; Asymptotic Expansions). The series 

( 3) is suitable for evaluating the integral 

J:e- 12 dt (7) 

provided lxl is sufficiently small. lf lxl is !arge, the series (3) is also convergent, but 
it is evidently not suitable for evaluating the integral (7). In such cases asymptotic 

expansions can advantageously be used, as we proceed to show using the integral (7) 
as an example. Let us assume x > 0. Wehave 

I"" -tl d Jrc I" _,. dt I"" _,. dt ICX) _,2 dt e t=-, e = e - e . 
0 2 0 0 :c 

(8) 

Integrating by parts (e- 12 = 2te- 12 • (!/t), so u' = 2te- 12 , v = !/t) we get 

Ia:> -x2 1 Jco -t2 
12 e e 

e- dt = -- - - -dt 
2 t2 . 

x 2x :c 

(9) 

A repeated integration by parts yields, after n steps, 

e t = -- 1--- + ---- ... + - + r", Jco _1z d e-xl [ 1 1. 3 ( l)n-l I. 3 · 5 ..... (2n- 3)] 

x 2x 2x2 (2x 2 )1 (2x2)"- 1 

(10) 
where 

( )" I . 3 . 5 ..... ( 2n - 1) Jco e- 12 d 
r" = -1 - 2- t. 

2" x t n 
( 11) 

Theseries in brackets in (10) diverges for every x. But obviously 

_e -dt <- e-r' dt f co -t2 1 fco 
X {2n X2n X 

and 

fco -xl 
e-rl dt < e_ 

x 2x 

by (9), so that we have 

I I 1. 3 . 5 ..... (2n - 1) -x> 
r < e . 

" 2n+lx2n+l 
(12) 
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If x is sufficiently large, then the remainder (12) can be made very small by a proper 
choice of n. (Divergent series with this property are sometimes called semiconvergent, 
but the more usual term is asymptotic.) For exampie, if x = 5, then for n = 13. we 
have jr,.j < 10- 20• Thus, taking n = 13 in (10), the integral 

J~e- 11 dt 

can be evaluated with an accuracy of 20 decimal places. The former integral fg e _,z dt 
can then be evaluated by (8), 

f5e- 11 dt = J1t - f00e- 11 dt. 
0 2 5 

REMARK 4. The logarithmic integral 

f,. dt 
Ii (x) = - (0 < x < I). 

0 In t 
(13) 

may be evaluated in a similar way. By the substitution t = e-u, the integral (13) 
reduces to the integral 

li (x) = - foo e- u du ' 

" u 
where 

-In x = a (a > 0). (14) 

Integrating successively by parts, we get 

I X = -X ---+-- ... + -1 + r,., I'() [1 1! 2! ( )"_ 1 (n-1)!] 
a a2 a 3 a" 

(15) 

where 

r = (-1)"+ 1 n! _e- dt foo -t 

" +1 ' " ~ 
(16) 

so that 

Im! < n! e-"1 . 
a"+ 

(17) 

Thus, if x is sufficiently small and, consequently, a sufficiently 1arge, lr,.j may be 
made small by a suitable choice of n, and the series (15) can be empioyed for calcu­
lating li (x). 

It is important to note that as n -+ oo, Ir.. I -+ oo; generally, the vaiue of Ir.. I starts 
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by decreasing (as n increases) until it reaches a minimum value; thereafter, it increases 
and, indeed, becomes infinite. The best approximation is obtained, of course, by 
cboosing n so that Ir"! has its minimum value. 

REMARK 5. A thorough treatment of asymptotic expansions may be found, e.g., 
in (75]. 

15.8. Survey of Some Important Formulae from Chapter 15 

(See also §§ 15.6 and 15.7.) 

1. lim lim /"(x) = lim limf"(x) 
,. .... oo x-+a+ x-+a+ n-+tJO 

under the assumptions of Theorem 15.1.4, 

2. f"t~~f"(t) dt ~ !~~ ff .. (t) dt (Theorem 15.1.5), 

3. i_ [ lim /"(x)J = lim df"(x) (Theorem 15.1.6), 
dx n-+ao n-+ao dx 

4. "~1 s:f .. (t) dt = f "~ /"(t) dt (Theorem 15.2.6), 

5. i. I j"(x) = I df"(x) (Theorem 15.2.7). 
dx n=l n=l dx 

6. The radius of convergence of a power series is given by 

r =!, where l = lim lan+ll or 1 = 1im ':Jia .. l 
1 n-+cc a,. ft-+11) 

(Theorem 15.3.2, Remark 15.3.5). 

7. lf 

then 

f" S(t) dt = a0(x - x0 ) + ~ (x - x0 ) 2 + a2 (x - x0 ) 3 + . . . (!x - x0 ! < r), 
~ 2 3 

S'(x) = a 1 + 2a 2(x - x0 ) + 3a3(x - x0 ) 2 + . .. (!x - x0 ! < r) 

(Theorems 15.4.1 and 15.4.2). 



16. THE SPACE L 2 • ORTHOGONAL SYSTEMS, FOURIER 
SERIES. 

SPECIAL FUNCTIONS (BESSEL FUNCTIONS, ETC.) 

By KAREL REKTORYS 

References: [3], [5], [7], [8], [26], [28], [32], [34], [38], [44], [49], [85], [86], [91], [92], 
[108], [112], [123], [127], [136], [148], [152], [168], [180], [183], [184], [189]. 

16.1. The Space L2 

In §13.14 the definition offunctions square integrable on a set M has been given. 
In the present paragraph, this definition is specified for the case M = [a, b], where 
[a, b] is a bounded interval, and the so-called space L2(a, b) is introduced. At the 
end of the paragraph, the possibility is discussed how to define, in a similar way, the 
space L2(0), where 0 is a bounded regioninan N-dimensional Euclidean space. 

For the properties of the space L2(a, b) ( or L2(0)), introduced below, it is essen­
tialthat the functions, we work with, are assumed tobe integrable in the Lebesgue 
sense. In §13.14, a brief survey of the Lebesgue theory has been presented. As far 
as the space L 2 is discussed in this chapter, integrability in the Lebesgue sense is 
always understood. However, from the point of view of applications, no serious mis­
take can arise if the reader who is not familiar with the Lebesgue theory considers 
the integrals, he will meet, in the Riemann sense. 

Definition 1. A real (Lebesgue) measureable function f is called square inte­
grable on (or in) a (bounded) interval [a, b], if the integral 

1b f 2 (x) dx (1) 

is convergent ( = finite). We write 

(2) 

Every continuous or piecewise continuous function in [a, b] is square integrable 
on this interval. As concerns unbounded functions, we have for example, for the 
functions f(x) = x- 113 , g(x) = x- 112 , 
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because (Example 13.14.2, p. 565) 

11 
g2(x) dx = 11 

x- 1 dx = +oo. 

Further (see Remark 13.14.9, p. 566) 
{i) convergence of the integral {1) implies convergence of the integral 

1b f(x)dx, 

(ii) 
{3) 

for arbitrary real numbers c1 , c2 . 

(iii) 

f,g E L2(a,b) =::? 1b f(x) g(x)dx is convergent. (4) 

From {3) it follows that the set of all square integrable functions on [a, b] is a 
linear set, because with every couple of its elements it contains an arbitrary linear 
combination of them. The property ( 4) then admits to introduce the following defi­
nition: 

Definition 2. U nder a scalar product of functions f, g E L2 { a, b) we understand 
the number 

(!, g) = 1b f(x) g(x) dx ; {5) 

the ( nonnegative) number 

11!11 = .j(f,!) (6) 

is called the norm of the function f E L2(a, b), the (nonnegative) number 

p(f, g) = II!- Yll {7) 

is the so-called distance of the functions f and g. 

The norm, or the distance can thus be obtained as (nonnegative) roots of 

(8) 
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y 

0 a 

Fig. 16.1. 

or 

(9) 

respecti vely. 

Definition 3. The set of all square integrable functions in [a, b] on which there 
are defined the scalar product (5), the norm (6) and the distance (we also say the 
metric) (7), is called the metric space L2(a,b), briefly the space L2(a,b). 

(See Remark 2 and Theorem 1.) 

REMARK 1. lf the distance of two functions /, g is "small" in the space L2( a, b) 
(i.e. if (9) is "small"), then it does not follow that the difference of their values is 
"small" everywhere in [a, b]; it follows only that these functions do not differ "very 
much" in an integral sense as shown in Fig. 16.1. For this reason, one speaks also 
about the "mean quadratic deviation" instead of "distance" ofthe functions fand g. 

REMARK 2 (Equivalent Functions). If two functions f and g are continuous in 
[a,b] and if p(f,g) = 0 then, by (9), 

f(x) = g(x) for all x E [a, b] . (10) 

However, if they are not continuous in [a, b], it need not be the case. The integral (9) 
is as weil equal to zero ifthe functions fand g differ, for example, at a finite number 
of points or, more generally, on a set of measure zero. This fact is the motivation of 
the following definition: 
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Definition 4. Two functions /, g E L2( a, b) are called equivalent in the space 
L2(a,b), if 

p(f, g) = 0. (11) 

We write 
f = g in L2 ( a, b) . (12) 

Two equivalent functions are taken as equal in the space L2(a, b), they represent 
the same element of this space. While the meaning of (10) is that the functions f 
and g are equal in the whole interval [a, b], the meaning of (12) is that f and g are 
equivalent functions in L 2 (a, b), which thus may be different on a set of measure 
zero. For example, if we write 

f = 0 in L2(a,b) (13) 

it means that, in [a, b], the function f is either equal to the function which is iden­
tically zero in this interval, or that it differs from that function on a set of points 
of measure zero, e.g. at a finite number of points ( at which, may be, it need not be 
defined at all). 

Theorem 1. Scalar product, norm and distance have the following properlies 
{!, g, h being arbitrary functions from L 2( a, b ), c, c1 , c2 arbitrary real numbers): 

(!, g) = (g,J) ' 

(cd1 + c2f2,g) = cl(fl,g) + c2(f2,g), 

(!,!) ~ 0' 

(!,!) = 0 <==:} f = 0 in L2(a,b) (see (13)), 

11111 ~ o, 
II/II = 0 <==:} f = 0 in L2(a, b) 

llcfll = lclll/11 , 
II/ + Yll ~ II/II + IIYII (the triangle inequa/ity) , 

1(!, g)l ~ 11/IIIIYII (the Schwarz inequality) , 

p(f,g) ~ 0' 

p(f, g) = 0 <==:} f = g in L 2(a, b) (see (12)) , 

p(f,g) = p(g,f)' 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 
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p(f,h) ~ p(f,g) + p(g,h) (the triangle inequality). (26) 

REMARK 3. The just introduced properties of functions from L2(a, b) are very 
similar to those of geometric vectors, when replacing the length Iu I of the vector u 
by the norm II/II of the function f. In particular, the Schwarz inequality (22) corre­
sponds to the well-known inequality l(u, v)l ~ lul· lvl for vectors. 

Definition 5 (Convergence in the Mean). We say that a sequence {/n} offunc­
tions from L 2 (a, b) converges in the space L2 (a, b) (or in the mean) to a function 
f E L2(a,b) if 

lim p(f,/n) = 0 . 
n->oo 

(27) 

We write 
lim fn = f in L2(a, b) , or fn-+ f m L2(a, b) . (28) 

n-+oo 

Thus, if we have to establish that a sequence of functions fn E L 2 ( a, b) converges 
in the space L2(a,b), i.e. in the mean, to a function f E L2(a,b), we have to show 
that (27) is fulfilled, i.e. that 

lim 
n-+oo 

l(f,fn) = 0, 

or (see (9)) that 

lim rb (f- fn) 2 dx = 0 . 
n--+oo Ja 

(29) 

REMARK 4. (i) It can be shown that the sequence Un} may converge, in the 
mean, to a single function only ( or to an equivalent function; uniqueness of the 
Iimit); 

(ii) convergence in the mean does not imply ordinary (pointwise) convergence 
(Definition 15.1.1, p. 637) in the interval [a, b], and vice versa: 

Example 1. Let us show that the sequence of functions 

fn(x) = Xn, n = 1,2, ... , 

i.e. of functions 
fl(x) = x, h(x) = x 2, ... , 

converges in the space L2 (0, 1) to the zero function. 
According to (29) we have to show that 

lim { 1 (f- fn) 2 dx = 0 , 
n--+oa Jo 

(30) 

(31) 

(32) 
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where fn are the functions (30) and f is the function identically equal to zero, or an 
equivalent function. But 

lim {
1 (f- fn) 2 dx = lim {

1 
(0- xn) 2 dx = 

n-+oo Jo n-+oo Jo 

lim x 2n dx = lim --- = lim --- = 0 11 [ x2n+1 ] 1 1 
n-..oo 0 n-..oo 2n + 1 0 n-..oo 2n + 1 

by which (32) is established. (As concerns the ordinary (pointwise) convergence, the 
sequence (30) converges, in the interval [0, 1], to the function 

f(x) = C if xE[0,1), 

if X= 1 .) 

Example 2. Let 

nifO<x<-, 
f(x) = n { 

1 

0 otherwise in [0, 1] , 

n = 1, 2, .... For every fixed x E [0, 1] we have obviously 

lim fn(x) = 0, 
n-..oo 

so that the sequence of functions fn converges pointwise to the function f( x) = 0 in 
[0, 1]. However, it does not converge to it in the mean, i.e. wehavenot 

but 

11/n 

= lim n 2 dx = lim n = +oo . 
n-+oo 0 n-+oo 

Example 3. The trigonometric Fourier series corresponding to a function f E 
L2 ( -1r, 1r) converges to this function in the mean (Remark 16.2.13). As well known, 
it need not converge pointwise tothat function everywhere in [-1r, 1r]. 

REMARK 5. On base of the concept of convergence (in the mean) of a sequence, 
convergence of an infinite series is defined: We say that a series 

00 

L fn, fn E L2(a,b), (33) 
n=1 
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is convergent in the space L 2(a, b) (or in the mean) and has the sumsE L2 (a, b), we 
write 

00 

L fn =s m L2(a,b), 
n=l 

if the sequence of its partial sums, 

k 

Sk = L fn' 
n=l 

(34) 

(35) 

converges in the space L 2 (a,b) (in the mean) to the function s, i.e. (see (29)) if 

(36) 

REMARK 6 ( The Camplex Space L 2(a, b)). In applications (namely in electrotech­
nics), we often meet complex functions of a real variable, thus functions of the form 

f(x) = 11(x) + if2(x) , (37) 

where 11, h are real functions. We then say that a complex function f is square 
integrable in the interval [a, b], if the functions 11 and h are measureable in that 
interval and if the integral 

1b if(xWdx (38) 

is convergent ( = finite) ( what takes place exactly if both integrals 

are convergent). The scalar product on the set of these functions is defined by 

(f,g) = 1b f(x) g(x)dx, (39) 

where g( x) is the complex conjugate of g( x). For the scalar product we then have 

(f,g) = (g,f); (40) 

the relation 
(cf,g) = c(f,g) 

remains true, but by (39) 
(!, cg) = c(f, g) 
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(if c is a complex number). All definitions and results presented in this paragraph 
remain unchanged except that in (8), or (9), or (29), or (36) we have to write 

k 

l/12 , or I/- gl2 , or I/- fn 12 , or ls - L fn 12 

n=l 

instead of 

k 

/ 2 , or (!- g) 2 , or (!- fn) 2 , or (s- L fn) 2 , 

n=l 

respectively. 

REMARK 7 (The Space L2(n)). Let n be a bounded region in EN. Similarly as 
in §13.14 we define: Areal function f(x 1 , ••• , XN) is called square integrable on (or 
in) n, we write 

f E L2(0) , 

if it is (Lebesgue) measureable in n (Remark 13.14.10, p. 566) and if the integral 

f···l /2(x1, ... ,xN)dx1···dxN 

is convergent (= of finite value). On the set of these functions then scalar product, 
norm and distance are introduced quite similarly as in Definition 2, and so the space 
L2 (0) is obtained. In this space convergence is defined in a quite similar way as in 
the space L2(a, b). 

Similarly as in Remark 6 then complex space L2 (0) can be defined with the scalar 
product 

16.2. Orthogonal Systems, Fourier Series 

Definition 1. We say that two functions /, g E L2 ( a, b) are orthogonal in the 
space L2(a,b) (or in, or on the interval[a,b]), if 

(f,g) = 0, i.e. if 1b f(x) g(x)dx = 0. (1) 
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Definition 2. A function f is called normed (or normalized) in L2(a, b) (or in, 
or on the interval [a, b]), if its norm is equal to unity, ioeo if 

11!11 = 1 0 
{2) 

Definition 3. Let a finite or countable (Definition 2201.11) system of functions 
fn E L2 { a, b) be giveno This system is called orthogonal on [a, b] { or in the space 
L 2 ( a, b)), if for every two mutually different functions fi, fk we have 

If, moreover, every function fn is normed, the system is called orthonormalo 

REMARK 10 Thus, in this case, the functions from this system fulfill 

where Dik is the so-called Kronecker delta symbol, ioeo 

{
0 if if;;k, 

b;k = 
1 if i=ko 

{3) 

{4) 

{5) 

REMARK 20 From an orthogonal system {/n} an orthonormal system {<pn} is 
obtained when putting, for every n, 

{provided II/nii "I 0, of course)o 

fn(x) 
<f'n(x) = II/nii 

Example 1. Direct integration shows {see also §13010) that the system offunc­
tions 

1, cos x, sin x, cos 2x, sin 2x, 0 0 0 {6) 

is orthogonal in the interval [-11",'11"] (even in every interval [a, a + 27r])o However, 
this system is not orthonormal. Because 

for every k (k = 1, 2, 0 0 0), the corresponding orthonormal system is, by Remark 2, 

1 cos x sm x cos 2x sin 2x 

v'{27r)' v'1r ' v'1r' ~, v'1r ' 0 00 0 {7) 
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In [-1r, 1r] also the systems 

sm x, sin 2x, sin 3x, ... , 

1, cos x, cos 2x, cos 3x, ... 

671 

(8) 

(9) 

are orthogonal, as follows from the fact that each of them is a subsystem of the 
system (6). 

The system (6) is not orthogonal in the interval [0, 1r], because, e.g., 

la" 1 x sin x dx = 2 =F 0 . 

On the other hand, the systems (8) and (9) are orthogonal in [0, 1r]. 

RE MARK 3. Definitions 1-3 can be easily generalized for a more-dimensional case 
(cf. Remark 16.1.7): 

Definition 4. Two functions f, g E L 2(1J) are called orthogonal in that space, or 
on (in) the region n, if 

If 

lltll = vu, n = 1 , (11) 

the function f is called normed ( or normalized) in Lz(IJ). A system of functions 
fn E Lz(IJ) is called orthogonal on the region IJ (or in the space Lz(IJ)), if 

(J;, fk) = 0 for i =F k . (12) 

If, moreover, all the functions of this system are normed, the system is called or­
thonormal. 

An example of an orthogonal system in L2 (1J), where n is the square (0, 1r) x (0, 1r), 
is the system of functions 

sin mx sin ny , m:::: 1, 2, 3, ... , n = 1, 2, 3, ... , (13) 

thus the system of functions 

f 1 = sin x sin y , f 2 = sin 2x sm y , fs = sin x sin 2y , 

f 4 = sin 3x sm y , f 5 = sin 2x sin 2y , f 6 = sin x sin 3y , . . . . 
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The corresponding orthonormal system is 

~ sinmx sinny, m=1,2,3, ... , n=1,2,3, .... 
7C' 

16.2 

(14) 

In a sirnilar way further definitions of this paragraph can be extended, almost 
literally, to the more-dimensional case. 

REMARK 4. Similarly, these definitions can be extended to the comlex space L2 

(see Remark 16.1.6). For example, two functions /, g from a complex space L 2(a, b) 
are called orthogonal in that space ( or in, or on the interval [a, b]) if 

(f,g) = 1b f(x) g(x) dx = 0. (15) 

Example 2. The system of functions 

fn(x) = einx = cos nx + i sin nx (n an integer) 

is orthogonal in the interval [-7r, 7r]: In fact, 

= 111" ei(m-n)x dx = [. 1 ei(m-n)x] 11" = 0 for m =/= n . 
-1r t(m-n) -1r 

To make the system orthonormal, we compute the norm of the functions fn. We 
have 

So the corresponding orthonormal system is 

einx . . 
'Pn(x) = v'(27r) (n an mteger) . 

Definition 5. A system of (real) functions fn(x) is called orthogonal with a 
weight function p(x) (p(x) ~ 0, p f= 0 in L2(a,b)) in the interval [a,b], iffor every 
pair offunctions /;(x), fk(x) we have 

1b p(x) /;(x) fk(x)dx=O, whenever if=k. (16) 
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If, moreover, every function fn is normed with the weight function p(x), i.e. if 

1b p(x) f~(x)dx = 1, n = 1,2, ... , 

we say that this system is orlhonormal with the weight function p(x) in [a, b]. Hence 

1b p(x) f;(x) fk(x) dx = 8;k 

(see Remark 1, p. 670; for examples of such systems see §§ 16.5, 16.6; see also Theo­
rem 16.4.7, p. 697). 

REMARK 5. From a system offunctions fn(x) which areorthogonal in [a,b] with 
a weight function p( x) an orthorrormal system of functions 'Pn ( x) ( with this weight 
function) is obtained when putting 

r.p(x) = b fn(x) 
y' fa p(x) f~(x) dx 

REMARK 6. A rich source of orthogonal systems ( or orthogonal systems with 
weight functions) are eigenvalue problems in differential equations. See e.g., §17.17. 

Definition 6. Let in [a, b], a countable orthorrormal system (thus an orthorrormal 
sequence) of functions 

'Pl(x), 'P2(x), r.p3(x), ... , 'Pn E L2(a, b), (17) 

be given. Let f E L2(a, b). Theseries 

(18) 

where 

Ck = (f,r.pk) = 1b f(x) 'Pk(x)dx, k= 1,2,3, ... , (19) 

is called a (genemlized) Fourier series corresponding to the function f(x). The num­
bers ck are called the Fourier coefficients of the function f( x) with respect to the 
system (17). 

Example 3. The Fourier coefficients of a function f E L2 ( -1r, 1r) with respect 
to the system (7) are 

1" f(x) 1" f(x) cos x 1" f(x) sin x 
c1 = 1( 2 ) dx , c2 = y' dx , c3 = y' dx, .... 

-7r V 7r -7r 7r -" 7r 
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REMARK 7 0 About pointwise convergence of the series (18) to the function f(x) 
nothing can be said, in general. On the convergence in the mean see belowo 

Theorem 1. Let the orthonormal system (17), a function f E L2(a, b) and a 
positive integer n be giveno Then from among a/1 functions of the form 

(20) 

exactly the function 
(21) 

with Ck given by (19), has, in L2 ( a, b ), the least distance from the function f, io eo 
the least quadratic deviationo 

RE MARK 8 0 Thus for every system of numbers k1, k2, o o 0 , kn we have 

1b {f(x)- [c1<p1(x) + c2<p2(x) + 0 0 0 + Cn<pn(x)]} 2 dx ~ 

~ 1b {f(x)-[k1<p1(x)+k2<p2(x)+ooo+kn<pn(x)]}2dx 0 

Theorem 2. The Fourier coefficients (19) of every function f E L2(a, b) fulfil 
the so-called Bessel inequality 

00 

I: c; ~ 11!11 2 
0 

(22) 
n=l 

REMARK 90 Let us remind that all theorems introduced here are valid for or­
thonormal systemso 

REMARK 100 Convergence of the series (22) implies that the Fourier coefficients 
Cn (with respect to the orthonormal system (17)) of an arbitrary function f E L2(a, b) 
fulfill 

lim Cn=Oo 
n-+oo 

Theorem 3. Let (17) be an orthonormal system in L2(a,b)o Let b1,b2,b3 ,ooo be 
such numbers that 

00 

I: b~ < 00 0 

n=l 
Then the series 

00 

I: bn <pn(x) 
n=l 
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is convergent in L 2(a, b) (thus in the mean, see (1601.34))0 If s(x) is its sum, then 
bn are Fourier coefficients of this function s(x) with respect to the system (17)0 

From Theorems 2 and 3, it follows: 

Theorem 4. Let (17) be an orthonormal system in L2(a,b), f E L2(a,b)o Then 
the Fourier series (18), corresponding to this function, converges in the mean to a 
function s E L 2(a,b)o 

However, (18) need not converge (in the mean) to the function f (or to an equiv­
alent function), in general. 

Definition 7. The orthonormal system (17) is called complete in L2(a,b), ifthe 
Fourier series ( 18) of every function f E L2 ( a, b) converges in the mean to that 
function, ioeo iffor every f E L 2 (a,b) we have 

k 

lim Jlf- I: Cn<,Onll = 0 o 
k-+oo 

n=l 

REMARK 110 For conditions on completeness see Theorems 5, 60 See also Re­
mark 130 

Theorem 5. A necessary and sufficient condition for the system ( 17) to be com­
plete in L 2( a, b) is that for every function f E L2( a, b) the Bessel inequality (22) 
becomes equality (the so-called Parseval equality), 

00 

I: c~ = 11!11 2 
0 

(23) 
n=l 

Definition 8. The system (17) is called closed in L2(a, b), ifno nonzero function 
(see, of course, Remark 1601.2) g E L2(a, b) exists orthogonal to every function of 
this systemo 

Theorem 6. The system (17) is complete in L 2(a, b) if and only if it is closedo 

REMARK 120 In particular: If the system (17) is complete, then the relations 

g E L2(a,b), (g,<pn) = 0, n = 1,2,3,000 
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imply that g = 0 in L2( a, b) (in the sense of Remark 16.1.2). 

Theorem 7 (on Uniqueness). If two functions f,g E L2(a,b) have the same 
Fourier coefficients with respect to a complete system (17), then f = g in L 2(a, b) 
(in the sense of Remark 16.1.2). 

Theorem 8. If a Fourier series (18) corresponding to a function f E L 2(a, b) 
converyes to that function in the mean and, moreover, if it is uniformly converyent 
in the interval [a, b], then it converges pointwise in [a, b] to that function ( or to an 
equivalent function). 

In particular: 

Theorem 9. If the system (17) is complete and if the Fourier series correspond­
ing to that function is uniformly converyent in [a, b], then it converyes uniformly in 
[a, b] to that function (or to an equivalent function). 

REMARK 13. It is not easy, in general, to prove completeness of a given orthonor­
mal system. Often completeness follows from Theorems of § 17.17. Typical examples 
of complete orthonormal systems in L 2 are trigonometric systems: 

1 cos x sin x cos 2x sin 2x 
Interval [-1r, 1r] : v'(27r), V7r , V7r , ~, yl1r , ... , (24) 

interval[0,7r]: v(~) sinx, v(~) sin2x, v(~) sin3x, ... ' (25) 

interval[O, 1r] : )7r, v' ( ~) cos x, v' ( ~) cos 2x, v' ( ~) cos 3x,... (26) 

Thus the Fourier series of an arbitrary function f E L2(-7r,7r), or g E L2 (0,1r), 
converges (in the corresponding interval) in the mean to the function J, or g, re­
spectively. The same remains valid for Fourier series transformed onto the interval 
[-1,1], or [o,n, or [a,b] (§16.3). 

See also Remark 16; a typical example of a complete orthonormal system of func­
tions of two variables in L2(f2) is the system (14) on the square n = (0, 1r) x (0, 1r). 

REMARK 14. Instead of "complete system" the term "complete sequence" is 
frequently used. This term is also often used in the following, more general sense: 
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Let fn E L2 (a,b) be a sequence of functions which are linearly independent in 
[a, b]. (This means that every finite number of terms of the sequence constitutes 
a linearly independent system; the functions fn need not be pairwise orthogonal.) 
The sequence fn(x) is called complete in L2(a,b), ifany function f E L2(a,b) can be 
approximated in the mean by linear combinations offunctions fn with any accuracy. 
In other words: Let a function f E L2(a, b) and an c > 0 be given. Then an integer 
m and constants k1 , ... , km can be found such that 

Le. 

1b {f(x)- [kd1(x) + k2/2(x) + ... + kmfm(x)F} dx < c2 • 

For example, for any interval [a, b], the sequence 

is complete in L 2 (a, b). 

(27) 

REMARK 15 (The Schmidt Orlhogonalization Process). Let fn E L2(a,b), n = 
1, 2, ... , be a sequence of functions which are linearly independent in [a, b] (see Re­
mark 14) but not necessarily orthogonal. From this sequence a sequence 9n = L2(a, b) 
orthogonal in [a, b] can be constructed as follows: 

First, put g1(x) = ft(x). 
The function g2(x) is first sought in the form 

We determine the constant k1 so that g2(x) be orthogonal to g1(x), i.e. 

thus 
(28) 

As 91(x) = ft(x), (ft,ft) > 0 (in are linearly independent), the constant k1 is 
uniquely determined by (28). Obviously, g2(x) is a non-zero function, since ft(x) 
and f2(x) are linearly independent. The function g3 (x) is now sought in the form 

choosing the constants so that (g3 , gt) = 0, (g3 , g2 ) = 0. Expanding the products we 
get 
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As (91, 92) = 0 and (91, 91) > 0, c1 is uniquely determined by the first equation. For 
the same reason, c2 is uniquely determined by the second one. Obviously, 93(x) is 
again a non-zero function. 

In this manner we obtain a system ofnon-zero orthogonal functions 9n E L 2(a, b) 
from the functions fn E L2(a,b). Finally, by normalizing each ofthe functions 9n(x) 
we get an orthonormal system. If the original system {/n} is complete, so is the 
obtained system {9n}. 

Example 4. The orthogonalization of the system (27) in [-1, 1] yields the (nor­
malized) Legendre polynomials 

(!)1/2, (~)1/2 x, (!)1/2 x !(3x2 _ 1), G)l/2 x !(5x3 _ 3x), ... 

(§16.5). 

REMARK 16. Everything said above about functions of one variable may be ex­
tended to functions of two or more variables. Instead of an interval (a, b) a region n 
in a plane or in space, etc., is then considered. Cf. Definition 4. See also §22.4. 

16.3. Trigonometrie Fourier Series. Fourier Series in Two 
and Several Variables. Fourier Integral 

REMARK 1. According to Remark 16.2.13, the orthonormal system of trigono­
metric functions 

1 cos x sin x cos 2x sin 2x 
v' ( 2 7r) ' v' 7r ' v' 7r ' ----::;-:;- ' ----::;-:;- ' . . . 

is complete in [-1r, 1r]. Thus, taking any function f E L2 ( -1r, 1r), the corresponding 
Fourier series converges in the mean to f. 

An analogaus statement is true for the systems (16.2.25), (16.2.26) in the interval 
[0, 7r]. 

As far as the pointwise convergence of a Fourier series is concerned, we have: 

Theorem 1. Let f(x) be a periodic function with period 27r (i.e. f(x + 27r) = 
f(x) for every x) and Iet f(x) and f'(x) be piecewise continuous in [-1r,1r]. Define 
constants an, bn by 

1 17r an =- f(x) cos nx dx 
7r -'Ir 

(n=0,1,2, ... ), 

1 17r bn =- f(x) sin nxdx 
7r -'Ir 

(1) 

(n=1,2,3, ... ). 
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Then at each point x, where f(x) is continuous, we have 

00 

ao "" 2 + L...J (an cos nx + bn sin nx) = f(x) , 
n=l 

(2) 

while at each point of discontinuity, 

00 

ao "" 1 2 + L...J (an cos nx + bn sin nx) = 2 (f(x + 0) + f(x- 0)) . 
n=l 

(3) 

(The symbols f(x + 0), f(x- 0) denote the Iimits from the right and the left, re­
spectively, of the function f(x) at the point x.) 

REMARK 2. Equations (2) and (3) hold under far more general assumptions. 
They are true if: (i) f(x) is measureable in [-?r, ?r]; (ii) the integral 

1: lf(x)Jdx 

is convergent (f(x) may be unbounded) and (iii) the point x is interior to an interval, 
in which f(x) has a bounded variation (Definition 11.3.7). Moreover, in the case of 
convergence of the above integral, the series (2) converges uniformly in each interval 
[a, b], which is interior to an interval on which f(x) is continuous and is of bounded 
variation. 

REMARK 3. Brackets in the sum on the left-hand side of equation (2) or (3) 
cannot in general be omitted. 

REMARK 4. For a periodic function with period 2?r (Theorem 1) we may take 
not only the interval [-?r, ?r] as "basic" interval, but also any interval [a, a + 2?r] (for 
example, the interval [0, 2?r]). The lower and upper Iimits in integrals (1), of course, 
are then a and a + 2?r, respectively. 

Example 1. Let f(x) be a periodic function with period 2?r and Iet f(x) = x 
on the basic interval [0, 2?r) (thus at points x = 2k?r, where k in an integer, we have 
f(x) = 0, see Fig. 16.2). 

Integrating by parts we get 
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Fig.16.2. 

for n = 1,2,3, ... , 

ao = ~ {2
" x dx = 211", 

7r Ja 

bn -- _11"1 12" 1 [ cos nx] 211: 1 x sin nx dx = -- x --- + -
1r n o n1r 

2 = -- (n = 1,2,3, ... ) . 
n 

{2" 
Ja cosnxdx= 

Thus by (2) we have 

( sin x sin 2x sin 3x ) 
f(x) = 11"-2 -1- + -2- + -3- + ... 

16.3 

( 4) 

at any point x different from an integral multiple of 211". If x = 2k7r ( where k is an 
integer), f(x) is discontinuous and the sum on the right-hand side of equation (4) 
equals, in view of (3), 

~ [f(x + 0) + f(x- 0)] = ~ (0 + 211") = 1r . 

This can, of course, readily be verified from ( 4). In any closed interval which does 
not contain the point x = 2k7r, the series ( 4) converges uniformly. 

REMARK 5. Fora function f(x) periodic with period 21 a theorem analogous to 
Theorem 1 is true (and remarks similar to Remarks 2, 3 and 4 also hold). Here the 
formula reads: 

f(x) at a point of continuity of f(x), 
00 

a2° + L (an cos n;x + bn sin n;x) = ~ (f(x + 0) + f(x- 0)) at a point of 
n=l 

discontinuity of f( x), 
(5) 
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where 

1 1' mrx 1 11 
• n1rx an = I f ( x) cos - 1- dx , bn = I . f ( x) sm - 1- dx . 

-1 -1 
(6) 

If f is a periodic function of timet, with period T and basic interval [0, T], then 
putting 27r/T =wand writing t instead of x, we have 

00 

ao """' 2 + L...J (an cos nwt + bn 
n=l 

{ 
f(t) , 

sin nwt) = 
~(f(t + 0) + f(t- 0)) , 

(5') 

where 

an = ; laT f(t) cos nwt dt , bn = ~ laT f(t) sin nwt dt . (6') 

REMARK 6. If f(x) is an odd function of x (i.e. if f( -x) =- f(x)), then, by (1), 
or (6), an = 0 for n = 0, 1, ... and the series involves only sine terms. If f(x) is even 
in x (i.e. if f(-x) = f(x)), then bn = 0 for n = 1,2, ... and the series involves only 
the constant term a 0 /2 and cosine terms. 

If f(x) is defined in the interval [0, 1r], it can be expressed in this interval by 
either a sine series or a cosine series. Defining f( x) in ( -71", 0) by f( -x) = - f( x) 
(and as a periodic function with period 271" for remaining x), we get f(x) expressed 
by a sine series. Defining f( -x) = f( x) in ( -11", 0), we get f( x) expressed by a cosine 
series. In the first case, 

oo { f(x) L bn sin nx = 
n=l ! (f(x + 0) + f(x- 0)) 

(for x E [0, 1r]), (7) 

where 

bn = ~ 1" f(x) sin nxdx. (8) 

In the second case, 

ao + I a cos nx = {f(x)' (for x e [0, 7t ]) (9) 
2 n=.l n t(f(x + 0) + f(x - 0)) 

with 

2 J" an = - f(x) cos nx dx. 
1t 0 

(10) 

If the interval [0, 1t] is replaced by the interval [0, l], formulae (7) and (8) assume 
the form 
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f bn sin mtx = {f(x)' (for x E [0, I]), 
n=l l !(f(x + 0) + f(x - 0)) 

bn =- f(x)sm-dx 2 f' . mtx 
l 0 l 

and formulae (9), (10) the form 

ao + I a cos mtx = {f(x)' (for x E [0, l]), 
2 n=l n l !(f(x + 0) + f(x - 0)) 

an=- f(x) cos- dx. 2f' mtx 
l 0 l 

Example 2. For the function f(x) = x in [0, 1t), f(1t) = 0 we get in the first case 

f(x) = 2 (sin x _ sin 2x + sin 3x _ ···) 
1 2 3 

(11) 

(the continuation of the function overallreal x is plotted in Fig. 16.3). 

y 

Fig.l6.3. Fig. 16.4. 

In the second case ( we define f( 1t) = 1t; now the continuation of the fu:o.:ction for 

all x is as plotted in Fig. 16.4), 

f(x) = ~ _ ~ (cos x + cos 3x + cos Sx + ···). 
2 1t 12 32 52 

(12) 

REMARK 7 (Fourier Expansions of Some Important Functions). 

1. f(x) = jsin xj (Fig. 16.5): 

f(x) = ~ _ ~ (cos 2x + cos 4x + cos 6x + ···). 
1t 1t 1.3 3.5 5.7 
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Fig. 16.5. 

h 
2. f(x) = - x for 0 ~ x ~ p, f(x) = h for p ~ x ~ 1t - p, 

p 

h 
f(x) = - - (x - 1t) for 1t - p ~ x ~ 1t, f(x + 1t) = - f(x) for every x 

p 

(Fig. 16.6): 

/() 4h(1 .. 1.3 "3 1.5 "5 ) X = - - - Slll p Slll X + - Slll p Slll X + - Slll p Slll X + . , , . 
1t p 12 32 52 

X 

Fig. 16.6. 

3. Particularly, for p = t1t (Fig. 16.7): 

f(x) = Sh (sin x _ sin 3x + sin 5x _ ... ) . 
1t2 12 32 52 

683 

4. f(x) = h for 0 < x < 1t, f(O) = O,J(x + 1t) = -f(x) foreveryx (Fig.16.8): 

!( ) _ ~ h (sin x sin 3x sin 5x ) 
X- +--+ + .... 

1t 1 3 5 
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1 r 
Fig. 16.7. 

I 
Tl' 
' ' 

Fig. 16.8. 

}( 

r 
2~ }( 

5. f(x) = 0 for 0 ~ x < p and for 1t - p < x ~ 1t, 

-tr 

f(x) = a for p < x < 1t- p, f(x + 1t) = -f(x) for every x (Fig. 16.9): 

f(x) = 4a (cos p sin x + ! cos 3p sin 3x + t cos Sp sin Sx + ... ). 
1t 

. 
' 

I ' ......... 

a 

0 

y -' ' 
' ' 

' 

p tr-p tr 
' 

"-....; 

fig. 16.9. 

2n 

n 
' ' . ' . . 
' ' . ' . : 

6. f(x) = x2 for -1t ~ x ~ 1t, f(x + 21t) = f(x) for every x (Fig. 16.10): 

f(x) = 1t2 _ 4 (cos x _ cos 2~ + cos 3x _ ···). 
3 12 22 32 

16.3 

3n Je 
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-2n -n 1t 

Fig. 16.10. 

2n 

7. f(x) = x(1t- x) for 0 ~ x ~ 1t, f(x + 1t) = f(x) for every x (Fig. 16.11): 

X-----+--+--+ ... • I( ) _ 1t2 (cos 2x cos 4x cos 6x ) 
6 12 22 32 

y 

Fig. 16.11. 
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X 

8. f(x) = x(1t- x) for 0 ~ x ~ 1t, f(x + 1t) = -f(x) for every x (Fig. 16.12): 

f(x) = ! ( 13 sin x + _!_ sin 3x + _!_ sin Sx + .. ·). 
1t 1 33 53 

y 

Fig. 16.12. 
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9. f(x) = cos x for 0 < x < 1t, f(O) = 0, f(x + 1r) = f(x) for every x 

(Fig. 16.13): 

!( ) _ ~ (2 sin 2x 4 sin 4x 6 sin 6x ) 
X - + + + "' • 

1t 1.3 3.5 5.7 

y 

Fig. 16.13. 

10. f(x) = sin x for 0 ;:;; x ;:;; 1t, f(x) = 0 for 1t ;:;; x ;:;; 27t, 

f(x + 27t) = f(x) for every x (Fig. 16.14): 

x =-+-smx-- --+--+--+ .... f( ) 1 1 . 2 (cos 2x cos 4x cos 6x ) 
. 1t 2 1t 1.3 3.5 5.7 

Ol 1T 

Fig. 16.14. 

11. f(x) = cos ux for -7t ;:;; x ;:;; 1t, u arbitrary, different from any integer: 

f(x) = 2u sin u1t (-1- _ cos x + cos 2x _ cos 3x + ... ) • 
1t 2u2 u2 - 1 u2 - 4 u2 - 9 

12. f(x) = sin ux for -7t < x < 1t, u arbitrary, different from any integer: 

f(x) = 2 sin u1t ( sin x _ 2 sin 2x + 3 sin 3x _ ... ) • 
1t 1 - u2 4 - u2 9 - u2 

13. f(x) = x cos x for -1t < x < 1t: 

!( ) _ _ ~ . 4 sin 2x 6 sin 3x 8 sin 4x _ 
x - -z sm x + - + .... 

1.3 3.5 5.7 

16.3 
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14. f(x) = - 1n (2 sin !x) for 0 < x ~ n: 

f(x) = cos x + ! cos 2x + t cos 3x + .... 

15. f(x) = In (2 cos !x) for 0 ~ x < n: 

f(x) = cos x - ! cos 2x + t cos 3x - ...• 

16. f(x) = !Incot!x for 0 < x < n: 

f(x) = cos x + t cos 3x + t cos Sx + .... 

687 

REMARK 8 (Fourier Series in Complex Form). Fora periodic function (satisfying 
the assumptions of Theorem 1 or Remark 2) with basic interval [0, 2n] we have 

c einx = 1 211 . 
... {f(x), 

"=J;<r> " !(f(x + 0) + f(x- 0)), c" =-f f(x) e-•nx dx. 
21t 0 

By a summation from - oo to oo we mean the summation 

<rJ 

Co + L ( c"einx + c _"e -lnx) • 
••1 

For a periodic function with basic interval [0, l] we have 

c e211inxfl = 1 l 
... {f(x), 

n="':_oo " !(f(x + 0) + f(x- 0))' c" = l f !(x) e-2,.1nx/l dx. 

Theorem 2 (Differentiation and Integration of Fourier Series). Let the Fourier 
series corresponding to a function f(x) be given: 

a "" 
_Q + L: (a" cos nx + b" sin nx) 
2 n=l 

( 1 J2" 1 J2" ) a" = ; 
0 

f(x) cos nx dx, b" = ; 
0 

f(x) sin nx dx . 

If f(x) is continuous in [ -n, n], f( -n) = f( n) and f'(x) is piecewise continuous 
in [ -1t, 1t ], then at each point where f'(x) has a derivative (and consequently is 
continuous) we have 

01) 

f'(x) = L: n( -a" sin nx + b" cos nx) 
n=l 

(term-by-term differentiation ). 
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If f(x) is piecewise continuous in [-1r, 1r], then (no matter whether (3) is true or 
not) we have 

j_: f(t)dt=~ao(x+11")+; ~[an sinnx-bn(cosnx-cosn7r)] (-11"~X~11") 

(term-by-term integration). 

Similar theorerns hold for an interval [-I,~, etc. 

Theorem 3 {Riemann-Lebesgue Theorem). Let f(x) be a function suchthat the 
integral J~'ll" if(x)i dx is convergent. Then an -+ 0, bn -+ 0, as n-+ oo, i.e. 

lim 111" f(x) cos nx dx = 0 , lim 111" f(x) sin nx dx = 0 . 
n-+oo -'K n-+oo -'11" 

(A similar result is true for an interval [-/, l], etc.) 

Theorem 4 ( A theorem frequently used, for example in solving partial differential 
equations by the Fourier method). If f(x), f'(x), f"(x), f"'(x) are continuous in [0, fj 
and vanish for x = 0 and x =I, and if f(4)(x) is piecewise continuous in [0, 1], then 
as n -+ oo, the Fourier coefficients 

converge to zero as rapidly as 1/n\ i.e. bn = 0(1/n4 ) when n-+ oo. (In other words 
n4 bn is bounded for all n.) 

The above theorem, given for k = 4, may be stated for any positive integer k. 

REMARK 9. In applications, Fourier series in two variables are often encountered. 
In this case the convergence tests arerather complicated (see e.g. [44]). Let us present 
a simple criterion: 

Theorem 5. Let the function f(x, y) have continuous derivatives 

{}f {)j 82 f 

8x' {)y' 8x {)y 
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in the reetangle R(-1 ~ x ~ l, -h ~ y ~ h). Then at each interior point of R we 
have 

00 

( ""' [ m1rx n1ry . m1rx n1ry f x,y) = LJ Amn amn cos - 1- cos h + bmn sm - 1- cos h+ 
m,n=O (13) 

m1rx . n1ry d . m1rx . n1ry] 
+cmn cos - 1- sm h + mn sm - 1- sm h 

where 
1 fl f(x,y) 

m1rx n1ry 
arnn = lh cos -l- cos h dxdy, (14) 

1 fl f(x,y) 
m1rx n7ry 

brnn = lh sin -- cos h dxdy, 
l 

(15) 

1 JL f(x,y) 
m1rx · n1ry d d 

Crnn = lh cos -- smh x y, 
l 

(16) 

drnn = l~ J L f(x,y) sin m;x sin n~y dxdy, (17) 

1 l.f 0 4 m=n= , 

Amn = ~ if either n = 0, m > 0 or m = 0, n > 0 (18) 

1 if m > 0, n > 0 . 

If, in addition, the function f(x,y) has continuous derivatives (J2jf8x2 , 

83 f/8x 28y in Rand f(-l,y) = 0, f(l,y) = 0, then the series (13) can be dif­
ferentiated term-by-term with respect to x and a series with sum 8 f / 8x is obtained. 
A similar assertion is true for differentiation with respect to y. 

REMARK 10. The exact meaning of the term "(pointwise) convergence of the 
series (13) to the function f(x,y)" is the following: For any chosen t: > 0 an integer 
N can be found such that for any pair of integers p > N, q > N we have 

if(x, y)- Spq(x, y)l < €, 

where Spq derrotes a partial sum of series (13) with m assuming all the values 
0, 1, ... ,p and n assuming all the values 0, 1, ... , q (see Remark 10.2.12). 

Example 3. For the function f(x, y) = xy on the square K( -1r ~ x ~ 1r, 
-1r ~ y ~ 1r) we get, by formulae (14) to (17), 
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amn = bmn = Cmn = 0, m, n non-negative integers , 

doo = d01 = d1o = 0, dmn = (-1)m+n _!_, m, n positive integers. 
mn 

Thus, by Theorem 5, at any interior point of [{ we have 

00 • • 

xy = 4 L (-1)m+n sm mx sm ny . 

m,n=l mn 

16.3 

REMARK 11 ( The Fourier IntegraO. For l--+ +oo, the Fourier series (5) becomes 
the Fourier integral: 

Theorem 6. If the integral 

1: lf(x)jdx 

is convergent and if f(x) and f'(x) are piecewise continuous in any finite interval, 
then 

l f(x) at each point of continuity 

1 100 100 of the function f(x), 
- du f(t) cos {u(t-x)} dt = ~ {f(x + 0) + f(x- 0)} at 
7r o -oo each point of discontinuity 

of the function f(x). 

(19) 

REMARK 12. Expanding the term cos {u(t- x)} in (19), we get 

1 100 100 1 100 100 - cos ux du f(t) cos ut dt + - sin ux du 
7C' 0 -oo 7r 0 -oo 

f(t) sin ut dt = 

{ 
f(x) 

- ~ (f(x + 0) + f(x- 0)) . 

If f(x) is an even function, i.e. if f(-x) = f(x), then 

2 foo foo { f(x) , 
- Jn cos ux du Jn f(t) cos ut dt = 
7r o o ~ (f(x + 0) + f(x- 0)). 

If f(x) is odd, i.e. if f(-x) = -f(x), then 

2 {oo 1oo { f(x) , 
- Jn sin ux du f(t) sin ut dt = 
7r 0 0 ~ (f(x + 0) + f(x- 0)) . 
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Using complex form, we have: 

- e-txu du f(t) ewt dt = 1 1oo . 1oo . { f(x) , 

271" -oo -oo ~ (f(x + 0) + f(x- 0)) , 

where the first improper integral is to be taken in the sense of the Cauchy principal 

value, i.e. as the limit of [aa for a --+ +oo. 

REMARK 13 (Harmonie Analysis). Consider a real function f with periodband 
let us expand it in [0, b] into the corresponding Fourier series 

a0 00 
( 21rnx . 21rnx) 2 + L an cos -b- + bn sm -b- , 

n::=1 

(20) 

where 

2 fb 27rnX 2 t . 27rnX 
an= b Jo f(x) cos -b- dx, bn = b Jo f(x) sm -b- dx (21) 

(see Remark 5, formulae (5'), (6'), with T = b, w = 21rjb and t = x). 

Often, the values of the function f are known only at some discrete points of the 
interval [0, b] (when obtained by measurement, for example). Then to the calculation 
of an, bn, quadrature formulae must be used, as usual. According to Remark 13.13.1 
(the integrated functions being periodic), the trapezoidal rule is of a particularly 
convenient use in this case. Writing in (13.13.5) h = b/m, ak = kb/m and taking 
into account that the values of the integrated functions are the same at the points 
x = 0, x = b, we obtain 

21rnk 
cos -­

m 

2 m- 1 . 21rnk 
bn ~- L f(ak) sm --. 

m m 
k::=O 

(22) 

For computing these sums, the so-called fast Fourier transformation is very prof­
itable tobe used. This effective algorithm, considerably significant also in other fields 
of numerical analysis, serves for numerical computation of sums of the form 

m-1 

I: n = 0, 1, ... , m- 1 (23) 
k::=O 
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into which the sums in (22) may obviously be easily transformated. We describe it 
for the case m = 2r: 

Computation of m sums of the form (23) is equivalent to determination of m 
values of the polynomial 

Pm-1(z) = fm-1 zm- 1 + ... + fo 

of degree m- 1 in m points e 2 ~n, m = 0, 1, ... , m- 1. However, this polynomial 
can be rewritten as 

(24) 

where 
-T-1 

P-T-t(z) = L hk+1 zk 
k=O 

and 
~-1 

q-T-1(z) = L hk zk . 
k=O 

(Here, the index derrotes the degree of the corresponding polynomials.) Using (24), 

we thus have replaced computation of m values of a polynomial of degree m - 1 by 

computation of m/2 values of two polynomials of degree T- 1, since we have 

( 
2,.-in)2 ( 2,.-i(n-~))2 

e m = e m 

for n = T> T + 1, ... , m- 1. 
Any of the polynomials P-T- 1 , q-T- 1 can agairr be replaced, similarly as in (24), 

by two polynomials of degree m/22 - 1, and we thus may compute the values of 

these polynomials at m/22 points. Going on in this way, we reduce, successively, the 

degrees of polynomials, the values of which we had to compute, till we come to 2r- 1 

polynomials of the first degree the values of which we compute at the points + 1 and 
-1. 
The number of operations is not greater than 2m log2 m, while the _direct use of 

(23) leads to a number of operations which is proportional to m 2 . Thus the differ­

ence is significant even for a relatively small m. For example, for m = 27 = 128, 

m2 = 16 384, while 2m log2 m = 2 x 27 x 7 = 1 792. In this case, the algorithm of the 
fast Fourier transform is approximately ten times faster than the straightforward 
procedure. 

16.4. Bessel Functions 

In this paragraph, v, or n derrotes a real number, or an integer, respectively. 

Definition 1. Bessel functions (cylindrical functions) of the first kind and index 

(order) v are defined by 

( x)v 00 
( -1)k (~2 )2k . 

Jv(x)= 2 L k!r(v+k+1) 
k=O 

(1) 
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Theinfinite series in (1) is convergent for every real v (see, however, Remark 1) 
and every real, or complex x. 

About the meaning of (x/2)" if x is complex, see in Remark 20.6.4. 

REMARK 1. For k = 0 we have k! = 1. On the function f see in §13.11. If 

v = n is a nonnegative integer, then r(n + k + 1) = (n + k)! (see (13.11.6)). If 

v + k + 1 = 0, -1, -2, ... , we define 1/f(v + k + 1) = 0. In this way, (1) has sense 

also if v is a negative integer. 
As functions of a complex variable x, (1) are analytic functions, with singularities 

at the point x = 0 and x = oo, in general. Definition 1 of Bessel functions can be 

extended for complex v: lt suffi.ces, for example, to define the function r for the case 

of a complex variable by the relation (13.11.10), see e.g. [183]. 

Example 1. 

(for every t). 

1 
1! 3! 

Theorem 1. I/ n is an integer, then 

(~)4 _1 (~)6 
2 + 2! 4! 2 

(2) 

REMARK 2. Thus if n is a negative integer, it is not necessary to use (1) for 

computing Jn(x), but it suffi.ces to put n = -m (where thus m isapositive integer) 

and to compute Jm(x). 

Theorem 2. The function lv ( x) satisfies the so-called Bessel differential equation 

(3) 

(see §17.15 and §17.21, equation 117). 

REMARK 3. If v is not an integer, then the functions Jv(x) and J_v(x) can be 

shown tobe linearly independent and 

(4) 
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is the generalintegral of equation (3). lf 11 = n is an integer, then (2) implies that 
the functions Jn(x) and Ln(x) arenot linearly independent and that (4) is not a 
general integral ofthat equation. The general integral is then 

(5) 

see Remark 16. 

Theorem 3. The Bessel functions of integral indices can be taken for coefficients 
of the Laurent expansion (§20.4} of the so-called generating function: For every x 
and t ::fo 0 we have 

00 

eW-f) = L Jn(x)tn = 
n=-oo 

= Jo(x) + (h(x)t +J2(x)t2 + ... ) + (J_ 1(x)r 1 + L 2(x)r2 + ... ) . 
Theorem 4 (the Integral Form). For n = 0, 1, 2, ... we have 

1 1" Jn(x) =- cos(xsin (}- nO)d(}. 
1f' 0 

(6) 

REMARK 4. For applications, the most important Bessel Functions are the func­
tions 

x2 x4 x6 
Jo(x) = 1 - 22 + (2 X 4)2 - (2 X 4 X 6)2 + ... ' (7) 

x ( x2 x4 
J l (X) = 2 1 - 2 X 4 + 2 X 42 X 6 -

x6 xs ) 
-2 X ( 4 X 6)2 X 8 + 2 X ( 4 X 6 X 8)2 X 10 + ... (8) 

Their graphs are sketched in Fig. 16.15. In Table 16.1 their values for x = 0, 
x = 0.5, ... are given. Of frequent application are also Tables 16.2, 16.3, giving 
positive, or nonnegative roots of the equation J n(x) = 0, or J~ (x) = 0, respectively. 

Theorem 5 (Recursion Formulae): 

2J~(x) = Jv-l(x)- Jv+l(x) , 

xJ~(x) = vJv(x)- xJv+l(x) , 

xJ~(x) = -vJv(x) + xJv-l(x) . 

(9) 

(10) 

(11) 

(12) 
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TABLE 16.1 

Bessel functions of orders zero and one 

X Jo(x) J1(x) X Jo(x) J1(x) X Jo(x) J1(x) 

0.0 1.000 0 0.0000 5.5 -0.006 8 -0.3414 11.0 -0.1712 -0.176 8 
0.5 0.938 5 0.242 3 6.0 0.150 6 -0.2767 11.5 -0.0677 -0.228 4 
1.0 0.765 2 0.4401 6.5 0.260 1 -0.153 8 12.0 0.0477 -0.223 4 
1.5 0.511 8 0.557 9 7.0 0.3001 -0.004 7 12.5 0.146 9 -0.165 5 
2.0 0.223 9 0.576 7 7.5 0.266 3 0.135 2 13.0 0.206 9 -0.070 3 
2.5 -0.048 4 0.497 1 8.0 0.1717 0.2346 13.5 0.215 0 0.038 0 
3.0 -0.2601 0.339 1 8.5 0.041 9 0.273 1 14.0 0.171 1 0.133 4 
3.5 -0.380 1 0.137 4 9.0 -0.090 3 0.245 3 14.5 -0.087 5 0.193 4 
4.0 -0.3971 -0.066 0 9.5 -0.193 9 0.161 3 15.0 -0.0142 0.205 1 
4.5 -0.3205 -0.2311 10.0 -0.245 9 0.043 5 15.5 -0.109 2 0.1672 
5.0 -0.177 6 -0.327 6 10.5 -0.236 6 -0.078 9 16.0 -0.1749 0.0904 

TABLE 16.2 

Positive Roots ofthe Equation Jn(x) = 0 

Order of the Root 

Index n 1 2 3 4 5 6 7 8 

0 2.404 83 5.520 08 8.653 73 11.791 53 14.930 92 18.071 06 21.211 64 24.35247 
1 3.831 71 7.015 59 10.173 47 13.323 69 16.470 63 19.615 86 22.76008 
2 5.135 62 8.417 24 11.619 84 14.795 95 17.959 82 21.117 00 24.271 12 
3 6.380 16 9.761 02 13.015 20 16.223 47 19.409 42 22.582 73 
4 7.588 34 11.064 71 14.37254 17.616 0 20.826 9 24.199 0 
5 8.771 42 12.338 60 15.700 17 18.980 1 22.217 8 
6 9.936 11 13.589 29 17.003 8 20.320 8 23.586 1 
7 11.086 37 14.821 27 18.287 6 21.641 6 24.934 9 

TABLE 16.3 

Nonnegative Roots of the Equation J~ ( x) = 0 

Order of the Root 

Index n 1 2 3 4 5 6 7 8 9 

0 0.000 0 3.831 7 7.015 6 10.173 5 13.323 7 16.470 6 19.615 9 22.760 1 25.903 7 
1 1.841 2 5.331 4 8.536 3 11.706 0 14.863 6 18.015 5 21.164 4 24.311 3 
2 3.054 2 6.706 1 9.969 5 13.170 4 16.347 5 19.512 9 22.6721 
3 4.2012 8.015 2 11.345 9 14.585 9 17.788 8 20.972 4 24.146 9 
4 5.317 5 9.2824 12.681 9 15.964 1 19.196 0 22.401 0 
5 6.415 6 10.519 9 13.987 2 17.312 8 20.575 5 23.803 3 
6 7.501 3 11.734 9 15.268 2 18.637 4 21.931 8 
7 8.577 8 12.932 4 16.529 4 19.941 9 23.268 1 
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Fig. 16.15. 

In particular, (11) yields, for 11 = 0, 

(13) 

From (6) we then obtain, for 11 = 0, 1, 2, ... , 

IJn(x)l ~ 1, IJ~k)(x)l < 1 (k= 1,2,3, ... ) 

for all real x; further, 

(see also (16)). 

REMARK 5 (the Functions Jv(x) for 11 = n + ~ or 11 = -n- ~' n = 0, 1, 2, ... ): 

In particular, 

COS X 

X 

(14) 

(15) 
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( 2 ) ( 2 ) ( COS X • ) Lt;2(x) =V 7rX cos X) L3j2(x) = -v 1rX -X-+ sm X 

RE MARK 6 ("Limit Form" of Bessel Functions). If the numbers v and x are real, 
then for x ~ 1 we have 

J V (X) ~ V (:X) cos <p (16) 

with 

Theorem 6. For every real v, the function J v(x) has a countable set of positive 
zeros Xt < x 2 < x 3 < .... At the same time, the relation 

Xn _,. +oo for n _,. oo 

holds. 

Theorem 7. Let At < A2 < A3 < ... be positive roots of the equation 

Jv(Ac) = 0 (c > 0 fixed, v fixed, real, nonnegative) . (17) 

Then the functions Jv(Atx), Jv(A2X), Jv(A3x), ... form an orthogonal system with 
the weight function x (Definition 16.2.5) in the interval [0, c], i.e. we have 

(18) 

REMARK 7. The same is valid if At < A2 < A3 < ... are nonnegative roots of the 
equation 

AcJ~(Ac) = -hJv(Ac) , (19) 

where h is a real constant, not necessarily different from zero. 

Theorem 8. Ifv ~ 0, h ~ 0, then the equation (17), or (19) has only real roots. 

REMARK 8. From among them only nonnegative roots are taken into account 
when constructing orthogonal systems mentioned in Theorem 7 and Remark 7. At 
the same time, the root A = 0 is used only in the case of equation (19) with v = 0 
and h = 0. 
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REMARK 9. On how to come to the equation (17), or (19), see in §26.4. 

REMARK 10. (Complete) orthonormal systems 

with the weight function x, for which thus the relations 

r { 1 for i = k' 
Jn X'J'vi(x) 'Pvk(x)dx = 

o 0 for i f k, 

hold, are obtained from orthogonal systems, mentioned in Theorem 7 and Remark 7, 
in the following way: 

In the case of the equation ( 17): 

in the case of the equation (19): 

For v = 0, h = 0, >. = 0 we take 

'Pvl(x) = ...j(2)/c. 

Let us note that the >.k 's from Theorem 7 are different, in general, from those 
from Remark 7; thus also the corresponding functions Jv(>.kx) aredifferent in both 
cases, in general. 

Theorem 9 (The Fourier-Besse/ Expansion). Let 

be functions from Theorem 7, or Remark 7, respectively, v ~ 0, h ~ 0. (It is assumed 
that >.1 < >.2 < >.3 < ... are a/1 positive, or nonnegative roots of the equation (17), 
or (19), respective/y, whi/e >. = 0 is considered on/y in the case of equation (19) with 
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v = 0, h = 0; v, h are fixed). Let f(x) and f'(x) be piecewise continuous functions 
in the interval [0, c]. Then 

00 

L: ak Jv(Akx) = 
k=l 

{ 
f(x) 

- ~ [f(x+) + f(x- )] 

at every point x at which f(x) is continuous , 

(20) 
at every point x at which f(x) is discontinuous 

(0 < x < c; f(x+), or f(x-) means the right-hand, or left-hand Iimit ofthefunction 
f(x) at the point x, respectively). The convergence of the series (20) is uniform in 
every closed interval lying in the interior of an interval in which f( x) is continuous. 
Here, 

2 1c ak = 2J 2 (.X ) xJv(.Xkx) f(x) dx , 
C v+l kC 0 

k = 1,2,3, ... (21) 

if Ak arepositive roots of equation (17) and 

k = 1, 2,3, ... (22) 

if Ak are nonnegative roots of equation (19). 

REMARK 11. If v = 0, h = 0, then .X1 = 0 in (22) and 

2 1c a1 = 2 xf(x)dx. 
c 0 

REMARK 12. The validity of (20) is ensured if only f(x) is integrable on every 
closed interval [c, c] with € > 0 arbitrarily small, if integral 

1c J(x) lf(x)l dx 

is convergent and the point x is an interior point of an interval where f(x) is of 
bounded variation. The convergence is then uniform, again, in every closed interval 
which lies in the interior of an interval where f(x) is continuous. 

REMARK 13. Theorem 9 can be generalized for the case v ~ - ~ (see, e.g., [183], 
where Bessel functions are thoroughly treated). 

REMARK 14. Theorem 9 is of fundamental significance in applications (see also 
§26.4). 
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REMARK 15 (Bessel Functions ofthe Second Kind, the Weber (Neumann) Func­
tions). Bessel functions of the second kind are defined, if v is not an integer, by 

Yv(x) = Jv(x) cos V7r- Lv(x) 
Sln V7r 

if v is an integer, by 

v=f.n, 

Y ( ) _ 1. Jv(x) cos V7r- Lv(x) 
n X - lffi . . 

v-n Sln V7r 

(23) 

(24) 

The functions Yn(x) are called the Weber (or Neumann) functions. They are often 
denoted by N n ( x). Let us note that under the Neumann functions sometimes also 
the functions 

Yv(x) = !1r Yv(x) + (ln 2- C) Jv(x) 

are understood in the literature; here 

c = 0.577 215 664 9 ... 

is the Euler constant. 

Theorem 10. For n ~ 0, n an integer, we have 

n-1 
2 x 1 (-x2)-n"' (n-kk!-1)! (-x2)2k_ Y n(x) = - Jn(x) (ln 2 + C)-- L..-J 
7r 7r k=O 

1 X n 00 (-1)k X 2k [ k 1 k+n 1] 
-; (2) {; k!(n- k)! (2) ~ 1 + ~ 1 · 

Here, we have to put 

k 1 k+n 1 1 
L 1+L 1=1+ ... +;;: if k=O 
1=1 1=1 

and 
k 1 k+n 1 L 1 + L 1 = 0 if k = 0 and n = 0 . 

1=1 1=1 

(25) 

(26) 

Theinfinite series in (26) is convergent for every x (complex, in general). As func­
tions of a complex variable, the functions (26) are analytic functions (multivalued 
with a cut along the negative real half-axis, due to the presence of the logarithmic 
term in (26)). 

A table is given below for the functions Y 0 ( x), Y 1 ( x), most often encountered in 
applications (Tab. 16.4). 
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TABLE 16.4 

The Weber (Neumann) Functions Y 0(x), Y1(x) 
X Yo(x) Y1(x) X Yo(x) Y1(x) 

0.0 - - 5.5 -0.339 5 -0.023 8 
0.5 -0.444 5 -1.471 6.0 -0.288 2 -0.175 0 
1.0 0.088 3 -0.781 2 6.5 -0.173 2 -0.274 1 
1.5 0.382 4 -0.412 3 7.0 -0.025 9 -0.302 7 
2.0 0.510 4 -0.107 0 7.5 0.117 3 -0.259 1 
2.5 0.498 1 0.145 9 8.0 0.223 5 -0.158 1 
3.0 0.376 9 0.324 7 8.5 0.270 2 -0.026 2 
3.5 0.189 0 0.410 2 9.0 0.249 9 0.104 3 
4.0 -0.016 9 0.397 9 9.5 0.171 2 0.203 2 
4.5 -0.194 7 0.301 0 10.0 0.055 7 0.249 0 
5.0 -0.308 5 0.147 9 

REMARK 16. Similarly as the functions Jv(x), also the functions Yv(x) are solu­
tions of equation (3). If v = n is an integer, then we have 

Y_n(x) = (-1t Y(x), 

and the functions of the form 

do not represent the generalintegral ofthat equation. Its general solution is then of 
the form 

cf. Remark 3. 

REMARK 17. Relations (9)-(12) (and thus also the relation (13)) holdas well for 
the functions Yv. Further, if v = n + ~' or v = -n- ~' n = 0, 1, 2, ... , we have 

For v, x real, x ~ 1, we obtain 

Yv(x) ~ v(:x) sm <p, 
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where <p = x- (v + ~) i· 

REMARK 18. The Bessel functions of the third kind (the Hanke/ functions) are 
defined by 

H~1)(x) = Jv(x) + iYv(x) , 

H~2)(x) = Jv(x)- iYv(x) , 

where i is the imaginary unit. 
Also for them the relations (9)-(13) are valid. 

REMARK 19 (Modified Bessel Fundions of the First and Second Kinds). The 
modified Bessel function ofthe first kind lv(x) is defined by 

(27) 

where i is the imaginary unit. Wehave 

(X) V 
00 1 ( =_2 ) 2k . 

lv(x)= 2 {; k!f(v+k+1) (28) 

The infinite series in (28) is convergent for every x ( complex, in general; see also 
Remark 1). 

For integral n we have 

Recursion formulae: 

Ln(x) = In(x) . 

2vl(x) = xlv-l(x)- xlv+l(x) , 

2I~(x) = Iv-l(x) + lv+l(x) , 

xl~(x) = vlv(x) + xlv+l(x) , 

xl~(x) = -vlv(x) + xlv-l(x) . 

Especially, the third of these formulae yields 

I~(x) = l1(x) . 

The functions lv ( x) satisfy the differential equation 

(29) 

(30) 

(31) 
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If v is no integer, then 

is the general integral of equation (31)0 If v = n is an integer, then the functions 
In ( x) and Ln ( x) are linearly dependent (see (30)) and 

is no generalintegral ofthat equationo Its generalintegral is then 

where Kn(x) is the so-called modified Bessel function ofthe second kind (called also 
the Mac Donald function): 

If v is no integer, we define 

and if v = n is an integer, then 

Wehave 

Recursion Formulae: 

( ) 7f Lv(x)- Iv(x) 
Kn X = lim 

V-+n 2 Sill V7f 

2vKv(x) = xKv+l(x)- xKv-l(x) , 

2K~(x) = -Kv+l(x)- Kv-l(x) , 

xK~(x) = vKv(x)- xKv+l(x) , 

xK~(x) = -vKv(x)- xKv-l(x) o 

In particular, from the third of these formulae, it follows that 

K~(x) = -K1(x) 0 

REMARK 20 (The Kelvin Functions)o From the point of view of applications, the 
differential equation 

is of interesto Its general integral is 
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Expanding the function J 0(i%x) in apower series, we obtain 

Thus we can write 
Jo(i~x) = berx + i beix, 

where the functions 

. (~)2 (~)6 (~)10 
be1 x = (1!)2 - (3!)2 + (5!)2 - ... 

are the so-called Kelvin functions (the "Bessel real" and the "Bessel imaginary" 

function, respectively), corresponding to the function J 0 . 

It can be easily shown that 

J 0 (i-~x) = berx- i beix. 

Similarly, by the relations 

Ko(i~x) = kerx + i keix, Ko(i-~x) = kerx- i keix 

the Kelvin functions ker x and kei x are defined. We have 

( X ) 7rb. ker x = - ln "2 + C ber x + 4 e1 x-

( ~ r (1 1) ( ~ f (1 1 1 1) 
- (2!)2 + 2 + ( 4!)2 + 2 + 3 + 4 - ... ' 

keix = -(ln i + C) beix- i berx+ 

(~f (~r 1 1 

+ (1!)2 - (3!)2 (1 + 2 + 3) + ... ' 

where C = 0.577 215 664 9 is the Euler constant. 
More generally, by the relations 

Jv(i~ x) = bervx + i beivx , 
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1 
i-"K11 (i2:z:) = ker11 x + i kei11x, 

i"Kv (i-! x) = ker11 X- i kei11 (x) 

the so-called Kelvin functions of order v can be defined. 

16.5. Legemire Polynomials. Spherical Harntonics 

Definition 1. The polynomial 

11 X = X- X + P ( ) 1. 3. 5 . ...• (2n - 1) [ " n(n - 1) n-2 

n! 2{2n - 1) -

705 

+ n(n - 1){n- 2)(n - 3) xn-4 _ ···] {1) 
2. 4(2n - 1){2n - 3) 

is cal1ed the Legendre po/ynomial of degree n. 

Theorem 1. We have 

P11(x) = - 1- ~ (x2 - 1)" 
2"n! dx" 

(the Rodrigues formula). 

Example 1. For n = 2 we have by (2): 

P2(x) = - 1- ~(x4 - 2x2 + 1) = 1x2 - t. 
22 • 2! dx2 

This result, of course, may also be obtained from (1). 

{2) 

Theorem 2. The function y = P,.(x) satisftes the (Legendre) differential equation 
(see also §17.21., equation 129 and further) 

(1 - xl) y'' - 2xy' + n(n + 1) y = 0. 

REMARK 1. The polynomial P11{cos .9) satisfies the equation 

- 1-.! (sin .9 dy) + n(n + 1) y = 0, 
sin .9 d.9 d.9 

which can be obtained from (3) by the substitution x = cos .9. 

Theorem 3. Theftrstfive Legendre polynomials (in the variables x and .9) are: 

P0(x) = 1, 

P1(x) = x = cos .9, 

P:z(x) = 1x2 - t = t(3 cos2 .9 - 1) = 1(3 cos 2.9 + 1), 

(3) 

{4) 
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P3(.x) = f.x 3 - i.x = t(S cos3 8 - 3 cos 8) = t(S cos 38 + 3 cos 8), 

Pi.x) = 385.x4 - 1;.x2 + ~ = i{35 cos4 8- 30 cos2 8 + 3) = 
= cf4{35 cos 48 + 20 cos 28 + 9) • 

16.5 

The graphs and some numerical values of these functions are shown in Figs 16.16, 
16.17 and Table 16.5. 

Theorem 4 (Fundamental Properties). 
1. Pn( -.x) = ( -l)n Pn(.x) • 
2. Pn{l) = 1 . 

1 

Fig. 16.16. 

Fig. 16.17. 
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TABLE 16.5 

Legendre polynomials 

X P1(x) P2 (x) P 3(x) P4 (x) 9 Pt(fJ) P2 (9) P3(9) P4 (9) 

0·0 0·000 -0·500 0·000 0·375 oo 1·000 1·000 1·000 1·000 
0·1 0·100 -0·485 -0·148 0·338 100 0·985 0·955 0·911 0·853 
0·2 0·200 -0·440 -0·280 0·232 20° 0·940 0·825 0·665 0·475 
0·3 0·300 -0·365 -0·383 0·073 30° 0·866 0·625 0·325 0·023 
0·4 0·400 -0·260 -0·440 -0·113 40° 0·766 0·380 -0·025 -0·319 
0·5 0·500 -0·125 -0·438 -0·289 50° 0·643 0·120 -0·300 -0·428 
0·6 0·600 0·040 -0·360 -0·408 60° 0·500 -0·125 -0·438 -0·289 
0·7 0·700 0·235 -0·193 -0·412 70° 0·342 -0·325 -0·413 -0·004 
0·8 0·800 0·460 0·080 -0·233 80° 0·174 -0·455 -0·247 0·266 
0·9 0·900 0·715 0·473 0·208 90° 0·000 r-0·500 0·000 0·375 
1·0 1·000 1·000 1·000 1·000 

3. For lxl ~ 1 we have !Pn(x)l ~ 1, -\ jP~(x)l ~ 1, 1
4 !P;(x)l ~ 1, ... , 

n n 

4. The roots of the equation Pn(x) = 0 (n = 1, 2, ... ) lie in the interval ( -1, 1). 

2n - 1 n - 1 
5. Pn(x) = --X Pn- 1(x) - --Pn-2(x) (n ~ 2). 

n n 

Theorem 5 (The Generating Function). For lxl ~ 1, ltl < 1 we have 

(5) 

By this relationship the Legendre polynomials are uniquely determined. 

Theorem 6. The functions 

lfJn(x) = -J(n + !) Pn(x) 

constitute a complete orthonormal system in L2 ( -1, 1) (§ 16.2). 

REMARK 2. This means that: 

1. J1 
( ) ( ) { 1 for i = k , 

(/J; X lfJ1r. X dx = . 
-1 0 for 1 =P k • 
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2. The Fourier series (Definition 16.2.6) 

of any function f e L 2 ( -1, 1) converges in the mean to f(x). For pointwise con­
vergence we have: 

Theorem 7. Letf(x) be bounded and integrable in [-I, I]. Let 

a,. = -- f(x) P,.(x) dx (n = 0, I, 2, ... ) . 2n + I J1 

2 -1 

Then at each point x ( -1 < x < I) interior to an interval in which f(x) is of 
bounded Variation, we have 

f a,. P,.(x) = { f(x), provided f(x) is continuous at x, 

n=O t(f(x + 0) - j(x - 0)) ij j(x) is discontinUOUS at X 

(f(x + 0) and f(x - 0) denote the limits of the function f(x) jrom the right and 
the left, respectively, at the point x). 

R.EMARK. 3. Thus, in particular, for every function with a continuous derivative 
in [-I, I] we have in ( -1, 1), 

"" f(x) =La,. P,.{x). 
••0 

R.EMARK. 4. The app1ication of Theorem 7 is similar to that of Theorem 16.4.9. 

REMARK 5 (Spherical Harmonics). Denote* 

(6) 

(also the notation Pn,m(x) is usual), where Pn(x) is the Legendre polynomial of 
degree n. The function (6) is often called the associated Legendre function. For 
example, if m = 2, n = 2, we have 

(7) 

In what follows, the notation Pn(cos B), or P~(cos B) is used, by which the func­
tion Pn(x), or P~(x) is tobe understood, respectively, with x replaced by cos B. For 
example we have, by (7), 

P~(cos B) = 3 sin2 (}. (8) 
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The functions 
Y:!'(c)(O,<p) = P~(cos 0) cos m<p. 

Y:!'(.)(O,<p) = P~(cos 0) sin m<p, 

709 

(9) 

(10) 

are called spherical harmonics. (Note that this term if often used also for Legendre 
polynomials themselves, in the literature). For example (see (8)), 

~11) 

Theorem 8. The spherical harmonics are orthogonal on the unit spherical surface 
S, i.e. 

= 1w: 1 2w: Y:!(c)(O,<p) Y~(c)(O,<p) sin OdOd<p = 0 

form "Im', or n "In', and similarly 

I fs Y:!(.)(O,<p) Y:,(.)(O,<p)dS = 0' 

I fs Y;:(c)(O,<p) Y:,(.)(O,<p)dS = 0 

form "Im', or n "In'. The corresponding orthonormal system is complete {§16.2). 

Theorem 9. Let f(O,<p) be square integrable on S, i.e. Iet f E L2(S). Denote 

m (2n+1)(n-m)! j'f f(O )Ym (0 )dS (m...J.O), 
an(c)= 27r(n+m)! Js ,<p n(c) ,<p ,.. 

m (2n + 1) (n- m)! j' f f(O ) ym (0 ) dS (m ...t. 0) , 
an(s) = 27r(n+m)! ls ,<p n(s) ,<p ,.. 

a~(c) = 2n4~ 1 J fs f(O,<p) Y~(c)(O)dS = 2n4~ 1 I fs f(O,<p) Pn(O)dS, 

o -o an(s) - . 
Then 

oo n 

f(O, <p) = L L [a:!'(c) Y:!'(c)(O, <p) + a~(•) Y:!'(.)(O, <p)] = 
n=O m=O 

oo n 

= L L [a:!(c) cos m<p+a:!(.) sin m<p] P~(cos 0) 
n=O m=O 

(12) 
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in L2 (S) (thus the series (12) converges, on S, to the function f in the mean). If, 
moreover, f and its partial derivatives of the first and second order are continuous 
on S, (12) converges to f uniformly on S. 

Theorem 10. The functions 

U::(c)(x,y,z) = Tny~c)(O,r,o), U::(s/x,y,z) = rnY~s)(O,r,o) 
are harmonic in E3 , i.e. they satisfy the equation 

a2u a2u a2U 
--+--+--=0. 
ax2 ay2 az2 

(Here, the relationship between x, y, z and r, cp, 9 is given by the equations x = 
= r sin 3 cos cp, y = r sin 9 sin cp, z = r cos 9, 

16.6. Some Further lmportant Functions (Hypergeometric Functions, 
J acobi Polynomials, Chebyshev Polynomials, Laguerre Polynomials, 

Hermite Polynomials) 

Legendre polynomials appear as a particular case of the so-called hypergeometric 
function, namely* 

F(a., p, y, x) = I + ..!!!!.._ x + a.(a. + I) P(P + I) x2 + 
I . "'I I . 2 . "'I( "'I + 1) 

a(a + I)(a + 2) P(P + 1)(P + 2) 3 + X + ... 
1. 2. 3.y(y + I)(y + 2) 

(1) 

(the series converging for lxl < I and for y different from any non-positive integer) 
which is a solution of the so-called hypergeometric ( Gauss) equation 

x(I - x) y" + [y- (a + P + 1) x] y'- aßy = 0 

(a, p, y being constants) (see also§ I7.21, equation 140 and further). 
If a = I, p = y, the series (I) reduces to a geometric series 

1 + x + x2 + ... = - 1--
1- X 

• The slightly different notation F(rT., ß; y; x) is often used. 

(2) 
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(a solution of equation {2) for cx = 1, fJ = y). 
For cx = -n, {J = n + p, }' = q (q > 0, p- q > -I) we get the so-called Jacobi 

polynomials 

J .. (p, q, x) = F( -n, n + p, q, x) = 

= I + f ( -l)t (n) (n + p) (n + p + I) ... (n + p + k - I) xk. 
t=l k q(q + I) ... (q + k- I) 

(It should be noted that the term Jacobi polynomial is applied also to a different 
polynomial in English literature.) 

As their particular case we get Legendre polynomials for p = 1, q = 1 (setting , 
!(I - x) for x), 

( 1-x) ( 1-x) P .. (x) = J .. 1, 1, - 2- = F -n, n + 1, 1,-2- . (3) 

Example 1. For n = 2 we have from (1) and (3), 

p2(x) = F(-2, 3, 1, 1 - ~) = 1 + ( -2). 3. 1 - x + ( -2)( -1).3.4(1 - x)\ O 
2 1.1 2 1.2.1.2 2 

(since cx + 2 = 0 in the fourth term); collecting the powers of x we get 

in agreement with Theorem 16.5.3. 

For p = 0, q = t the Jacobi polynomials (again setting t{I - x) for x) yield the 
so-called Chebyshev polynomials, 

1 
T .. (x) = 2 .. _1 J .. (o, t. !(1 - x)). 

(It should be noted that in English Iiterature the factor 1/2"- 1 is omitted in the 
definition of T ,.( x ). ) 

lt can be shown that 

T,.(x) = 2"1_ 1 cos (n arccos x) (!xl ~ I) 

and that T,.(x) constitute an orthogonal system in the interval [ -1, I] for the weight 
function 1/.J(I - x2), i.e. 
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fl 1 
.J( 2 T1(x) T1{x) dx = 0 for i =I= k. 

-1 1 -X) 

Moreover, T"(x) is a solution of the so-called Chebyshev equation with index n, 

(1 - x2) y" - xy' + n2y = 0. 

Laguerre polynomials are defined by the equation 

L"(x) = f ( -1)t n2(n - 1)2 ... (k + 1)2 xt 
t=o (n - k)! 

(where the coefficient of x." is taken tobe ( -1)") or by the equation 

They are solutions of the so-called Laguerre equation 

xy" + (1 - x) y' + ny = 0, 

and are orthogonal in the interval [0, oo) for the weight function e -x, i.e. 

Hermite polynomials are defined by the equation 

11 I 
H"(x) = L: ( -1)" n. (2xt-n, 

t=o k!(n - 2k)! 

where h = tn for n even, h = t(n - 1) for n odd, or by the equation 

H ( ) ( 1)11 xZ d" -xZ 
x = - e -e . 

11 dx" 

They satisfy the so-called Hermite equation 

y"- 2xy' + 2ny = 0, 

and are orthogonal in the interval (- oo, oo) for the weight function e -xz, i.e. 
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16.7. Special Functions and Group Representation 

In foregoing paragraphs, the rnost current special functions have been treated, of­
ten called special functions of mathematical physics. The whole cornplex of the above 
presented theorems, forrnulae, integral representations, etc., is rather unserveyable 
and looks a little chaotic. However, it can be shown that a certain systernatic theory 
can be built up on the base of representation of groups. Here, we have no possibility 
to show the whole theory, even in a brief survey. So we try to outline, at least, its 
basic idea, and refer the reader to remarkable monographs [7] and [180]. 

Let us note, first, that many operators of rnathernatical physics are invariant 
with respect to transforrnation of coordinates. For example, the Laplace operator is 
invariant with respect to translation in En, the wave equation with respect to the 
Lorentz transformation, etc. Also eigenvalues and eigenfunctions of these operators 
are then invariant. For exarnple, the problern 

f'Pu fPu 
8x2 + 8y2 +AU= 0 in n = (0, 7r) X (0, 7r) ' (1) 

u = 0 on the boundary s of the square n ' (2) 

has - as well known - eigenvalues 

and corresponding eigenfunctions 

sm mx sm ny (m = 1, 2, ... , n = 1, 2, ... ) . 

By the translation 
x' = x - a , y' = y - b 

the problern (1), (2) is transforrned into 

()2u ()2u 

0 x'2 + oy'2 + A' u = 0 in ü' , u = 0 on S' , (3) 

on the translated square ü' with the boundary S', having the same eigenvalues 

and the eigenfunctions 

sin mx' sin ny' = sin m(x- a) sin n(y- b) . 

Let us consider a topologic group G with elernents g. (On the concept of a group 
see §1.21; a group is called topologic (continuous), if convergence is defined there so 



714 SURVEY OF APPLICABLE MATHEMATICS 16.7 

that basic group operations are continuous: If 9n ---+ g, hn---+ h, then 9nhn---+ gh and 
g;; 1 ---+ g- 1 (g =fi 0). In the just mentioned applications, we meet usually very simple 
topologic groups, most often groups of transformations in E2 and E3. 

Let a linear space L be given (a space offunctions, as a rule). By a representation 
of the group G ( with respect to the space L) a mapping is understood assigning to 
every element g E G an operator T(g) such that the following three requirements 
are fulfilled: 

(i) for every fixed element g of the group G, T is a bounded linear operator on 
L· 

' 
(ii) T is continuous on G: If 9n ---+ g (in the given sense), then also T(gn) ---+ Tg 

in a certain (before defined) sense; 
(iii) T(g1g2) = T(gl) T(g2). 

Example 1. Let k be the circumference of the unit circle in E2 with centre at 
the origin, let L be the linear space C( k) offunctions f( 1/J) continuous on k. Let G 
be the p;roup of all rotations of k, with individual rotations combined in the usual 
way: If g01 is a rotation by an angle a, then 9a9ß = 9a+ß. Then (if convergence is 
suitably chosen on G), the mapping given by 

T(ga) f('I/J) = f('I/J + a) 

is a representation of the group G. Because for every fixed g, the operator T is a 
bounded linear operator on C(k), continuous if convergence is suitably defined on 
G, and 

T(9a9ß) = T(9a+ß) = T(ga) T(gß) , 

since for every function f( 1/J) we have 

T(ga+ß) f('I/J) = f('I/J + a + ß) = 
= T(ga) !(1/J + ß) = T(ga) T(gß) !(1/J) . 

Now, it can be shown that for simple groups oftransformations, or for their sub­
groups (groups of translations, or rotations) and for a suitable choice of the space 
L (for example of the space of eigenfunctions of an operator which is invariant with 
respect to the group considered) and of a base in this space, the operator T can be 
expressed in a simple matrix form, where elements of such a matrix are just special 
functions of mathematical physics - up to a certain coefficient, or an exponential 
function, may be. Which of these functions they are, this depends on the choice of 
the group G, or its subgroup G' and on the choice of the space Land a base in it. 
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Example 2. Let us investigate the group G of motions ( of transformations) in 
E2, given by the equations 

x' = x cos a - y sin a + a , 

y' = x sin a + y cos a + b 0 

Let the elements ofthis group be denoted by g(a,b,a)o Because the point [a,b] can 
be expressed in polar coordinates in the form 

a = p cos <p , b = p sin <p , p ~ 0 , 0 ~ <p < 27r , 

the notation g(p, <p, a) is also usedo 
Let us consider, in E2 the circumference k of the unit circle with its center in 

the origin (as above) and the linear space L offunctions f('!j;) (complex, in general), 
square integrable on the interval [0, 27r)o It can be shown that the mapping g---+ T(g), 
where the operator T is defined by, 

T(g) f('!j;) = eip cos(I/J-cp) f('!j;- a)' (4) 

is a representation of the group G with respect to the space Lo 
In particular, for the subgroup G' of all translations in the direction of the x-axis 

we obtain the representation ( we have then <p = 0, a = 0 in ( 4), so that we can write 
g(p) only instead of g(p, 0, 0)) 

T(g(p)) f('!j;) = eip cos 1/J f('!j;) 0 (5) 

On the space L, let a scalar product be defined by 

1 [2" -
(h, h) = 27r Ja h('l/;) h(lf;) d'lj; , (6) 

which thus differs only by the coefficient l/(27r) from the scalar product in the space 
L2(0, 27r)o In the so obtained Hilbert space -let the notation L be preserved for this 
space - let us choose the base 

{eini/J}, n integral, -oo < n < oo 0 

The elements of the matrix by which the operator (5) can then be expressed, will 
be of the form 

or 
1 12" . ·'· . ·'· --amn = - eiP cos "'ein" eim,P d'lj; = 

271" 0 

= 2_ [ 2
" ei[p cos 1/J+(n-m)I/J] d'lj; 0 

27r Ja (7) 
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If we deno+,e, as USl! al, by the symbol J n ( x) the Bessel function of the first kind and 
integral index n and take its integral representation into account, then (7) yields -
after the substitution 1/J = 7r /2 - (} and some small rearrangements -

·n-m J ( ) amn =I n-m P · (8) 

Thus the elements of the matrix, corresponding to the considered representation of 
the group of translations in the direction of the x-axis, differ only by the coefficient 
in-m from the Bessel functions of index n - m and argument p. 

The aim of Example 2 was only to outline, to the reader, in abrief way, funda­
mental ideas of the theory. A lot of detailswas omitted here, that play an important 
role when an exact theory should be built up. 

The connection between group representation and special functions made it pos­
sible to find a relatively simple way - uniform and general enough, at the same time 
- how to derive properties of these functions. For example, a very simple operation 

Q/(1/J) = f(-1/J) 

in Example 2 yields almost immediately the well-known property 

of Bessel functions with an integral index. Further operations, which are similar for 
all current special functions, in essential, lead to well-known recursive formulae, etc. 
Of course, applications of group representation discover also new (unknown) relations 
for known special functions, or lead to new special functions. The whole theory is 
extensive, with numerous applications. The reader is referred to the already quoted 
monographs [7], [180]. 
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[450J, [465], [470], [471], [476J, [483], [485J, [489], [490], [494], [495]. 

INTRODUCTORY REMARK. The problematics of ordinary differential equations 
is very broad. Therefore, it was not possible to cover the wh oie field, in our Survey. 
For example, the reader will not find topics here, concerning theory of transforma­
tions of differential equations, optimal control, abstract differential equations, etc. 
The book being written for a very wide circle of readers, we tried, as far as possible, 
to work with classical concepts and methods (we do not consider solutions in the 
Kurzweil sense, for example). Systems of equations are not treated in the vector 
form exclusively, because for many readers the classical treating in components is 
more usual. For similar reasons it was not possible, when considering nonlinear 
equations, to avoid the concepts of general, or singular integrals which are quite 
Clurent in technicalliterature. At the same time, we are weH aware of the fact that 
these concepts are rather vague and thus not often used in modern mathematical 
literat ure. The encyclopedical character of the book made in necessary to include, 
in §§ 17.5 and 17.7, methods for solving equations of some special types. How­
ever, the reader's attention should be drawn to thc fact that numerical methods, 
discussed in Chap. 25, represent often a more effective tool of their solution. 

A particular attention has been paid to boundary value problems in ordinary 
differential equations and to eigenvalue problems (§ 17.17). In § 17.21 a table of 
solved differential equations has been given. The main source for it is the book 
[250]. Let us note here that in that remarkable book a lot of classical methods and 
results can be found, other than those introduced here, as weH as a lot of useful 
references. 

Unless the contrary is stated, all junctions and numbers considered in this chapter 
are assumed to be real. 
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17.1. Classification of DiJferential Equations. Ordinary and Partial 
DiJferential Equations. Order of a DiJferential Equation. 

Systems of DiJferential Equations 

A differential equation is a relation (given in a certain domain) between the 
unknown function and its derivatives. If the function to be found is a function of 
one variable only, we speak of an ordinary differential equation, if it is a function 
of several variables (so that the equation contains partial derivatives), we speak of 
a partial differential equation. 

If m differential equations are given for n unknown functions (not necessarily 
with m = n), we speak of a system 0/ differential equations. 

The order of a given differential equation is that of the derivative of the highest 
order occurring in it. Similarly by the order 0/ a system we understand (as usual) 
that of the derivative of the highest order occurring in the system. 

Example 1. 
y" + xy,3 - eY = 0 

is an ordinary differential equation of the second order. 

Example 2. 
82·u 83u 
-----u=O 
8x8y 8y3 

is a partial differential equation of the third order for the unknown function u( x, y). 

Example 3. 
8Ul _ 82u2 _ 0 
8x 8y2 - , 

is a system of partial differential equations of the third order for two unknown 
functions Ul(X, y), U2(X, y). 

17.2. Basic Concepts. Solution (Integral) of a DiJferential Equation. 
Theorems Relating to Existence and U niqueness of Solution. 

General Integral, Particular Integral, Singular Integral 

Definition 1. By an ordinary differential equation 0/ the first order, we mean an 
equation of the form 

F(x, y, y') = 0 (1) 

or, in the special case where the equation is solved with respect to y', an equation 
of the form 

y' = /(x, y). (2) 
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Definition 2. By an ordinary differential equation of order n we mean an equation 
of the form 

F( ,,, (n)) 0 
X, y, Y ,y , ... , y = (3) 

or, if the equation is solved with respect to the derivative of the highest order, the 
equation of the form 

(n) _ f( ,,, (n-l)) y - x, y, y ,y , ... , y . (4) 

Definition 3. By a solution or integral (or particular integral or integral curve, if 
speaking geometrically) of equation (3), we mean any function y = g(x) which has 
derivatives up to the n-th order and satisfies equation (3) identically in the domain 
considered. (See also Remark 3.) 

REMARK 1. Most frequently, the domain considered is an interval I. Thus the 
function y = g(x) is the solution of equation (3) in the interval I, ifit has derivatives 
up to the order n in I (the right-hand, or left-hand derivatives at the point a, or b, 
respectively, if the closed interval [a, b] is in question) and if on substituting g(x) 
for y, g'(x) for y', etc., in (3), equation (3) is satisfied for all x in I. 

Example 1. The function y = sin x is a (particular) integral of the equation 
y" + y = 0 in the wh oIe interval (-00, (0). 

REMARK 2. In Definition 3, definitions of the solution of equations (1), (2) and 
(4) as special cases are included. 

REMARK 3. The solution of equation (3) need not be given in the explicit form 
y = g(x), but possibly in an implicit form by an equation h(x, y) = O. Then the 
derivatives y', y", . .. may be found according to the theorem on implicit functions 
(Theorem 12.9.1, in a region in wh ich the corresponding conditions are fulfilled, of 
course); h(x, y) = 0 is then called a solution of equation (3), if on substituting for y', 
y", . .. in (3), the differential equation is identically satisfied (in the variables x and 
y) at all the points of the curve h(x, y) = 0 (see also Remark 16 and Example 7). 

Example 2. The equation x 2 + y2 = 4 constitutes an integral of the equation 

, x 
y =-­

y 
(5) 

in an implicit form, since at every point of the circle x 2 + y2 - 4 = 0, the relation 
2x + 2yy' = 0, holds, i.e. (5) is valid. The points (-2,0) and (2,0), where y = 0, 
are exceptions; for this case see Remark 16 and Example 7. 

REMARK 4. Geometrical interpretation of equation (2): Let f(x, y) be defined 
in a region D. Then by virtue of equation (2), to every point (x, y) E D there 
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corresponds a line element (directional element) determined by the point (x, y) and 
by the slope y'. Thus in [l a field of directions is given, the so-called directional field. 

The problem of finding solutions of equation (2) can thus be given the following 
geometrical interpretation: to find curves in [l, the tangents to which coincide at 
every point with the corresponding line element (i.e. the slope y' of such a curve at 
the point considered is prescribed by (2)). 

In the case of an equation of the second order 

y" = f(x, y, y') 

there is assigned at cvery point (x, y) E [l and for each slope y' the value of the 
second derivative (and thus the curvature ofthe integral curve which is to be found). 
Equations of high er orders have no longer such a simple geometrical interpretation. 

Definition 4. By a solution (integral) of a system of equations of the first order, 

y~ = h(x, Yl, Y2, ... , Yn), 

y~ = h(x, Yl, Y2, ... , Yn), 
(6) 

we me an a system of functions 

(7) 

such that if the functions (7) and their derivatives are substituted into (6), all the 
equations (6) are identically satisfied (in the domain considered). (On more general 
systems of equations see also § 17.18.) 

In this case it is also possible to speak about a solution in implicit form (see 
Remark 3). 

REMARK 5. In the case where n = 2, let us denote the functions to be found by 
y, z instead of Yl, Y2. Then the functions (7) 

represent geometrically a curve (in three-dimensional space). For this reason we 
often call the system of functions (7) an integral curve of the system (6). 

System (6) is often written in a vector form: If we use the notation 
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we can write (6) in the form 
y' = f(x, y) (6') 

and its solution (7) as 

[
gI (x) 1 

y = g2(X) . 
, a&. 

gn(X) 

(7') 

This simple surveyable vector form is current in modern mathematical literature. 
Also Theorem 1 below can be easily "translated" into this "vector language" . 

REMARK 6. In general, the number of equations and the number of unknown 
functions in the system (6) need not be equal. The definition ofthe solution remains 
unchanged. In this case, however, the theorem on existence and uniqueness of the 
solution (see below) need no longer be valid, in general. 

Theorem 1. Let the system (6) and a point 

(8) 

be given. Let the functions !t, h, ... , f n of the system (6) be continuous (as 
functions of the n + 1 variables x, Y1, Y2, ... , Yn) in a neighbourhood U of the 
point P and let them have, in U, continuous partial derivatives with respect to the 
variables Y1, Y2, ... , Yn· Then in a certain neighbourhood of the point a there 
exists exactly one system of functions (7), which is a solution of the system (6) and 
satisfies the conditions (the so-called initial conditions) 

(9) 

REMARK 7. In the terminology of Remark 5: 11 the functions !t, h, ... , In 
satisfy the above conditions in U, then, in a certain neighbourhood of the point 
a (or locally, in brief), there exists precisely one integral curve of the system (6) 
passing through the point P. 

In particular, if the functions 

f(x, y), 
vI 
vy (x, y) (10) 

are continuous in a neighbourhood U of the point P( a, b), then there exists, locally, 
just one integral curve of the equation 

y' = f(x, y) 

passing through the point P. 
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Using the Lipschitz condition (see below), a more sharp theorem, similar to 
Theorem 2, can be formulated for the system (6). 

REMARK 8. We say that the function f(x, y) satisfies a Lipschitz condition with 

respect to the variable y in the rectangle R(A ~ x ~ B, C ~ y ~ D), if a constant 
K can be found such that for every x E [A, B] and for any numbers YI, Y2 from 
[C, D] the inequality 

(11) 

holds. (In particular, condition (11) is satisfied, if f(x, y) has a derivative with 
respect to y in Rand 

(12) 

holds in R.) 

Example 3. The function f(x, y) = lyl does not possess partial derivative af lay 
at points of the x-axis, but it nevertheless satisfies the Lipschitz condition in the 
whole plane xy. It is sufficient to choose K = 1, since 

Theorem 2. Let f(x, y) be continuous in the rectangle 

Q (a - h ~ x ~ a + h, b - k ~ y ~ b + k). 

(Then (see Theorem 12.1.5) there exists a constant M > 0 such that If(x, y)1 ~ 
~ M in Q.) Let f(x, y) satisfy condition (11) in Q. Let us write 

Then, in the interval [a - d, a + d], there exists precisely one solution y = g(x) of 
the equation 

y' = f(x, y) 

passing through the point (a, b). 

REMARK 9 ( extension of solution, maximal solution). The just discussed solution 
y = g(x) can often be extended onto a larger interval than is the interval [a-d, a+d] 
specified in Theorem 2. If we start at the point (a, b) and proceed "to the right" 
along the integral curve y = g(x), we come, in the sense of the theorem, at the 
point (a + d, g(a + d)). Let us denote that point briefly by (al, b1) (Fig. 17.1). 
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Fig. 17.1. 

If the right-hand side !(x, y) of the equation y' = !(x, y) satisfies, in a certain 
neighbourhood ofthe point (al, bd, conditions similar to those of Theorem 2, then 
again a unique solution y = h( x) of the given equation, passing through the point 
(al, bl ), will exist in a sufficiently small neighbourhood [al - dl , al + dl ] of the 
point al. Because of uniqueness, this solution will be identical with the solution 
y = g(x) in the left-hand neighbourhood of the point al. Now, if we start at the 
point (at, bt) and proceed to the right along the integral curve y = h(x), we come 
to another point - denote it by (a2' b2). Let us define a new function y = g(x) in 
the interval [a - d, a2] by 

g(x) = {g(x) 
h(x) 

for 
for 

x E [a - d, all, 
x E [al, a2]. 

The function y = g(x) which is the (unique) solution of the equation y' = !(x, y), 
passing through the point (a, b) and is defined in the whole interval [a - d, a2], 
is called the extension (continuation) of the original solution (from the interval 
[a - d, a + d] onto the interval [a - d, a2]). In this way, we can go on further. 
Similarly, we can extend the solution y = g(x), defined originallyon the interval 
[a - d, a + dj, "to the left". 

A solution of the given equation (passing through the given point) is called maxi­
mal if it is no longer possible to extend it to the right as well as to the left. 

Let us draw the reader's attention to the fact that even if the function !(x, y) 
has derivatives of all orders in the whole plane xy, the maximal solution of the 
equation y' = !(x, y) passing through the point (a, b) need not be defined for 
alt x. For example, the (only) solution of the equation 
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passing through the point (0, 1), is 

1 
y=--. 

I-x 

17.2 

This solution is defined in the interval (-00, 1) and cannot be extended "to the 
right" over the point x = 1, obviously. 

REMARK 10. The Lipschitz condition and a theorem similar to Theorem 2 can 
be formulated for the system (6) as weH. 

To prove existence of a solution of the equation y' = f(x, y), the only assumption 
of continuity of the function f(x, y) is sufficient. However, continuity itself, without 
furt her assumptions (boundedness of the derivative with respect to y, the Lipschitz 
condition, etc.) is not sufficient to guarantee uniqueness: 

Example 4. The functions 

and 

are two different solutions of the equation 

passing through the point (a, 0). 

A similar remark holds for solutions of the system (6). 

Theorem 3. Let the equation 

y(n) = f(x, y, y', ... , y(n-l») (13) 

01 the n-th order (n ~ 1) and the point P(a, b1 , b2 , ••. ,bn) be given. Let the 
functions 

f)f f)f f)f 
f, f)y' f)y" ... , f)y(n-l) 

be continuous (as functions 01 the n+ 1 variables) in a neighbourhood of the point P. 
Then, in a certain neighbourhood 01 the point a, there exists precisely one solution 
y = g(x) of equation (13), which satisfies the initial conditions 

(14) 

( i. e. through the point T( a, bJ) there passes one and only one integral curve of 
equation (13) satisfying the conditions 
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REMARK 11. By employing a Lipschitz condition, it is possible to formulate a 
theorem relating to equation (13) similar to Theorem 2. 

Theorem 3 has a local character, i.e. it guarantees existence and uniqueness of the 
solution in a certain neighbourhood of the point a. In the case of a linear equation 

y(n) + an_I(X)y(n-l) + ... + al(x)y' + ao(x)y = b(x) (15) 

existence and uniqueness of the solution (satisfying the prescribed initial conditions 
(14)) is guaranteed in the entire interval I in which the functions an-l(x), ... 
. . . , al (x), ao (x), b( x) are continuous and which contains the point a. The interval 
I may even be infinite. A similar statement holds for the so-called normal systems 
of linear equations (Theorem 17.18.1). 

REMARK 12. For equation (13) let the initial conditions (14) be prescribed. We 
say briefiy that an (n + 1)-dimensional point P(a, bl, b2 , ••• , bn ) (cf. Theorem 3) 
is given. Let Q be an (n + 1)-dimensional region constituted of such points P, 

for which equation (13) has precisely one solution in the sense of Theorem 3. We 
define: 

Definition 5. By the general integral (or general solution, or general form of solu­
tion) of equation (13) in the region Q we mean a function y = g(x, Cl, C2 , ••• , Cn) 

which depend, in addition to x, on n parametrs Cl, C2 , ••• , Cn and which is, 
as the function of x only, a solution of equation (13) for arbitrary values of these 
parameters. At the same time, the parameters Cl, C2, ... , Cn are independent in 
the following sense: If we choose an arbitrary point P E Q, there is one and only 
one set of numerical values of these parameters for which the solution satisfies the 
conditions (14). 

REMARK 13. Roughly speaking, these parameters are independent if it is not 
possible to replace any of them by others, i.e. if none of them is "superfiuous". 

Example 5. The function 

is the general integral of the equation 

y" - y' - 2y = 0, 

even for the case that Q is the whole three-dimensional space. Because, first, 
choosing Cl, C2 arbitrarily, this function is a solution of the given equation. And, 
secondly, the point P(a, bl , b2 ) being chosen arbitrarily, Cl and C2 are uniquely 
determined by 

y(a) == Cl e2a +C2 e-a = bl , 

y'(a) == 2CI e2a -C2 e-a = b2 • 
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The function 
Cl eX +C2 

is not a general integral of the equation 

y" - y = 0 

since, evidently, 

17.2 

REMARK 14. The concept of a general integral has its historical origin in the 
theory of linear homogeneous equations, i.e. of equations of the form 

y(n) + an_l(x)y(n-l) + ... + ao(x)y = O. 

As weH known (see § 17.11), if the functions ai(x) (i = 0,1, ... , n - 1) are con­
tinuous in an interval land if Yl(X), ... , Yn(x) are linearly independent solutions 
of the given equation in I, then every solution of this equation in that interval is 
of the form 

Thus every solution is contained in this general form for a proper choice of the 
coefficients Cl, ... , Cn . 

In the case of nonlinear equations, it is not the case, in general. For example, 
in the "upper half-plane" y > 0, as weH as in the "lower half-plane" y < 0, the 
function 

y = 2\ (x - C)3 

is the general integral of the equation 

by Definition 5. However, it does not contain all solutions of this equation: For 
example, the solution y == 0 is not contained in it for any value of the constant C. 
Thus in the case of nonlinear equations, the concept of the general integral is not 
"fitting". Therefore (but also for other reasons), this concept is not often used in 
modern mathematicalliterature. However, in technicalliterature it is so customary 
that it was not possible to omit it here. 

In the case of the equation 

F(x, y, y', ... , y(n») = 0 (16) 

it is not possible to speak about the general integral exactly in the sense of Re­
mark 12 and Definition 5, since uniqueness of the solution might be in question: 
For example, given the point (xo, Yo), the equation 

F(x, y, y') = 0 (17) 
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can be satisfied by several values of Yb, in general, even if F is a very "reasonable" 
function. For example, the equation 

(18) 

is satisfied by both y' given by 

Evidently, through every point (xo, Yo), for which x~yO # 0, there pass two integral 
curves of equation (18). Often we succeed in finding a function or relation 

such that by a proper choice of the parameters Cl, C2 , ••• , Cn (dependent, for 
example, on the possible choice of the derivative of the highest order in (16) as 
was the case in (18)), it is possible to satisfy - in a certain region - any initial 
condition. In such a case, we can also speak of a general integral of equation (16). 

Definition 6. By a singular integral (singular solution) of equation y' = f(x, y) 
we mean an integral curve of this equation such that at every its point uniqueness 
is broken (i.e. through every point of this curve there also passes another integral 
curve of the equation). 

Example 6. The integral curve y == 0 is a singular integral of the equation 

(see Example 4), since through every point (a, 0) of this curve there passes another 
integral curve 

_ I ( )3 Y - 27 X - a 

of the given equation. 

REMARK 15. The general integral of the equation y' = f(x, y) constitutes a 
one-parameter system of curves. It easily follows that the envelope of this system 
(if it exists) is a singular integral of the given equation. 

In the case of the equation F{x, y, y') = 0, we define the singular integral in the 
same way as in Definition 6, with the supplementary condition (see the quest ion of 
uniqueness of the solution mentioned in Remark 14) that through every point of 
the singular integral curve there passes also another integral curve with the same 
tangent. 

REMARK 16. For f(x, y) # 0, the equation 

dy 

dx 

1 
f(x, y) 

(20) 
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is equivalent to the equation 
dx 
dy = f(x, y). (21) 

At points where f(x, y) = 0, equation (20) has no meaning, but equation (21) has. 
Consequently, we often "add" equation (21) to equation (20) and then understand 
by an integral curve of equation (20) an integral curve satisfying either equation 
(20) or equation (21). 

Example 7. In this sense, the circle 

is an integral curve of the equation 

, x 
y =-­

y 

(22) 

(Example 2) even at the points (-2,0), (2, 0), since in the neighbourhood of these 
points it satisfies the equation 

dx y 
= 

dy x 

17.3. Elementary Methods of Integration of Equations of the First 
Order. Separation of Variables. Homogeneous Equations. Linear 

Equations. Bernoulli's Equation. Riccati's Equation 

The subsections IV, V of this section are of little significance. They have been 
introduced here for completeness only. 

1. The equation 
y' = f(x) 

(where the function f(x) is supposed to be continuous in the interval I considered) 
has the general integral 

y = J f(x)dx. 

(The indefinite integral already contains an arbitrary constant.) The integral, for 
which y(xo) = Yo is then 

y = Yo + 1'" f(t)dt. 
"'0 

11. The equation 
y' = f(y) 
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(where f(y) is continuous in the region considered) can be written, for f(y) i- 0, in 
the form (Remark 17.2.16) 

dx 1 
dy f(y)" 

The general integral (in the region where f(y) i- 0) is 

/ 
dy 

x= f(y)' 

and the integral curve passing through the point (xo, Yo) is of the form 

l y dt 
x - Xo = Yo f(t)" 

If f(yo) = 0, then the curve 

y == Yo 

satisfies the given equation and the initial condition. 

Example 1. Let us consider the equation 

or (for y i- 0) 

or 

The general integral is 

dx 1 
dy = y2· 

1 
x = -- +C 

Y 

1 
y=--. 

C-x 

The integral curve passing through the point (0, 1) is the curve 

1 
y=-­

I-x 

(because, putting x = 0, y = 1, it follows that C = 1). The integral curve passing 
through the point (3,0) is 

y==O 

(for in this case f(yo) = Y5 = 0). In both cases there is only one solution, in 
accordance with Theorem 17.2.1 and Remark 17.2.7. 
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III (Separation 0/ Variables). 

Theorem 1. Let f(x) be continuous in [a, b], g(y) continuous in [c, d] and let 

g(y) t= 0 in [c, d]. Then the equation 

y' = f(x) 
g(y) 

has in the rectangle R( a < x < b, c < Y < d) the general integral 

/ f(x) dx = / g(y) dy. 

The integral curve passing through the point (xo, Yo) E R has the equation 

l x 
f(x) dx = l Y 

g(y) dy 
Xo Yo 

(and it is, in a neighbourhood of the point (xo, Yo), the only integral curve of the 

given equation which passes through this point). 

REMARK 1. An analogous theorem holds for the equation 

y' = f(x)g(y). 

For g(yo) t= 0, the general integral is 

/ g~~) = / f(x) dx. 

The integral curve passing through the point (xo, Yo) is 

l y dy l x 
-( ) = f(x) dx. 

Yo g Y Xo 

If g(yo) = 0, then the equation considered and the initial condition are satisfied 
by the function 

y == Yo· 

Example 2. Let us solve the equation 

y' = xy3 sinx 

subject to the condition that y(O) = 1. 
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By separation of variables we get 

J ~; = J xsinxdx. 

The general integral is then 

1 . C 
-2 = X cos x - sm x + . 
2y 

From the condition y(O) = 1 it follows that C = t, so the solution is 

1 
y= . 

y'(2xcosx - 2sinx + 1) 

(The positive sign before the square root follows from the condition y(O) = +1.) 

The solution of the same equation, but with the condition y(O) = 0, is y == o. 

IV. An equation of the form 

15 

y' = J (~) (x::j:. 0) (1) 

is often called homogeneous. (The right-hand side of equation (1) is a homogeneous 
function of degree zero (Definition 12.6.1).) 

An example of such an equation is the equation 

or 
, 1+ (~r 

Y _ x 
- y xy 

x 

Instead oflooking for the solution y(x) of equation (1), we try to find a new unknown 
function z(x), related to y(x) by the equation 

z(x) = y(x) 
x 

or y(x) = xz(x). 

From the second equation it follows that y' = z + xz', so that after substituting 
into (1) we find that z satisfies the equation 

z+xz'=J(z) or 
, J(z)-z z = .:.....0...-'--_ 

X 

which is an equation with separable variables (see III). If we find its solution z(x), 
then the solution of equation (1) is y(x) = xz(x) (see Example 3 below). 
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v. Equations of the form 

(2) 

where 

lal,bll#o, 
a2, b2 

(3) 

can be transformed into homogeneous equations by making a substitution of the 
form 

x=u+A, y=v+B, sothat dx=du, dy=dv, dyjdx=dvjdu. 

Equation (2) becomes 

dv alu+blv+aIA+bIB+CI 
du - a2u + b2v + a2A + b2B + C2 • 

Now we choose the constants A, B such that 

aIA+bIB+CI=O, 

a2A + b2B + C2 = 0, 

which is possible by virtue of (3). Then equation (4) becomes 

dv alu + brv 

du a2U + b2v 

(4) 

(5) 

(6) 

and this is a homogeneous equation. Such an equation can be solved by the substi­
tution v(u) = uz(u). After solving this equation we substitute back z = vju and 
v = y - B, u = x - A. 

If the determinant (3) is zero, i.e. if a2x + b2y = k(alx + bly), equation (2) can 
be easily solved by introducing a new unknown function z(x) given by 

and 

hence 

We thus obtain an equation for z of the form 

z' - al 
y'=--­

bl 

z' al z + Cl 
-- = - + or z' = f(z) 
bl bl kz + C2 
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whose solution is described in 11 above. 

If in (2) Cl = C2 = 0, then case V becomes case IV. 

Example 3. 
, 2x - y + 9 

y = . 
x - 3y +2 

(7) 

By solving equations (5) we obtain A = -5, B = -1. Substituting x = u - 5, 
Y = v - 1 we get (compare (6)) 

By a new substitution 

we have, as shown in IV, 

v 
dv 2u - v 2 -~ 
du = u - 3v = 1 - 3~ . 

u 

v 
z = -, or uz = v 

u 

dz 2 - z dz 2 - 2z + 3z2 
u-+z=--

du 1 - 3z 
or u- = ---,--------,---

du 1- 3z 

Then, as in 111, we get 

J 1 - 3z dz - J du 
2 - 2z + 3z2 - U ' 

-t In (2 - 2z + 3z2 ) = In ku (ku> 0), 
- 1 C 

In (2 - 2z + 3z2 ) = -2In(ku) = In k2 2 = In 2 (C = 1jk2 > 0), 
u U 

2 C 2-2z+3z =-
u2 

and after substituting back the original variables z = vju, u = x + 5, v = y + 1, we 
obtain, subsequently, 

2u2 - 2uv + 3v2 = C, 

2(x + 5)2 - 2(x + 5)(y + 1) + 3(y + 1)2 = C. 

VI. Linear equations are equations of the form 

y' + a(x)y = b(x). (8) 

The equation 
y' + a(x)y = 0 (9) 
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is the so-called homogeneous linear equation corresponding to equation (8). 

The term "homogeneous" here has a quite different meaning from that in IV. 
However, this common terminology is normally used in the literature. 

If the functions a(x), b(x) are continuous in the interval I (which can also be 
infinite), then according to Remark 17.2.11, existence and uniqueness of solution 
of equation (8) or (9) with prescribed initial condition is guaranteed in the whole 
interval I. 

Equation (9) can be solved by separation of variables: 

J; = - J a(x)dx, 

ln(ky) = - J a(x) dx (ky > 0), 

ky = e-J a(x)dx, 

y = Ce-J a(x)dx (C = l/k), (10) 

which is the general integral of equation (9). 

The general integral of equation (8) can be obtained from (10) by the so-called 
method 0/ variation 0/ the parameter (or variation 0/ the constant). Let us assurne 
that the integral of equation (8) is of the form (10), where C is now a function of 
the variable x, 

y = C(x) e-J a(x) dx . 

Differentiating (11), 

y' = C' e-J adx _ Cae-J adx, 

and substituting (11) and (12) into (8), we have 

wherefrom 

and 

CI -Jadx C -Jadx + C -Jadx b e - ae a e = , 

C' e-J adx = b 

C(x) = J b(x) eJ a(x)dx dx. 

(11) 

(12) 

(13) 

Substituting this result into (11), we obtain the general integral of equation (8) 
in the form 

- -Ja(x)dx Jb( )eJa(x)dx d y - e . x x. (14) 

Example 4. 
y' + 2xy = x 3 . (15) 
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First, we solve the corresponding homogeneous equation 

y' + 2xy = 0: 

Je; = - J 2xdx, 

ln(ky) = _x2 (ky > 0), 
_X2 

ky =e , 
2 

Y = Ce-X (C = IJk). 

19 

The general integral of equation (15) can now be found, according to (11), in the 
form 

2 
Y = C(x)e- X • (16) 

Then 
2 2 

y' = c' e-x - C. 2xe-x • (17) 

Substituting (16) and (17) into (15), we get 

2 223 C' e-x - 2xCe-x + 2xCe-'" = x , 

C' = x 3 ex2
, C = J x3 ex2 dx = -! e",2 (x2 - 1) + c. 

Substituting this result into (16), we obtain the general integral of equation (15), 

(18) 

REMARK 2. When solving equation (9) by separation of variables we divide by 
the unknown function y. Nevertheless, (10) or (14) gives the unique solution even 
in the case where the integral curve has to pass through the point (xo, Yo), where 
Yo = o. For example, the solution (and indeed the only solution) of equation (15) 
passing through the point (0,0) is according to (18) 

REMARK 3. Instead of using the method of variation of the parameter it is 
possible to proceed as follows: The integral of equation (8) is assumed to be of the 
form 

y(x) = u(x)v(x). (19) 

Substituting into (8), we get 

u' v + uv' + auv = b. (20) 
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Let the function u(x) be chosen so as to satisfy the equation 

u' + au = 0, (21) 

i.e. 
u = e-J a(x)dx • (22) 

Since it is possible to write (20) in the form 

(u' + au)v + uv' = b, 

it is sufficient for v, in view of condition (21), to satisfy the equation 

uv' = b 

or (see (22)) 

v = J beJ adx dx. (23) 

Substituting (22) and (23) into (19), we get the previous result (14). 

VII. Bemoulli's equation is an equation of the form 

y' + a(x)y = b(x)yn (24) 

(a(x), b(x) being continuous functions in an interval I). For n = 0, or n = 1, we 
get a linear equation of the form (8) or (9), respectively. 

In the following text, let n be an arbitrary real number different from 0 and l. 

Dividing by yn, we get from (24) (assuming y # 0) 

y' a 
-+-=b. yn yn-l (25) 

Substituting 

from which z' = (-n + 1)y-ny, or 
y' z' -= , 
yn -n+ 1 

we obtain 
z' 

--- +az= b, 
-n+1 

i.e. we get a linear equation for the function z(x). 

Example 5. 
y' + xy = xy3. (26) 
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Dividing by y3 and substituting 

we have 

1 
Z=-, y2 

so that 
, 2y' 

z =-­y3 

z' 
--+xz=x, 

2 

z' - 2xz = -2x. 

According to VI the solution of this equation is 

Z = 1 + Cex 
2 

Hence, the general integral of equation (26) is 

VIII. Riccati 's equation is an equation of the form 

y' = a(x)y2 + b(x)y + c(x). 

21 

(27) 

For a(x) == 0 we get a linear equation and for c(x) == 0 we get Bernoulli's equation. 

It is not possible, in general, to solve Riccati's equation by quadratures, Le. it 
is not possible, in general, to reduce its solution to a mere integration, as was the 
case in the preceding types. However, if one solution of equation (27) is known, the 
general integral can be obtained by means of quadratures as folIows: Let Yl (x) be 
a solution of equation (27), i.e. 

, 2 b Yl = aYl + Yl + c. (28) 

Introducing a new unknown function z(x) by the relation 

Y = Yl + z (29) 

and substituting into (27), we have 

y~ + z' = ayi + 2aYl z + az2 + bYl + bz + C; 

in consequence of (28), the function z then satisfies the equation 

z' = az2 + (2aYl + b)z, 
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which is Bernoulli's equation, thus integrable by quadratures. 

A particular solution Yl of equation (27) can often be easily found: 

Example 6. 
xy' - 3y + y2 = 4x2 - 4x. (30) 

Let us assurne the particular solution to be of the form 

Yl = Ax+B. 

(In guessing the form of the particular solution, some experience is necessary.) 
Substituting Yl in (30) and comparing coefficients of the same powers of x, we get 

Yl = 2x. 

Using the substitution (29), Y = Yl + Z = 2x + Z, we get the equation 

XZ' + (4x - 3)z + Z2 = 0, 

which is of Bernoulli's type. 

Two following special cases of lliccati's equation are easy to solve: 

A, y' = ay2 + by + c, 

where a, b, c are constantsj this equation is solved by II above. 

B. b 
y' = ay2 + 2' 

x 

where a, bare constantsj this equation may be solved by substituting 

giving 

and 

1 
y= -, 

Z 

z'=-a-b(;f 

which is a homogeneous equation to be solved by IV. 
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17.4. Exact Differential Equations. The Integrating Factor. 
Singular Points 

REMARK 1. The equation y' = rp(x, y) is often of the form 

y' + f(x, y) = 0, 
g(x, y) 

23 

(1) 

where fand 9 and their derivatives of the first order are continuous functions in a 
region st and g(x, y) i- 0 in st. According to Theorem 17.2.1 and Remark 17.2.7, 
an initial condition being given, (local) existence and uniqueness of the solution is 
guaranteed in st. Written in the so-called differential form, equation (1) becomes 

f(x, y) dx + g(x, y) dy = O. (2) 

Theorem 1. Let the left-hand side of equation (2) be the total differential of a 
function F(x, y) in st. (In this case equation (2) is said to be exact. If st is a 
simply connected region, then the necessary and sufficient condition for this is that 

~~ = ~~ in st.) (3) 

Then the general integral of (2) is 

F(x, y) = c. (4) 

REMARK 2. The function F(x, y) may be obtained In the same way as in 
Example 14.7.2. 

Example 1. 

The validity of (3) may be easily verified, because 

(5) 

Thus, in every simply connected region, the given equation is exact. By Exam­
pIe 14.7.2 we find that 
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so that the general integral of the given equation is 

(obviously in the whole xy-plane), the constant k being incorporated into the con­

stant C. 

Theorem 2. 11 the equation 

I(x, y) dx + g(x, y) dy = 0 

is exact and il the lunctions I, gare continuous and homogeneous (Definition 
12.6.1) 01 the same degree n (n -:j:. -1), then the general integral 01 the given equation 
zs 

x I(x, y) + y g(x, y) = C. 

Example 2. The general integral of the equation 

2x ( x 2
) - dx + 1 - - dy = 0 Y y2 

is 
2x ( x 2 ) x-+y 1-- =C. 
y y2 . 

REMARK 3. If equation (2) is not exact, we try to find a function m(x, y) -:j:. 0 
such that the new equation 

m(x, y)/(x, y) dx + m(x, y)g(x, y) dy = 0 

is an exact equation, i.e. that (under some assumptions on the smoothness of the 
function m) 

o(mJ) o(mg) 
oy ox 

(6) 

holds. The function m(x, y) is called an integrating lactor of equation (2). 

REMARK 4. The existence of an integrating factor can be proved under quite 
general assumptions. 

REMARK 5. From (6) it follows that the integrating factor m(x, y) satisfies a 
partial differential equation 

om om (01 Og) 
g(x, y) ox - I(x, y)7iY = oy - ox m. (7) 
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In general, it is more diflicult to integrate this equation than to integrate the given 
equation (2). 

In many cases m can be found as a function of the variable x only. From equation 
(7) it follows that a necessary and suflicient condition for this is that 

81 j8y - 8gj8x 
g 

be a function of the variable x only; then m(x) can be obtained from the equation 
(assuming that m(x) > 0) 

dlnm 8lj8y-8gj8x 
dx g 

(8) 

A similar statement is valid for the case where m is only a function of the variable y. 

The result is: 
dlnm 

dy 
81 j8y - 8gj8x 

-/ 

Example 3. The equation 

is not exact (the condition (3) is not satisfied). But we note that 

8/ j 8y - 8g j 8x 2x + x2 + y2 - 2x _ 1 
g x2 + y2 -. 

According to (8) 
dlnm(x) 

dx = 1, hence m(x) = eX • 

(9) 

(It is not necessary to write m( x) = C eX with a constant C, because we are only 
trying to find a solution of equation (7).) 

The equation 

is thus exact, as may also be easily verified by (3). 

REMARK 6 (Singular Points 0/ Equation (1)). From Theorem 17.2.1 and Re­
mark 17.2.7 it follows: Let /, g, 8f/8y, 8gj8y be continuous in the neighbourhood 
of the point (xo, Yo) and let g(xo, Yo) I- o. Then exactly one integral curve of equa­
tion (1) exists (locally) which passes through the point (xo, Yo). If g(xo, Yo) = 0, 
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but f(xo, Yo) =1= 0, then (see Remark 17.2.16) equation (1) may be written in the 
form 

dx 
dy 

g(x, y) 
f(x, y)' 

(10) 

and under the supplementary assumption of continuity of af jax, agjax again 
exactly one integral curve passes through the point (xo, Yo). If the relations 

f(xo, Yo) = 0 and g(xo, Yo) = 0 

hold simultaneously, then the point (xo, Yo) is called a singular point of equation 
(1). In the neighbourhood of a singular point various possibilities can occur as to 
existence and uniqueness of the solution as weH as to the form of the integral curves 
of the given equation. Let us give some simple examples: 

The equation 

y' = J!... 
x 

(11) 

has one and only one singular point, namely (0, 0). By separation of variables, the 
general integral 

y=Cx (12) 

can easily be obtained in each of the half-planes x > 0, x < O. Thus integral curves 
are the half-lines (12) (Fig. 17.2). It is usual, in the literature, to complete them 

y y y 

Fig.17.2. Fig. 17.3. Fig. 17.4. 

by the point (0, 0). In this sense, integral curves are straight lines passing through 
the singular point considered. A singular point of this type is caHed anode. 

The (only) singular point of the equation 

, y 
y =-­

x 
(13) 
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is also the origin. The general integral is a system of hyperbolae 

with asymptotes 

c 
y=­

x 

y = 0, x = 0 

(Fig. 17.3). This type of singular point is called a saddle point. 

The equation 
, x 

y =-­
y 

27 

(14) 

(15) 

has also only one singular point, the origin. The general integral is a system of 
circles 

x2 + y2 = C 

(Example 17.2.7), thus of closed curves round that singular point (Fig. 17.4). This 
type of singular point is called a centre. 

The reader will find a more detailed analysis in [87] or in [44] where he will 
also find some results concerning quest ions on differential equations in a complex 
domain. 

17.5. Equations of the First Order not Solved with Respect to the 
Derivative. Lagrange's Equation. Clairaut's Equation. 

Singular Solutions 

Equations of the first order not solved with respect to the derivative are equations 
of the form 

F(x, y, y') = 0, (1) 

or, if the common notation y' = p is used, of the form 

F(x, y, p) = o. (2) 

1. In some cases (see Theorem 12.9.2 on Implicit Functions) it is possible to solve 
(1) with respect to y'. 

Example 1. 

(3) 

On solving equation (1), we get two equations 
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The general integral of each of these equations represents a one-parameter system 
of curves. The curves of both the first and the second system are integral curves of 
equation (3). Thus the general integral of equation (3) consists of two systems of 
curves. 

REMARK 1. Equation (1) is not always so easy to solve with respect to y'. In 
the domain of real functions, this equation need not have a solution at all , as is to 
be seen from the simple example of the equation 

In the general case, the problem of solving equation (1), both from a theoretical 
and practical point of view, is more complicated than in the case of the equation 
y' = f(x, y). In this paragraph we shall deal only with the most important results 
and methods of solution. 

11. Method of two parameters. Under rather simple assumptions about the func­
tion F, equation (2) represents a surface. The coordinates of the point (x, y, p) of 
this surface can be expressed as functions of two parameters u, v: 

x = f(u, v), y = g(u, v), p = h(u, v). (4) 

From the relation dy = p dx it follows that 

or 
hf)f f)g 

d v a:;;, - a:;;, 
du - f)g _ h f) f . 

f)v f)v 

(5) 

This is a differential equation for the unknown function v( u), solved with respect 
to the derivative dv/du. Finding its general integral v = t(u, C) and substituting 
into the first two equations (4), we obtain 

x = f (u, t( u, C)) , y = g (u, t( u, C)) . 

Eliminating u from these two equations, we have 

cp(x, y, C) = 0, 

which, as a rule, gives the general integral of equation (1). 
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REMARK 2. We have used the phrase "as a rule". The above-mentioned proce­
dure is formal; in particular, the concept of elimination of a variable or parameter 
is very uncertain. Consequently, the result so obtained must be analysed, especially 
to verify whether it is really the solution of the given equation. This remark applies 

throughout the whole paragraph 17.5. 

It is particularly simple to express the "surface" (2) by means of equations (4) 
in these two cases: 

III. Let equation (2) be of the form 

y = j(x, p). (6) 

We choose x and pasparameters. Then, from the equation dy = p dx, it follows 
that 

8j 8j 8j 8j dp 
- dx + - dp = p dx or - + - - = p. 
8x 8p 8x 8p dx 

(7) 

(It is possible to obtain (7) directly by differentiating equation (6) with respect to 
x, if pis taken as a function of x and pis substituted for y'.) If we find the general 
integral of (7), 

p = t(x, C) (8) 

and substitute for p into (6), we get, as a rule (see Remark 2), the general integral 
of equation (6). (It would not be correct to substitute y' for p into (8) and to try to 
find the general integral of equation (6) by integrating equation (8) thus obtained. 
When integrating, a second constant would arise. It is now easy to show that by 
this procedure we would get the general integral of the equation of the second order, 

8j 8j 11 , 

8x + 8y'Y = y, 

which results from (7) by substituting y' for p.) 

IV. Let equation (2) be of the form 

x = j(y, p). (9) 

If we consider p as a function of y (by virtue of a relation between x and y) and 
differentiate (9) with respect to y, using 

dx 1 1 

dy dy/dx p 

we get 
1 8j 8j dp 
-=-+--. 
p 8y 8p dy 

(10) 
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This is an equation for the unknown function p(y). If we find its general integral 

p = k(y, C), 

and then substitute for p into (9) we get the general integral of equation (9). (See, 
however, Remark 2.) 

REMARK 3. Using the above-mentioned procedure, it is naturally possible to 
integrate special cases of III and IV, 

y = f(p), or x = f(p)· 

If, instead of the equation x = f(p), a rather more general equation g(x, p) = 0 is 
given, we can use a method similar to method II. This case becomes simpler, because 
the equation g(x, p) = 0 represents a curve, geometrically. Let its parametric 
equations be of the form 

Since 

then 

Integrating, we get 

say. Then the equations 

x = 'lj;(t), p = X(t). 

dy 
dx=P=X(t), 

dy = pdx = X(t)'lj;'(t) dt. 

y = J X(t)'lj;'(t) dt = JL(t) + C, 

x = 'lj;(t), y = JL(t) + C 

give the general solution of the given equation. 

In a similar way, it is possible to deal with the equation g(y, p) = 0 (see Exam­
pIe 2). 

Example 2. 
'2 2 y=y + . (11) 

Following III, we differentiate with respect to x and write p instead of y'. Then 

If p =I 0 (for p = 0 see below), then 

dp 1 
-

dx 2 
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so that 
p = !X+C. 

Substituting into (11), we have the general integral of equation (11): 

(12) 

It may be easily verified that if we solve(l1) to give y', then the general integral 
of the two equations so obtained is included in (12). 

The case p = 0 gives the solution y = 2 of the given equation. 

If we had used the method of Remark 3, we would have got: 

dy 
-=p, 
dx 

p = t, Y = t 2 + 2, 

d - dy _ 2t dt - 2 d x - - - t, 
P t 

Thus, the general solution in a parametrie form is 

x = 2t + k, y = t2 + 2 

and, by eliminating the parameter t, 

in accordance with (12). 

V. Lagrange's equation 
y = cp(y')x + 1/J(y') 

or 
y = cp(p)x + 1/J(p) 

x = 2t + k. 

(13) 

(14) 

is a special case of type III; it is always possible to integrate it by means of quadra­
tures. Differentiating (14) with respect to x and substituting p for y', we obtain 

dp dp 
p = cp{p) + xcp'(p) dx + 1/J'(p) dx' (15) 

Ifwe consider x as a function ofthe variable p, then we obtain from (15) (assuming 
cp(p) f:. p; on the case cp(p) == p see VI, Clairaut's equation) 

dx = cp'(P) x + 1/J'(p) (cp(p) f:. p). 
dp p - cp(p) p - cp(P) 

(16) 
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Equation (16) is a linear equation for the function x(p). If we substitute its 
general integral 

x = t(p, C) (17) 

into (14), we get 
y = cp(p)t(p, C) + 1jJ(p); (18) 

(17) and (18) give a parametrie form of the general integral of (14). Eliminating the 
parameter p from (17) and (18), we get the general integral in the form G(x, y, C) = 
= o. (See, however, Remark 2.) 

Example 3. 
y = 2xy' + y'2 or y = 2px + p2. 

Differentiating with respect to x, we have 

that is 

dp 
p = 2p + 2(x + p) dx ' 

dx 2x 
- = -- - 2 (p =I 0). 
dp p 

(19) 

(20) 

(20) is a linear equation for the function x(p). Its solution is (cf. Example 17.3.4) 

(21) 

Substituting into the second of equations (19), we get 

2C p2 
y=---

P 3 
(22) 

which together with (21) constitute the parametrie equations of the general integral 
of (19). 

For p = 0 we get, on substituting into (19), the solution y == o. 

VI. Clairaut's equation 

y = xy' + 1jJ(y') or y = px + 1jJ(p) (23) 

(where 1jJ(p) is a given differentiable function) is a particular case of Lagrange's 
equation (for the case cp(p) == p). Differentiating with respect to x, we get 

p = p + [x + 1jJ'(p)] !: or !: [x + 1jJ'(p)] = o. (24) 
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dx 
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we get p = C, which substituted into (23) gives the general integral of equation 
(23): 

y = Cx + 1{;(C). (25) 

This is a one-parameter system of straight lines. 

If the second term on the left-hand side of the second equation (24) is equal to 
zero, 

x + 1{;'(p) = 0, (26) 

then (26) determines pas a function of x, 

p = t(x) (27) 

(if, for example, 1{;"(p) :f. 0). Substituting into (23), we get 

y = xt(x) + 1{; (t(x)). (28) 

This solution may be proved to be the envelope of the system (25). It is a singular 
integral of equation (23). 

REMARK 4. When investigating equations ofthe first order, it is often important 
to find the singular integral of the given equation (Definition 17.2.6). The solution 
of this problem in its full generality is rat her difficult. We introduce here only two 
special theorems: 

Definition 1. By a discriminant curve of the equation 

F(x, y, y') = 0 (29) 

we mean the curve G(x, y) = 0 the points (x, y) of which satisfy (for a certain 
range of values of a) the equations 

F(x, y, a) = 0, 
BF 
Ba (x, y, 0:) = o. (30) 

REMARK 5. It may happen that the curve G(x, y} = 0 is not areal curve. For 
example, for the equation 

we get 

y,3 + (y2 + 2)y' - xy = 0 

BF _ = 3a2 +y2 +2 
Ba 

(31) 

(32) 
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(since F(x, y, a) = a 3 +(y2 +2)a-xy), and this cannot be zero for any real values 
of the variables x, y, a, so that G(x, y) = 0 does not represent areal curve. 

Theorem 1. Let a discriminant curve 0/ equation (29) exist. Then the singular 
integral 0/ this equation (i/ it exists) is contained in this discriminant curve. 

REMARK 6. From the theorem on implicit functions it follows that validity of 
the relation 

8F( ') 8y' X, y, Y = 0 (33) 

at each point of the integral curve concerned is a necessary (but not sufficient) 
condition for that curve to be a singular integral of the given equation. If the 
discriminant curve of equation (29) is an integral curve of this equation, then it 
need not be the singular integral of this equation. 

Theorem 2. Let 
/(x, y, C) = 0 (34) 

be the general integral 0/ equation (29). I/ the curve given by the equation 

H(x, y) = 0 (35) 

which we obtain by eliminating C /rom the equations 

/(x, y, C) = 0, 
8/ 
8C(x, y, C) = 0, (36) 

is the envelope (§ 9.7) 0/ the one-parameter system (34), then 

1. it is an integral curve 0/ equation (29); 

2. it is the singular integral 0/ this equation. 

Example 4. Let the equation 

(37) 

be solved by the method of differentiation with respect to x (see V). We get (see 
(16) ): 

so that x = ~p2 + C. (38) 

Substituting into (37), we get 

(using the second equation (38)), i.e. 

(y - C)2 - (x - C)3 = o. (39) 
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The second of equations (36) gives 

2(y - C) = 3(x - C)2. (40) 

If we substitute from here for y - C into the first equation (36), we get 

(41) 

so that either 

x - C = 0 and then also y - C = 0, consequently y - x = 0, (42) 

or x - C ::/:- 0 and then from (41) we have 

C - 4 x- - 9' so that according to (39) y - C = 287 or y - x = - 2~. (43) 

The straight line y - x = -2~ is (see Example 9.7.3) the envelope of the system 
(39) and according to Theorem 2 it is the singular integral of equation (37). The 
straight line y - x = 0 is not the envelope of the system (39) (Example 9.7.3). 
Substituting into (37), we can easily verify that it is not an integral curve of this 
equation. 

We could reach the same result using Theorem 1 (i.e. without integrating equation 
(37)): We have 

8F 8, 8'2 
8y' = gy - gY , 

so that the second of equations (30) (i.e. equation (33)) is 

y'(l - y') = o. (44) 

Thus, either y' = 0, or y' = 1. Substituting into (37), we get 

y - x = 0, and y - x = - 2~' 

respectively, and these are the lines (42), (43). 

17.6. Orthogonal and Isogonal (Oblique) Trajectories 

Let a one-parameter system of curves be given: 

F(x, y, C) = 0 (1) 

and let 
y' = f(x, y) (2) 
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be the differential equation of this system. 

Theorem 1. The differential equation 0/ a system 0/ such curves G(x, y, k) = 0, 
each 0/ which intersects every curve 0/ the system (1) at right angles (the system 
0/ so-called orthogonal trajectories), is 

, 1 
y =-

/(x, y) 
(3) 

Example 1. Find orthogonal trajectories of the system of parabolas 

(4) 

Differentiating (4) with respect to x we get y' = 2Cx and eliminating C from 
both equations we obtain the differential equation of the system (4): 

, 2y 
y =­

x 

According to (3), the differential equation of the orthogonal trajectories is 

dy 1 x 

dx 2y/x 2y 

(5) 

Integrating this by separation of variables (§ 17.3), we obtain a system of ellipses 

(6) 

REMARK 1. The differential equation of the system H(x, y, C) = 0, every curve 
ofwhich intersects every curve ofthe system (1) at an angle a =F7{/2 (the so-called 
isogonal trajectories or oblique trajectories), is given by the equation 

dy k+/(x,y) -= , 
dx 1 - k/(x, y) 

where k = tana and y' = /(x, y) is the differential equation of the system (1). 

17.7. Dift'erential Equations of Order n. Simple Types of Equations 
of Order n. The Method of a Parameter 

For existence and uniqueness of the solution see Theorem 17.2.3. 
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Throughout this paragraph, the continuity of the functions considered and of the 
respective derivatives is assurned. 

I. The equation 
y" = f(x) (1) 

is easy to solve: 

y' = J f(x) dx, y = J y'(x) dx. (2) 

There are two arbitrary constants in the result, because two indefinite integrals are 
involved. In a sirnilar way we solve the equation 

y(n) = f(x). 

11. The solution of the equation 

y(n) = f(x), 

that satisfies the initial conditions 

y(xo) = y'(xo) = ... = y(n-1)(xo) = 0 

is given by the Cauchy-Dirichlet Formula: 

y(x) = ( ~ )' t' (x - zt-1 f(z) dz. 
n 1. Jxo 

By adding to (4) the expression 

( )n-1 ( )n-2 (n-1) X - Xo (n-2) X - Xo , ( ) 
Yo (n-1)! +Yo (n-2)! +···+Yox-xo +Yo, 

we get the integral of equation (3) that satisfies the initial conditions 

() '()' (n-1)() (n-1) y Xo = Yo, Y Xo = Yo, ... , y Xo = Yo . 

(3) 

(4) 

(5) 

Example 1. Solve the equation y'" = In x under the initial conditions y(l) = Yo, 
y'(l) = yb, y"(l) = y~. 

We get the solution as the surn of expressions (4) and (5), y = Y1 +Y2. Integrating 
( 4) by parts, we get 

Y -.! fX(x - z)2ln z dz - .!x3 ln x - .!.!x3 + .!x2 - .!x + ..!.. 1 - 2 - 6 36 2 4 18 . 
1 

(6) 
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According to (5) 
'( ) ,,(x-1)Z 

Yz = Yo + Yo x-I + Yo 2 (7) 

The sum of (6) and (7) gives the solution required. 

III. The equation of the form 

y" = f(x, y'), or F(x, y', y") = 0, (8) 

in which y does not occur explicitly, can be transformed, using the substitution 
y'(x) = z(x) into an equation ofthe first order for the function z(x). More generally, 
the equation of the form 

(9) 

can be transformed by the substitution y(n-l)(x) = z(x) into an equation of the 
first order for z(x). Solving it, we get, by repeated integration (see land II), the 
function y(x). 

REMARK 1 (Method of a Parameter). If a particular case of the second of equa­
tions (9), 

(10) 

is to be solved and if this equation cannot be easily transformed into the form 
y(n) = f(y(n-l)), we can often use the method of a parameter with success. Let us 
consider, for example, the equation 

F(ylll, y") = o. (11) 

First, we express ylll and y" parametrically, 

ylll = rp(t), y" = 'ljJ(t), 

so that equation (11) is identically satisfied in t, i.e. F(rp(t), 'ljJ(t)) == o. Further, 
dy" = ylll dx holds, so that (under obvious assumptions) 

dy" 'ljJ'(t)dt 
dx = y'" = rp(t) , J 'ljJ'(t) dt 

whence x(t) = rp(t) = jt(t) + Cl; (12) 

then 

dy' = y" dx = 'ljJ(~&;(t) dt, whence y'(t) = J 'ljJ(t):;t~) dt = X(t) + Cz, (13) 

dy = y' dx = [X(t) + Cz] ~g} dt, whence 

y(t) = J [X(t) + Cz] ~g1 dt = K(t, Cz) + C3 · (14) 
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Thus we get the general integral of equation (11) in parametrie form 

(15) 

REMARK 2. In this paragraph, we often use a formal proeedure in the same way 
as in § 17.5, so that also here aremark similar to Remark 17.5.2 must be taken into 
aeeount. 

Example 2. 

Let us express yl/l and y" parametrieally in the form 

yl/l = 2 eos t, y" = 2 sin t. 

Following (12), (13), (14) we get 

J 'ljJ'(t) dt J 
x = <p(t) = dt = t + Cl, 

y' = J 2 sin t dt = - 2 eos t + C2 , 

Y = J (-2eost + C2 ) dt = -2sint + C2 t + C3 • 

Eliminating t from the equations for x and y, we get the general integral of the 
given equation: 

y = -2sin(x - Cd + C2 x + K 

REMARK 3. We ean obviously proeeed as follows: Substituting y"(X) = z(x), we 
first transform equation (11) into an equation of the form 

F(z, z') = 0 

and then integrate this equation using the method of a parameter. From the para­
metrie equations for x and z so obtained, we then eliminate t, in order to get y(x) 
by a furt her integration (whieh, however, need not be a simple matter, in general). 

Example 3. Taking the equation of Example 2, we put y" = z and ehoose 

z' = 2 eos u, z = 2 sin u. 

From the relation dz = z' dx, or 2eosudu = 2eosudx, it follows that dx = du, 
x = u + C. Henee 

z = 2sin(x - C) = y", 
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and by integrating twiee we get the same result as in Example 2. 

IV. The equation 
y" = f(y) (16) 

multiplied by y'(x) beeomes 

,,, f()' yy = yy, henee ~y'2 = J f(y) dy = F(y) + C. 

In this way, the original equation is transformed into an equation of the first order. 
A similar proeedure may be used when solving an equation of the form 

(17) 

(after the initial substitution y(n-2)(x) = z(x), if wanted). 

REMARK 4. If equation (16) or (17) is given in implicit form, 

F(y", y) = 0, or F(y(n), y(n-2») = 0, (18) 

we can use the method of a parameter in a similar way as in Remark 1. 

For example, considering the equation 

F(y"', y') = 0, (19) 

we express, first of all, ylll and y' parametrically: 

ylll = cp(t), y' = 1/J(t) 

(so that F(cp(t), 1/J(t)) == 0). Further, by eliminating dx from the equations 

dy" = y'" dx, dy' = y" dx, 

we get 

y" dy" = ylll dy' = cp(t)1/J'(t) dt, whence ~ [y"(t)] 2 = J cp(t)1/J'(t) dt. 

Onee y"(t) known, we proeeed further aecording to Remark 1 

( 
dy" 

dx = ylll' dy' = y" dx, etc.) . 

REMARK 5. A method similar to case IV may also be used for equations of the 
form 

y" = ay,2 + f(y). (20) 
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Introducing a new unknown function u(x) by the relation u(x) = y'2(x), we get 

du = 2y' dy' = 2y" dy (21) 

using the relations 
y' dx = dy, dy' = y" dx. 

Hence, from (20), (21) 
du = 2 [au + f(y)] dy, 

which is a linear equation for the function u(y). Having solved it, we come to an 
equation of the first order 

y,2 = u(y). 

17.8. First Integral of a Differential Equation of the Second Order. 
Reduction of the Order of a Differential Equation. 

Equations, the Left-hand Sides of which are Exact Derivatives 

REMARK 1. In physics, we often meet the concept of the first integral of a dif­
ferential equation of the second order. Its meaning is as follows: 

Definition 1. We say that the equation 

g(x, y, y') = C (1) 

gives (is, or represents) the first integral of the equation 

F(x, y, y', y") = 0, 

if the function g(x, y, y') is constant along each integral curve of the given equation 
(and, at the same time, is not identically equal to a constant in the variables x, y, 
y'). 

Example 1. The equation 
(2) 

gives the first integral of the equation 

y" + 6y2 = 0 (3) 

slllce 
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which, because of (3), is zero along each integral curve of equation (3). 

REMARK 2. Similarly, it is possible to define the k-th integral of a given differ­
ential equation of order n. In this way, differential equations of lower orders can be 
obtained which are (at least theoretically) easier to integrate. 

Some typical examples of reduction 0/ orders 0/ differential equations: 

1. The equation 
F(x, y(m), y(m+l), ... , y(n)) = 0 (4) 

is easily transformed by the substitution y(m)(x) = z(x) into the equation 

F( , (n-m)) - 0 x, z, z , ... , z - , (5) 

the order of which is n - m. 

H. In the equation 
F( '" (n)) - 0 y, y ,y , ... , y -, (6) 

let us write y' = p and let p be considered as a function of the independent variable 
y, i.e. p = p(y). Then 

d " ylll = ....J!..-
dx 

" dy' dp dy dp 
y =-=--=p-

dx dy dx dy' 

So we get from (6) an equation of order n - 1 

( dp dn-1(P)) 
G y, p, dy' ... , dyn-l = O. 

(7) 

(8) 

IH. Let the left-hand side of the equation F(x, y, y', ... , yn) = 0 be a homoge-
neous function of degree m in the arguments y, y', y", ... , y(n), i.e. let 

F(x, ty, ty', ... , ty(n)) = tmF(x, y, y', ... , y(n)) (9) 

be satisfied for all t in a certain neighbourhood of the point t = 1. Then the order of 
that equation may be reduced by introducing a new unknown function z(x), given 
by the relation 

y(x) = eJ z(x)dx. (10) 
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Example 2. The equation 

(11) 

is homogeneous (ofthe second degree) with respect to y, y', y". Following (10), we 
get 

y = el z d", , y' = z el z d", , y" = (z' + z2) el z d", • 

Substituting (12) into (11) and dividing by e21 zd"', we get the equation 

or 
x 2 z' + 2xz - 1 = O. 

The solution of this linear equation (see VI, § 17.3) is 

so that 

1 Cl z=-+-, 
X x2 

_ I z d", _ eJ(l/",+CI/",2) d", - C e-CI/'" y - e - - 2X • 

REMARK 3. The homogeneous linear equation 

(12) 

is also of type 111. The substitution (10), however, is not suitable in this case, 
because it leads to a non-linear equation, in general. If a (non-zero) particular 
integral y = u(x) of equation (13) is known, we can reduce the order ofthe equation 
by introducing a new unknown function z(x) by the relation 

y(x) = u(x)z(x). (14) 

Example 3. One of the solutions of the equation 

xy'" - y" + xy' - y = 0 (15) 

is obviously u(x) = x. Using the substitution (14), we get 

y' = xz' + z, y" = xz" + 2z', ylll = xz'" + 3z". 

Thus, equation (15) is transformed into the equation 

x 2 z'" + 2xz" + (x2 - 2)z' = 0 or x 2 v" + 2xv' + (x2 - 2)v = 0 (16) 
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(putting z' = v), and this is an equation of the second order. From (14) and from 
v = z' it follows that v = (y/u)'. Further, if we knew another integral U(x) of 
equation (15), we could obtain another integral v = (U /u)' of equation (16), so 
that we could again reduce the order of equation (16). In general: If we know k 
(independent) integrals of equation (13), we can reduce its order by k. 

REMARK 4. It is possible to prove, by the method mentioned in Remark 3, that 
if Yl (x) is a non-zero particular integral of the equation 

y" + al(x)y' + ao(x)y = 0, (17) 

then the second function of the fundamental system of solutions (Definition 17.11.2) 
is given by the function 

J 1 -Jal dx d Y2 = Yl 2 e x. 
Yl 

(18) 

Example 4. A particular integral of the equation 

y"-y=o 

is Yl = eX • According to (18), the second function of the fundamental system is the 
function 

x J 1 -JOdx d k-x Y2 = e -e x = e . 
e2x 

REMARK 5. Another way of reducing the order of a differential equation is to 
transform the left-hand side of the given equation into a form which is the complete 
derivative (with respect to x) of an expression of lower order. We shall demonstrate 
this procedure by an example. 

Example 5. Let us consider the equation 

Dividing by y2, we get 

yy" _ y12 = O. 

yy" _ y,2 
-'-'------::-'-- = 0 (y i= 0). 

y2 

The left-hand side of equation (20) is obviously a complete derivative: 

yy" _ y,2 = ~ (Y') . 
y2 dx y 

Thus the first integral of equation (20) (or (19)) is 

(19) 

(20) 

(21) 
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hence 

17.9. Dependence of Solutions on Parameters of the Differential 
Equation and on Initial Conditions 

Theorem 1. Let an equation of the form 

y(n) = f(x, y, v', ... , y(n-l») (1) 

be given. Let us denote by A the point with coordinates a, b1, b2 , ••• , bn (cf. Remark 
17.2.12). Let the function f (as a function of n + 1 variables) be continuous in an 
(n + 1) -dimensional region Q and let for any point A E Q there exist precisely one 
solution of equation (1), 

satisfying the conditions 

y(a) = bl, y'(a) = b2 , ••• , y(n-1)(a) = bn. 

Then the function cp is a continuous function of all n + 2 variables. 

M oreover, if the function f has in Q continuous partial derivatives of order r with 
respect to all the variables, then the function cp has continuous partial derivatives 
01 or-der r (and therefore of alllower orders) with respect to all the variables. 

REMARK 1. If the function 1 depends also on parameters >'1, >'2, ... , >'k, then, 
of course, the function cp also depends on these parameters. If f is continuous in 
>'1, >'2, ... , >'k, then the same holds for cp. A similar statement holds for derivatives 
with respect to >'1, >'2, ... , >'k. 

REMARK 2. The statement of Theorem 1 (or Remark 1) is very natural: If the 
function f is "wen behaved", then, in the neighbourhood of the point a, integral 
curves of equation (1) change only slightly with small changes of initial conditions 
or of the parameters involved. 

On questions concerning the stability of the solution see § 17.19. 
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17.10. Asymptotic Behaviour of Integrals of Differential Equations 
(for x -+ +(0). Oscillatory Solutions. Periodie Solutions 

REMARK 1. The problem of asymptotic behaviour of integrals has been most 
thoroughly studied in the case of linear differential equations 

y(n) + fn_l(X)y(n-l) + ... + ft(x)y' + fo(x)y = f(x), (1) 

where existence ofthe solution is guaranteed in the whole interval I in which h(x) 
and f (x) are continuous functions. 

Theorem 1. Let h(x) (k = 0, 1, ... , n - 1) and f(x) be (real) continuous 
functions for x > Xo and let, for x -+ +00, 

f(x) -+ a. (2) 

Let the equation 

(3) 

the coefficients of which are given by the limits (2), have only real, distinct roots. 
Then equation (1) has in the interval (xo, +00) at least one solution y(x), which 
satisfies 

y(x) -+~, y(m)(x) -+ 0 for x -+ +00 (m = 1, 2, ... , n). (4) 
ao 

If, in addition, all roots of equation (3) are negative, then (4) holds for all solu­
tions of equation (1). 

Example 1. Let us consider the equation 

y" - y = 3. 

Here, al = 0, ao = -1, a = 3. Equation (3), 

{i -1 = 0, 

has the roots +1 and -1. Thus, in the interval (-00, +00), there exists at least 
one solution for which 

y(x) -+ -3, y'(x) -+ 0, y"(x) -+ 0 if x -+ +00. (5) 

(In this example, this solution is obviously the function y = -3 + e-Zj at the 
same time, another solution exists that does not have the property (5), namely 
y = -3+ez .) 
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REMARK 2 (Oscillatory Solutions of Linear Equations of the Second Order). We 
shall consider only equations of the form 

y" + Q(x)y = 0, (6) 

where Q(x) is a continuous function in an interval I, since any equation of the form 

y" + p(x)y' + q(x)y = 0 

can be transformed (see Theorem 17.15.3) by the substitution 

_1 Jpdo: 
Y = e 2 z 

into an equation of the form (6). 

REMARK 3. In the following text, the identically zero solution of equation (6) 
will be excluded /rom our considerations. 

Definition 1. The solution of equation (6), which has, in the given interval I, at 
most one zero point, is said to be non-oscillatory (non-oscillating) in the interval 
I; if it has at least two zero-points, it is said to be oscillatory (oscillating)/ or to 
oscillate in this interval. 

Theorem 2. If at all points of the interval I the inequality Q(x) ~ 0 holds, then 
every solution of equation (6) is non-oscillatory in I. 

REMARK 4. In the following text, we shall consider only the case where Q(x) > 0 
in I. 

Theorem 3 (Sturm 's Theorem). Let Xo and Xl be two (distinct) consecutive zeros 
of a non-zero solution Yl(X) of equation (6). Then every other solution Y2(X) of 
this equation, which is not a multiple of the solution Yl (x), has exactly one zero 
between the points xo, xl. 

REMARK 5. Roughly speaking: The zeros of two linear independent solutions of 
equation (6) are mutually alternating. The solutions Yl = COSX, Y2 = sinx of the 
equation y" + y = 0 may be mentioned as a typical example. (The zeros of such 
pairs of functions are sometimes said to interlace.) 

REMARK 6. If one solution of equation (6) has more than two (distinct) zeros in 
the interval I, then all solutions of equation (6) are oscillatory in I. 

Theorem 4 (The Comparison Theorem). Let us consider two equations of the 
form 

y" + Ql(X)Y = 0, 

Zll + Q2(X)Z = o. 
(7) 

(8) 
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If the relation Q2 (x) > Ql (x) > 0 holds in [, then between any two (distinct) 
zeros xo, Xl of an arbitrary solution y(x) of equation (7), there is at least one zero 
of every solution z(x) of equation (8). (The conclusion of the theorem remains valid 
if in the interval (xo, Xl) only the inequality Q2(X) ~ Ql(X) > 0 holds and if at 
least in a subinterval of this interval the relation Q2 (x) > Ql (x) holds.) 

Theorem 5. Let xo, Xl (xo < Xl) be two consecutive zeros of the solution y(x) of 
equation (7). Let the assumptions of Theorem 4 be satisfied (in the interval (xo, xd 
it is sufficient if the conditions in brackets at the end of that theorem are satisfied). 
If, at the same time, Xo is a zero point of the solution z(x) of equation (8), then the 
next zero X2 of this solution (X2 > xo) lies to the left of the point Xl (i. e. X2 < Xl)' 

REMARK 7. Theorems 4 and 5 express - roughly speaking - the fact that, if 
Q2(X) > Ql(X) > 0 in I, then the solutions of equation (8) oscillate more rapidly 
in I than the solutions of equation (7). The simplest example of this statement are 
the solutions of the equations 

y" + ay = 0, Zll + bz = 0 (0< a < b). 

Theorem 6. If in the interval I the relation 

0< m ~ Q(x) ~ M 

holds for equation (6), then the distance between two neighbouring zeros of the 
solution is not greater than 'Ir / Jm and not sm aller than 'Ir / J M. 

Theorem 7 (Kneser's Theorem). Let [= [xo, 00), Xo > O. If in I the relation 

1 
0< Q(x) ~ 4x2 

holds, then the solution of equation (6) cannot have an infinite number of zeros 
in [. If in I the relation 

l+a 
Q(x) > 4x2 ' where a> 0 

holds, then the solution of equation (6) has an infinite number of zeros in [. 

Theorem 8 (Späthe's Theorem). Let the relation 

Q(x) = 0 (xk~2 ) (k > 0) 

hold in the interval I = [xo, 00) (xo > 0). (This means (see Definition 11.4.6) 
that the expression xkHIQ(x)1 is bounded for all X EI.) Then equation (6) has a 
fundamental system of solutions Yl, Y2 (Definition 17.11.2) such that 

and Y2(X) - X = { 0 (xLI) 
O(lnx) 

for 

for 

k # 1, 

k = 1. 
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Example 2. Let us consider the equation 

11 1 
Y + 4 Y = o. 

x 

According to Theorem 8, for large x the functions 

Y == 1, Y == x 

constitute "nearly" the fundamental system of the given equation. 

REMARK 8. For the equation of the n-th order, 

y(n) + g(x)y = 0, 

49 

(9) 

the foHowing assertion is true: If the function g( x) > 0 is continuous in I = [xo, 00) 
and if 

1= g(x)dx is divergent, 
Xo 

then 10 for any even n, every solution of equation (9) has an infinite number of 
zero points in I; 20 for any odd n, the solution has either an infinite number of zero 
points or it has zero as its limit as x --+ +00. 

REMARK 9. Remarkable results in the above-mentioned theory of oscillatory 
solutions, as weH as in other fields concerning global properties of differential equa­
tions, have been achieved by applying the theory of transformations of these equa­
tions, developed by O. Borüvka and his school ([53]). 

Periodic Solutions 01 Homogeneous Linear Equations 

Theorem 9 (Floquet's Theorem). Let us consider the equation 

y(n) + In_l(X)y(n-l) + ... + JI(x)y' + lo(x)y = 0 (10) 

in which fk(X) are holomorphic lunctions (01 the complex variable x, Definition 
20.1.9) on the whole complex plane, and are periodic with a common period w. 
Then, there exists at least one non-zero solution rp(x) 01 equation (10) such that lor 
a properly chosen constant s (complex, in general) the relation 

rp(x + w) = srp(x) (11) 

holds. (The function rp(x) with the property (11) is called periodic 01 the second 
kind or pseudo-periodic.) The number a, determined by the equation 
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is called the characteristic exponent. The function 

'ljJ(x) = e-ax <p(x) 

is then periodic with period w. 

REMARK 10. Finding the characteristic exponent is rat her difficult, in general 
([250], volume I). When solving an equation of the form 

y" = f(x)y (12) 

we can proceed in the following way: Let Yl (x), Y2 (x) denote the normal (standard) 

fundamental system of equation (12) at the point x = 0, i.e. such for which the 
relations 

Yl(O) = 1, y~(O) = 0, Y2(0) = 0, y~(O) = 1 (13) 

are satisfied. The number s (see (11)) is then given by the solution of the equation 

(Since it may be difficult to construct the above-mentioned normal fundamental 
system even if the function f (x) is relatively simple, the constants Yl (w) and y~ (w) 
are frequently evaluated approximately by numerical integration starting from the 
known values (13).) 

REMARK 11. In the case of linear non-homogeneous equations, existence of pe­
riodic solutions follows in some simple cases immediately from Theorem 17.14.l. 
For the case 

see e.g. [250], volume I. 

17.11. Linear Equations of the n-th Order 

Linear equations of the n-th order are equations of the form 

y(n) + an_l(X)y(n-l) + ... + al(x)y' + ao(x)y = f(x). (1) 

Throughout § 17.11, the functions ao (x), ... , an-l (x), f (x) are assumed to be con­
tinuous in an interval I (which can be infinite). According to Remark 17.2.11 we 
know that if we choose an arbitrary number Xo E land n arbitrary numbers 

, (n-l) 
YO,Yo'···'Yo , (2) 
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then there masts exactly one solution of equation (1) satisfying the initial conditions 

() '()' (n-l)() (n-l) y Xo = Yo, Y Xo = Yo, ... , Y Xo = Yo . (3) 

This solution is defined in the whole intervaI 1. 

REMARK 1. We draw the reader's attention to the fact that this eonclusion is 
not true in general, when the linear equation is of the form 

and an(xd = 0 for sorne Xl E I. (As an example of an equation of this form, the 
equation x3 y" + y = 0 in the interval (-1, 1) may be mentioned.) However, if an is 
continuous and an(x) ':f 0 in the whole interval I, then, dividing through by an(x), 
we get the previous case. 

Definition 1. The equation 

(4) 

is called the linear homogeneous equation corresponding to the non-homogeneous 
equation (1). 

Theorem 1. 1/ 

are solutions 0/ equation (4), then an arbitrary linear combination 0/ them, 

(5) 

(where Cl, C2, ... , Ck are arbitrary numbers), is also a solution 0/ equation (4). In 
particular, Yl + Y2 and YI - Y2 are also solutions 0/ the given equation. 

Theorem 2. Let the functions 

ft(x), h(x), ... , /k(X) (6) 

have k - 1 continuous derivatives in the interval I and let they be linearly dependent 
in I (§ 12.8). Then the determinant 

W(x) = 
ft(x), 
/Hx), 

h(x), 
/2(x) , 

... , 

.0. , 

h(x) 
/Hx) 

/ (k-l) ( ) /(k-l) ( ) /(k-l) ( ) 
1 X, 2 X, ... , k X 

(7) 

(the so-called Wronskian determinant (or briefly Wronskian) 0/ the functions (6» 
is identically zero in I. Often we write W(ft, 12, ... , /k)' 
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Theorem 3. Let the functions 

(8) 

be solutions of equation (4), linearly independent in the interval I, in which the 
coefficients ao(x), al(x), ... , an-I(x) of equation (4) are continuous functions of 
x. Then their Wronskian 

... , Yn 

W(x) = ... , y~ (9) 
(n-l) (n-I) (n-I) 

YI , Y2 , ... , Yn 

is different from zero in the whole interval I. 

REMARK 2. Thus, if we are investigating linear dependence or independence 
of functions (8), that are solutions of equation (4), it is sufficient to evaluate the 
determinant (9) at one point Xo E I only. If W(xo) = 0, the solutions (8) are 
linearly dependent in I, if W(xo) "# 0, they are linearly independent. 

Example 1. The functions 

(10) 

are, as can be easily verified, solutions of the equation 

y" - y = 0 (11) 

the coefficients of which are constants. (As the interval I, we may therefore take 
the interval (-00, 00).) The Wronskian of the functions (10) is 

lex e-X I 
W(x) = x' -x = -2. 

e , -e 
(12) 

Thus, the functions (10) are linearly independent in the interval (-00, 00). 

REMARK 3. Here, the evaluation of the determinant was easy, so that we could 
easily calculate its value for any x. However, according to Remark 2 it is sufficient 
to evaluate W (x) at one point Xo E I only, say, at the point Xo = 0 in this case. 

Theorem 3 and Remark 2 follow from the so-called Liouville's formula (or Abel 
identity): If the coefficients of equation (4) are continuous in I, YI(X), Y2(X), ... 
... , Yn(x) are arbitrary solutions of equation (4) and Xo is an arbitrary point of I, 
then the relation 

() W( ) - IX a n -l(t) dt 
W X = Xo e Xo (13) 
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holds. Since eZ "f:. 0 for arbitrary z, W (x) is zero or different from zero in I according 
to wh ether W(xo) = 0 or W(xo) "f:. 0, respectively. 

Example 2. The functions (10) are solutions of equation (11) in the interval 
(-00,00). In (11) an-l (x) == al(x) = 0, thus 

W(x) = W(xo) e - f'o O.dt = W(xo) = const., 

as may also be seen from (12). 

Definition 2. A system of solutions YI(X), Y2(X), ... , Yn(x) of equation (4) which 
are linearly independent in the interval I, is called a fundamental system of solutions 
(briefly a fundamental system, or a basis) of equation (4) (in that interval). 

For example, the functions (10) form a fundamental system of solutions of equa­
tion (11). 

Theorem 4. A fundamental system 

YI(X), Y2(X), ... , Yn(x) 

of equation (4) in the interval I having been found, every solution y( x) of this 
equation in this interval can be written in the form 

(14) 

where Cl, C2, ••• , Cn are suitable constants. 

REMARK 4. In details: If we find n functions YI (x), Y2(X), ... , Yn(x) which 

(i) are solutions of the homogeneous linear equation (4) of the n-th order in the 
interval I, 

(ii) are linearly independent in I, 

then every solution of this equation in this interval can be expressed as a linear 
combination of these functions. We also say that all solutions of equation (4) (in I) 
form an n-dimensional linear space, the basis of which is formed by arbitrary n 
linearly independent solutions of this equation. 

In accordance with Definition 17.2.5 and Remark 17.2.14 we call (14) the general 
integral of equation (4). 

Example 3. The functions 

YI = COSX, Y2 = sinx (15) 

are solutions of the homogeneous equation of the second order 

y" + Y = 0 (16) 



54 SURVEY OF APPLICABLE MATHEMATICS 17.11 

in the interval (-00, 00). 

We easily verify that (15) is the fundamental system of equation (16), because 

W(x) = I co~x, sinx 1= 1 =I 0; 
- Slnx, cosx 

thlls the functions (15) are linearly independent in the interval (-00, 00). The 
general integral of equation (16) is then 

y = Cl COS X + C2 sin x. (17) 

REMARK 5. In applications we freqllently have to solve the following problem: 
Given a differential equation of the form (4), to find a solution y( x) of this equation 
satisfying, at a given point Xo E I, the initial conditions 

() '()' (n-l)() (n-l) y Xo = Yo, Y Xo = Yo, ... , y Xo = Yo (18) 

(Yo, Yo, ... , y~n-l) being prescribed numbers). If the general integral of equation 
(4) is known, then the required solution y(x) is oft he form (14), where the constants 
CI, C2, .•. , Cn are uniquely determined by the initial conditions (18). 

Example 4. Let us find the solution of the equation 

y" + y = 0 (19) 

satisfying the initial conditions 

y(O) = 1, y'(O) = -2. (20) 

The solution will be of the form (17) (see Example 3). Substituting x = 0 into 
(17) and into the eqllation y' = -Cl sin x + C2 COS x, which arises by differentiating 
(17) with respect to x, we obtain from conditions (20) 

Cl .1 + C2 .0= 1, -Cl. 0 + C2 • 1 = -2; 

hence Cl = 1, C2 = -2, and the solution is 

y = cosx - 2sinx. 

(In the general case, the determination of the constants Cl, C2, ••• , Cn leads to the 
solution of a system of n linear (algebraic) equations with a non-zero determinant 
by Theorem 3.) 



17.12 ORDINARY DIFFERENTIAL EQUATIONS 55 

Theorem 5. For every equation (4) with continuous coefficients in I, there exists 

at least one fundamental system in I. (In fact there is an infinite number of them.) 

Definition 3. The fundamental system YI(X), Y2(X), ... , Yn(x) for which the re­
lations 

YI(XO) = 1, 

Y2(XO) = 0, 

Y3(XO) = 0, 

y~ (xo) = 0, 

yHxo) = 1, 

Y3(xO) = 0, 

y~'(xo) = 0, 

y~(xo) = 0, 

y~(xo) = 1, 

... , (n-l)( ) ° YI Xo = , 

... , (n-l)( ) ° Y2 Xo = , 

... , (n-l)( ) ° Y3 Xo = , 

Yn(XO) = 0, y~(xo) = 0, y~(xo) = 0, ... , y~n-l)(xo) = 1, 

(21) 

hold, is called the normal (or standard) fundamental system of equation (4) at the 

point Xo (or with respect to the point xo). 

The normal fundamental system of the given equation being known, it is easy to 
find the solution of this equation satisfying conditions (18): 

Theorem 6. If YI (x), Y2 (x), ... , Yn (x) is the normal fundamental system of 

equation (4) at the point Xo, then the function 

is the solution of equation (4) that satisfies the initial conditions 

() '()' (n-l)() (n-l) Y Xo = Yo, Y Xo = Yo, ... , Y Xo = Yo . 

REMARK 6. In the general case, it need not be easy to find a fundamental system 
of equation (4). However, in frequently occurring case where ao, al, ... , an-l are 
constants, the problem is simple (see § 17.13). 

17.12. Non-homogeneous Linear Equations. 
The Method of Variation of Parameters 

Theorem 1. If a fundamental system YI(X), Y2(X), ... , Yn(x) of the equation 

yen) + an_I(X)y(n-l) + ... + al (x)Y' + ao(x)y = ° (1) 

is known, then the general integral of the corresponding non-homogeneous equation 

yen) + an-l (x)y(n-l) + ... + al(x)y' + ao(x)y = g(x) (2) 

is of the form 
(3) 
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where Cl, C2, ... , Cn are (arbitrary) parameters and yp (x) is any function satisfying 
equation (2). 

Theorem 2. The function yp( x) can be obtained by quadratures (by the so-called 
method of variation of parameters or variation of constants) when assumed to be of 
the form 

where 

Y1(X), Y2(X), ... , Yn(x) 

is the fundamental system of equation (1). 

(4) 

(5) 

REMARK 1. Thus, yp(x) has the form of the general integral of equation (1), 
where however, instead of constants Cl, C2, ... , cn , we have functions which at the 
moment are unknown. We have to find these functions so that the function (4) 
satisfies equation (2). 

Theorem 3. If ~he functions C1(X), C2(X), ... , cn(x) satisfy the equations 

+ ... + c~Yn 
+ ... + c~y~ 

=0, 

=0, 

c~yin-2) + c~y~n-2) + ... + c~y~n-2) = 0, 

c~yin-1) + c~y~n-1) + ... + c~y~n-1) = g(x), 

then the function yp, given by (4), satisfies equation (2). 

(6) 

REMARK 2. The system (6) for the unknown functions ci (x), c~(x), ... , c~(x) 
is uniquely solvable because its determinant is the Wronskian of the fundamental 
system (5), and is thus different form zero in the interval considered. Integrating 
ci(x), c~(x), ... , c~(x), we get the functions C1(X),C2(X), ... , cn(x). (We can 
write them without constants of integration, because these constants appear in the 
remaining terms of (3).) 

Example 1. Let us find the general integral of the equation 

y" + y = x 2 • (7) 

The fundamental system of the equation 

y"+y=o (8) 

lS 

Y1 = cos x, Y2 = sin x (9) 
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(see Example 17.11.3). The general integral of equation (7) will be of the form (3), 

Y = Yp + Cl COSX + C2 sinx, 

where Yp may be found in the form (4), 

The system (6) is 

whence 

C; cos x + c~ sin x = 0, 

-c; sin x + c~ cos x = x 2, 

, 2 . '2 Cl = - x Sln x, C2 = X cos x. 

Integration by parts yields 

(10) 

(11) 

CI(X) = (x2 - 2) cos x - 2x sin x, C2(X) = (x2 - 2) sinx + 2x cosx. (12) 

Substituting (12) into (11), we get 

Yp(x) = (x2 - 2) cos2 X - 2xsinxcosx + (x2 - 2) sin2 x + 2xcosxsinx = x 2 - 2. 

The general integral of equation (7) is then, according to (10), 

Y = x 2 - 2 + Cl COS X + C2 sin x. 

REMARK 3. The right-hand side of equation (2) is often of a special form. For 
example, g(x) may be a polynomial, as it was in the above example. Ifthe left-hand 
side of equation (2) has constant coefficients, then, for some special forms of the 
right-hand side of equation (2), YP can be found in a much simpler way than by the 
method of variation of parameters (see § 17.14). 

17.13. Homogeneous Linear Equations with Constant Coefficients. 
Euler's Equation 

Let us consider the equation 

(n) (n-l) +' + 0 Y + an-IY + . . . alY aoY = , (1) 

where aa, al, ... , an-l are constants (complex, in general). Assuming the solution 
of equation (1) in the form 
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we obtain for the number 0: (after substituting for y, y', ... , y(n) into (1) and divi­
ding the whole equation by ea ",) the so-called characteristic (or auxiliary) equation 

(2) 

I. If the characteristic equation has distinct roots 

then the fundamental system of equation (1) is given by the functions (complex, in 
general) 

(3) 

II. If O:i is a root of multiplicity r, then r functions correspond to it in the 
fundamental system. These r functions are 

(4) 

Example 1. Let us consider the equation 

ylll - 3y' + 2y = O. (5) 

The characteristic equation 

0:3 - 30: + 2 = 0 (6) 

has obviously the root 0: = 1. After dividing by 0: - 1, we get I 

0:2 +0:-2=0 

with the roots 1, -2. Thus, equation (6) has a simple root 0:1 = -2 and a double 
root 0:2 = 1. To 0:1 there corresponds the function Yl = e-2", , to 0:2 there correspond 
two functions (because r = 2), Y2 = e"', Y3 = xe"'. Thus the fundamental system 
of equation (5) is 

REMARK 1. The roots of the characteristic equation need not always be real. 
Let the coefficients of equation (1) (and thus also of equation (2)) be real; then, as 
is weIl known from algebra, if the characteristic equation has a complex root a + ib 
(a, b real), it also has the complex conjugate root a - ib, and both these roots are 
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of the same multiplicity. (If, for example, a + ib is a double root, a - ib is also a 
double root, etc.) 

Let the root a+ib (and hence also a -ib) be a simple root of equation (2). Then 
to the two roots 

a + ib, a - ib 

there correspond, in the fundamental system, two (real) functions 

eax cos bx, eax sin bx. (7) 

Let a + ib (and hence also a - ib) be a double root of equation (2). Then four 
functions correspond to these roots in the fundamental system: 

eax cos bx, eax sin bx, x eax cos bx, x eax sin bx; (8) 

if a+ib is an r-fold root, then 2r functions correspond to the two roots a+ib, a-ib: 

eax cos bx, x eax cos bx, 

eax sin bx, x eax sin bx, 

Example 2. Let us consider the equation 

... , 

... , 
xr - 1 eax cos bx, 

x r - 1 eax sin bx. 

y(V) _ y(IV) + 2ylll - 2y" + y' - y = o. 

The characteristic equation 

has obviously the root III = 1. Dividing by the factar II - 1, we get 

or 

(9) 

with double roots ll2,3 = i, ll4,5 = -i. The fundamental system, written in the 
complex form, is (according to (4)) 

ix 
Y2 = e , 

ix -ix 
Y3 = xe, Y4 = e , 

written in the real form (according to (8)); a = 0, b = 1) 

-ix 
Y5 = xe , 

Y1 = eX , Y2 = COSX, Y3 = sinx, Y4 = XCOSX, Y5 = xsinx. 
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The general integral (written in the real form) is 

Y = Cl e'" +C2 cos X + C3 sin x + C4X COS X + C5X sin x. 

REMARK 2. Solving the characteristic equation involves, in general, solving an 
algebraic equation of the n-th degree. For methods of solution of these equations 
see Chap. 31. We often succeed in finding one root in a simple way (e.g. we look to 
see if one root of the characteristic equation may perhaps be an integer, as in the 
case of Example 1 or of Example 2, where a negative reciprocal equation was to be 
solved). Then dividing by the corresponding linear factor, we reduce the order of 
the characteristic equation. 

REMARK 3. By substituting x = et , the so-called Euler equation 

(n) + an-l (n-l) + a n -2 (n-2) + + ~ '+ ao = 0 Y Y 2 Y ... IY Y 
X X x n - x n 

(10) 

(where ao, at, ... , an-l are constants) can be transformed into an equation with 
constant coefficients (for x > 0; for negative x, we use the substitution x = - et ). 

The procedure will be shown in the following example. 

Example 3. Let us consider the equation 

x 2y" + 3xy' + y = o. (11) 

Then (cf. § 12.11) 

dy dy dt dy 1 dy 1 -t dy 
-=--=---=--=e -
dx dt dx dt dx/dt dt et dt' 

d2y d (dY ) d (dY ) dt d ( -t dY ) -t -2t (d2y dY ) 
dx2 = dx dx = dt dx dx = dt e dt e = e dt2 - dt . 

Substituting these results into (11), we get 

or 

(12) 

which is an equation with constant coefficients for the unknown function y(t). The 
characteristic equation 

ci +20: + 1 = 0 
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has exactly one double root a = -1, so, according to (4), the general integral is 

From the substitution x = et if follows that t = In x, thus the general integral of 
equation (11) is 

(13) 

In the case of Euler equations of higher order we proceed in a similar way. Instead 
of transforming the equation into the form (12), we can directly assume the solution 
of equation (10) in the form 

y = x er • (14) 

The determination of a leads to the solution of a characteristic equation for a. 
If the roots ab a2, ... , an are simple, then the fundamental system of equation 
(10) is 

If one of the roots is of multiplicity r, then the corresponding r functions of the 
fundamental system are 

er er I er I 2 er I r-1 X ,x n x, x n x, ... , x n x. 

The complex functions 

can be replaced by real functions 

x a cos(blnx), x a sin(b In x) or x a cos(bln x) lnk x, x a sin(bln x) lnk x. 

Example 4. Substituting (14) into (11), we get 

Dividing through by xer =I- 0, we get the characteristic equation 

a 2 +2a + 1 = 0 

with a double root a1,2 = -1. According to (15), the fundamental system is 

-1 1 
Y1 = X =-, 

x 

1 
Y2 = x-1 lnx = -lnx, 

x 

(15) 
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in agreement with (13). 

17.14. Non-homogeneous Linear Equations with Constant 
CoeHicients and a Special Right-hand Side 

Let us consider the equation 

17.14 

y(n) + an_Iy(n-l) + ... + alY' + aoy = eax [P(x) cos bx + Q(x) sin bx), (1) 

where ao, ab ... , an-I, a, b are real constants, P(x) is a polynomial of the p-th 
degree and Q(x) is a polynomial of the q-th degree, both with real coefficients. 

(The special cases P(x) == ° or Q(x) == ° are not exduded.) 

Equation (1) covers the great majority of differential equations which occur in 
applications. For example, the equation 

y" + y = eX sin x 

is of type (1). Here al = 0, ao = 1, a = 1, b = 1, P(x) == 0, Q(x) == 1 (therefore 
q = 0). The equation 

y" - 3y' + 2y = x 2 

is also of the type (1). Here al = -3, ao = 2, a = 0, b = 0, P(x) = x2 (therefore 
p = 2); Q(x) can be considered as a zero polynomial, Q(x) == O. 

The general integral of equation (1) is of the form (cf. Theorem 17.12.1) 

where YI, Y2, ... , Yn is the fundamental system of the homogeneous equation 

(2) 

(which can be found by the method mentioned in the previous paragraph) and yp 

is an arbitrary solution of equation (1). If the right-hand side of the equation is of 
the form indicated in (1), it is possible to assume the function yp to be of a special 
form: 

The characteristic equation corresponding to equation (2) is 

(3) 

Let us denote by s the greater of the two numbers p, q, where pis the degree of the 
polynomial P(x) and q is the degree of the polynomial Q(x) in (1). (If p = q, then 
obviously s = p = q. If e.g. Q(x) == 0, we shall consider s = p.) 
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Theorem 1. Suppose a + ib is not a root of equation (3) (so that neither is a - ib 
a root of equation (3)). Then Yp can be assumed to be of the form 

Yp = eax [R(x) cos bx + S(x) sin bx], (4) 

where R(x) and S(x) are polynomials of the s-th degree. 

If a + ib is an r-fold root of the characteristic equation, then yp can be assumed 
to be of the form 

yp = x r eax [R(x) cos bx + S(x) sin bx], 

where again R(x) and S(x) are polynomials of the s-th degree. 

(5) 

REMARK 1. The coefficients of these polynomials can be determined by the 
method of undetermined coefficients, as will be clear from the examples given below. 

REMARK 2. If the right-hand side of equation (1) is a sum of terms of the form 
given in (1), then Yp is a sum of functions of the form (4) or (5). (It is often 
advantageous to find the integral corresponding to each term of the right-hand side 
separatelYj their sum then gives Yp.) 

For example, consider the equation 

y" + 4y = 2 sin x + cos 3x. 

The right-hand side of this equation cannot be expressed in the form 

eax [P(x) cos bx + Q(x) sin bx], 

because for each term of the right-hand side of this equation the value of b is 
different. So we find first the particular integral YPl of the equation 

y" + 4y = 2 sin x 

and then the particular integral YP2 of the equation 

y" + 4y = cos 3x. 

Their sum YPl + YP2 is the required particular integral Yp· 

Example 1. Let us consider the equation 

(6) 

If we use the notation of (1), then a = 0, b = 0 (whence a + ib = 0), P(x) = x 2 , 

Q(x) == 0 (therefore s = 2); a + ib is not a root of the characteristic equation 
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0!2 + 1 = 0 (because this has the roots 0!1 = i, 0!2 = -i while a + ib = 0), so 
according to (4) we may assume Yp to be of the form 

YP = eO. x [(Ax2 + Bx + C) cos(O . x) + (Dx2 + Ex + F) sin(O. x)] = 

= Ax2 +Bx+C. 

Hence Y; = 2A, Yp = Ax2 + Bx + C; substituting into (6), we get 

2A + Ax2 + Bx + C = x 2 . 

Comparing the coeflicients of equal powers of x, we get A = 1, B = 0, 2A + C = 0, 
so that 

Yp = x 2 - 2 

in accordance with example 17.12.1; the general integral of equation (6) is therefore 

2 2 . Y = x - + Cl COS X + C2 sm x. 

REMARK 3. It may be easily verified that the equation y" + y' = x 2 has no 
particular solution of the form Ax2 + Bx + C; the function yp is to be obtained in 
the form x(Ax2 + Bx + C), in accordance with (5). The difference between this 
case and Example 1 lies in the fact that here a + ib = 0 is a simple root of the 
characteristic equation 0!2 + O! = O. 

Example 2. Let us consider the equation 

y" - 3y' + 2y = x e X • (7) 

Here a = 1, b = 0 (thus a + ib = 1), P(x) = x (therefore p = 1), Q(x) == 0 (thus 
s = 1). The characteristic equation 

0!2 - 30! + 2 = 0 

has the roots 0!1 = 1, 0!2 = 2, thus a + ib = 1 is a simple root of this equation (i.e. 
in (5), we have r = 1). Following (5), we assume yp in the form 

yp = xex [(Ax + B) cos(O. x) + (Cx + D) sin(O. x)] = xeX(Ax + B) = 

= eX(Ax2 + Bx). 

Substituting for yp, y~, y; into (7), we get 

eX [x2(2A - 3A + A) + x(B + 4A - 3B - 6A + 2B) + (2B + 2A - 3B)] = eX. x. 



17.14 ORDINARY DIFFERENTIAL EQUATIONS· 65 

Dividing by e" (# 0) and comparing the coefficients of equal powers of x we get 

-2A=I, 2A-B=0 whence A=-~, B=-I, 

thus 
_ ,,( 1 2 ) Yp - e -ZX - X , 

and the general integral of equation (7) is 

Example 3. Let us consider the equation 

y"+y=2sinx. (8) 

Here a = 0, b = 1 (thus a + ib = i), P(x) == 0, Q(x) = 2 (so q = 0 and s = 0); 
a + ib = i is a simple root of the characteristic equation 

a? + 1 = O. 

According to (5) we have 

yp = xeo." [A cos x + B sin x] = Axcosx + Bxsinx. 

Substituting for yp, y~ into (8), we get 

- 2A sin x - Ax cos x + 2B cos x - Bx sin x + Ax cos x + Bx sin x = 2 sin x, 

-2A sin x + 2B cosx = 2sinx. 

Comparing coefficients of the linearly independent functions sin x, cos x we get 

-2A=2, 2B=0, i.e. A=-I, B=O; 

consequently 
yp = -xcosx, 

and the general integral of equation (8) is 

y = -xcosx + Cl COSX + C2 sinx = (-x + cd cosx + C2 sinx. 

From this example it is clear that even in the case when only a sine term appears 
on the right-hand side of equation (1) (in this case, of equation (8)), when searehing 
for yp we must write the expression (4) (or (5)) in the eomplete form eontaining 
both sine and eosine terms. 
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On harmonie, damped, undamped and foreed oseillations see in § 4.13 and § 17.21 
(eqs. 90, 91, 92, 97, 98, 99). 

17.15. Linear Equations of the Second Order with Variable 
Coeflicients. Transformation into Self-adjoint Form, 

into Normal Form. Invariant. Equations with Regular 
Singularities (Equations of the Fuchsian Type). 
Some Special Equations (Bessel's Equation etc.) 

In this paragraph equations of the type 

(1) 

are eonsidered, where Po (x), PI (x), P2 (x) are eontinuous functions of the variable 
x on an interval I (whieh ean be infinite). Unlike § 17.11 we do not assume that 
Po(x) == 1, whieh leads in some eases to different results from those given in the 
paragraph mentioned. 

Theorem 1. In any interval in which Po(x) f; 0, equation (1) can be transformed, 
by multiplying by the function 

(2) 

into the so-called self-adjoint form 

d~ (P(x)y'] + q(x)y = 0, (3) 

where 
p(x) = e!(Pt/Po)dx, q(x) = P2 e!(pt/po)dx. 

Po 
(4) 

Example 1. For the Bessel equation 

(5) 

Po = x2, PI = x, P2 = x 2 _1/2, thus (earrying through the transformation for x > 0) 
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thus equation (5), multiplied by the function I/x, is transformed into the self-
-adjoint equation 

x 2 _ v2 

(xy')' + y = O. 
x 

(6) 

Theorem 2. Introducing a new variable 

u(x) = J e- f(pt/po)dx dx, (7) 

equation (1) can be transformed, in any interval in which Po (x) :f:. 0, into the form 

where 
Q = P2 e2 f (pt/po) dx 

Po 

(8) 

(9) 

and where, on the right-hand side of (9), u is to be substituted for x according to 
the relation (7). 

Example 2. In the equation 

xy" + ~y' - y = 0, 

Po = x, PI = ~, P2 = -1. Then (for x > 0) 

Q = _!e2f{1/(2x»dx = _!e1nx =-1. 
x x 

(Here Q is a constant. In the general case, we should substitute x 
accordance with (11).) Consequently, equation (8) becomes 

Theorem 3. By a transformation of the form 

y = u(x)z, 

where 

(10) 

(12) 

(13) 

(14) 
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and by dividing by Po (x) we can tmnsform equation (1) (in any interval in which 
Po f. 0) into the form 

z" + I(x)z = 0, 

where 

I(x) = P2 _ ~ (PI)2 _ ~ (PI)' 
Po 4po 2po 

Example 3. For the equation 

2 
y" + - y' + y = 0 

x 

we have Po = 1, PI = 2/x, P2 = 1. Further 

giving 

u(x) = e-~ !(2/x)dx = e- 1nx = ..!., 
x 

1(2)2 1 (2)' 1 1 I(x) = 1 - - - - - - = 1 - - + - = 1. 
4 x 2 X x2 x2 

Consequently, equation (15) becomes 

z" + z = O. 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

REMARK 1. Forms (8) and (15) are often called normal (or normalized) forms 
of the differential equation of the second order. The expression I(x) is the so-called 

invariant of thc given eqllation. By transforming an equation into the normal form, 
we often obtain the solution in a simple way, as may be seen from Examples 2 and 3: 
Equation (12) has the general integral 

whence, applying (11), we get the general integral of equation (10): 

The general integral of equation (20) is 

z = Cl COS X + c2 sin x, 

whence, applying (13) and (18), we get the general integral of equation (17): 

cosx Slnx 
y = CI-- + C2--' 

X X 
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Definition 1. Equations of the form 

(21) 

where PI (x), P2 (x) are functions which can be expanded into power series in a 
neighbourhood of the point a, are called equations with a regular singularity at the 
point a. 

REMARK 2. The name "equations of Fuchsian type", is also used although this 
name is more often used in a rat her different sense (see e.g. [44]). 

REMARK 3. Equation (21) is often studied in the complex domain (y being a 
function of the complex variable x). In this case we require that PI(x), P2 (x) be 
holomorphic in a neighbourhood of the point a (Definition 20.1.9). 

REMARK 4. In applications PI (x) and P2(x) are very often polynomials (if PI (x) 
and P2 (x) are constants, we have (by substitution x - a = u) Euler's equation 
(Remark 17.13.3)). In the general case, we have 

00 00 

PI(x) = Lak(X - a)k, P2(x) = Lßk(X - a)k. (22) 
k=O k=O 

Theorem 4. Equation (21) has always at least one solution of the form 

00 

y = (x - a)1! L Ck(X - a)k. (23) 
k=O 

REMARK 5. e need not be an integer (it need not even be real). Substituting 
(23) into (21) and comparing coeflicients of equal powers of x - a, we get equations 
for the evaluation of e and the unknown constants Co, Cl, C2, ••• : 

eofo(e) = 0, 

cdo(e + 1) + Colt (e + 1) = 0, 

cdo(e + 2) + cdl (e + 2) + Co!2(e + 2) = 0, 
(24) 

Here we have used the notation 

fo(u) = u(u -l)+uao + ßo, 

h(u) = uak +ßk, k = 1, 2, 3, ... , 
(25) 

where ak, ßk are coeflicients of the series (22). 
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Let us determine 12 so that 

(26) 

Equation (26) (the so-called indicial equation or fundamental equation of the 
given equation (21) at the singularity x = a) gives, in general, two roots (not 
necessarily real) I2Il 122. In the following text, let us assume that 

Re 121 ~ Re 122, (27) 

i.e. that the real part of the root 121 is greater than (or equal to) the real part of 
the root 122. Let us consider first the root 121 and let us choose Co # ° arbitrarily 
(e.g. Co = 1). In consequence of (27) we get /0(121 + 1) # 0, /0(121 + 2) # 0, etc.; 
thus, the values of Cl, C2, C3, ... can be uniquely determined from (24). 

Theorem 5. The series 
00 

LCk(X - a)k 
k=O 

(28) 

is convergent in a neighbourhood 0/ the point a. Its radius 0/ convergence is equal 
at least to the smaller 0/ the radii 0/ convergence 0/ the series (22). (In particular, 
i/ P1 and P2 are polynomials, the radius 0/ convergence is infinite.) 

REMARK 6. By this procedure, we obtain the first solution of equation (21), 

00 

Y1 = (x - a)lll L Ck(X - a)k. 
k=O 

(29) 

(121 need not, of course, be a natural number. Therefore (29) need not be defined 
in the whole neighbourhood of the point a. More precisely, we should speak about 
an analytic element of the solution.) 

Example 4. For the Bessel equation of order ~, namely 

we have 

thus 

1 x 2 - .! 
y" + _y' + ___ 4 Y = 0, 

X x 2 

2 1 
P2(X) = x --, 

4 

aO = 1, a1 = a2 = a3 = ... = 0, 

ß1 = 0, ß2 = 1, ß3 = ß4 = ßs = ... = 0, 
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so that by (25) 

fo(e) = e(e - 1) + e - t = e2 - t, 
h (e) == 0, !2(e) == 1, h(e) == 0, f4(e) == 0, ... 

The fundamental equation 
2 1 e -4=0 

has the solutions el = !, e2 = -!. For el = ! we have, according to (24), 

Cl [U + 1) 2 - t] + 0 = 0, 

C2 [(! +2)2 - t] +O+co = 0, (30) 

C3 [U + 3) 2 - t] + 0 + Cl + 0 = 0, 

If we choose Co = J(2/'It), we have 

1/2V( 2) ( 1 2 1 4 ) Yl = X - 1 - -x + -x -'It 6 120 .... 

By constructing a recurrence formula for the coefficients, 

-C2k 
C2k+2 = -(-I--......::cc:"")n2--I ' 

2" + 2k + 2 -"4 
C2k+l =0 (k=0,1,2, ... ) 

on the basis of (30), we would obtain the result (see Remark 16.4.5) 

YI =J (:x) sinx. 

REMARK 7. If el - e2 IS not an integer, we try to find a second solution of 
equation (21) in the form 

<Xl 

Y2 = (x - a)U2 L dk(x - a)k. (31) 
k=O 

For the coefficients dk, we get the same system (24) as for the Ck but, naturally, 
e must be given the value e2. If we choose do arbitrarily (do 1= 0), then all other dk 
are uniquely determined (because fo(e2 + 1) 1= 0, fO(e2 + 2) 1= 0, etc.). Theorem 5 
holds true for the series thus obtained. Moreover, the following theorem is true: 
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Theorem 6. The functions (29) and (31) constitute a fundamental system (Defi­
nition 17.11.2) of the equation (21). 

REMARK 8. If {!1 - (!2 is an integer, we cannot use the above procedure because 
we find that, for some m, fO({!2 + m) = O. We can, of course, use the formula 

J 1 - J Pl/(x-a}dx d 
Y2 = Yl 2" e x 

Y1 
(32) 

(see (17.8.18)). Since, however, we know the solution Yl in a form of an infinite 
series, it is often more convenient to use the following theorem: 

Theorem 7. Let {!1 - {!2 be an integer and let Y1 be given by equation (29). Then 
a second solution, completing the fundamental system, is of the form 

00 00 

Y2 = (x - a)/l . A ln(x - a) L Ck(X - a)k + (x - a)/l2 L T'k(X - a)k. (33) 
k=O k=O 

The radius of convergence of both infinite series is at least equal to the sm aller of 

the radii of convergence of the series (22). 

REMARK 9. In (33), Ck is known (see (28)). We get the conditions for the 
unknown constants A, ~Ik by substituting (33) into (21). If {!1 - {!2 is not an integer, 
the first term in (33) vanishes (A = 0). If {!1 - {!2 is an integer, then, in general, 
A =/; 0 although in exceptional cases we may have A = O. This happens, for instance, 
if 0:1 = ßl = ß2 = 0, which occurs quite frequently in practiCe. If {!1 = {!2, however, 
then invariably A =/; O. 

SOME SPECIAL EQUATIONS WITH VARIABLE COEFFICIENTS 

1. The Bessel equation (see also § 17.21, equation 117 and others): 

(34) 

A solution (for any x and any real v) is: 

00 (_I)k (X)V+2k 
Jv(X)=Lk!r(v+k+l) "2 

k=O 
(35) 

(the Bessel function of the first kind of order v). If v is a negative integer, (35) still 
has a meaning if we define 

1 
r(t) = 0 for t = 0, -1, -2, ... 
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(r(t) is the gamma function, see Definition 13.11.1). 

REMARK 10. For a more detailed treatment see § 16.4. 

REMARK 11. We get the series (35) by using the method explained above (cal­
culating Ck from (24), see also Example 4). In Example 4 we had f!l - f!2 = 1, thus 
fO(f!2 + 1) = O. When solving the system (30) for f!2 = -1, this gives the possibil­
ity of a free choice of Cl. If we choose Cl = 0 (then all other Ck will equal zero for 
odd k), we get a result identical with (35). Similarly, for f!2 = -~, f!2 = -i, etc., 
we choose all odd coefficients equal to zero. 

Theorem 8. If v is not an integer (even if f!l - f!2 = 1, ete.), then 

Yl(X) = Jv(x) and Y2(X) = J-v(x) (36) 

form a fundamental system of solutions of equation (34). 

REMARK 12. If v = n is an integer, then (36) is not a fundamental system 
because (cf. (16.4.2)) J-n(x) = (_1)n Jn(x). Let n > 0 be an integer. If we 
determine Yl (x) = J n (x), then we get the second solution of the fundamental 
system by applying (33), 

Y2(X) = Y n(x) = ~ Jn(x) (ln ~ + c) -
_ ~ (=:)-n ~ (n - k -I)! (=:)2k _ 

'1t 2 ~ k! 2 
k=O 

1 x n 00 ( -1) k x 2k [k 1 k+n 1] 

-;(2) ~k!(n+k)!(2) ~l+~l' (37) 

where 
c = 0·5772156649 

is the Euler constant. Here, we put, for k = 0, 

k 1 k+n 1 1 
L l + L l = 1 + ... +;. 
1=1 1=1 

For n = 0, we have 

2 (X ) 2 00 (_I)k (X)2k k 1 
Yo(x) = - Jo(x) In - + C - - ,,-- - ,,-

'1t 2 '1t ~ (k!)2 2 ~ l' 
k=l 1=1 

Y n (x) is the so-called Bessel function of the seeond kind. 
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II. The Gauss (or hyper geometrie) equation (see also § 17.21, equation 140 and 

further) 
x(l - x)y" + b - (0: + ß + l)x]y' - o:ßy = 0 

has if, is not an integer and if xE (0, 1) the general integral 

where 
F( ß )-1 o:ß 0:(0:+1)ß(ß+1) 2 

0:, ",x - + 1.,x+ 1.2.,(,+1) x + 

0:(0: + 1)(0: + 2)ß(ß + l)(ß + 2) 3 
+ ()() x + ... 1.2.3.,,+1 ,+2 

is the so-called hypergeometrie series. 

(38) 

(40) 

III. The Legendre differential equation (see also § 17.21, equation 129 and further) 

(1 - x 2 )y" - 2xy' + n(n + l)y = 0 (41) 

(n is a non-negative integer) arises from the hypergeometrie equation (0: = -n, 
ß = n + 1, , = 1) by the substitution x = t(l - z). The function (40) then 
becomes 

( 1- x) 1 dn 2 n F -n n+1 1 -- =P (x)=--(x -1) , "2 n 2nn! dxn (42) 

(which is known as the Legendre polynomial 01 degree n). 

IV. The Laguerre differential equation 

xy" + (1 - x )y' + ny = 0 

(n being a non-negative integer) has a solution 

dn 

Ln(x) = eX dxn (xn e- X ) 

(the Laguerre polynomial 01 degree n). 

V. The Hermite differential equation 

y" - 2xy' + 2ny = 0 

(n being a non-negative integer) has a solution 
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(the Hermite polynomial of degree n). 

For more details on Bessel functions, Legendre polynomials, etc., see Chap. 16. 

17.16. Discontinuous Solutions of Linear Equations 

In applications, we encounter cases where the integral of a given equation or 
its derivative has a prescribed "jump" at various points. (For example, we co me 
ac ross this situation when finding the elastic deflection of a bar which is supporting 
concentrated loads, etc.) 

Definition 1. We say that f (x) is piecewise n times smooth in [a, b] if a finite 
number of points 

a = Xo < Xl < X2 < ... < Xm < Xm+l = b 

exist so that in any interval (Xk, Xk+d (k = 0,1,2, ... , m) f(x) and its derivatives 
up to the n-th order inclusive are continuous and have finite limits from the right 
and from the left at the points Xo, Xl, X2, ... , Xm+l (at the point Xo = a from the 
right and at the point Xm+l = b from the left). 

REMARK 1. The difference of these limits is called the jump of the function f (x), 
or of its derivative f(i)(x) at the point Xk (k = 1, 2, ... , m), and is denoted by 
k So, or k Si, respectively. Thus 

(1) 

(We consider the function f(x) itself as its zero-th derivative.) 

REMARK 2. If, in Definition 1, n = 0, then f(x) is called a piecewise continuous 
function in [a, b]. 

REMARK 3. Let an equation of the form 

(2) 

be given, where aj (x), f (x) are continuous functions (in the domain considered); 
let us denote by 

(3) 

the normal (standard) fundamental system of the corresponding homogeneous equa­
tion at the point Xk, i.e. the fundamental system, for which 

kYO(Xk) = 1, kYI(Xk) = 0, kY2 (Xk) = 0, ... , kYn_I(Xk) = 0, 
kYb(Xk) = 0, kY~(Xk) = 1, kY~(Xk) = 0, ... , kY~_I(Xk) = 0, 
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(cf. Definition 17.11.3). 

Let us define the function kyi(x) such that 

for 
for 

17.16 

(4) 

Theorem 1. Let y(x) be piecewise n-times smooth in the interval [a, b]. Further, 

in each of intervals (Xk, Xk+1) (k = 0, 1,2, ... , m, cf. Definition 1) let it satisfy 

equation (2) and at the points Xk (k = 1, 2, ... , m) let y(x) and its derivatives 

have prescribed jumps kSi (see (1)). Then y(x) is of the form 

m m rn 

k=l k=l k=l 

where YP is a particular solution of equation (2), Y1, Y2, ... , Yn is the fundamen­
tal system of the corresponding homogeneous equation and k Si, kYi are defined by 

equations (1), (4). 

Example 1. Let us find the solution of the equation 

y" + y = 3x (6) 

with initial conditions 
y(l) = 1, y'(l) = -1 (7) 

such that at the point Xl = 2, Y (x) has the jump 1 So = -1 and y' (x) has the jump 
1 Sl = l. 

In this case we thus have m = l. 

The function YP = 3x is obviously a particular solution of equation (6), while the 
general integral of the corresponding homogeneous equation may with advantage 
be written, in view of the condition (7), in the form 

Cl cos(x - 1) + c2 sin(x - 1). 

The normal fundamental system with respect to the point Xl = 2 may be written 
in the form 

1yO (X) = cos(x - 2), 1y1 (X) = sin(x - 2). 

Thus 
1y,() {O, 

o x = cos(x _ 2), Y x = 1 {O for 
1() sin(x - 2) for 

x< 2, 
x ~ 2. 
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Applying (5), the solution will be 

y = 3x + Cl cos(x - 1) + C2 sin(x - 1), for x< 2, (8) 

y = 3x + Cl cos(x - 1) + C2 sin(x - 1) - cos(x - 2) + sin(x - 2) for x ~ 2. 

From (8) and (7) it easily follows that Cl = -2, C2 = -4, thus giving the required 
solution. 

REMARK 4. In applications we often come across cases where discontinuities 
occur not in the required solution, but in the coeflicients of the given equation: 

Theorem 2. In equation (2) let the functions aj(x), f(x) be piecewise contin­
uous in the interval [a, bJ. Let us denote the points of discontinuity by Xk (k = 
= 1, 2, ... , m).( With the exception of these points all the functions aj(x), f(x) 
are then continuous in [a, bJ. ) If we prescribe at a point c E [a, bJ (c ~ Xk) initial 
conditions for y(i)(x) (i = 0, 1, ... , n - 1), then one and only one solution of 
equation (2) exists in [a, bJ that has n - 1 continuous derivatives and a piecewise 
continuous n-th derivative in [a, bJ with points of discontinuity at Xk and which at 
the same time satisfies the prescribed initial conditions. 

REMARK 5. The procedure of finding the solution may be seen from an example: 

Example 2. Let the equation 

y" + ay = 0 (9) 

be given, where a = 1 for x ~ 0, a = 4 for x > O. Let us find a solution which 
satisfies the following initial conditions: 

(10) 

For x ~ 0, the general integral of equation (9) is 

y = Cl COSX + C2 sinx. 

From conditions (10) we get 

y = cosx (x ~ 0). (11) 

Thus 
y(O) = 1, y'(O) = O. (12) 

For x > 0 the general integral of equation (9) is 

y = kl cos2x + k2 sin2x. (13) 
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Since we are trying to find the solution of equation (9) which is continuous, 
together with its first derivative, in the interval (-00, 00) (we note that, in the 
notation of Theorem 2, n = 2 and the interval may be taken as infinite), the 
function (13) must satisfy conditions (12) for x = O. We easily find that 

Y = cos2x (x> 0). (14) 

By (11) and (14), the solution is defined in the whole interval (-00,00). At the 
point x = 0 the second derivative has a jump equal to -3. 

17.17. Boundary Value Problems. Eigenvalue Problems. 
Expansion Theorem. Green's Function 

INTRODUCTORY REMARK. It is weIl known that for the problem 

y" + >'Y = 0, y(O) = 0, y(l) = 0 

there exist certain values of >. (>'1 = 1t2, >'2 = 41t2, >'3 = 91t2, ... ), the so­
-called eigenvalues of this problem, for which the given problem has non-zero solu­
tions (Y1 = sin 1tX, Y2 = sin 21tx, Y3 = sin 31tx, ... ), the so-called eigenfunctions of 
this problem (besides the identically zero solution Y = 0 which exists for all values 
of >'). Any function f(x), which has a continuous derivative in the interval [0, 11 
and fulfils the conditions f(O) = f(l) = 0 can be expanded in an absolutely and 
uniformly convergent Fourier series with respect to these eigenfunctions. 

In this paragraph similar questions are treated for more general problems which 
are important for applications (stability problems for stressed bars, solution of par­
tial differential equations by Fourier's method, etc.). A sufficiently general theory 
of eigenvalue problems can be developed in Sobolev spaces. The reader who is in­
terested in that theory, based on some results of functional analysis, is referred to 
Chap. 22 of this book (§ 22.6) and, in particular, to the book [3891. Here, we are 
going to follow the classical "Collatz theory" ([88]), based on the application of the 
Green function and giving, for the case of ordinary differential equations, relatively 
very natural results. 

Notation: We shall write the linear equation 

fn(x)y(n) + fn_1(X)y(n-1) + ... + h(x)y' + fo(x)y = f(x) (1) 

briefly in the form 
L(y) = f(x). (2) 

L is thus a linear differential operator of the n-th order. Whenever we shall write 
L(u), we shall automatically assurne that u(x) has (in the domain considered, often 
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in some interval I) n continuous derivatives. The functions /k (x) are assumed to be 
(real) continuous functions in the domain considered, and f n (x) =I- O. If necessary, 
we shall assurne that these functions have continuous derivatives of the required 
order. 

Definition 1. The differential expression 

K(y) == (-lt[Jn(x)yj(n) + (-lt-1[Jn_l(X)yj(n-l) + ... 

... + [h(X)yj" - [ft(x)yj' + fo(x)y (3) 

is called the adjoint expression to the expression L(y). The equation K(y) = 0 is 
called the adjoint equation to the equation L(y) = 0, and K is called the adjoint 
(or rather formaly adjoint) differential operator to the operator L. 

Theorem 1. A necessary and sufficient condition for the expression u(x)L(y) to 

be a complete derivative of a differential expression V(y) of the (n -1) -th order (i. e. 

that uL(y) = dV(y)jdx for an arbitrary choice of a sufficiently smooth function 
y (x)) is that u( x) should be a solution 0 f the adjoint equation K ( u) = O. 

Definition 2. If L(y) = K(y) for each n-times differentiable function y(x), the 
expression L(y) (and the differential operator L) is called self-adjoint. 

Example 1. 

L(y) = h(X)Y" + ft(x)y' + fo(x)y. 

Then 

K(y) = (hy)" - (flY)' + foY = hY" + (2f~ - ft)y' + (f~' - f{ + fo)Y· 

If (and only if) ft = f~, i.e. if 

L(y) = (f2Y')' + foY, 

then L is a self-adjoint differential operator. So any self-adjoint expression of the 
second order can be put into the form 

L(y) = (P(x)y'j' + q(x)y. (4) 

REMARK 1. In applications, self-adjoint expressions of the 2n-th order 

n 

L(y) = l:( _l)k[/k(x)y(k)j(k) = (-lt[fn(x)y(n)j(n)+ 

k=O 

+(_l)n-l[Jn_l(X)y(n-l)j(n-l) + ... + fo(x)y 
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play an important role. 

Let an equation of the form 

M(y) - >.N(y) = f(x) (5) 

be given, where M(y), N(y) are self-adjoint expressions of the 2m-th and 2n-th 
order, respectively, 

m n 

M(y) = I)-l)k[h(x)y(k)](k), N(y) = 2)-1)k[gk(x)y(k)](k), m > n. (6) 
k=O k=O 

In the interval [a, b] let the (real) functions h(x), gk(X) have k continuous deriva­
tives (for k = 0 this means the continuity of the functions fo, go themselves), 
fm(x) i= 0, gn(x) i= 0 in [a, b], and f(x) be continuous in [a, b]. In addition, let 2m 
linear homogeneous boundary conditions of the form 

+ (2m-I) ( ) + ß (2m-I) (b) 0 ... G.i,2m-IY a i,2m-IY = , i = 1, 2, ... ,2m, (7) 

be prescribed, where 0iO, ßiO, ... are real constants, not simultaneously equal to zero 
in anyone ofthe equations (7). Conditions (7) (ofwhich there are 2m) are supposed 
to be linearly independent (roughly speaking, none of them is a consequence of the 
others). 

Definition 3. Let the (real) number >. in (5) be given. The problem of finding a 
solution y(x) of equation (5) (with 2m continuous derivatives in [a, bJ) satisfying 
conditions (7), is called a boundary value problem for equation (5). 

REMARK 2. According to our assumptions, the operator M is of a higher order 
than the operator N. Often N(y) = go(x)y, i.e. n = o. 

REMARK 3. The number of boundary conditions (7) is equal to the order of the 
differential equation (5), Le. equal to 2m. Derivatives up to the (2m - l)-th order 
of the required solution can occur in (7). 

REMARK 4. Boundary value problems for linear ordinary differential equations 
can be defined more generally. We do not, however, do this, because our definition 
involves practically all boundary value problems occurring in applications. 

REMARK 5. If f(x) == 0 in (5), i.e. if this equation is of the form 

M(y) - >.N(y) = 0, (8) 

the problem (5), (7), i.e. the problem (8), (7), is called homogeneous. For an 
arbitrary >., this problem has obviously a solution y(x) == O. This solution is, 
naturally, of no interest. Thus it is excluded from our considerations in what follows. 
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Definition 4. Such a A, for which the problem (8), (7) has, a non-zero solution 
y(x) =1= 0, is called an eigenvalue (or a characteristic value, or proper value) of this 
problem. The corresponding non-zero solution (i.e. not identically equal to zero), is 
called an eigenfunction (a characteristic function, a proper function) corresponding 
to that eigenvalue A. 

The problem (8), (7) (or in more details, the problem of finding all eigenvalues 
and eigenfunctions of (8), (7)) is called an eigenvalue problem. 

REMARK 6. It follows from homogeneity of the problem (8), (7) that if y(x) is an 
eigenfunction corresponding to an eigenvalue A, then cy(x), with arbitrary c ~ 0, 
is also an eigenfunction, corresponding to the same A. 

Example 2. An example of an eigenvalue problem, according to our definition, is 
the following: 

ay" - Ay = 0 (a a non-zero constant), 

y(O) = 0, y'(I) - 2y(l) = O. 

(9) 

(10) 

M(y) = ay" is a self-adjoint expression of the se co nd order, because M(y) = (ay')'; 
N(y) = y. Conditions (10) are linear and homogeneous (they are obviously satisfied 
for y == 0) and contain no derivative of a higher order than of the first. 

Now suppose that ais not a constant, but a = a(x) =1= const.; then M(y) = a(x)y" 
is not a self-adjoint expression. If, however, a(x) =1= 0 in [0, 1], we can divide 
equation (9) by this function and change it to the form 

" \ Y 0 y - A a(x) = . (11) 

Here M(y) = y" = (y')' is a self-adjoint expression, while 

1 
N(y) = a(x)Y = b(x)y 

is also a self-adjoint expression. From this example it can be seen that a simple 
rearrangement of the given equation may be all that is needed to put it into the 
form (8). 

Example 3. The eigenfunctions of the problem 

-y" - Ay = 0, y(O) = 0, y('K) = 0 (12) 

are the functions y = sin px, while the corresponding eigenvalues are A = p2, where 
p ranges over all positive integers. 

In applications, we encounter, most often, the so-called symmetrie and positive 
problems. Let us introduce corresponding definitions: 
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Definition 5. The (real) function y(x) is called a comparison funetion (or a test 
function or a trial funetion) of the eigenvalue problem (8), (7), if it has 2m contin­
uous derivatives in [a, bJ and satisfies the boundary conditions (7). 

REMARK 7. A comparison function need not be a solution of the differential 
equation (8). For example, the function y = x(1r - x) is a comparison function of 
the problem (12), but obviously it is not an eigenfunction of that problem for any 
>.. Evidently, any eigenfunction is also a comparison function. 

Definition 6. The eigenvalue problem (8), (7) is called symmetrie, if for any 
eomparison functions u(x), v(x) the relations 

1b [uM(v) - vM(u)] dx = 0, 1b 
[uN(v) - vN(u)] dx = 0 (13) 

hold. 

Definition 7. The eigenvalue problem is called positive if for any non-zero com­
parison function the relations 

1b 
uM(u) dx > 0, 1b 

uN(u) dx > 0 (14) 

hold. 

Example 4. The problem 

_y" - >.e(x)y = 0 (e(x) > 0 in [a, bj), (15) 

y(a) = 0, y(b) = 0 (16) 

is (as we shall show) symmetrie and positive. We have 

M(y) = _y", N(y) = c(x)y. 

Then, integrating by parts and using the fact that any comparison function satisfies 
conditions (16), we have 

1b 
uM(v) dx = -lb 

uv" dx = -[uv'J~ + 1b 
u'v' dx = 1b 

u'v' dx. (17) 

If we change the roles of u and v, we get similarly 

(b b 
Ja vM(u) dx = -1 u'v' dx, thus 1b [uM(v) - vM(u)] dx = o. 
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Moreover 

lb 
u. cvdx = l b 

v. cudx, thus lb 
[uN(v) - vN(u)] dx = O. (18) 

The problem is thus symmetrie. Further (see (17» 

lb 
uM(u)dx = lb 

u,2dx, lb 
uN(u)dx = lb 

cu2dx, 

thus (sinee we are given that c(x) > 0) for any non-zero eomparison function u(x), 
(14) is satisfied. The problem is thus positive. 

REMARK 8. Similarly the so-ealled Sturm-Liouville problem 

-(py')' + qy - )..ry = 0, y(a) = 0, y(b) = 0 

ean be shown to be symmetrie and positive provided that, in [a, bj, p(x) > 0, 

r(x) > 0, q(x) ;?; o. 

Example 5. In the same way as in Example 4 the problem 

-y" -)..y = 0, y'(a) = 0, y'(b) = 0 

ean be shown to be symmetrie. It is not, however, positive beeause, for example, 
for every eomparison function u(x) = eonst. "# 0 we have 

lb 
uM(u) dx = O. 

REMARK 9. From Example 4 it ean be seen that by using the method of integra­
tion by parts we ean often deeide easily whether a given problem is symmetrie and 
positive or not. In other eases, we ean make use of the so-ealled Green's formula 
(Dirichlei 's formula) 

lb
[UM(V) - vM(u)j dx = 

m k-l b 

= [L: L:( _l)k+l {u(l) [ikv(k)j(k-l-l) - v(l) [JkU(k)j(k-l-l)} L, (19) 
k=l 1=0 

where as usual [Fj~ denotes F(b) - F(a). For a given k, it is neeessary for 1 in the 
sum to range through all the integers from 0 to k - 1. If k = 1, only one value of 
1, 1 = 0, is eoneerned. 
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A similar formula holds for the operator N (instead of ik, or m, we have here gk, 
or n, respeetively). Obviously, the eigenvalue problem is symmetrie if and only if 
the boundary eonditions are such that the right-hand side of (19) is equal to zero 
for every eomparison function, for both the operators M and N. 

REMARK 10. We very often meet such problems where the self-adjoint operator 
N has only one term, 

(20) 

and the boundary conditions are such that for every two eomparison functions u, 
v the relation l b 

uN(v) dx = l b 
gnu(n)v(n) dx (21) 

holds. Then the eigenvalue problem is ealled regular. (The terminology is not 
uniform in the literature. ) An example of this is the case where the operator N is 
of zero order, i.e. 

N(y) = go(x)y 

(see Example 4). In this very simple case, (21) is obviously satisfied, the boundary 
conditions being arbitrary. 

Theorem 2. If the eigenvalue problem is symmetrie, then the eigenfunctions 
Ys(x), Yt(x), eorresponding to different eigenvalues As, At are orthogonal in the 
so-ealled generalized sense, i.e. 

(22) 

REMARK 11. In the special ease where N(y) = go(x)y, equation (22) gives or­
thogonality with a weight function go(x) (Definition 16.2.5), i.e. 

lb 
goYsYt dx = O. 

Theorem 3. If the eigenvalue problem is positive, then it ean have only positive 
eigenvalues. 

Theorem 4 (Solvability of the problem (8), (7)). If the eigenvalue problem is sym­
metrie and positive, then there exists a eountable set of positive mutually different 
eigenvalues of this problem (see also Theorem 5 below). 

REMARK 12. To every eigenvalue A, there corresponds in this ease either one or, 
in general, a finite (not infinite) number p of linearly independent (Definition 12.8.3) 
eigenfunctions. We say then that A is a simple eigenvalue, or that its multiplicity is 
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p, respectively. (In almost aB technical problems A is simple, i.e. only one linearly 
independent eigenfunction corresponding to this A exists, all others being multiples 
of it.) Linearly independent eigenfunctions corresponding to a given A (for p > 1) 
can be orthogonalized in the generalized sense similarly as in Remark 16.2.15. Be­
cause, according to Theorem 2, the eigenfunctions corresponding to different Aare 
orthogonal in this sense, we can thus associate with the set of all eigenvalues A 
a system of linearly independent eigenfunctions mutually orthogonal in the sense 
(22). Let us number the eigenvalues according to their magnitude, 

(23) 

and at the same time in such a way that the correspondence between the orthogonal 
system of eigenfunctions and the system of corresponding eigenvalues be one-to-one. 
Thus, every eigenvalue A will occur in the system (23) the same number of times as 
the number of functions of the orthogonal system corresponding to it. If, e.g., three 
functions of the orthogonal system correspond to the smallest eigenvalue, then in 
(23) three numbers Al = A2 = A3 will correspond to them; if to a furt her number 
A two functions of the orthogonal system correspond, then in (23) two numbers 
A4 = A5 will correspond to them, etc. For this reason it was neeessary to allow the 
possibility of equalities in the ordering (23). 

A typical example of a symmetrie positive problem is the problem (12). In this 
ease we have 

Every eigenvalue is simple here. The system of eigenfunctions is the system 

Yl = sin x, Y2 = sin 2x, Y3 = sin 3x, Y4 = sin 4x, .... 

These functions are orthogonal in the interval [0, 'Ir] in the usual sense, i.e. with the 
weight function 1. 

Theorem 5. Let the eigenvalue problem be symmetrie and positive. Then 

1. 

An -7 +00 for n -7 00; 

the point +00 is the only point of aeeumulation of the sequenee An. 

11. Let us define the so-ealled Rayleigh quotient R( u) by the relation 

( ) _J:UM(u)dx 
Ru - b . 

Ja uN(u) dx 
(24) 
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Then 
Al = minR(u), 

if u(x) runs through all eomparison functions of the given problem. 

III. More generally: 
Ak+l = minR(u), 

where u(x) runs through those eomparison functions whieh are orthogonal in the 
generalized sense to the first k eigenfunctions rpl (x), ... , rpk (x), i. e. for whieh 

lb 
uN(rpddx = 0 (i = 1,2, ... , k). (25) 

REMARK 13. It can be shown that R( u) assumes the minimal value Al exactly for 
the eigenfunction rpl (x) corresponding to Al. Ifwe consider an arbitrary comparison 
function u(x), which is not an eigenfunction, then R(u) > Al. Thus, R(u) gives an 
estimate of Al from above. 

Considering, for example, the problem (12), we have M(u) = -u", N(u) = u. 
Let us consider the comparison function u = x(1I" - x). According to (24) we get 

which is a good estimate of the first eigenvalue Al = 1 "from above". 

REMARK 14. Part II ofTheorem 5 provides the possibility of applying variational 
methods for finding Al or rpl(X), respectively. This is true for part III, as weH. See 
Chaps. 24 and 25. 

The application of variation al methods in part III is more difficult, on account 
of condition (25). The foHowing theorem is then often useful: 

Theorem 6 (Courant's Maximum - Minimum Prineiple). Let the eigenvalue prob­
lem be symmetrie and positive. Let WI(X), ... , Wk(X) be an arbitrary system of 
linearly independent integrable funetions. Let us denote by m( WI, ... , Wk) the min­
imum (or infimum) 0/ the Rayleigh quotient, if u( x) runs through all eomparison 
funetions whieh are orthogonal to all functions Wi(X), i.e. for whieh 

l b 
U(X)Wi(X) dx = 0, i = 1, 2, ... , k. 

Then Ak+l is equal to the maximum of m(wI, ... , Wk) if all systems of (linearly 
independent and integrable) functions Wi(X) are eonsidered. 
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Theorem 7 (Comparison Theorem). Let us consider two symmetric positive eigen­
value problems 

(26) 

with the same boundary conditions. For any comparison function u(x) let the rela­
tions 

(27) 

be satisfied. Then (supposing the eigenvalues of both problems to be arranged ac­
cording to their magnitude, see Remark 12) we have 

Ak ~ A~ (k = 1, 2, 3, ... ). 

Example 6. If, for example, in the problems 

the relations 

-(PlY')' + qlY - )..rlY = 0, 

y(a) = 0, 

are satisfied in [a, b], then 

-(P2Y')' + q2Y - )..*r2Y = 0, 

y(b) = ° 

(28) 

REMARK 15. While the Rayleigh quotient provides a simple possibility how to 
obtain an upper estimate for the first eigenvalue )..1 (Remark 13), in applications (in 
stability problems, etc.) it is usually of more interest how to get a lower estimate. 
For this aim, Theorem 7 can be applied. However, in this way we get a rather rough 
estimate, as a rule. A relatively fine two-sided estimate (i.e., both from above and 
from below) can be obtained on base of the following theorem: 

Theorem 8 (Method of the Schwarz Quotients). Let the eigenvalue problem (8), 
(7) be symmetric and positive. Let Fo(x), Fl (x) be two comparison functions (Def­
inition 5) such that 

M(Fl ) = N(Fo). 

Let us construct the so-called Schwarz constants 



88 SURVEY OF APPLICABLE MATHEMATICS 17.17 

and Schwarz quotients 

Let the first eigenvalue Al be simple and let h be such a lower estimate 0/ the second 
eigenvalue A2 that l2 > "'2. Then we have 

REMARK 16. A lower estimate l2 of the seeond eigenvalue A2 (does not matter 
when rat her rough) ean be found using Theorem 7 (see the following example). Let 
us note that the requirement on the functions Fo, F1 to be eomparison functions 
(thus to fulfill all the boundary eonditions) ean be essentially weakened. An exact 
formulation of assumptions (including the ease of partial differential equations) ean 
be found, e.g. in [389]. In partieular, if the operator N is of order zero, then Fo 
need satisfy no bounel 'l.ry eonditions, what is very eonvenient from the numerical 
point of view. 

Example 7. We have to find a twosided estimate of the first eigenvalue of the 
following (obviously symmetrie and positive) problem: 

-y" - A Y = 0, y(-l) = 0, y(l) = O. 
E(l - 0·41x1)2 

(This problem arises when eonsidering, e.g., buekling stress of a bar with a variable 
eross-seetionj E is then the modulus of elastieity.) Here 

M(y) = -y", Y 
N(y) = E(l _ 0.4IxI)2· 

The function F1 , being a eomparison funetion, has to satisfy 

while Fo need not satisfy any eonditions, beeause the operator N is of order zero 
(see the preeeding remark). It is thus not neeessary to solve the boundary value 
problem 

M(Fd = N(Fo) 

with the eomparison function Fo chosen before, but it is suffieient to ehoose, for 
the function F1 , merely the function 
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(which satisfies the given boundary conditions) and to determine Fo in order to 
satisfy 

11 Fo 
-F1 = E(1 - 0·4IxI)2' 

i.e. 
Fo(x) = 2E(1- 0·4Ixl)2. 

According to the preceding theorem we then compute the Schwarz constants 

r1 2 2E(1 - 0·41x1)2 
ao = i-1 2E(1 - 0·41xl) . E(1 _ 0.41x1F dx = 5·227E, 

11 1- x 2 

a1 = 2E(1 - 0.41x1)2 . E( I 1)2 dx = 2·667, 
-1 1- 0·4 x 

r1 2 1 - x2 1·437 
a2 = i-1 (1- x ). E(1- 0.41x1F dx = ~ 

and the Schwarz quotients 

K1 = 1·960E, K2 = 1·856E. 

To obtain h, let us compare the given problem with the problem 

-y" - 0~:2' y( -1) = 0, y(1) = 0 

that has - according to Theorem 7 - smaller eigenvalues and where the equation 
considered has constant coefficients, so that we easily find its second eigenvalue to 
be 1\"2 E . 0.62 = 3·560E. We thus can choose 

l2 = 3·560E, 

because obviously we have l2 > K2 at the same time, as required in Theorem 8. So 
we come to the two-sided estimate for )'1, 

1.856E _ 1·960E - 1·856E ::;;), ::;; 1.856E 
3·560E _ 1 - 1 - , 
1·856E 

i.e. 

1·743E ~ ),1 ~ 1·856E. 

This is a quite satisfactory estimate for practical use. 

Let us note, finally, that the method of the Schwarz quotients has been excellently 
worked out and adapted for applications by L. Collatz in [88], and then extensively 
developed by his school (J. Albrecht, F. Goerisch and others). 
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Theorem 9. Let a symmetrie positive eigenvalue problem (8), (7) be given. Let 
the system of orthogonal eigenfunctions cpi(X) (Remark 12) be normalized in the 

generalized sense, i.e. let 

(29) 

Let u( x) be an arbitrary eomparison function and let the numbers 

(30) 

be its so-ealled generalized Fourier eoeffieients. Then the series 

00 

(31) 

as well as the series 

00 

L anCP~)(X), i = 1, 2, ... , m - 1, (32) 
n=l 

arising, subsequently, by differentiating (31) term-by-term, eonverge absolutely and 
uniformly in [a, b]. (On the number m see in (6).) 

REMARK 17. The sum of the se ries (31) need not be equal to the function u, 
in general. However, the equality holds, when the problem is a so-called closed 
problem. For details see e.g. the Kamke's paper in Math. Zeitschrift 1940, pp. 
275-280. In particular, if we have 

and if (for n ~ 1) among the given boundary conditions the conditions 

y(a) = y'(a) = '" = y(n-l)(a) = 0, y(b) = y'(b) = ... = y(n-l)(b) = ° 
occur (to which, in general, further conditions are to be added according to the 
degree of the operator M), then the sums of the se ries (31) and (32) are equal to 
the function u and to its derivatives u(i), i = 1, 2, ... , m - 1, respectively. 

The conditions of Theorem 8 can often be weakened. For example, when inves­
tigating the problem 

-(py')' + qy - Ary = 0, p(x) > 0, r(x) > 0, q(x) ~ 0, 

y(a) = 0, y(b) = 0, 
(33) 
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it is suflicient for the function u( x), which is to be developed into the Fourier series 
(31), to have only the first derivative continuous in [a, b] (and to fulfil the prescribed 
boundary conditions). Sometimes, it is possible to omit even the condition of 
satisfying the boundary conditions (what may be advantageous, because we often 
have to deal with the case where u( x) has a suflicient number of derivatives but 
does not satisfy the boundary conditions). If, for example, the condition y(a) = 0 
is replaced by the condition y'(a) = 0 in (33) and if u(x) does not satisfy this 
condition, then the corresponding series (31) can be shown to converge uniformly 
to u( x) in every interval [c, b] with a < c < b. 

On expansion theorems in suitable functional spaces see e.g. [389], Chap. 39. See 
also § 22.6 of this book. 

On solvability of the non-homogeneous problem (5), (7), thus of the equation 

M(y) - >.N(y) = f(x) (5) 

with boundary conditions (7), the following theorem is valid (for the operators M, 
N see (6), f(x) is assumed to be continuous in [a, b]): 

Theorem 10. Let>. in (5) be given. Then: 

(i) If that >. is no eigenvalue of the corresponding homogeneous problem (8), (7), 
then the given problem (5), (7) has exactly one solution for every right-hand side 
f(x). 

(ii) If>' is an eigenvalue of the corresponding problem (8), (7), then the problem 

(5), (7) is not solvable, in general. It is solvable (however not uniquely, in this case), 
if and only if the function f is orthogonal to every eigenfunction <p corresponding 
to that >., i. e. exactly if 

(34) 

holds for every such eigenfunction. 

Example 8. The problem 

-y" - y = sinx, y(O) = 0, y('Tr) = 0 

is not solvable. In accordance with the notation of Example 3 we have >. = 1 
here, so that (following the same example) >. is an eigenvalue of the corresponding 
homogeneous problem (12). Eigenfunctions, corresponding to that >. = 1, are of 
the form 

<p=csinx, c=lO. 

Now 

(f, <p) = 1'" sinx. csinxdx = c 17< sin2 xdx =I 0, 
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so that the condition (34) is not fulfilled. 

In this simple case (the given equation is an equation with constant coefficients), 
we can decide on solvability of the considered problem immediately, without apply­
ing Theorem 10: The general integral of the given equation is (cf. Example 17.14.3) 

y = ~xcosx + Cl COSX + C2 sinx. 

The condition y(O) = 0 yields Cl = 0, so that the condition y('1\") = 0 becomes 

~'1\"COS'1\" + C2 sin'1\" = o. 

However, COS'1\" =j:. 0, sin'1\" = 0, thus this condition cannot be fulfilled for any C2 • 

Consequently, the given problem is not solvable. 

On the other side, the problem 

-y" - y = cosx, y(O) = 0, y('1\") = 0 

is solvable, beeause the eondition (34) is fulfilled here: 

(I, cp) = Fr eosx. csinxdx = O. 
Jo 

Also this result ean be obtailled without applying Theorem 10: In the same way as 
above we come to the solution 

1. C. 
y = -2"xsmx + 2 slnx, with C2 arbitrary. 

Thus there are illfinitely many solutions in this case. 

The problem 

-1/' + 4x4 y = e"', y(1) = 0, y(2) = 0 

is ulliquely solvable. In the notation of Example 4 we have 

a = 1, b = 2, M(y) = -y", N(y) = x 4 y, >. = -4. 

However, the eorresponding homogeneous problem 

-y" - >.x4 y = 0, y(1) = 0, y(2) = 0 

is symmetrie and positive, so that it has only positive eigenvalues. Consequently, 
>. = -4 cannot be its eigenvalue. By Theorem 10, the given non-homogeneous 
problem is uniquely solvable for every right-hand side f(x), thus also for the right­
-hand side f(x) = e"'. 
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Here the application of Theorem 10 to answering the question on solvability has 
been very useful, because the given equation has not constant coefficients, and the 
construction of the general integral is not easy. 

REMARK 18. Results, presented in this section for symmetrie and positive prob­
lems, ean be derived with the help of the so-ealled Green funetion. This function 
ean as weH be applied to the solution of problems which need be neither symmetrie 
nor positive: 

Let us eonsider an equation of the form 

L(y) = f(x), (35) 

where 
k 

L(y) = LPi(X)y(i), 
i=O 

with pi(X) eontinuous, Pk(X) i- 0 in [a, b], with the boundary eonditions 

k-l 

L[luiy(i)(a) + lßiy(i) (b)] = 0 (I = 0,1, ... , k -1) (36) 
i=O 

(cf. (7), where k = 2m; in our ease k need not be an even number). 

Definition 8. The Green function G(x, e) of the problem (35), (36) is defined a& 

foHows: 

1. The function G(x, 0 is defined in a square a ~ x ~ b, a ~ e ~ b. With the 

b 

a ~---! 

i 

o a b X 

Fig. 17.5. 
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exception of points lying on the diagonal x = ~ (Fig. 17.5), the partial derivatives 

(i = 0,1,2, ... , k) 

are continuous functions of both variables (if i = 0 the continuity of the function 
G itself is to be understood), continuously extensible to the boundaries of both 
triangles into which the given square is divided by the diagonal x = ( 

2. For any fixed ~ E (a, b), G(x,~) satisfies, as a function of the variable x, the 
equation L(y) = 0 everywhere in [a, b) with the exception 0/ the point x = ~. 

3. G(x, 0 satisfies, as a function of the variable x, the boundary conditions (36) 
(for any ~ E (a, b)). 

4. G(x, ~), together with its derivatives with respect to x up to the (k - 2)-th 
order, is a continuous function of the variable x (~ being fixed). The derivative 
(with respect to x) of the (k - l)-th order has a jump l/pk(O at the point x = ~, 
l.e. 

f)k-1G f)k-1G 1 
lim f) k-l (x, 0 - lim f) k-l (x, 0 = -(t) 

x--+€+ x x--+€- x Pk <" 

(Pk (x) being the coefficient of the highest derivative y(k) in the operator L(y), 
Remark 18). 

REMARK 19. Construction 0/ the Green /unction: Let 

be the fundamental system (Definition 17.11.2) of the equation L(y) = 0, i.e. of the 
equation 

Pk(X)y(k) + Pk_l(X)y(k-l) + ... + po(x)y = O. (37) 

Let the Green function be assumed to have the form 

k 

G(x, ~) = 2)ai + bdYi(X) for x ~ ~, (38) 
i=l 

k 

G(x,O = :~:)ai - bi)Yi(X) for x ~ ~. (39) 
i=l 

For the unknown coefficients bi we get a system of equations 

k 

:LbiY?)(O=O for l=0,1, ... ,k-2, 
i=l (40) 

k 
~ (k-l) _ 1 
~biYi (0 - -~(t) 
i=l Pk <" 
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with a non-zero determinant; this system therefore has always a unique solution, 
bl = bl (0, b2 = b2 (0, ... , bk = bk (0· The unknown coefficients ai can then be 
found with thc help of the boundary conditions (36), where we substitute the values 
of the function G and of its derivatives at thc point a by means of (38) (because 
the form (38) holds true "on the left", i.e. for x ~ 0 and at the point b according 
to (39). If the conditions (36) are written briefly in the form 

then it is possible to show that the determinant of the system of equations for the 
evaluation of the coefficients ai is 

D= ( 41) 

Example 9. (See also Examples 10 and 11.) Let us consider a non-homogeneous 
problem 

_y" = x 2 , 

y(O) = 0, y(l) = o. 

(42) 

(43) 

Then L(y) = -y". As the fundamental system of equation L(y) = 0 (or -y" = 0) 
we may take the functions 

YI = x, Y2 = 1. 

Since P2 (x) == -1, equations (40) are of the form 

whence 
b - I 

I - 2' 

By virtue of (38), (39) we have 

G(x, ~) = (al + t)x + (a2 - H) for x ~ ~, 

G(x,~) = (al - t)x + (a2 + H) for x ~~, 

(44) 

(45) 

Substituting (44) into the first of equations (43) (we consider (44), because in the 
first of equation (43) only the "left" point x = 0 occurs), we get 

(46) 
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then substituting (45) into the second of equations (43) we get (now using (46» 

Thus 

G(x, e) = -ex + x for x ~ e, G(x, e) = -ex + e for x f; e. (47) 

Obviously 

(48) 

Theorem 11. If tor the problem (35), (36) the determinant (41) is different from 
zero, then there exists exactly one Green function, corresponding to the problem 
(35), (36). The (unique) solution of the problem is then given, for an arbitmry 
continuous right-hand side f (x) (it is sufficient if f (x) is piecewise continuous in 
[a, b]) by the equation 

y(x) = l b 
G(x, Of(e) deo (49) 

The vanishing of the determinant (41) is a necessary and sufficient condition for the 
corresponding homogeneous problem (i.e. for the problem (35), (36) with f(x) == 0) 
to have a non-zero solution. 

(In this second case the solution of the problem (35), (36) (if it exists) is not 
unique. For example, a solution of the problem 

y" + 7r2y = 7r2 (2x - 1), y(O) = 0, y(1) = 0 

is the function 
y = cos 7rX + 2x - 1, 

but the function 
y = COS 7rX + 2x - 1 + 5 sin 7rX 

is as weH a solution.) 

REMARK 20. The Green function is often called the inftuence function. The 
reason lies in its technical meaning. Let us consider, for example, a bar supported 
at both ends a, band loaded at the point x = e by a concentrated load of unit value. 
Then the Green function corresponding to this problem is equal to the deßection 
y(x), caused by this concentrated load. If, at this point, instead of a unit load a 
load f(e)6e is acting, the deßection will be equal to G(x, e)f(e)6e. If a continuous 
load is considered, the deßection will be 

y(x) = lb 
G(x, e)f(e) deo 
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This is a technical interpretation of equation (49) (in the general case the meaning 
is similar). 

Example 10. In the case of the problem (42), (43), D =I 0 (see (48)). According 
to Theorem 11, the solution y (x) is then given by equation (49), and is unique: 

y(x) = fo1 G(x, Oe d~ = fox (-~x + ~)e d~ + 1\ -~x + x)e d~ = 

x 5 x4 X X x 5 x4 x 4 X 

= -"4 + "4 - 4" + "3 + "4 - 3" = - 12 + 12· 

REMARK 21. Examples 9 and 10 are only illustrative. It is obvious that the 
problem (42), (43) could easily be solved without the constructionof the Green 
function. 

REMARK 22. Equation (35) often contains a parameter .A (cf. (5)). Then the 
Green function is a function of .A as weIl. (Here, the name Green's resolvent 
G(x, ~, .A) or simply resolvent is often used.) 

Example 11. Let us consider the equation 

L(y) = -y" -.Ay = 0 (.A > 0), (50) 

with the boundary conditions 

y(O) = 0, y(1) = O. (51) 

If we put .A = k 2 , k > 0, then the functions Y1 = sin kx, Y2 = cos kx form a 
fundamental system of the equation L(y) = 0, and using a procedure similar to 
that used in Example 9 we get 

( cos k~ sin k~ ) 
G(x,O = -k- - -k- cot k sin kx 

( cos kx sin kx ) 
G(x,~) = -k- - -k- cotk sink~ 

if x ~ ~, 

(52) 
if x ~ ~. 

The determinant (41) is equal to sin k in this case and is a function of .A. For 
.A = ')\2, 4')\2, 9')\2, . .. we have D = 0 and the problem 

-y" -.Ay = 0, y(O) = 0, y(1) = 0 

has a non-zero solution (see Theorem 11). 
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Theorem 12. I/ theoperator L is self-adjoint (see Definition 2) and the boundary 
eonditions are sueh that 

lb 
[uL(v) - vL(u)] dx = 0 

for any two eomparison functions u( x), v( x) (i. e. we have a symmetrie problem), 
then G(x, ~) is asymmetrie function of the variables x and ~, i.e. 

G(x, ~) = G(~, x). (53) 

REMARK 23. This implies: If the function G(x, ~) for x ~ ~ is known, we obtain 
G(x, ~) for x ~ ~ by writing ~ instead of x and x instead ~. 

The symmetry of the problems treated in Examples 9 and 11 may be easily 
verified. The corresponding Green functions, (47) and (52) respectively, are, in 
fact, symmetrie. 

REMARK 24. Applying Green function, solution of problems discussed in this 
paragraph can be transformed into solution of integral equations: 

Let us consider asymmetrie eigenvalue problem (see Definition 4) 

M(y) = >'N(y) 

with boundary conditions (7). First of all, let 

N(y) = go(x)y, go(x) > 0 In [a, b]. 

For the given operator M and the given boundary conditions let us construct the 
Green function G(x, ~). By virtue of Theorem 12, G(x,~) = G(~, x). Applying 
(49) (where we write >.go(x)y for f(x», we get, for the required function y(x), an 
integral equation 

(54) 

If we write now 

cp(x) = J[ go(x)]y(x), K(x, 0 = v'[ go(x)go(~)]G(x, ~), 

we get from (54) an integral equation with asymmetrie kernel 

(55) 
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If the problem is not homogeneous, but the equation is of the form 

M(y) = Ago(X)Y + g(x), 

we transform it into the corresponding non-homogeneous equation in the same way 
by writing Ago(X)Y + g(x) instead of f(x) in (49). By this procedure, it is possible, 
in this simple case, to transform the investigation of a boundary value problem into 
the study of an integral equation. 

The advantage of this procedure lies in the fact that it is often easy to construct 
the Green function corresponding to the operator Mitself (with the correspond­
ing boundary conditions). The analysis of the corresponding integral equation is 
then, as a rule, relatively easy because the theory of integral equations has been 
extensively developed. 

In the case where the problem is regular (Remark 10), it can similarly be trans­
formed into an equation of the form (55), where 

17.18. Systems of Ordinary DiJferential Equations 

Let us consider a system of differential equations 

F ( I (md I (m2) I (mk )) 0 
iX,Y1,Y1,···,Y1 ,Y2,Y2,···,Y2 ,···,Yk'Yk'···'Yk =, 

i = 1,2, ... , k, 

(1) 

for k unknown functions Y1 (x), Y2 (x), ... , Yk (x). Equations (1) contain the deriva­
tives of the required function Y1(X) up to the order m1 (although y~ml) does not 
necessarily occur in every equation), the derivatives of the function Y2(X) up to the 
order m2, etc. The greatest of the numbers mi is called the order of the given 
system. (In applications we frequently meet the case mentioned above, where the 
number of equations is equal to the number of unknown functions. In the gen­
eral case, however, the number of equations need not be equal to the number of 
unknown functions.) 

If the conditions of the theorem on implicit functions are satisfied, the system 
(1) can be solved with respect to the highest derivatives of the unknown functions 
and written in the so-called canonical form 

(md _ ( (ml-1) (m2-1) (mk-1)) 
Y1 - gl X, Y1 ... , Y1 , Y2, ... , Y2 , ... , Yk ... , Yk , 

(2) 
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Now, new unknown functions can be introduced by the relations 

I I 11 (mi-I) 
Yll = YI' YI2 = Yn = YI' ... , YI,ml-1 = YI 

and similarly 

_ I _ I _ 11 _ (m2-1) 
Y2I - Y2' Y22 - Y21 - Y2' ... , Y2,Tn2-I - Y2 , ... , 

so that we obtain ml + m2 + ... + mk equations of the form 

I 
YI = Yn, 

I 
Yn = Y12, 

Y~,TnI-1 = gl(X, Yl, Yn, ... , Yl,ffil-l, Y2, ... , Y2,Tn2-b ... , Yk···, Yk,Tnk-d, 
I 

Y2 = Y21, 

17.18 

(3) 

In this way, the system (2) has been transformed into the system (3) of the first 
order. These two systems are equivalent, i.e. every solution of the system (3) is a 
solution of the system (2) (with Yn = Y~, etc.), and vice versa. 

It is thus sufficient to investigate systems of the first order only, i.e. systems of 
the form 

Y~ = h(x, Yb Y2, ... , Yn), 

(4) 

Such systems of differential equations are often called normal. For the concept of a 
solution (integral) of the system (4) see Definition 17.2.4. On existence of a solution 
which fulfils prescribed initial conditions 

(5) 

see Theorem 17.2.1. In the sense of Remark 17.2.5 we often speak of an integral 
curve 0/ the system (4) passing through the (n + 1)-dimensional point P(a, b1 , 

b2 , •.. , bn ). 

Similarly as in the case of one differential equation (cf Definition 17.2.5), one often 
speaks (especially in technicalliterature) of a general integral of the system (4): Let 
Q be an (n + 1)-dimensional region constituted of such points P(a, bl , b2 , .•. , bn ) 

for which (i.e. for the initial conditions (5)) the system (4) has exactly one solution 
in the sense of Theorem 17.2.1. 
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Definition 1. U nder a general integral (general solution, general form of solution) 
of the system (4), with respect to the region Q, we und erstand such a system of 
functions 

Yn = gn(X, Cl, C2, ... , Cn) 

which contain, besides x, n parametres Cl, C2 , ••• , Cn and which constitute, as 
functions of x, a solution of the system (4) for arbitrarily chosen values of these 
parametres. At the same time, the parameters Cl. C2, ... , Cn are independent in 
the following sense: If an arbitrary point P E Q has been chosen, these parameters 
can uniquely be given such values that this solution fulfils conditions (5) given by 
the point P. 

This concept deserves aremark similar to Remark 17.2.14: In the case of non­
linear systems, this concept is not very fitting, because, generally speaking, not all 
solu t,ions of the system (4) are contained in the general integral (cf. the quoted 
remark 17.2.14; this is one of the reasons why this concept is often not introduced 
in the mathematicalliterature at all). Very natural is this concept in the case of 
linear systems (because of Theorem 3 below): 

Definition 2. The system 

y~ = al1(x)YI + a12(x)Y2 + ... + aln(x)Yn + h1(x), 

(6) 

y~ = anl(x)YI + an2(x)Y2 + ... + ann(x)Yn + hn{x) 

is called linear. If all functions hi(x) are identically zero, the system is called 
homogeneous; if they are not, then it is non-homogeneous. 

REMARK 1. In modern texts, the system (6) is written briefly in a vector (matrix) 
form in the following way (cf. § 17.2): 

y' = Ay+ h, 

where A is the square matrix formed by the coeflicients aik(x) ofthe system (6), y, 
y', h are vectors (one-column matrices) formed by the functions Yi(X), yHx), hi(X): 

[
al1(X), aI2(x), ... , aln{x)] 

A= ~~~~~~:.~~2.~~~'.::::.~~~~~~ , 
anl (x), an2{x), ... , ann{x) 

y= [ 
Yl(X) 1 Y2{X) 

. , 

Yn{x) 

[ 

y~ (x) 1 
' y~{x) 

y = . , 

y~(x) 

[ 
hl(X) 1 h2{x) 

h= . . 

hn(x) 
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The product Ay is the matrix product according to Definition 1.25.3. The system 
( 4) can also be written in the vector form 

y' = f(x, y), 

where 

[
h(X' Yl, Yz,···, Yn)] 

f(x, y) = ~~~~'. ~~: .~z.'.'.'.'.'. ~~! 
In(x, Yl, Yz, ... , Yn) 

If x is not explicitly contained in the functions h, ... , In (thus if (4) can be 
written in the form 

y' = f(y)), 

then the system (4) is called autonomous. An example of such a system is the 
system (6), provided all the coefficients aik and the members hi are constants. 

Theorem 1. Il all functions aik(x), hi(x) are continuous in an interval I, then 
corresponding to any a E land to n arbitrarily chosen numbers b1 , bz , ... , bn 
there exists precisely one solution of the system (6), defined in the whole interval 
I and satisfying the given initial conditions, i.e. there exists exactly one system of 
functions Yl(X), yz(x), ... , Yn(x) defined in the whole interval I, satisfying the 
system (6) in land the conditions 

Definition 3. Let a homogeneous system (6), i.e. the system 

y~ = all (X)Yl + a12(x)yz + ... + aln(x)Yn, 

be given. Let us have n solutions of this system, i.e. n systems of functions 

(6') 

(7) 

(The index i before the function Yk denotes that the function corresponds to a 
certain i-th solution of the given system). The system of solutions (7) is called a 
fundamental system (01 solutions) of the homogeneous system (6') in the interval 
I, if the determinant 

D= (8) 
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is non-zero in I, i.e. if it does not vanish at any point of I. 

Theorem 2. Let the functions aik(x) be continuous in the interval I. Then D(x) 
is either non-zero or identically equal to zero in the whole interval I. 

REMARK 2. It is thus sufficient to evaluate the determinant (8) at a single point 
Xo EI. 

Theorem 3. Let (7) be a fundamental system of solutions of the homogeneous 
system (6') in the interval I. Then every solution of this system can be expressed, 
in I, in the form 

Yn = CllYn + C2 2Yn + ... + Cn nyn, 

where Cl, C2 , ••• , Cn are suitable numbers. 

(9) 

REMARK 3. Thus all solutions of the linear homogeneous system (6') form an 
n-dimensional linear vector space. 

Because, under assumptions of Theorem 3, the determinant (8) is different from 
zero everywhere in I, it is possible to fulfil, in I, arbitrary initial conditions by 
a suitable (and unique) choice of the numbers Cl, C2 , ••• , Cn. In the sense of 
Definition 1 we call (9) a general integral of the system (6'). 

If we denote by 

a vector of constants, then the general integral (9) can be written in the vector 
form 

where 

y=Mc, 

[ :YI' :YI' ... , :YI] 
M = . ~~ ~ .. ~2.'. : : : : .. ~~ 

IYn, 2yn , ... , nYn 

is the so-called fundamental matrix of the homogeneous system (6') (its columns 
are formed by rows of the scheme (7)). 

REMARK 4 (solution). Let us consider a homogeneous system 

y~ = allYl + al2Y2 + ... + alnYn, 

(10) 
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where the coefficients aik are constants (complex, in general). The assumption 

k AX k AX k AX Yl = 1 e ,Y2 = 2 e , ... , Yn = n e 

leads, after substituting (11) into (10), to the system 

= 0, 

= 0, 

+ ... + (ann - A)kn = 0, 

which has a non-zero solution if and only if (cf. § 1.18) 

lal1-A, a12, ... , 

a21, a22 - A, ... , 
= 0. 

(11) 

(12) 

(13) 

I. Let the so-called chamcteristic equation (13) have n different roots At, A2, 

... , An. Substituting Al into (12), we get, on solving the system (12), a system of 
numbers 1 k1 , 1 k2, ... , 1 kn, determined uniquely except for an arbitrary factor. (If 
1 k1 "I 0, then 1 k 1, ... , 1 kn are uniquely determined if we choose, e.g., 1 k 1 = 1.) 
The first system of functions of the fundamental system is then 

(14) 

Similarly, on substituting the values A2, ... , An into (12), we get further systems 
of functions of the fundamental system required, 

The general integral is then, by virtue of Theorem 3 (and Remark 3), 

Example 1. 

C 1k A,X +C 2k A2 X + + C nk AnX Yn = 1 n e 2 n e . . . n n e . 

Y~ = 4Yl - 2Y2, 

y~ = Y1 + Y2· 

(15) 

(16) 

(17) 
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Equation (13), 

1
4 ~,A, 1 -=-2 A 1 = 0 

has the roots Al = 2, A2 = 3. The solution of (12) with A = Al = 2, Le. of 

2kl - 2k2 = 0, 

kl - k2 = 0, 

is kl = 1, k 2 = 1, so that 

105 

(18) 

(It is advisable to verify that the functions (18) satisfy equations (17).) Substituting 
A = A2 = 3 into (12), we get 

whence kl = 2, k2 = 1 and 

k l - 2k2 = 0, 

k l - 2k2 = 0, 

The general integral is then, according to (16), 

Yl = Cl e2x +2C2 e3x , 

Y2 = Cl e2x +C2 e3x . 

(19) 

(20) 

If the initial conditions are, for example, YI(O) = 3, Y2(0) = -1, we get from (20) 

so that 

and the required solution is 

REMARK 5. It may happen that the characteristic equation has complex roots. 
If the coefficients in (10) are real, the solution may nevertheless be found in real 
form. Let us consider first the case of two simple complex conjugate roots 

AI=a+iß, A2=a-iß, a,ßreal. 

To these roots, two systems of real functions correspond in the fundamental system, 

lYj = eO: X Clj cosßx - 2lj sinßx) (j = 1, 2, ... , n), 

2Yj = eO: X Clj sinßx + 2lj cosßx) (j = 1,2, ... , n), 

(21) 

(22) 
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where Ilj, 2l j are numbers given by the equations 

and lkj , 2kj are the solutions of equations (12) for Al = Q; + iß, A2 = Q; - iß, 
respectively. 

Similarly, to another pair of simple conjugate values of A, another two systems of 
real functions correspond in the fundamental system. For real A, the corresponding 
systems of functions can then be obtained according to Remark 4 and Example 1. 

Example 2. Let us consider the system 

Equation (13) is 

Y~ = -7YI + Y2, 

y~ = -2YI - 5Y2. 

I-~;,A, _51_ A 1= 0, 

(23) 

or A2 + 12A + 37 = 0, and has roots Al = -6 + i, A2 = -6 - i. Thus Q; = -6, ß = 1. 
Substituting Al and A2 into (12), we get (apart from a constant factor) 

thus 

Then the systems of functions that form the fundamental system are, according to 
(21), (22), 

IYI = e-6x cos x, IY2 = e-6x ( cos x - sin x), 

2YI =e-6x sinx, 2Y2 =e-6X(sinx+cosx), 

and the general integral is 

YI = e-6x(C1cosx+ C2 sinx), 

Y2 = e-6x [(Cl + C2 ) cosx + (C2 - Cl) sin x]. 

II. If Ai is a root of the characteristic equation of multiplicity r, then it can be 
shown that solutions which correspond to this root in the fundamental system are 
of the form 

(24) 
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where Pij(X) are polynomials of degree r -1 at most. The practical procedure will 

be shown in an example: 

Example 3. Let us consider the system 

Equation (13), 

Y~ = -YI +Y2, 

y~ = - Y2 + 4Y3, 

y~ = YI - 4Y3· 

-1 - >., 1, ° 
0, -1->.,4 =->.3-6>.2-9>'=0 
1, 0, -4 - >. 

(25) 

has a double root >'1 = -3 and a single root >'2 = 0. According to (24), the system 
of solutions corresponding to the root >'1 = -3 will be of the form 

1 -3"'( + ) YI = e al a2X, (26) 

Substituting (26) into (25), we obtain for the unknown constants ab ... , C2 the 
following equations 

2al - a2 + bl = 0, 

2bl - b2 + 4CI = 0, 

- cl - C2 + al = 0, 

2a2 + b2 = 0, 

2b2 + 4C2 = 0, 

- C2 + a2 = 0. 

(27) 

Choosing a2 = Cl (Cl being an arbitrary non-zero constant), the second column 
of equations (27) gives b2 = -2Cb C2 = Cl. Further, choosing al = C2 , the first 
column of equations (27) gives bl = Cl - 2C2 , Cl = C2 - Cl. Thus, to the root 
>'1 = -3 there correspond the solutions 

IYI = e-3"'(C2 + Clx), IY2 = e-3"'(CI - 2C2 - 2Cl x), 

IY3 = e-3"'(C2 - Cl + Clx). 
(28) 

Solutions corresponding to the root >'2 = ° can be obtained either by virtue of 
Remark 4 and Example 1 or can be supposed, according to (24), to have the form 
(r = 1) 

Substituting into (25), we get 

(29) 
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The general integral of the system (25) is then, according to (28) and (29), 

YI = e-3X (C2 + Clx) + 4C3, 

Y2 = e-3x(CI - 2C2 - 2Cl x) + 4C3 , 

Y3 = e-3x (C2 - Cl + Clx) + C3. 

17.18 

REMARK 6. If the coefficients of the system (10) are real and if the r-fold root >. 
is complex, i.e. >. = 0: + iß, then equation (13) has also the r-fold root >. = 0: - iß 
and the solution can be supposed to have the form 

Yj = eCtX(Pij cosßx + Qij sin ßx), 

where P, Q are polynomials of degree r - 1 at most (cf. also Remarks 5 and 7). 

Let us proceed to non-homogeneous linear systems. 

Theorem 4. Let a non-homogeneous system of linear equations 

(30) 

be given. Let the functions aik(x), !i(x) be continuous in the interval I and let 

(31) 

be the fundamental system (Definition 3) of the homogeneous system (6') corre­
sponding to the system (30) (i. e. for !i (x) == 0). Then 

1. the general integral of the system (30) is of the form 

YI = Ylp + CIIYI + C22YI + ... + Cn nyl , 

(32) 

Yn = Ynp + CllYn + c22Yn + ... + Cn nyn , 

where Ylp, Y2p, ... , Ynp is a particular solution of the system (30) (Cl, C2, ... , Cn 
are arbitrary parameters); 

I1. the fundamental system (31) being known, the particular solution Ylp, Y2p, 
... , Ynp can be obtained by the method of variation of parameters: 

Ylp = CI(x) IYI + C2(x) 2 YI + ... + Cn(x) nyl , 

(33) 
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It suffices to choose the functions CI(X), C2(X), ... , Cn(X) so as to satisfy the 
system of equations 

(which is uniquely solvable). 

Example 4. Let us consider the system 

Y~ = Y2 +cosx, 

Y~ = -YI + 1. 

The fundamental system (obtained in a similar way as in Example 2) is 

System (34): 

whence 

IYI = COSX, IY2 = -sinx, 
2YI = sin x, 2Y2 = COSX. 

C~ cosx + C~ sinx = cosx, 

- C~ sin x + C~ cos x = 1, 

CUx) = cos2 X - sinx, CI(x) = tx+ tsinxcosx+cosx, 

C2 (x) = -tcos2x+sinx. C~ (x) = sin x cos x + cos x, 

(34) 

(Constants of integration can be omitted, because we are trying to find only a 

special particular solution of (30).) Thus, by virtue of (33), we get 

Ylp = (t x + t sin x cos x + cos x) cos x + (- t cos2 X + sin x) sin x = 

- .!xcosx + 1 -2 ' 

Y2p = - n x + t sin x cos x + cos x) sin x + (- ~ cos2 X + sin x) cos x = 
I' I = -"2xsmx -"2 cosx. 

The general integral is 

YI = txcosx + 1 + Cl COSX + C2 sinx, 

Y2 = -~xsinx - ~ cosx - Cl sinx + C2 COSX 

where Cl, C2 are arbitrary parameters. 

REMARK 7. Linear systems of equations can often be solved by transforming 
them into one linear equation of the n-th order for one unknown function: 
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Example 5. Let us consider the system (17) (Example 1). From the second 
equation it follows that 

Yl = y~ - Y2, thus y~ = y~ - y~. (35) 

Substituting into the first equation, we get 

y~ - 5y~ + 6Y2 = o. (36) 

The characteristic equation >.2 - 5>. + 6 = 0 is the same as in Example 1. The 
general solution of equation (36) is 

Substituting into the first equation (35), we then get 

which agrees with (20). 

This procedure can be used even in the case ofnon-homogeneous linear equations. 

REMARK 8 (Solution 0/ System (10) in Exponential Form, Notes on Matrix Anal­
ysis and on Sequences and Series 0/ Matrices). Similarly as in the case of one ho­
mogeneous linear equation with constants coefficients, the solution of the system 
(10) can be written in an exponential form. First, we introduce two short notes: 

(i) (A Note on Matrix Analysis.) Let A = (aij), i, j = 1, 2, ... , n, be a (real or 
complex) square matrix. Let its elements aij be functions of a (not necessarily real) 
variable x, aij = aij(x), with the same domain of definition D. Then the matrix A 
is also a function of x, we write A = A(x). Let each of the functions aij(x) have a 
limit lij for x -t Xo. Then we say that the matrix A(x) has a limit at the point Xo 
and write 

(37) 

Similarly continuity is defined, as well as the derivative 

(38) 

It easily follows that well-known rules from analysis are preserved, thus that we 
have, for example, 

lim (A+ B) = lim A+ lim B, 
x~:to :z:--+zo z--+zo 

(A + B)' = A' + B', (AB)' = A' B + AB', etc. 
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(ii) (Sequences and Series of Matrices.) Let a sequence of square matrices AI. 
A2, ... , Ak, ... of order n be given, with Ak = (a~;»), a~;) being numbers, first. If 

lim a~~) = aij 
k ..... oo 3 

(39) 

holds for every couple i, j (i, j = 1, 2, ... , n), then we say that this sequence of 
matrices is convergent and write 

(40) 

Let aseries be given by 

(41) 

where ao, al, ... , ak, ... are numbers, 1 is the identity matrix and A2 = AA is the 
product of the (square) matrices A, A (§ 1.25), A3 = A2 A, etc. Denote 

(42) 

If the sequence of the partial sums (42) converges to a matrix 5, then we say that 
the series (41) is convergent and has the sum 5. 

These definitions may easily be extended to matrices with non-constant terms. 

In particular, let Ax = xA be the matrix A = (aij) multiplied by the number x, 
thus Ax = (xaij). Then the series 

Ax (Ax)2 (Ax)k 
1+-, +--'-+ ... +-k-'-+ ... 1. 2. . 

(43) 

can be shown to be convergent for every x (real, or complex). It is usual to denote 
its sum (which is thus a matrix dependent on x) byeAx . It can further be shown 
that this matrix has a derivative with respect to x and that we have 

(44) 

(iii) If we write the system (10) with constant coefficients in the form 

y' =Ay (45) 

(Remark 1), then using (44), its general integral can be written in the form 

y = eAx C, (46) 

where Cis the vector from Remark 3 with components CI. C2 , ••• , Cn • Thus the 
solution of the system (10) can be written in a very compact form. 
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17.19. Dependence of Solutions of Systems of Differential Equations 
on Initial Conditions and on Parameters of the System. 

Stability of Solutions 

Let us consider the system of equations 

with initial conditions 

Denote 

y~ = h(x, YI, Y2, ... , Yn), 

y~ = fz(x, YI, Y2, ... , Yn), 

YI = <PI (x, a, bl , b2,···, bn ), 

Y2 = <p2(X, a, bI, b2, ... , bn ), 

(1) 

(2) 

(3) 

the solution of system (1) satisfying conditions (3), thus (in the terminology of 
§ 17.2) the integral curve of system (1) passing through the point P (a, bl , b2 , ... , bn ). 

It can be shown that, the functions h, fz, ... , f n being "reasonable", the solu­
tion (3) depends continuously on initial conditions (2), i.e. if.. the numbers a, bI, 
b2 , .•. , bn in (2) have been "slightly" changed, then also the functions (3) change 
only "slightly". In details: 

Theorem 1. Let [2 be an (n+ 1) -dimensional region in which existence and unique­
ness 0/ solutions are guaranteed, i.e. let exactly one integral curve of the system 
(1) pass (localty) through every point P(a, b1 , b2 , ••• , bn ) E [2. If the functions 
fi (i = 1, 2, ... , n) are continuous in [2 (as functions of their n + 1 variables), 
then the functions <Pi are as welt continuous (as functions of their n + 2 variables) 
for (a, bI, b2 , ... , bn ) E [2 and for x fram a certain neighbourhood of the point a. 
M oreover, if the functions fi have continuous partial derivatives with respect to their 
n + 1 variables up to the order k, then the functions <Pi have as welt continuous 
partial derivatives with respect to their n + 2 variables up to the order k. 

REMARK 1. If, in addition, the functions fi contain parameters PI, P2, ... , Ps, 
then also the functions <Pi are functions of these parameters. If the functions fi 
have continuous partial derivatives, with respect to Pj (j = 1, 2, ... , s), up to the 
order k, then the same holds for the functions <Pi. 
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Let us change the initial conditions (2) into the conditions 

(4) 

so that the corresponding solution becomes 

YI = <PI (x, a, Cl, C2, ... , Cn ), 

Y2 = <p2(X, a, Cl, C2, ... , Cn ), 
(5) 

If the solutions (3) and (5) are defined for x not only from a certain neighbourhood 
of the point a, but in a whole interval [ao, +(0) and iffor every a ~ ao the difference 
between the solutions (3) and (5) is "small" in the interval [a, +(0) whenever the 
difference between the numbers bi and Ci is "small" , we speak about stability of the 
solution (3). In details: 

Definition 1. We say that the solution (3) is stable in the sense of Liapunov 
(briefly Liapunov stable, or only stable), if it is defined for all x ~ ao and if to every 
E > 0 and a ~ ao such a 8(E, a) > 0 exists that we have, for all x ~ a, 

whenever 

ICi - bil < 8, i = 1, 2, ... , n. 

If, moreover, there is such an 'T/ > 0 that we have even 

when 
ICi - bil < 'T/, i = 1, 2, ... , n, 

then we say that the solution (3) is asymptotically stable in the Liapunov sense 
(Liapunov asymptotically stable, in brief). 

REMARK 2. If, in Definition 1, 8 can be chosen dependent only on E (thus in­
dependent of a), we speak about a uniform Liapunov stability. It can be shown 
that if the system (1) is autonomous (i.e. if the functions /i, i = 1, 2, ... , n, are 
independent of x, see Remark 17.18.1), then the Liapunov stability implies uniform 
Liapunov stability. 

In applications, we are most often interested in the stability of the so-called 
zero-solution 

YI(X) == 0, Y2(X) == 0, ... , Yn(X) == 0 (7) 
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of the system (1), as far as this system does have such a solution at all, i.e. as far 
as 

Ii(x, 0, 0, ... , 0) = 0 

holds for all i = 1, 2, ... ,n. (It can be shown that if it is not the case, the problem 
of stability of a non-zero solution can be easily converted into that of a zero solution 
by a simple transformation of system (1) into another system which already has 
the zero solution.) A typical example of a problem of stability of a zero solution is 
that for a system of homogeneous linear equations of the form 

y~ = anYI + al2Y2 + ... + alnYn, 

y~ = a21YI + a22Y2 + ... + a2nYn, 
(8) 

aik being constants (complex, in general). 

Theorem 2. 1f all roots of the equation 

an - A, a12, ... , aln 
a21, a22- A, ... , a2n 

=0 (9) 

have negative real parts, then the zero solution (7) of the system (8) is Liapunov 
asymptotically (and, consequently, Liapunov) stable. 

A simple criterion for equation (9) to have all roots with negative real parts, is 
given in Theorem 3 below: Let us consider a polynomial 

f(x) = ao + alX + ... + an_IXn- 1 + anxn, n ~ 1, ao > 0, an i= O. (10) 

We call this polynomial a Hurwitz polynomial if all its roots have negative real 
parts. Under its Hurwitz matrix we understand the matrix 

(11) 

where as = 0 if s < 0 or s > n. Denote the determinant of the matrix (11) by D. 

Theorem 3 (Hurwitz Test). The polynomial (10) is a Hurwitz polynomial (thus 
having all roots with negative real parts) if and only if all principal minors of the 
matrix (11) are positive, i.e. if and only if 

(12) 
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Example 1. Consider the system 

Y~ = -7Yl + Y2, 

y~ = -2Yl - 5Y2, 

(see Example 17.18.2). Equation (9) is of the form 

i.e. 

1
-7-)" 1 1 ' -0 -2, -5 -).. - , 

)..2 + 12)" + 37 = O. 
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(13) 

(14) 

(15) 

For the polynomial 37 + 12)" + )..2 we have (see (10)) n = 2, ao = 37, al = 12, 
a2 = 1, a3 = 0, ... , so that its Hurwitz matrix is 

[ 12,37] 
0, 1 . (16) 

Evidently 

al = 12 > 0, D = 110~' 31
7 1 = 12 > O. (17) 

Thus the polynomial (15) is a Hurwitz polynomial. According to Theorem 2, the 
zero solution 

of the system (13) is Liapunov asymptotically stable (and, consequently, also Lia­
punov stable). 

Theorem 2 can be extended to systems with "smali perturbations": 

Theorem 4. Let us consider the system 0/ equations 

y~ = allYl + a12Y2 + ... + alnYn + 'l/h (x, Yl, Y2, ... , Yn), 

(18) 

where the aik are constants (in general, complex). Let the /unctions "pi and the 
constants aik be such that: 

r. For x ~ ao, IYil < K (i = 1, 2, ... , n, K = const.) , the /unctions "pi are 
continuous and 
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(i = 1, 2, ... , n; L being a constant). (In particular 'l/Ji(X, 0, 0, ... ,0) = 0, and 

Yl == 0, Y2 == 0, ... , Yn == ° is a solution of the system (18).) 

Ir. Corresponding to an arbitrary c > ° there exist numbers {je: and Te: such that 

for !Yl! < {je' !Y2! < be , ... , !Yn! < {je' X ~ Te: the inequality !'I/J(x, Yl, Y2, ... , Yn)! ~ 
~ c(!Yl! + !Y2! + ... + !Yn!) holds. 

IH. All roots of the equation 

all - A, a12, ... , aln 
a21, a22 - A, ... , a2n 

=0 (19) 

have negative real parts. 

Then the solution Yl == 0, Y2 == 0, ... , Yn == ° is Liapunov asymptotically (and 
thus Liapunov) stable. 

17.20. First Integrals of a System of Differential Equations 

Definition 1. Let us consider the system 

y~ = h(x, Yl, Y2, ... , Yn), 

(1) 

y~ = fn(x, Yl, Y2, ... , Yn). 

Let 'lj;(x, Yl, Y2, ... , Yn) be a differentiable function of its n + 1 variables in a region 
D in which the system (1) is considered. We say that the equation 

'lj;(x, Yl, Y2, ... , Yn) = C 

gives (is, represents) a first integral of the system (1) (in the region considered) 
if the function 'lj; is not identically constant in X, Yl, Y2, ... , Yn and assumes a 
constant value if we substitute an arbitrary solution of the system (1) for Yl, Y2, 

... , Yn· 

REMARK 1. The first integrals of the system (1) are often defined in the following 
way: Let 

(2) 
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be the general integral of the system (1). Let us determine Ci from (2): 

(3) 

Then each of the relations (3) is called a first integral of the system (1). 

These two definitions are not equivalent, in general. In simple cases, however, it 
can be verified that both of them give the same result. 

Example 1. If we calculate Cl and C2 from (17.18.20) in Example 17.18.1, we 
get 

(2Y2 - YI)e-2:z: = Cl, 

(YI - Y2) e-3:z: = C2· 
(4) 

Each of the relations (4) gives a first integral of the system (17.18.17) of the 
above-mentioned example. The left-hand sides of equations (4) are constants for 
each solution of (17.18.17). For example, for the solution 

of the example under consideration, we have 

Theorem 1. The necessary and sufficient condition for the equation 

'Ij;(x, Yl, Y2, ... , Yn) = C (5) 

to represent a first integral of the system (1) (in the domain n of the variables x, 
Yb Y2, ... , Yn) is that 

ö'lj; ö'lj; ö'lj; ö'lj; 
~ + h(x, YI,···, Yn)~ + J2(x, YI,"" Yn)-;- + ... + fn(x, YI,···, Yn)~ = 0 
~ ~ ~ ~ 

(6) 
be satisfied identically in n. (It is assumed, naturally, that 'Ij; and fk are diJJeren­
tiable functions of their respective variables.) 

Example 2. Following Theorem 1, we can easily verify that each of equations (4) 
gives a first integral of the system (17.18.17) in Example 17.18.1. For example, 
writing down the condition (6) for the second of equations (4), we get 
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REMARK 2. If one first integral of the system (1) is known, it is generally possible 
to determine from its equation one unknown function Yk(X) as a function of x and 
of the other unknown functions Yl, ... , Yk-l, Yk+l, ... , Yn. Substituting this into 
the given system, the number of equations of the system is then reduced by one. 
Similarly, if j (independent) first integrals are known, the number of equations of 
the system can be reduced by j. If n (independent) first integrals are known, we 
can obtain the general integral without any integration; it is sufficient to determine 
Yl, ... , Yn from (3), as functions of x, GI, ... , Gn. 

It can be shown that corresponding to any system (1) satisfying the conditions of 
Theorem 17.2.1, there exists a system of n independent first integrals. Any system 
of n + 1 first integrals is dependent. 

REMARK 3. From Definition 1 it follows that: If (3) are the first integrals of the 
system (1), then 

where Fis an arbitrary (not identically constant) differentiable function, also con­
stitutes a first integral of the system (1). Since all 'ljJk assurne constant values for 
any solution, then F also assurnes a constant value for any solution. The same is 
valid if F is a function of only k of the integrals (3). 

REMARK 4 (construction il first integrals). The first integrals of the system (1) 
can often be obtained easily by writing the system (1) in the differential form 

dYl = dY2 = ... = dYn = dx (7) 
h(x, Yb ... , Yn) h(x, Yl, ... , Yn) In(x, Yl, ... , Yn) 

and by combining equations (7) in such a way that we obtain complete differentials. 
For the determination of further first integrals it is possible to use the first integrals 
already found. In particular, the problem becomes simpler if the functions Ii do 
not depend explicitly on x. Then, in (7), the last term dx can be omitted and the 
system can be written in the "symmetrie form" 

dYl dY2 dYn 
Jt(Yl, ... , Yn) = h(Yl,.·., Yn) = ... = In(Yl, ... , Yn)" 

(8) 

The system (8) has n -1 independent first integrals, while, obviously, x does not 
occur in them. (This fact is important in mechanics, where systems of this type 
are often met; x then denotes time. The given system has thus at least n - 1 first 
integrals independent of time.) 

In the case where a system is written in the form (8) we need not assurne that all 
the functions Jt, 12, ... , In are different from zero in the region considered, that is 
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to say, (8) is only a brief form of transcription and if, for example, In i:- 0, it really 
represents the system 

The points at which all the functions 11,12, ... , In are simultaneously zero (the 
so-called singular points of the given system) are excluded from our considerations. 

Example 3. Let us consider the system 

The system (8) is: 

= 
Y2 YI 

whence YI dYI = -Y2 dY2 and the first integral is 

2 2 C YI + Y2 = . 

(A singular point is the point YI = 0, Y2 = 0.) 

Example 4. Let us consider the system 

dYI _ 1- 2. 
dx - Y2' 

dY2 1 
-=--
dx YI - X 

(9) 

The system can be written in the differential form (7) (after multiplying by dx): 

dx 
dYI -dx = --, 

Y2 

dx 
-- =dY2. 
YI - X 

(10) 

M ultiplying together both sides of these equations, we get an integrable combination 

YI - X Y2 

whence we obtain the first integral 

(11) 

We can use (11) for calculating the second first integral. From (11), it follows 
that 

Cl 
Y2=--, 

YI -x 
(12) 
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which, when substituted into the first equation (10), gives 

and 
(13) 

Now (13) is not a first integral of the system (9) (it contains two constants). We 
therefore substitute for Cl from (11) into (13). In this way we get the second first 
integral of (9), 

(14) 

By virtue of Remark 2, the general integral of the system (9) can be determined 
from (12) and (14). Here, however, it is more advantageous to use (13) and (12). 
From (13) it follows that 

YI = X + C2 e-X / Cl 

and on substituting for YI - x into (12), we have 

Y2 = Cl eX/Cl 
C2 

(15) 

(16) 

Equations (15) and (16) constitute the general integral of the system (9). (The 
above procedure can obviously be applied, because (12) and (14) follow from (12) 
and (13), and conversely.) 

REMARK 5. First integrals of ordinary differential equations are frequently used 
in theoretical mechanics and in the theory of partial differential equations of the 
first order. 

17.21. Table of Solved Düferential Equations 

See also [250]; in this paragraph m, n denote integers. Many differential equations 
which the reader will meet in applications can easily be transformed into equations 
given in the following table. For example, if we encounter the equation 

y' + y2 = 16, 

we can make the substitutions 

y = 4u, 4x = t, (1) 

which give 
, = dy = 4 du = 4 du dt = 16 du = 16ü 

y dx dx dt dx dt 
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so that the given equation becomes ü + u2 = 1, which is equation 7 of the table. 
(From the first of the solutions of 7, u = tanh(t + C), we then get, by substitution 
(1), y/4 = tanh(4x + C), etc.) 

(a) Equations of the First Order 

1. y' + ay = c ebx 

{ 
_c_ ebx +Ce-ax if a+ b =j:. 0, 

y= a+b 
cx ebx +C e-ax if a + b = O. 

dy RE. 
2. dt + L Y = L smwt. 

(Equation of an electric circuitj y(t) denotes the current in the circuit, R the 
resistance, L the self-inductance, E sin wt the alternating voltage. ) If y = Yo 
for t = 0, the solution is 

_ ( WLE) -(R/L)t E . 
y - Yo + R2 + w2 L2 e + J(R2 + w2 L2) sm(wt - 'Y), where 

wL TI E 
tan'Y = Rand 0 < 'Y < "2' For large t, y ~ J(R2 + w2 L2) sin(wt - 'Y). 

, 2 

3. y +2xy=xe-x j 

4. y' + ycosx = e-sinxj 

y = (x + C) e- sinx . 

5. y' + f'(x)y = f(x)f'(x)j 

y = f(x) -1 + Ce-I(x). 

6. y' + f(x)y = g(x)j 

y = e-F(x) J g(x) eF(x) dx where F(x) = J f(x) dXj 

the integral curve passing through the point (xo, Yo) is 

y = e-Fo(x) (yo + 1~ g(t) eFo(t) dt) , where Fo(x) = 1x 
f(t) dt. 

Xo 
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7. y' + y2 = 1; 

y = tanh(x + C); y = coth(x + C); y = ±l. 

substituting u = y - x2 , we obtain u' + u2 = 1, see 7. 

9, y' = (y + x)2 : 

y = -x + tan(x + C). 

10. y' + ay2 = b; 

the integral curve passing through the point (xo, Yo) is 

y= 

y = Yo + b(x - xo) 
Yo 

1 + ayo(x - xo) 

Yo J(ab) + btanh[J(ab) (x - xo)] 
J(ab) + ayo tanh[J(ab) (x - xo)] 

Yo J( -ab) + btan[J( -ab) (x - xo)] 
J(-ab) + ayotan[J(-ab) (x-xo)] 

{ 
tan (_a xr+1 + c) 

y= r+l 
ifr:l-l, 

tan(alnCx) ifr=-l. 

12. y' + f(x)y2 + g(x)y = 0; 

if a = 0, 

if b = 0, 

if ab > 0, 

if ab< o. 

; = E(x) J ~~:~ dx, where E(x) = eJ g(z)dz; y = O. 

13. y' = a cos y + b, b > lai > 0; 

14. y' = cos(ay + bx), a:l 0; 

b 
cosy = --. 

a 

substituting u = ay + bx, we get u' = a cos u + b, see 13. 

17.21 
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15. xy' + y = xsinx; 

sinx C 
y = -- -cosx+-. 

x x 

16. xy' - y = x 2 sinx; 

y = x(C - cosx). 

17. xy' + ay + bxr = 0, x > 0; 

{ 
Cx-a - _b_xr if a i= -r, 

y = r+a 
Cx-a - bx-aInx if a = -r. 

18. xy' - y2 + 1 = 0; 

1- Cx2 

Y = 1 + Cx2 ; Y = ±1. 

19. xy' + xy2 - Y = 0; 

2x 
y = x2 + C; y = O. 

20. xy' - y2 In x + y = 0; 

1 
- = 1 + In x + Cx; y = O. 
Y 

21. xy' - y(2yInx -1) = 0; 

1 
--2(I+Inx)=Cx; y=O. 
y 

22 ' . Y . xy =xsm-+y; 
x 

y = 2x arctan Cx. 

23. xy' + x cos ~ - y + x = 0; 
x 

cos ~ - (C + In x) sin ~ = 1. 
x x 

123 
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24. xy' + x tan!L - y = 0; 
x 

x sin!L = C; y = o. 
x 

25. x 2 y' + y - x = 0; 

x 
y = -ln Cx; y = o. 

27. (x 2 + l)y' +xy -1 = 0; 

C + In [x + J(x 2 + 1)] 
y = J(x2 + 1) . 

28. (x 2 - l)y' + 2xy - cosx = 0; 

sinx + C 
y = 2 1· x -

29. (x2 - l)y' - y(y - x) = 0; 

1 
y = x + C Jlx 2 - 11 ; y = o. 

30. (x2 - l)y' + axy2 + xy = 0; 

1 
y - . y = o. 

- C Jlx2 - 11 - a ' 

31. (x 2 -1)y' = 2xylny; 

y = eC (x2 -1) . 

32. yy' + xy2 - 4x = 0; 

33. (y - x 2 )y' = x; 

17.21 
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34. ayy' + by2 + f(x) = 0; 

substituting u = y2, we obtain the linear equation 

au' + 2bu + 2f(x) = o. 

1- C2 • 2C 
y = a 1 + C2 SIll X + a 1 + C2 cos x; Y = ±a. 

( C)-2 
y= cosx~ ; y = 0, y = 1. 

37. y,2 - 4y3 + ay + b = 0; 

x-C± . J dy 
- J(4y3_ ay -b)' 

the integral is an elliptic integral. 

38 '2 2' 2 0 . Y - Y -y = ; 

39. y,2 + ay' + bx = 0, b "# 0; 

the solution (in parametrie form) is 

bx = _t2 - at, by = C - ~t3 - tat2. 

40. y,2 + ay' + by = 0, b "# 0; 

the solution (in parametric form) is 

bx=-2t-alnt+C, by=-t2 -at. 

A further solution is y = o. 

41. y,2 + (x - 2)y' - y + 1 = 0; 

y = C(x - 2) + C 2 + 1; 

42. y,2 + (x + a )y' - y = 0; 

x 2 
Y =x--. 

4 

y = C(x + a) + C2, 4y = -(x + a)2. 

125 
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43. y,2 - (x + 1 )y' + y = 0; 

y=Cx+C(I-C); y=!(x+l)2. 

44. y,2 - 2xy' + y = 0; 

the solution (in parametrie form) is 

2 C 2 
X = "3t + t 2 ' Y = 2xt - t . 

Further solutions are y = 0, y = ~X2. 

45. y,2 + 2xy' - y = 0; 

substituting u = -y, the equation is transformed into 44. 

46. y,2 + axy' = bx2 + c, a2 + 4b > 0; 

y = C - !ax2 + !x J[(a2 + 4b)x2 + 4c] + 

+ J(a2 c+ 4b) In [x +J (x2 + a2 ~ 4b) ] . 

47. y,2 + (ax + b)y' - ay + c = 0, a -:j:. 0; 

y = (ax + b)C + aC2 +.:.; 4ay = 4c - (ax + b)2. 
a 

48. y,2 - 2yy' - 2x = 0; 

the solution (in parametric form) is 

t2 
x = - - yt, 

2 

t 1 1 
y ="2 + J(t2 + 1) (C - "2arsinht). 

49. y,2 - (4y + l)y' + (4y + l)y = 0; 

50. y,2 - xyy' + y2 In ay = 0; 

y=---
a 

17.21 
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51. y,2 + 2yy' cot x _ y2 = 0; 

y(l ± cosx) = c. 

52. ay,2 + by' - y = 0; 

the solution (in parametrie form) is 

x = 2at + bIn Itl + c, y = at2 + bt. 

A furt her solution is y = o. 

53. ay,2 - yy' - x = 0; 

the solution (in parametrie form) is 

x = y'(t2t+ 1) {C + aln[t + J(t2 + I)]} = y'(t2t+ 1) (C + aarsinht), 

x 
y = at --. 

t 

54. xy,2 = y; 

55. xy,2 - 2y + x = 0; 

the solution (in parametrie form) is 

x = C e2/(t-l) 
(t-1)2 ' 

X 2 
Y = 2(t + 1). 

A further solution is y = x. 

56. xy,2 - 2y' - y = 0; 

the solution (in parametrie form) is 

2t - 2ln Itl + C 
x = (t -1)2 ' y = xt2 - 2t. 

Further solutions are y = 0, y = x - 2. 

57. xy,2 + 4y' - 2y = 0; 

the solution (in parametrie form) is 

127 
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2y - 4t 
x= 

Further solutions are y = 0, y = 2x + 4. 

58. xy,2 + xy' - y = 0; 

the solution (in parametrie form) is 

A further solution is y = o. 

59. xy,2 + yy' + a = 0; 

the solution (in parametrie form) is 

C a 
x=---

jt 3t2 ' 

2a 
y = -C j(t) - -. 

3t 

60. xy,2 + yy' - y4 = 0; 

61. xy,2 - yy' + a = 0; 

a 
y = Cx + C; y = ±2 Jax. 

62. xy,2 - yy' + ay = 0; 

the solution (in parametrie form) is 

x = C(t - a) e- tja , y = Ct2 e-tja . 

63. xy,2 - 2yy' + a = 0, a f::- 0; 

16ax3 - 12x2y2 - 12Caxy + 8Cy3 + C 2a2 = 0 

( axt a) 
in parametrie form x = Ct + 3t2' Y = "2 + 2t ; 

2 
y = ± j3 j(ax) . 

64. xy,2 - 2yy' - x = 0; 

C 1 
y = _x2 

2 2C 

17.21 
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1 
Cx > 0, sin{ln Cx) =I- 0; y = o. 

y = sin{ln Cx)' 

66. (x2 - 1)y'2 = 1; 

y = ± arcoshx + C. 

67. (x2 - 1)y'2 = y2 - 1; 

x 2 + y2 _ 2Cxy + C 2 = 1; y = ±1. 

68. e-2", y,2 _ (y' _ 1)2 + e-2y = 0; 

eY = Ce'" ± J(l + C 2); e2y +e2'" = 1. 

69. yy,2 = 1; 

71. yy,2 + 2xy' - Y = 0; 

y2 = 2Cx + C 2. 

72. yy,2 + 2xy' - 9y = 0; 

the solution (in parametrie form) is 

t 
x = - + Ct 1/ 8 

14 ' 

A furt her solution is y = o. 

73. yy,2 - 2xy' + y = 0; 

y2 = 2Cx - C 2; Y = ±x. 

74. yy,2 - 4xy' + y = 0; 

y6 _ 3x2y4 + 2Cx(3y 2 _ 8x2 ) + C 2 = 0 

( . . '" t2 + 1 3 C) m parametnc lorm, x = y--, y = (2 ). 
4t t t - 3 

129 
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75. yy,2 + x 3y' - x 2y = 0; 

y2 + Cx2 = C2. 

76. ayy,2 + (2x - b)y' - y = 0; 

y2 = C(2x - b + aC). 

Further solutions, for a < 0, are ±2 v'( -a) y = 2x - b. 

77. y2 y'2 + y2 _ a2 = 0; 

(x - C)2 + y2 = a2; y = ±a. 

79. y'3 + y' - y = 0; 

the solution (in parametrie form) is 

x = C + ~t2 + In Itl, y = t3 + t. 

A furt her solution is y = O. 

80. y'3 + xy' - y = 0; 

y = Cx + C 3. 

Further solutions, for x < 0, are y = ±2( _x/3)3/2. 

81. y,3 - (x + 5)y' +y = 0; 

y = Cx + C(5 - C 2); 27y2 = 4(x + 5)3. 

82. y'3 - axy' + x 3 = 0, a i:- 0; 

the solution (in parametrie form) is 

83. y,3 - 2yy' + y2 = 0; 

the solution (in parametrie form) is 

17.21 
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x = C ± 3 J(l- t) + 2ln[1 =f J(l- t)], Y = t[l ± J(l- t)]. 

A furt her solution is y = o. 

84. y,3 - axyy' + 2ay2 = 0; 

a 
y = _x3 

27 . 

the solution (in parametrie form) is 

x = t ± 1( t 2 - 4t) =f In11( t 2 - 4t) + t - 21 + C, 

y = tt2 ± tt1(t2 - 4t). 

A furt her solution is y = o. 

86. xy,3 - yy,2 + a = 0; 

87. ay'T + by'S = y (r -::/:-l,s -::/:-1); 

the solution (in parametrie form) is 

ar bs x = C + __ t T - I + __ t s- l , y = atT + bts. 
r-1 s-l 

88. J(y'2 + 1) - xy,2 + y = 0; 

the solution (in parametrie form) is 

89. lny' + a(xy' - y) = 0; 

1 
y=Cx+-InC (C>O), 

a 
ay+1+ln(-ax)=0 (ax<O). 

(b) Linear Equations of the Second Order. 

90. y" + a2 y = 0 (a > 0); 

y = Cl cos ax + C2 sin ax (harmonie vibrations). 

131 
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91. y" + a2y = bsin cx; 

{ 
~ sin cx + Cl cos ax + C2 sin ax a -c 

y= 
- 2bcx COS CX + Cl COS CX + C2 sin cx 

(undalllped forced vibrations). 

92. y" + a2 y = b cos cx; 

_ { a2~c2 COSCX + Cl cosax + C2 sinax 

y - ;cx sin cx + Cl COS CX + C2 sin cx 

(undalllped forced vibrations). 

93. y" + y = sin ax sin bx 

if a2 # c2 , 

if a2 = c2 

if a2 # c2 , 

if a2 = c2 

cos(a - b)x cos(a + b)x . 
y = (b)2 - ( b)2 + Cl COS X + C2 sm x 2-2a- 2-2a+ 

(la + bl # 1, la - bl # 1). 

95. y" + >..y = 0; 

17.21 

{
Cl ev'(-A)X +C2 e-v'(-A) X = klcoshJ( ->..)x + k2 sinhJ( ->..)x ~f >.. < 0, 

Y = Cl + C2X lf >.. = 0, 

y = Cl sin J(>..) x + C2 cos J(>") x if>" > O. 

96. y" - (a2 x 2 + a)y = 0; 

y = eax2 /2 (Cl + C2 J e-ax2 dX) . 

97. y" + 2ay' + b2y = 0; 

! e-ax(CI coso:x + C2 sino:x) 

y = (dalllped vibrations, see also § 4.13), 

e-ax(Clx + C2) 

e-ax (Cl eßx +C2 e-ßx ) 

if b2 - a2 = 0, 

if ß2 = a2 - b2 > O. 
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98. y" + 2ay' + b2y = Asinwx; 

y = K sin(wx + cp) + Yh, 

where K = /[( 2 2)2 2 2]' v b -w +4a w 

A 

and Yh is a solution of the corresponding homogeneous equation (see 97). 
(Forced damped vibrations; see also § 4.13). 

99. y" + 2ay' + b2y = A cos wx; 

Y = K sin(wx + cp) + Yh, 

A 
where K = V[(b2 _ w2 )2 + 4a2w2] , 

2aw 

and Yh is a solution of the corresponding homogeneous equation (see 97). 
(Forced damped vibrations.) 

100. y" + XV' + (n + l)y = 0; 

y = d~nn [e-",2/2 (Cl + C2 J e",2/2 dX)] . 

101. y" - XV' + 2y = 0; 

2 ( J 1 ",2/2 ) Y = (x - 1) Cl + C2 (x2 _ 1)2 e dx. 

102. y" - XV' + (x - l)y = 0; 

Y = Cl e'" +C2 e'" J e(",2 /2)-2'" dx. 

103. y" + 4xy' + (4x2 + 2)y = 0; 
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104. y" - 4xy' + (4x2 - l)y = ex2
; 

2 • 
Y = eX (1 + Cl COSX + C2 smx). 

105. y" - x 2 y' + xy = 0; 

106. y" + ( 2 ~ x2 + n) y = 0; 

Y = Ce-x2
/ 4 H (~) 

n J2 ' 

17.21 

2 dn 2 
where Hn(x) = (_l)n eX -d e-X is the Hermite polynomial of degree n. 

Xn 

107. x(y" + y) = cosx; 

. J cos2 X J sin 2x . y = sm x --dx - cos x --dx + Cl sm x + C2 COS x. 
x 2x 

108. xy" + y' = 0; 

109. xy" + y' + >..y = 0 

with conditions y(l) = 0, y bounded for x -t 0; the eigenfunctions are 
y = Co Jo(2 J(>..x)), where Jo is the Bessel function of the first kind (§ 16.4) 
and the eigenvalues >.. are given by the equation Jo(2 J>..) = O. 

110. xy" + 2y' - xy = eX ; 

111. xy" + 2y' + axy = 0; 

substituting u = xy, the equation is transformed into the equation u" +au = O. 



17.21 ORDINARY DIFFERENTIAL EQUATIONS 

113. 2xy" + y' + ay = 0, a :j:. 0; 

{
Cl cos yI(2ax) + C2 sin yI(2ax) 

y = Cl cosh yI( -2ax) + C2 sinh yI( -2ax) 

114. x 2 y" - 6y = 0; 

y = C1 X 3 + C2x-2 • 

115. x 2 y" - 12y = 0; 

y = Cl X 4 + C2x-3 • 

116. x 2 y" + ay = 0; 

{ 
yI(X) [Cl cos(bln lXI) + C2 sin(bln lxI)] 

y = yI(X) (ClXC + C2X- C ) 

yI(X) (Cl + C2 1n lXI) 

ifax > 0, 

ifax < o. 

if b2 = a - i > 0, 

if C2 = i - a > 0, 

if C2 = i - a = O. 

117. x 2 y" + xy' + (x2 - r 2 )y = 0 (Bessel's equation; see § 17.15); 

135 

{ Jr(x) (Bessel's function of the first kind, § 16.4), 

y = Yr(x) (Bessel's function ofthe second kind, Remark 16.4.12, § 17.15). 

The general integral of Bessel's equation is 

If r is not an integer, the general integral is 

By proper transformations, the following equations can be transformed into 
Bessel's equation: 

118. x 2y" + xy' - (x 2 + r 2 )y = 0 (modified Bessel's equation); 

y = Zr (ix ) (see 117). 

y = Z2r(2i ylx) (see 117). 
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122. x2y" - [cx2 + p(p - l)]y = 0; 

y = J(x) Zp_! (i J(c) x) (see 117). 

123. xy" + (1 - 2r)y' + xy = 0; 

124. xy" - 2py' - cxy = 0; 

y = xP+!Zp+!(iJ(c) x) (see 117). 

125. y" - cx2p- 2y = 0; 

Y = J(x) Zp/2 (i J(c) ~) (see 117). 

126. y" + xy = 0; 

y = J(x) ZI/3 (~x3/2) (see 117). 

127. y" - xy = 0; 

y = J(x) ZI/3ßix3/2) (see 117). 

128. (x2 - l)y" + xy' + ay = 0; 

Cl cos( a arcosh lxI) + C2 sin( a arcosh lxi) if lxi> 1, } 

if lxi< 1, 
y= 

Cl cos(ß arccos x) + C2 cos(ß arcsin x) 

if lxi> 1, } 

if lxi< 1, 

For a = -n2 (n an integer), Chebyshev polynomials 

y = Tn(x) = 2-n+1 cos(narccosx) 

constitute solutions of 128. 

17.21 

a = a 2 > 0, 

a = _ß2 < o. 
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129. (x 2 - l)y" + 2xy' - r(r + l)y = 0; Legendre'8 equation, cf. § 17.15; 

by the transformation x = cos~, 7](0 = y(x), the equation 

130. 7]" sin ~ + 7]' cos ~ + r( r + 1)7] sin ~ = 0, 

also often called Legendre '8 equation, is transformed into 129. 

A. If lxi< 1 the general integral of equation 129 is 

( r 1 + r 1 2) (1 - r r 3 2) 
Y = GIF -2' -2-' 2' x + G2xF -2-,1+ 2' 2' x , 

where F(a, ß", x) is the hypergeometrie series (§ 16.6). 

B. If lxi> 1 we define (for r see below) 

h \ ( ) _ ( )r+.! s( 8 - 1) ... (s - 2r) w ere Ä s r - -1 2 1 • 

2r +, (r + !)!(2s -1)(28 - 3) ... (2s - 2r + 2) 

The general integral of equation 129 for lxi> 1 is then 

if 2r is not an odd number, 

if 2r = 2p + 1, p ~ 0 an integer, 

if 2r = -(2n + 1), n is a positive integer, 

·f 1 1 r = -"2. 

If r = n (n integral), Legendre polynomials (§ 16.5) 

are solutions of equation 129. 

137 

The following equations may easily be transformed into equation 129. In 
equations 131-139, L( x) means the solution of that equation. 

131. (x 2 + l)y" + 2xy' - r(r + l)y = 0; 

y = L(ix). 
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132. (x2 - l)y" + 2(n + l)xy' - r(r + n + l)(r - n)y = 0; 

y = L(n)(x). 

133. x(x2 + l)y" + (2x2 + l)y' - r(r + l)xy = 0; 

y = L(J(x2 + 1)). 

134. x(x2 + l)y" + [2(n + 1)x2 + 2n + l]y' - (r - n)(r + n + l)xy = 0; 

y = L(n)( J(x2 + 1)). 

135. x 2(x2 + l)y" + x(2x2 + l)y' - [r(r + 1)x2 + n 2]y = 0; 

y = x n L(n)( J(x2 + 1)). 

137. x 2(x2 -l)y" + 2x3 y' - r(r + 1)(x2 - l)y = 0; 

y = L ( X
2
2: 1 ) . 

138. x 2(x2 -l)y" + 2x[(1 - a)x2 + a]y'+ 

+([a(a - 1) - r(r + 1)]x2 - a(a + l)}y = 0; 

Y = xaL(x). 

139. (x2 - 1)2y" + 2x(x2 -l)y' - [r(r + 1)(x2 - 1) + n 2]y = 0 
(n ~ 0 is an integer); 

y = Ix2 - 11n / 2 L(n)(x). 

140. x(x - l)y" + [(a + ß + l)x - ,]y' + aßy = 0; 

the hypergeometrie (Gauss's) equation, see § 17.15; brief notation: 

H(a, ß, " y, x) = O. 

For lxi< 1, the solution is given by the hypergeometrie series 

y = F(a, ß, " x) (see § 16.6). 

17.21 
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If 0 < x < 1, the general integral is 

{ 
YI = CIF(o:, ß, 7, x) + C2 X I-'Y F(o: - 7 + 1, ß - 7 + 1, 2 - 7, x) 

Y = if 7 is not an integer. 

C1YI + C2Y2, if 7 = -c, c ~ -1 is an integer, 

where 

lim [F(o:, ß, 7, x) - ~xl-'Y F(o: - 7 + 1, ß - 7 + 1,2 - 7, x)] 
'Y-+-c 7 + c 

if c ~ 0, 
Y2 = 

lim ~1 [F(o:, ß, 7, x) - xl-'Y F(o: - 7 + 1, ß - 7 + 1, 2 - 7, x)] 
"1-+1 7 -

if c = -1, 

where 

{ 
( 0: + c) ß (ß + 1) ... (ß + c) 

>. = c + 1 7('Y + 1) ... ('Y + c - 1) 
"I o:ß 

1 

for c ~ 1, 

for c = 0, 

for c =-1. 

139 

The case 7 = c, where c ~ 2 is an integer, can be transformed by the substitu­
tion y(x) = x l -'Y1J(x) into the above-mentioned case. 

In some special cases the solution can be written in a closed form (for 
notation see 140): 

141. H(o:, 0: + ~, 20: + 1, y, x) = 0, 0: =I- 0; 

142. H(o:, 0: - ~, ~, y, x) = 0; 

143. H(o:, 0: + ~, ~,y, x) = 0; 

Y = C1 - 1-(1 + ix)1-2a + C2-1-(1- i x )I-2a (see 140). ix ix 

144. H(l, ß, 7, y, x) = 0; 

Y = x 1-'Y(1- xp-ß-I [Cl + C2 J x'Y-2(1- x)ß-'Y dX] (see 140). 
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145. H(O'., ß, 0'., y, x) = 0; 

y = (1 - x)-ß [Cl + C2 J x-°(1- x)ß-l dX] (see 140). 

146. H(O'., ß, 0'. + 1, y, x) = 0; 

y = x-o [Cl + C2 J xO - l (1 - x)-ß dX] (see 140). 

Related equations (notation: y(O'., ß, T, x) is the solution of equation 140): 

147. x(x - l)y" + (2x - l)y' - r(r + l)y = 0; 

y = y(r + 1, -r, 1, x) (see 140). 

148. x(x - l)y" + [(a + b + l)x + (0'. + ß -1)]xy' + (abx - O'.ß)y = 0; 

y = xOy(a + 0'., b + 0'., 0'. - ß + 1, x) (see 140). 

149. x(x2 -1)y" + (ax2 + b)y' + cxy = 0; 

( a-1 /[1 2] a-l /[1 2] I-b 2) y=y -2-+Y 4"(a-l) -c '-2--Y 4"(a-l) -c '-2-'x 

(see 140). 

150. 16(x3 - 1)2 y" + 27xy = 0; 

y = (x3 - 1)1/4 y (l2' -t, -l, x3) (see 140). 

151. x(x - l)y" + [(CI! + ß + 2n + l)x - b + n)]y' + (0'. + n)(ß + n)y = 0; 

y = y(nl(O'., ß, T, x) = y(O'. + n, ß + n, T + n, x) (see 140). 

152. (x2 ± a2 )2 y" + b2y = 0 (the bending flexion of a bar of parabolic cross-

section): 

J(x 2 + a2 ) (Cl COSU + C2 sin u), 

J(a2 + b2 ) x 
where u = arctan - for the sign +, 

a a 
y= 

J(a2 - x 2 ) (Cl COSV + C2 sinv), 

J(b2 -a2 ) a+x 
where v = In -- (lxi< a) for the sign -. 

2a a-x 
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153. (eX +1)y" = y; 

154. xy"lnx - y' - xyln3 x = 0; 

y = Cl (;) X + C2 (;) x • 

155. y" sin x - 2y = 0; 

y = Cl cotx + C2(1- x cot x). 

(c) Linear Equations of Higher Orders. Nonlinear Equations. 
Systems. 

156. ylll + >.y = 0; 

{
Cl + C2 x + C3 X 2 for >. = 0, 

y = Cl e- ~(A)X + e~ ~(A)X ( C2 COS [4- {/( >.)x] + C3 sin [4- {/( >.)x]) 

for >. # o. 

157. ylll + 3y' - 4y = 0; 

( v'15 . J15 ) y = Cl eX + C2 cos -2-x + C3 sm -2-x e-x / 2 • 

( 1 (4-11a2)sin2x+3a(4-a2)cos2X) 2ax + --+ e 
12a3 4(a2 + 1)(a2 + 4)(9a2 + 4) . 

159. ylll - 2y" - a2y' + 2a2 y = sinh x; 

y= 

C 2x C ax C -ax 2 sinh x + cosh x 
le + 2e + 3e + (2 ) 3 a -1 

2x(C C) C -2x 2 sinh x + coshx 
e lX + 2 + 3 e + 9 

C 2x C x C -x X + 1 x 3x + 1 -x le + 2e + 3e ---e ---e 
4 36 

160. y(4) = 0; 

for a2 = 4, 

for a2 = 1. 
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161. y(4) + 4y = f(x); 

y = Cl cos x cosh x + C2 cos x sinh X + C3 sin X cosh X + C4 sin X sinhx + yp, 

where yp is a particular integral of equation 161. 

162. y(4) - k4y = 0 (transverse vibrations of a rod); solutions are given in (1)-(6) 
below for various sets of boundary conditions: 

(1) y(a) = y'(a) = y(b) = y'(b) = 0; 

the eigenvalues are to be calculated from the equation 

cos k(b - a) cosh k(b - a) = 1, k '" 0; 

the eigenfunctions are: 

y = [cosh k(b - a) - cos k(b - a)][sinh k(x - a) - sin k(x - a)]­

- [sinh k(b - a) - sin k(b - a)][cosh k(x - a) - cos k(x - a)]. 

(2) y(a) = y'(a) = y(b) = y"(b) = 0; 

the eigenvalues are to be calculated from the equation 

cos k(b - a) sinh k(b - a) = sin k(b - a) cosh k(b - a); 

for the eigenfunctions see (1) (the preceding case). 

(3) y(a) = y'(a) = y"(b) = y'"(b) = 0; 

the eigenvalues are to be calculated from the equation 

cos k(b - a) cosh k(b - a) = -1; 

the eigenfunctions are: 

y = [cosh k(b - a) + cos k(b - a)][sinh k(x - a) - sin k(x - a)]­

- [sinh k(b - a) + sin k(b - a)][cosh k(x - a) - cos k(x - a)]. 

(4) y(a) = y"(a) = y(b) = y"(b) = 0; 

. al k n'lt" elgenv: ues: = -b -, 
-a 

n = 1,2,3, ... ; 

eigenfunctions: y = sin k(x - a). 

(5) y(a) = y"(a) = y"(b) = ylll(b) = 0; 
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the eigenvalues are to be calculated from the equation 

cos k(b - a) sinh k(b - a) = sin k(b - a) cosh k(b - a); 

the eigenfunctions are: 

y = sin k(b - a) sinh k(x - a) + sinh k(b - a) sin k(x - a). 

(6) y"(a) = ylll(a) = y"(b) = ylll(b) = 0; 

the eigenvalues are to be calculated from the equation 

cos k(b - a) cosh k(b - a) = 1; 

the eigenfunctions are: 

y = Cl + C2x if k = 0; for k =I- 0, they are: 

y = [sinh k(b - a) - sin k(b - a)][cosh k(x - a) + cos k(x - a)]­

- [cosh k(b - a) - cos k(b - a)][sinh k(x - a) + sin k(x - a)]. 

163. y(5) + 2ylll + y' = ax + bsinx + c cos x; 

a 2 b 2 c2· 
y = -x + -x cos x - -x sm x+ 

2 8 8 

164. y(6) + y = sin ~xsin ~x; 

y = 1~ sin x + 1~6 cos 2x + Cl cos(x + C2 ) + C3 eZ ../(3)/2 cos (~ + C4 ) + 

+ C5 e-z ../(3) /2 cos (~ + C6 ) • 

143 

y = x n - l e-r / z , where r n = a; the n different roots of this equation yield n 

linearly independent solutions of equation 165. 
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167. y" = 2ax(y'2 + 1)3/2; 

168. 8y" + 9y,4 = 0; 

169. 2y'y"' - 3y"2 = 0; 

170. x'(t) = ay(t), y'(t) = bx(t), a 1: 0, b 1: 0; 

y = Cl J(ab) ey'(ab)t -C2 J(ab) e-y'(ab)t 

X = Cl a cos J( -ab)t + C2a Sill J( -ab)t , 

y = C2 J( -ab) cos J( -ab)t - Cl J( -ab) Sill J( -ab)t 

171. x'(t) = ax(t) - y(t), y'(t) = x(t) + ay(t); 

(see § 17.18). 

if ab> 0, 

if ab < o. 

172. ax'(t) + by'(t) = o:x(t) + ßy(t), bx'(t) - ay'(t) = ßx(t) - o:y(t); 

·f ß b -I. . h A ao: + bß 
1 a - 0: r 0, wIt = 2 b2 ' 

a + 

if aß - bo: = 0, a2 + b2 > 0, we get 

B = aß - bo:. 
a2 + b2 ' 

X = Cl eAt , y = C2 eAt , where 0: = Aa, ß = Ab. 

173. x'(t) = -y(t), y'(t) = 2x(t) + 2y(t); 

X = et(CI Sill t + C2 cost), Y = et [(C2 - Cl) sill t - (C2 + Cd cost]. 

174. x'(t) + 3x(t) + 4y(t) = 0, y'(t) + 2x(t) + 5y(t) = 0; 

17.21 
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175. x'(t) = -5x(t) - 2y(t), y'(t) = x(t) - 7y(t)j 

x= (2Clcost+2C2 sint)e-6t , y= [(Cl-C2 )cost+(Cl +C2 )sint]e-6t • 

176. x'(t) + 2y(t) = 3t, y'(t) - 2x(t) = 4j 

x = -~ + Cl cos2t - C2 sin2t, y = ~t + Cl sin 2t + C2 cos2t. 

177. x'(t) + y(t) = t2 + 6t + 1, y'(t) - x(t) = -3t2 + 3t + Ij 

x = 3t2 - t - 1 + Cl COS t + C2 sin t, y = t2 + 2 + Cl sin t - C2 cos t. 

178. x'(t) + y'(t) - y(t) = et , 2x'(t) + y'(t) + 2y(t) = costj 

x = et + 157 sin t - 137 cos t + Cl + 3C2 e4t , 

Y - - ~ et _..!.. sin t + ..!.. cos t - 4C2 e4t 
- 3 17 17 . 

179. x'(t) = x(t)f(t) + y(t)g(t), y'(t) = -x(t)g(t) + y(t)f(t)j 

x = (Cl COS G + C2 sinG)F, y = (-Cl sinG + C2 cosG)F, 

where F = eJ f(t)dt, G = J g(t) dt. 

180. tx'(t) + y(t) = 0, ty'(t) + x(t) = Oj 

181. tx'(t) + 2x(t) = t, ty'(t) - (t + 2)x(t) - ty(t) = -tj 

182. tx'(t) + 2(x(t) - y(t)) = t, ty'(t) + x(t) + 5y(t) = ej 

183. x"(t) + a2y(t) = 0, y"(t) - a2x(t) = 0, a i= Oj 

x = (Cl cos at + C2 sin at) e<>t +( C3 cos at + C4 sin at) e-<>t, 

y = (Cl sin at - C2 cos at) e<>t +( -C3 sin at + C4 cos at) e-<>t, 
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184. x"(t) - ay'(t) + bx(t) = 0, y"(t) + ax'(t) + by(t) = 0, a2 + 4b > 0; 

x = Cl cos at + C2 sin at + C3 COS ßt + C4 sin ßt, 

y = -Cl sin at + C2 cos at - C3 sin ßt + C4 COS ßt, 

where 2a = a + J(a2 + 4b), 2ß = a - J(a2 + 4b) . 

185. x"(t) - x'(t) +y'(t) = 0, x"(t) + y"(t) - x(t) = 0; 

where 2a = 1 + ";5, 2ß = 1 - ";5 . 

186. x"(t) = kx(t)jr3(t), y"(t) = ky(t)jr3 (t) (r2(t) = x2(t) + y2(t) motion of a 

particle in a central gravitational field); 

on substituting x = r cos cp, y = sin cp, we get 

(
, dcp 

cp = dt' 

which is the equation of a conie. 

r' = dr) . 
dt ' 
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INFORMATIVE REMARK. Equations of the first order are treated in § 18.2, by 
standard classical methods. These equations are encountered mostly in problems 
of geometry. 

As concerns equations of the second and higher orders, motivated by problems 
of physics, engineering, etc. (the so-called equations of mathematical physics), the 
wh oie problema.tics is very broad, from the point of view of applications as well as 
of the mathematical theory itself (classical approach, modern functional-analytical 
methods). Therefore, it was not easy to decide how to treat this rich and often very 
diverse problematics. Moreover, in contrast to problems in ordinary differential 
equations, solutions of problems in partial differential equations can be found in a 
"closed" form (i.e., expressed by an explicit formula, in the form of an infinite series, 
etc.) in simplest cases only. As usual it is necessary to solve them approximately. 
Thus we have chosen the following way of explanation: In §§ 18.4 - 18.6 the rat her 
elementary classical theory is given for typical equations of the second order (the 
Laplace, Poisson, wave and heat equations). At the end of each of these paragraphs, 
remarks are added concerning possibility of some generalizations and choice of 
approximate methods of solution. In § 18.7, systems of equations are briefly treated. 
In § 18.8, 18.9 we present fundamental ideas of functional-analytical approach to 
the solution of sufficiently general elliptic equations. We deal 

(i) with the theory based on the theorem on minimum of functional of energy, 
leading to the concept of a generalized solution, 

(ii) with the Lax-Milgram theory, leading to the concept of a weak solution, and 

(iii) with application of the Giiteaux differential to the solution of nonlinear prob­
lems. 
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This all gives a theoretical basis for approximate and numerical methods of solu­
tion, given in Chaps. 24 - 27. In § 18.10, the so-called method of discretization in 
time is briefly treated, giving a powerful theoretical and numerical tool for solving 
sufficiently general parabolic and hyperbolic problems. 

Unless the contrary is stated, the equations as weIl as their solutions, dealt with 
in this chapter, are assumed to be real. 

18.1. Partial Diiferential Equations in General. Basic Concepts. 
Questions Concerning the Concept of General Solution. 

Cauchy's Problem, Boundary Value Problems, Mixed Problems. 
Kovalewski's Theorem. Characteristics. Well-posed Problems. 

Definition 1. We shall refer to an equation of the form 

(1) 

which relates the unknown function Z(Xl, X2, ••. , x n ) (n ~ 2) and its derivatives 
as a partial differential equation. 

Definition 2. The highest order of the derivatives which appears in the equation 
is called the order of the equation. 

REMARK 1. More generally, a system 0/ partial differential equations for un­
known functions Zl, Z2, •.• , Zr may be considered. If the number of equations is 
not equal to the number of functions to be found, then, generally speaking, there 
is no system of functions satisfying these equations. See e.g. Remark 18.7.1. 

Example 1. The equation 

is a partial differential equation of the second order for the unknown function 
z(x, y, t). 

Example 2. The system 

OZI OZI ö2 Z2 

öt OX - öx2 ' 

is a system of partial differential equations (of the second order) for two unknown 
functions Zl(X, t), Z2(X, t). 
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Definition 3. A function z(xl, X2, ..• , x n ) is called a (classical) solution (or in­
tegral) of equation (1) (in a given domain) if, on substituting in (1) for z and for 
its derivatives of the required orders, equation (1) is satisfied identically (i.e. for all 
points (Xl, X2, ••. , X n ) of the domain in question). 

Definition 4. Bya solution of a system of equations for r unknown functions we 
understand any system of r functions having derivatives of the required orders and 
satisfying identically all equations of the given system. 

As in the theory of ordinary differential equations, we may speak about a solution 
in an implicit form (cf. Remark 17.2.3). 

REMARK 2. Similarly as in the case of ordinary differential equations, to solve 
a given partial equation means to find all its solutions. In contrast to the case 
of ordinary differential equations, where it is possible to find the general solution 
from which any other solution may be obtained (at least in a certain domain) by 
a suitable choice of so me parameters, in the case of partial differential equations 
the situation is rather different. For so me simple types of equations, a general form 
of the solution can be found. It then can be shown that this "general solution" 
depends on one or more arbitrary functions. However, in the general case it is 
not possible to find a general solution of an equation from which any solution of 
this equation (in the domain considered) might be found by specifying one or more 
"arbitrary" functions. 

Example 3. On integrating the equation 

with respect to y, we obtain 

ßz = f(x) 
ßx 

and by a furt her integration, with respect to X, 

z = J f(x) dx + g(y) = F(x) + g(y). 

(2) 

(3) 

This is the general solution of equation (1) which depends on two "arbitrary" 
functions Fand g. Of course, one cannot conclude from this example that all 
solutions of a partial differential equation of the second order may be obtained 
from a certain "general form of the solution" involving two arbitrary functions by a 
suitable choice of these functions. It can be shown that under certain assumptions 
equations of the first order do possess a general solution depending on an arbitrary 
function (Remark 18.2.8). 
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REMARK 3. The analogue of the Cauchy problem (= of the problem with initial 
conditions) for ordinary differential equations, or of the boundary value problem, 
is here again the Cauchy problem and boundary value problem, respectively. One 
often meets with so-called mixed problems where initial conditions and boundary 
conditions are prescribed simultaneously. 

Definition 5 (The Special Cauchy Problem; for important particular cases see 
Examples 4 and 5). Suppose we are given an equation of the m-th order, written 
in the form 

(4) 

(5) 

The special Cauchy problem is to find a solution of equation (4) (in a certain region) 
that satisfies the initial conditions 

Z(X~, X2, ... , x n ) = fO(X2, ... , x n ), 

az 0 
~(XI' X2, ... , x n ) = ft(X2, ... , x n ), 
UXI (6) 

REMARK 4. The variable Xl (which in appIications often denotes time and is 
then usually denoted by t) plays a special role in equation (4) and initial condi­
tions (6); particularly, the equation is assumed to be explicitly solved with respect 
to azm /axi which is the highest derivative with respect to Xl occurring in the 
equation. 

Example 4. An example of the Cauchy problem is to find the solution of the 
equation 

(7) 

with the conditions 

z(XO' y) = fo(Y), 
az 
ax (xo, y) = ft (y). (8) 

Example 5. An other example is the equation of the first order 

az ( az) 
ax = f x, y, z, ay , (9) 
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with the initial condition 

z(xo, y) = 10(Y)· (10) 

REMARK 5. In the case of the problem (9), (10) for equations of the first order 
we often say that we are looking for a surface z = h( x, y) that passes through the 
curve 

x = Xo, z = 10(Y). (11) 

For an equation of the second order (Example 4) a further condition is attached, 
namely that the first derivative of the function z with respect to x is a prescribed 
function of y. 

REMARK 6. If we choose a point (x~, xg, ... , x~), then an the derivatives occur­
ring on the right-hand side of equation (4) and containing a derivative with respect 
to Xl, are determined, at this point, by conditions (6). For example (see Example 4; 
the interchangeability of mixed derivatives is assumed) 

f)2 z [f)f)z] [df)Z ] I -f) f) (xo, Yo) = -f) -f) = -d -f) (xo, y) = 11(Yo). 
Y x Y x :1:=:1:0 Y X y_y 

Y=Yo - 0 

(12) 

Let us write 

(i = 2, ... , n; k1 + k2 + ... + kn = k). 

(13) 
For instance, in (12) we have IHyo) = Ir1 since k = 2, k1 = 1, k2 = 1, Ik1 = h(Y). , 

Theorem 1 (The Cauchy-K ovalewski Theorem). Let the function I appearing in 
the equation (4) be analytic with respect to all variables in the neighbourhood 01 the 
point 

(14) 

( i. e. the lunction I can be developed into apower series in this neigbourhoocl) and let 
the lunctions 10, h, ... , Im-1 (see Definition 5) be analytic in the neighbourhood 
01 the point (xg, ... , x~). Then there exists an analytic solution 01 the Cauchy 
problem in a neighbourhood 01 the point (x~, xg, ... , x~) and this solution is unique 
in the dass 01 analytic functions. 

REMARK 7. Thus, in Example 4, we investigate the function I at the point (see 
(12) and (13» 

(xo, Yo, 18,0' Ir,o, 18,1, Ir,1, 18,2), (15) 

where, by (13), we have 

18,0 = 10(Yo), Ir,o = h(Yo), 18,1 = 1~(Yo), Ir,1 = I{(yo), 18,2 = 1~/(Yo). 
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REMARK 8. A typical example of a Cauehy problem is that of solving the equa-
tion of a vibrating string 

{}2 Z {}2 Z 
_=a2 _ 
{}x2 {}y 2 

(16) 

(here x denotes time, and y denotes the spaee variable), subjeet to the initial 
eonditions 

z(O, y) = 10(Y) 
{}z 
{}x (0, y) = h (y) 

(the initial position of the string), 

(the initial velo city of the string) 

(cf. § 26.1). The right-hand side of equation (4) is of a very special form; eonse­
quently the investigation of the function 1 at the point (14) ean be omitted and 
the existenee of an analytie solution is ensured in the neighbourhood of the point 
(0, Yo), provided only that the functions 10 and h are analytie in the neighbourhood 
of the point Yo. 

REMARK 9. For generalizations of Theorem 1 to systems of equations see, e.g., 
[369). The reader will also find there a statement of eonditions (which are almost 
always satisfied in practice) which ensure uniqueness, but not existence, of the 
solution in a more general dass of functions than is the dass of analytic functions. 

REMARK 10 (The Generalized Cauchy Problem). In this problem, the initial eon­
ditions are not prescribed on an (n - 1)-dimensional hyperplane Xl = x~ (e.g., for 
n = 2, on a straight line) but on an (n - 1)-dimensional surface (for n = 2, on a 
curve). (For details see [369].) This problem ean, in general, be redueed to the 
previous one by a suitable transformation of coordinates. This reduction, how­
ever, is not practieable for some surfaees (curves) typical for the given differential 
equation; these surfaces (eurves) are ealled characteristics. (For astriet definition 
see [369).) The direction of the normal to such a surface (curve) at a given point 
is called a characteristic direction. In the case of linear equations, the direction 
eosines 0:1, 0:2, ... , O:n of a eharacteristic direetion are determined as follows: Let 
the equation be of the form 

(17) 

(writing only the highest order terms). Then the direction eosines are given by the 
equations 

(18) 

o:~+o:~+ ... +a~=1. (19) 
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Characteristics of some important equations with constant coefficients: 

Example 6. 
82z 82z 
8x2 - 8y2 = O. (20) 

Equations (18) and (19) now become (m = 2, A~~J = 1, A~~~ = -1, A~~~ = 0) 

a~ - a~ = 0, 

The characteristics run perpendicular to these directions; hence they are parallel 
to the straight lines y = ±x (Fig. 18.1). 

Example 7. 
8z _ 82z _ 0 
8x 8y2 - • 

Equations (18) and (19) become (m = 2, A~~6 = 0, A~~~ = -1, Ai~? = 0): 

a~ = 0, 

(21) 

The characteristic direction is parallel to the x-axis, so that characteristics are 
parallel to the y-axis (Fig. 18.2). 

Example 8. 

Example 9. 

y y 

o X 

Fig. 18.1. Fig. 18.2. 

82z 82z 
8x2 + 8y2 = O. 

a~ + a~ = 1 ~ real characteristics do not exist. 

8z = O. 
8x 

(22) 

(23) 
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Equations (18) and (19) now become (m = 1, Ai~6 = 1, A~~~ = 0): 

The characteristics are parallel to the x-axis. 

REMARK 11. For nonlinear equations the problem of characteristics is made 
more complicated by the fact that the characteristics depend not only on the given 
equation but also on the given solution. For the quasilinear equations 01 the first 
order 

{)z ()z 
a(x, y, z) ()x + b(x, y, z) ()y = c(x, y, z) 

the characteristic direction at the point (x, y, z) is given by 

a(x, y, z)al + b(x, y, z)a2 = 0, 

so that at the given point (x, y) it depends on the solution z(x, y) in question. 

Theorem 2. 11 the initial values are given on a characteristic, then the Cauchy 
problem has either an infinite number 01 solutions, or it does not possess any solu­
tion. 

Example 10. A solution of the equation 

which takes zero values on the stright line y = x (which is a characteristic; see 
Example 6) and satisfies also 

on this line, is 

{)z = 0 
{)x 

Z=k(X-y)2 

(for any value of k). Thus we have an infinite number of solutions. 

Example 11. Find the solution of the equation 

{)z = 0 
{)x 

(24) 

such that z = x at points on the x-axis (which is a characteristic; see Example 9). It 
is readily verified that such a function z(x, y) does not exist, because this condition 
requires 

{)z 
-=1 
{)x 
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on the x-axis, while (24) implies 

{}z 
-=0. 
{}x 
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REMARK 12. In applications, the Cauchy problem arises most frequently in the 
theory of equations of the first order and of hyperbolic and parabolic equations 
of the second order (§§ 18.5 and 18.6). Boundary value problems (thus problems 
with prescribed conditions on the boundary of the region where the solution is to 
be found) arise especially in connection with equations of mathematical physics 
(where also mixed problems are often encountered). An example is the problem of 
finding a solution of the equation 

{}2 U {}2u 
{}x2 + {}y2 = 0, (25) 

taking prescribed values on the boundary S of a region Q in which equation (25) 
is to be satisfied (the so-called Dirichlet problem). Problems of this kind will be 
formulated and analysed separately for individual types of equations. 

REMARK 13. It is important that the given problem be "weIl posed". This 
means - roughly speaking - the following: The problem is well posed if a slight 
change in the boundary and initial conditions produces only a slight change in the 
solution (we then speak of the continuous dependence 01 the solution on the initial 
and boundary conditionsj physically: if we make only a small error in measuring the 
boundary conditions or the initial conditions, then the solution will remain almost 
unchanged). What we mean by a "weIl-posed" problem exactly, will be specified for 
individual types of equations separately. Next we state adefinition (one of many 
possible ones) of a well-posed Cauchy problem for linear equations. 

Definition 6. Let the Cauchy problem (4), (6) be given (see Definition 5). Let Q 

be a closed region in the space Xl, X2, •.. , X n , the boundary of which contains the 
(n -1 )-dimensional region G of the hyperplane Xl = x~. For any system of functions 
10, ft, ... , Im-l which are sufficiently smooth in G let there be one and only one 
solution of the given problem. Suppose that for every € > 0, there is a {j > 0, such 
that the maximal change in values of the solution and of its derivatives up to the 
order k is less than € in Q if the maximal change in the values of the functions 10, 
ft, ... , Im-l and of their derivatives up to the order p is less than {j in G. Then 
the Cauchy problem for the given equation is said to be well posed (in details: well 
posed (p, k)). 

REMARK 14. J. Hadamard proved (see e.g. [369]) that the Cauchy problem for 
the equation 



156 SURVEY OF APPLICABLE MATHEMATICS 18.2 

is not weH posed. It will be shown later that almost all "reasonable" problems 
arising in physics (the so-called problems 0/ mathematical physics) are weH posed. 

REMARK 15. It will be shown (Remark 18.5.7) that: If the boundary conditions 
or initial conditions are not smooth enough, then in the case of some equations 
the classical solution of the given problem need not exist even if the coefficients 
of these equations are very smooth. That is to say, it is not always possible to 
find a function having derivatives of the required orders and satisfying both the 
given equation in the region considered and the prescribed initial and boundary 
conditions. A typical example of such equations are hyperbolic equations. Because 
of this, the concept of a solution is generalized in a proper way, see, in particular, 
Definition 18.5.3. On the other hand, solutions of some equations are classical even 
if boundary or initial conditions are not smooth enough. To this type of equations 
there belong, first of aH, the equations 

and 
ßu 
- = atlu 
ßt 

tlu = 0 (26) 

(a > 0 being a constant), (27) 

where tl stands for the Laplace operator (Definition 18.4.1) in n-dimensional space. 
Solutions of equations (26) and (27) have even derivatives of all orders in the regions 
considered. In addition, the solutions of equation (26) are analytic, i.e. they can be 
expanded into Taylor series (in n variables) in a neighbourhood of any point of the 
region in question. 

18.2. Partial Di1ferential Equations of the First Order. 
Homogeneous and Nonhomogeneous Linear Equations, 

Nonlinear Equations. 
Complete, General and Singular Integrals. 

Solution of the Cauchy Problem 

Definition 1. The equation of the form 

ßz ßz 
a(x, y) ßx + b(x, y) ßy = 0 

is caHed a homogeneous linear equation 0/ the first order in two variables. 

(1) 

Let us assurne that a(x, y) and b(x, y) are continous in the region n in question 
and do not vanish simultaneously in D. 
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REMARK 1 (Solution). We solve the system of equations 

(see Remark 17.20.4). 

Theorem 1. Let 

dx 
---
a(x, y) 

dy 

b(x, y) 

7j;(x, y) = C 

be the first integral (§ 17.20) 0 f the system (2). Then the function 

z = F(7j;(x, y)), 
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(2) 

(3) 

where F(t) is an arbitrary differentiable function, is a solution of equation (1). In 

particular, if F(t) == t, we have z = 7j;(x, y). 

REMARK 2 (The Cauchy Problem). The solution of equation (1) is to be found 
such that 

z(x, Yo) = f(x). (4) 

Let the equation 

7j;(x, Yo) = cp, (5) 

where 7j; stands for the left-hand side of equation (3), be solvable with respect to 
x giving x = g(cp). Then the required solution of the Cauchy problem is given by 

z = f(g(7j;)). 

Example 1. Find the solution of the equation 

8z 8z 
y--x- =0 

8x 8y 

satisfying z(x, 0) = x 4 (1 ~ x ~ 4). 

The first integral of the system 

dx dy 

y x 

is (see Example 17.20.3) 
7j;(x, y) = x 2 + y2 = C. 

According to (5) we have 

x 2 = cp or x = + V cp 

(6) 
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and by (6) 

REMARK 3. More generally, let the curve 

x = cp(t), y = 1/J(t), z = X(t) (7) 

be given instead of the curve (5). Let us assume that the vector (ep'(t),1/J'(t)) is 
not proportional to the vector (a (cp(t), 1/J( t)), b (ep( t), 1/J( t)) ) for any t, i.e. the curve 
x = cp(t), y = 1/J(t) is nowhere tangential to the direction field given by the functions 
a, b. Let 

tP(x, y) = C (8) 

be a first integral of the system (2). We substitute for x and y from (7) and (8), 

tP(cp(t),1/J(t)) = C. (8') 

Ifwe obtain t from (8') as a function of C, i.e. t = h(C), substitute this expression 
into the equation z = X(t) and write the left-hand side of equation (8) instead of 
C, we obtain the required solution 

z = x( h(tP(x, y))). 

In the case of Example 1 we have: x = t, Y = 0, z = t4 . Equation (8): x 2 +y2 = C. 
Equation (8'): t2 = C. Substituting for t, we obtain z = C 2 and using (8), we have 

z = (x2 + y2t 
REMARK 4. In the general case of n variables, the investigation of the equation 

az az 
al (x}, X2, ... , xn)~ + ... + an(x}, X2, ... , xn)~ = 0 

VXl VXn 

reduces to that of the system 

dXI 
(9) 

Let us assume that the functions al, a2, ... , an are continuous in the region n 
considered and that they do not vanish simultaneously anywhere in n. If the 
equations 

1/JI(XI, X2, ... , x n ) = Cl, 

1/J2(XI, X2, ... , x n ) = C2, 
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constitute a system of independent first inregrals of the system (9), then 

(where F is an arbitrary differentiable function) is a solution of the given equation. 
For details the reader is referred to [444] which also shows the construction of the 
solution of the Cauchy problem. 

Definition 2. The equation of the form 

oz oz 
P(x,y,z)ox +Q(x,y,z)oy =R(x,y, z) (10) 

is called a non-homogeneous linear equation of the first order in two variables x, y. 
We assume that the functions P, Q, Rare continuous in the region il in question, 
P, Q nowhere simultaneously vanishing, and R ;f:. o. 

(In the theory of first order equations it is common to refer to equation (10) as 
a linear equation though it is, in fact, quasilinear, because the functions P, Q, R 
involve the unknown function z.) 

REMARK 5 (Solution). To equation (10), there corresponds the system 

dx dy dz 
P(x, y, z) - Q(x, y, z) - R(x, y, z)· 

(11) 

Theorem 2. If the equations 

(12) 

constitute two independent first integrals (§ 17.20) of the system (11), then the re­
lation 

F(cpl(X, y, z), CP2(X, y, z») = 0, (13) 

where F stands for an arbitrary diJJerentiable function, gives a solution of equation 
(10). 

REMARK 6 (The Cauchy problem). Let us find the solution of equation (10) that 
passes through the curve 

x = !1(t), y = !2(t), z = !J(t). (14) 

We assume that there is no value of t for which the vector (JHt), fHt), f~(t») is 
proportional to the vector 

(P(!1(t), !2(t), !J(t»), Q(!1(t), !2(t), !J(t»), R(!1(t), !2(t), !J(t») 
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(cf. Remark 3). We substitute from (14) for x, y and z into (12) and obtain Cl and 
C2 as functions of the variable t. If we obtain by eliminating t a relation between 

Cl and C2, 
(15) 

then substituting (12) into (15), we get the solution: 

g(IPI(X, y, z), IP2(X, y, z)) = O. 

For the linear non-homogeneous equation in n variables, 

the procedure is similar (ak' bare assumed to be continuous in the region under 
consideration and the ak not to vanish simuItaneously anywhere). If the relations 

'l/JO(XI, X2,"" Xn , z) = Cl, 'l/JI(XI, X2, ... , Xn , z) = C2, 

... , 'l/Jn-I(XI, X2,··., Xn , z) = Cn- l 

constitute first integrals of the system 

dz 
-=-= ... =--=-, 
al a2 an b 

then the relation 

(F being an arbitrary differentialble function) gives the solution of the given equa­
tion. 

For details see e.g. [444J. 

Definition 3. A nonlinear equation 0/ the first order in two variables x, y is, in 
general, an equation of the form 

/(X, y, z, p, q) = O. 

Here, we employ the brief notation 

{)z 
-=p, 
{)x 

{)z 
-=q. 
{)y 

The function f is assumed to be differentiable in the region in question. 

(16) 

(17) 
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REMARK 7. The previous cases of linear homogeneous and non-homogeneous 
equations in two variables are special cases of (16). 

Definition 4. A function 

z = rp(x, y, a, b), or given by V(x, y, z, a, b) = 0, (18) 

satisfying equation (16) and involving two arbitrary (independent) parameters is 
called the complete integral (solution) of equation (16). 

REMARK 8. Each of equations (18) defines a two-parameter family of surfaces. 
However, (18) does not represent the general solution of equation (16); it can be 
shown that there always exist solutions which cannot be obtained from (18) by 
selecting appropriate values for the parameters a and b. On the other hand, all 
the solutions may be obtained from (18) by the so-called method 0/ variation 0/ a 
parameter: Let us choose an arbitrary (differentiable) function wand set 

b = w(a). (19) 

If we substitute (19) into the second of the equations (18), we obtain (keeping w 

fixed) a one-parameter family of surfaces. If the envelope of this family is now 
obtained from the equations 

V(x, y, z, a, w(a)) = 0, (20) 

by eliminating the parameter a, then this surface is an integral surface of equation 
(16). The system of all integrals obtained by specifying the arbitrary (differentiable) 
function w is called the general integral of equation (16). 

By eliminating both constants a and b from the equations 

V=o, BV =0 
Ba ' 

BV 
Tb = 0, (21) 

we obtain an envelope of the two-parameter family (18) (the so-called singular 
integral of equation (16)). 

Example 2. One can readily verify by substitution, that the equation 

(22) 

constitutes a complete integral of the equation 

(22) represents a two-parameter family of spheres having their centres at the points 
(a, b, 0) (lying in the plane xy) and radius R. Ifwe choose the function w arbitrarily, 
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then (19) defines a curve on which the centres of the spheres of the system (22) lie. 
If we choose, for instance, b = w(a) = a, then the one-parameter family obtained is 

(22') 

Eliminating a between (22') and the equation 

-2(x - a) - 2(y - a) = 0 

(which is obtained by differentiation of (22') with respect to a) we get 

This is a cylindrical surface which envelops the family (22'). The singular integral 
is obtained from equations (21), namely 

-2(x - a) = 0, -2(x - b) = 0 

that is 

and this represents two planes z = R, z = -R, both enveloping the system (22). 

REMARK 9. The complete integral of equation (16) can often be determined in 
a simple way, if equation (16) is of a particular form. This is done in the following 
Remark 10 for the cases where equation (16) takes the form (23), (26), or (28), 
respectively. 

REMARK 10. Determination of the complete integral in some special cases. 

1. 

F(p, q) = O. (23) 

We choose p = a, solve the equation F(a, q) = 0 for q, giving q = g(a), and 
obtain the complete integral from the relation 

dz = pdx + qdy; (24) 

in other words 

z=ax+g(a)y+b. (25) 

2. 

lP(x, p) = 'l/J(y, q). (26) 
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Choosing rp(X, p) = a, we have 'IjJ(y, q) = aj from the first equation, it follows 
(under obvious assumptions) that p = gl(X, a) and from the second that q = 
= g2(y, a). Integrating (24), we have 

z = J gl(X, a) dx + J g2(y, a)dy + b. (27) 

3. The generalized Clairaut equation, 

z = xp + yq + g(p, q), (28) 

has a complete integral 
z=ax+by+g(a,b) (29) 

(see also Example 3 below). 

REMARK 11 (Solution 0/ the Cauchy Problem using the Complete Interal). It is 
required to find the integral surface of equation (16) passing through the curve 

x = !I(t), y = /2(t), z = h(t) (30) 

when a complete integral of the equation (16), 

V(x, y, z, a, b) = 0, (31) 

is known. Substituting (30) into (31), we obtain an equation relating a, b, t, say 

G(a, b, t) = o. (32) 

Then, eliminating t between (32) and the equation 

BG 
7it(a, b, t) = 0 (33) 

we obtain a relation between a and b, say 

H(a, b) = 0 or b = w(a). (34) 

Substituting (34) into (31) gives us a one-parameter family of surfaces 

K(x, y, z, a) = O. (35) 

Finally, eliminating a between (35) and the equation 

BK Ta (x, y, z, a) = 0, (36) 
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we obtain the equation of the envelope of the system (35), which, as a rule, is the 
required integral surface. 

It must be realized that the procedure employed above to obtain the solution 
of the given problem is only formal (notice that we have made use of such vague 
notions as the elimination of variables, etc.) so that the result obtained must be 
analysed carefully. In particular we must show that it really represents the solution. 

The same is true for the Cauchy method (Remark 15 below). 

Example 3. Find the integral surface of the equation 

z = px + qy + pq (37) 

passing through the curve 
x = 0, (38) 

By (29) a complete integral is 

ax + by - z + ab = O. (39) 

Now parametric equations of the curve (38) are 

x = 0, y = t, (40) 

and by substituting these into (39) we get 

bt - t2 + ab = O. (41) 

Equation (33) then be comes 
b - 2t = O. (42) 

Next, eliminating t between (41) and (42), we have 

(43) 

l.e. 
b = -4a. (44) 

Substituting into (39), we obtain (as in(35)): 

ax - 4ay - z - 4a2 = O. (45) 

Differentiating this with respect to a, 

x - 4y - 8a = 0, (46) 
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and eliminating a between (45) and (46) (that is, substituting 8a = x - 4y from 
(46) into (45)), we obtain 

REMARK 12. For the equation 

where oz 
Pl=-, 

OXl 

the complete integral 

or 

oZ 
P2=-, 

OX2 

is defined similary as for the equation (16). 

... , oz 
Pn = --, 

OXn 

(47) 

(48) 

(49) 

(50) 

REMARK 13. Let us note that, in the literature, the complete integral of equation 
(48) is sometimes defined as such a solution (49) (or (50)) of this equation, that 
by eliminating al, a2, ... , an between (49) (or (50)) and the equations obtained 
by differentiating (49) (or (50)) with respect to Xl, X2, ••• , X n , one arrives at the 
equation (48). 

REMARK 14. Complete integrals for equations with several variables play an 
important role in analytical mechanics, e.g. when integrating the so-called Hamil­
tonian equations 0/ motion. 

REMARK 15 (The Cauchy (Lagrange-Charpit) Method 0/ Solution 0/ the Cauchy 
Problem in Two Varibles). If we are given the equation 

/(X, y, z, p, q) = 0, (51) 

we write down the following system of ordinary equations 

dx dy dz dp dq 
= = = P Q Pp+Qq X+Zp Y+Zq 

(52) 

or, which amounts the same thing, the system 

dx _p 
du - , 

dy _Q 
du - , 

dz 
du = Pp+Qq, 

dp - = -X-Zp, 
du 

dq 
du = -Y - Zq. (53) 
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Here we have employed the abbreviated notation 

{}f = X, 
{}x 

{}f = Y, 
{}y 

{}f = Z 
{}z ' 

{}f = P, 
{}p 

{}f = Q. 
{}q (54) 

Any solution 

x = x(u), y = y(u), z = z(u), p = p(u), q = q(u) (55) 

of the system (53) is said to be a characteristic strip (or a characteristic of the first 
order) corresponding to equation (51). Its geometrie significance is as follows: At 
every point of the curve 

x =x(u), y =y(u), z = z(u) 

the values of p(u) and q(u) are known, thus a "tangent element" of the surface 
is given. If, for a certain value Uo of the variable u, the functions (55) of the 
characteristic strip satisfy the equation (51) (i.e. if for the corresponding values 
Xo = x(uo), ... , the equation 

f(xo, Yo, zo, Po, qo) = 0 (56) 

is satisfied), then this equation is satisfied at all points of the characteristic strip. 
In this case, the characteristic strip is called the integral strip of equation (51) and 
the tangent elements which constitute it are called integral elements of equation 
(51). An integral strip is uniquely determined by the initial integral element of the 
given equation. If two integral surfaces have one common integral element, then 
they touch each other along the whole integral strip. 

Cauchy's method of solving the Cauchy problem consists in the construction of 
integral surfaces from integral strips. We are given equation (51) and the curve 

x = ft(t), y = h(t), z = h(t). (57) 

The functions pet) and q(t) are then determined from the equations 

dz dx dy 
dt = pet) dt + q(t) dt ' f(x(t), y(t), z(t), pet), q(t)) = O. (58) 

(If equation (51) is nonlinear, equations (58) may yield many solutions or may not 
yield any real solution at all). Then we find the solution (55) of (53) such that for 
u = Uo (and for all t) the conditions 

x(uo) = ft(t), y(uo) = h(t), z(uo) = h(t), p(uo) = pet), q(uo) = q(t) 
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are satisfied (we usually choose Uo = 0). In this way, x, y, z, p, q are obtained as 
functions of two parameters u and t. Eliminating u and t from the equations 

x = x(u, t), y = y(u, t), z = z(u, t), (59) 

we obtain the required relation between x, y, z. 

Example 4. Let us solve the problem of Example 3 by Cauchy's method. That 
is, we have to find a solution of the equation 

px + qy + pq - z = 0 (60) 

passing through the curve 

x = 0 z = y2 (or, in parametric form, x = 0, y = t, z = t2). (61) 

We have 

X=p, Y=q, P=x+q, Q=y+p, Z=-l. (62) 

Equations (53) now take the form: 

dx dy 
du = x + q, du = Y + p, 

dp 
du = -(p - p) = 0, 

dz 
du = (x+q)p+(y+p)q, 

dq 
du = -(q - q) = O. 

(63) 

From the latter equations, it follows that 

p = Cl = const., q = C2 = const.; (64) 

on substituting these expressions into first three equations of (63), we get 

(65) 

The first two equations are linear so that 

(66) 

When we insert (66) into the third equation (65) and integrate we obtain 

(67) 

We now choose the constants Cl, C2 , ••• , C5 depending on t in such a way that 
the conditions (61) be satisfied. At the same time the conditions (58) should be 
fulfilled. It follows from (61) that 

dx 
-=0, 
dt 

dy = 1 
dt ' 

dz = 2t 
dt 
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so that the conditions (58) take the form 

2t = p. 0 + q. 1, p. 0 + q. t + pq - t 2 = 0, 

whence 
q(t) = 2t, 

For u = 0 we then require that 

x = 0, y = t, 

so that by (64), (66) and (67) 

Hence 

x = -2t(1 - e tL ), 

t 
p(t) = --. 

2 

t 
p= --, 

2 
q = 2t 

Eliminating eU from the first two of equations (68), we have 

-x + 4y = 4t, that is (y _ ~) 2 = t 2 , 

and by the third equation (68) 

which agrees with the result of Example 3. 

q = 2t. 

REMARK 16. In the particular case where equation (51) is linear, 

a(x, y, z)p + b(x, y, z)q - r(x, y, z) = 0, 

18.2 

(68) 

(69) 

Cauchy's method may be considerably simplified because the first three equations 
(53), 

dx dy 
du = a(x, y, z), du = b(x, y, z), 

dz 
du = a(x, y, z)p + b(x, y, z)q = r(x, y, z), 

(70) 

are now sufficient to determine the functions 
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Equations (70), (71) define the characterictics of equation (69). (To be exact, we 
should, according to Remark 18.1.10, define the characteristics as the projections 
of the curves (71) onto the xy-plane. However, the above terminology is in common 
use.) The initial curve 

x = h(t), y = f2(t), z = !3(t), (72) 

(the projection of which onto the xy-plane is supposed not to touch the projection 
of any characteristic), together with the characteristics (71), determines the integral 
surface. 

Example 5. Find the solution of the equation 

xp + yq - z = 0 (73) 

passing through the curve 

(74) 

The first three equations (53) read 

dx 
du =x, 

dy 
du = y, 

dz 
du = xp + yq = z. (75) 

The solution satisfying the initial conditions (74) for u = 0 is 

(76) 

eliminating t and u we obtain 

REMARK 17. The case of the linear homogeneous equation 

a(x, y)p + b(x, y)q = 0 (77) 

is even simpler, for we need only solve the following two equations: 

dx 
du = a(x, y), 

dy 
du = b(x, y). (78) 

Thc third equation (53) now reads 

dz = 0 C du ,or z = = const., 
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so that the characteristics (using the terminology of Remark 16) are parallel to the 
xy-plane. 

REMARK 18. The existence and uniqueness of solutions (in the dass of differen­
tiable functions) is ensured for linear equations unless the projection of the curve 
(72) touches the projection of a characteristic, i.e. unless the numbers dx/dt, dy/dt 
at a point (x, y, z) are proportional to the numbers dx/du, dy/du given byequa­
tions (70) at the same point (x, y, z). On the other hand, if this proportionality 
holds at all points of (72) and at the same time the relation 

dx dy dz dx dy dz 
dt : dt : dt - du : du : du (79) 

does not hold, then the given problem has no solution. Ifthe relation (79) is satisfied 
for all points of the curve (72), i.e. the curve (72) itself is a characteristic, then the 
problem has an infinite number of solutions. 

Example 6. Find, first, the solution of Equation (73) passing through the straight 
line 

x = t, Y = t, z = 1. (80) 

The solution of equations (75) satisfying conditions (80) is 

and from these equations z cannot be expressed as a function of the variables x, y. 
(In (80), x = y for every t, so that by (75) 

dx dy dx dy 
dt : dt = du : du 

for every t; however, the relation (79), 

does not hold in this case.) 

dx dy dz 
dt : dt : dt 

dx dy dz 
du : du : du 

If the initial curve is replaced by the curve 

x = t, Y = t, z = t, (81) 

then the problem has an infinite number of solutions. An integral surface passing 
through (81) is any surface 
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REMARK 19. In the case of several variables, the characteristic strips (charac­
teristics of the first order) are defined by the equations 

dXI dXn dz dPI dpn 
(82) PI - ... - Pn n 

Xl +ZPI - ... - Xn+Zpn' 
L PkPk 
k=l 

where 
{)z {)f {)f 

Z = {)f. (83) Pk=8' Pk =-, X k =-, 
Xk {)Pk {)Xk {)z 

The Cauchy problem: Given an (n - 1 )-dimensional surface 

(84) 

the problem of finding an integral surface z = Z(XI, X2, ... , x n ) passing through 
the surface (84), is called the Cauchy problem. 

When solving this problem, we first determine 

(85) 

from the equations 

{)z Ln {)Xk 
- - Pk- =0 
{)v {)v· 

(i = 1,2, ... , n - 1) 

• k=l • 

which correspond to equations (58) and then determine a solution 

Xk = Xk(U, VI, ... , Vn-l), Z = z(u, VI, ... , Vn-l), 

Pk = Pk(U, VI, ... , Vn-l) 

(86) 

(87) 

of the system (82) such that the functions (87) assume the initial values (84) and 
(85) for U = Uo (usually we choose Uo = 0). By eliminating the parameters u, VI, 
... , Vn-l form the first n + 1 equations (87), i.e. from the equations for Xk and 
z, we obtain the desired integral surface, i.e. the relation g(XI, X2, ... , Xn , z) = O. 
(See, however, Remark 11, p. 163.) 

For details see e.g. [444]. 
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18.3. Linear Equations of the Second Order. Classification 

Definition 1. The equation of the form 

~z ~z ~z ~ 
A ll (x,y)ax2 +2A12 (X'Y)axay +A22 (X,y) ay2 +B1(x,y)ax + 

az 
+ B 2(x, y) ay + C(x, y)z + D(x, y) = 0 (1) 

is called a linear equation of the second order for the function z(x, y). 

REMARK 1. The coefficients All, ... , D are assumed to be continuous (as func­
tions of the variables x, y) in the region [l in question. 

Definition 2. If everywhere in [l 

{ 
AllA22 - Ai2 > 0 } 

A ll A 22 - Ai2 < 0 ,the equation is said to be 

A ll A 22 - Ai2 = 0 

{ 
elliptic } 
hyperbolic in [l. 

parabolic 

Theorem 1. By a suitable transformation of variables, every elliptic, hyperboli c, 
or parabolic equation in [l can be reduced in a neighbourhood of any point (xo, Yo) E 

E [l, to the so-called canonical form (2), (3) or (4), respectively: 

a2z a2z az az 
ax2 + ay2 + al(x, y) ax + b1(x, y) ay + Cl(X, y)z + d1(x, y) = 0, (2) 

a2z a2z az az 
ax2 - ay2 + a2(x, y) ax + b2(x, y) ay + C2(X, y)z + d2(x, y) = 0, (3) 

~z & ~ 
ay2 + a3(x, y) ax + b3(x, y) ay + C3(X, y)z + d3(x, y) = 0, a3(x, y) i:- O. (4) 

REMARK 2. Linear equations of the se co nd order for a function Z(Xl' X2, ... , x n ) 

of more than two variables can be transformed by a suitable change of variables 
to canonical forms similar to those of (2), (3), (4). However, in the general case 
it is not possible to find a transformation which reduces the given equation to its 
canonical form in a whole neighbourhood of the given point but only such that 
it does so at the point itself. Consequently, an equation for several variables is 
called elliptic, hyperbolic or parabolic at the point (x~, xg, ... , x~) if, by a suit­
able transformation, it can be reduced at this point to the form (5), (6) or (7), 
respectively: 

(5) 



18.3 PARTIAL DIFFERENTIAL EQUATIONS 173 

(6) 

(7) 

Only the terms involving second order derivatives are written in equations (5) 
and (6); in equation (7) the coefficient al of the derivative {)z / {)XI is required to 
be different from zero. If an equation satisfies (5), (6) or (7) at every point of 
the region in question, it is called elliptic, hyperbolic, or parabolic in this region, 
respectively. 

REMARK 3. If, in equation (6), the minus sign as well as the plus sign stand 
before more than one of the second order derivatives (while at the same time second 
derivatives with respect to all n variables are present), the equation is said to be 
ultrahyperbolic. If, in equation (7), more than one of the second derivatives is 
absent, the equation is said to be parabolic in a wider sense. 

Example 1. The equation 

is an elliptic equation for the function z(x, y) in the whole plane xy (by Definition 2, 
because A u A 22 - Ai2 = (1 + y2)2 > 0); 

the equation 
rj2 z {}2 Z {}2 z 
-+---=0 
{}xi {}x~ (}x5 

is a hyperbolic equation for the function z( Xl, X2, X3) according to (6); 

the equation 
{}2 Z {}2 Z {)2 Z {}2 Z 

{}x2 + {}x2 - {}x2 - (}x2 = 0 
I 234 

is an ultrahyperbolic equation for the function Z(XI, X2, X3, X4) (by Remark 3); 

the equation 

{}2 ~ + {} z + {} Z = 0 
{}X2 {}XI (}X3 

is a parabolic equation in a wider sense for the function z(xI, X2, X3) and 

the equation 
{}u {}2 U {}2 u {}2 u 
-=-+-+­
{)t {}x2 (}y2 {} z2 

is a parabolic equation for the function u(x, y, z, t). 
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18.4. Elliptie Equations. The Laplaee Equation, the Poisson Equation. 
The Diriehlet and Neumann Problems. Properties of Harmonie 

Functions. The Fundamental Solution. Green's Funetion. 
Potentials 

REMARK 1 (informative; see also the informative remark at the beginning of this 
chapter). In this paragraph, we deal mainly with the Laplace and Poisson equa­
tions. On so me generalization of the results and on more general elliptic equations 
see Remarks 22 - 24 and, in particular, §§ 18.8 and 18.9. 

Definition 1. The equation 
llu = 0, (1) 

where 
82u 82u 82u 

llu = !l2 + !l2 + ... + ~ (2) 
uX1 uX2 uXn 

and n ~ 2, is called the Laplace (differentiaQ equation; II is the so-called Laplace 
operator. 

(The symbol '\72 is often used in place of ll.) 

In particular, the Laplace equation for two and three variables reads 

(3) 

and 

(4) 

respectively. 

Definition 2. The equation of the form 

(5) 

is called the Poisson (differential) equation. In particular, the Poisson equation for 
two or three variables reads 

(6) 

or 

(7) 

respectively. 

Note that the Laplace equation is a special case of the Poisson equation. 
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Definition 3. Let f(Xl, X2, ... , x n ) be a continuous function in the region fl. 
Under a solution oJ equation (5) in this region, we understand every function 
U(Xl, X2, ... , x n ) with continuous derivatives of the second order in fl which satis­
fies equation (5) everywhere in fl. 

In particular, a solution of equation (1) is every function with continuous second 
order derivatives in n which satisfies (1) in fl. 

On generalization of the concept of the solution see, especially, §§ 18.8 and 18.9. 
The just defined solution is often called classieal. 

Definition 4. Every function which is a solution of the Laplace equation in fl, is 
called harmonie (in fl). 

Examples of harmonie functions, in the xv-plane, are the functions u == 1, u = 
= x 2 - y2, U = eYsinx. 

Definition 5. Let us write 

r = J(x2 + y2 + z2) . 

The function u( x, y, z) (defined for all sufficiently large r) is said to vanish at 
infinity if for every c > 0 there exists such R > 0 that lu(x, y, z)1 < c whenever 
the point (x, y, z) is such that r > R. 

For the case of n varibles the meaning of the statement "u vanishes at infinity" 
is similar; r is then defined by 

r = J (xi + x~ + ... + x~) . 

Theorem 1. IJ the function J(x, y, z) is eontinuously differentiable in the entire 
three-dimensional spaee and iJ, for large r, the inequality 

A 
If(x, y, z)1 < rHo 

holds, where A and a are positive eonstants, then the Junction 

1 {CO {CO (CO J(e, 71, () 
u(x, y, z) = - 4'rr }-co}-oo}-oo J[(x _ e)2 + (y -71)2 + (z _ ()2] de d71 d( 

(8) 

(9) 

satisfies equation (7) everywhere. Moreover, (9) is the only solution oJ equation (7) 
whieh vanishes at infinity. 

REMARK 2. The integral (9) is called the volume (Newton) potential. 

REMARK 3. In contrast with the three-dimensional case, the two-dimensional 
problem of finding a solution of equation (6) that vanishes at infinity is not solvable, 
in general. The integral (similar to that of (9)) 

(10) 
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(the so-called logarithmic potential) satisfies, under similar assumptions on the 
function f as in Theorem 1, equation (6) everywhere but does not, in general, 
vanish at infinity. 

REMARK 4. The integral 

(11) 

is not solution of equation (6). 

Definition 6. The Dirichlet problem for the Laplace (or Poisson) equation is the 
problem of finding such a solution of this equation wh ich assumes, on the boundary 
of the given region, prescribed values. In details: Let a region f2 with the boundary 
5 be given. We have to find a function which is a solution of the Laplace (or 
Poisson) equation in f2 (Definition 3), is continuous in f2 = f2 + 5 and assumes, on 
5, prescribed values (given by a continuous function g). 

Definition 7. The Neumann problem is to find a solution of the given equation 
such that it is continuous together with its first derivatives in f2 and that the 
outward normal derivative au/an assumes, on 5, prescribed values given by a con­
tinuous function h. 

REMARK 5. The Dirichlet and Neumann problems mayaIso be defined for more 
general elliptic equations than for the Laplace or Poisson equation. Moreover, other 
problems may be solved for a given equation; for instance, a relation between the 
function u and its outward normal derivative may be prescribed on 5 (the Newton 
problem). Mixed problems are also encountered, for instance, when Diriehlet's 
condition is prescribed on one part of the boundary and Neumann's condition on 
the remaining part. 

REMARK 6. We shall be mainly concerned with two and three-dimensional prob­
lems, that is, with equations (3), (4), (6), (7). If the region f2 is bounded (mul­
tiply connected regions are allowed), the Dirichlet and Neumann problems are re­
ferred to as interior problems; if f2 is the exterior of a simple closed curve (or 
of a simple closed surface which is the boundary of a simply connected region in 
three-dimensional space), we refer to an exterior problem. The outward normal is 
understood to be oriented (at a given point of the boundary) in a direction out of 
the given region. (For instance, if f2 is the exterior of the circle k with eentre at 
the origin, then the outward normal points to the origin. ) If al, a2, or al, a2, a3 in 
the three-dimensional case, are direction eosines of the outward normal, then 

or (12) 
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respectivelyo It is naturally possible to define an outward normal also in the n­

dimensional caseo 

Theorem 2 ( The Maximum Prineiple /or Harmonie Functions) 0 Let the funetion 
u be eontinuous in a bounded closed region n and harmonie in no Write M, or m 
/or the maximum and minimum 0/ the function u on the boundary 0/ n, respeetively. 
Then the inequalities m ~ u ~ M hold everywhere in n, i.eo u attains its maximum 
and minimum in n on the boundary 0/ this region. 1/ u is not eonstant in n, then 
even the striet inequality m < u < M holds everywhere in n. 

The same is true /or the two-dimensional ease i/ n is the exterior 0/ a closed 
eurve provided that u is bounded in no 1/ n is the exterior 0/ a closed sur/aee in 
the spaee and i/u is harmonie in n, vanishes at infinity (Definition 5) and lul ~ M 
holds on the boundary 0/ n, then lul ~ M holds everywhere in n. 

REMARK 7 (Uniqueness o/the Solution o/the Diriehlet and Neumann Problems). 
In this remark, when we are considering an exterior problem (either the Dirichlet 
or the Neumann problem) we make certain assumptions regarding the behaviour 
of the function u at infinity. Namely, if a plane problem is under consideration, we 
assume that u is bounded, and if aspace problem is considered, we assume that u 
vanishes at infinity. 

Uniqueness 0/ the solution 0/ both the interior and the exterior Diriehlet problem 
/or equations (3), (4), (6), (7) is guaranteed as far as the exterior problem is subject 
to the above conditionso 

Under the same conditions, these problems are also well-posed problems (that is, 
the solution depens continuously on the boundary conditions): If the absolute value 
of the change of the given boundary condition is less than E, then the same is true 
for the solution of the given problem in n (thus, if the boundary conditions have 
been measured with a small error, then the error of the solution is also small). 

Ifthe function u is a solution ofthe Neumann problem, then u+C (where C is an 
arbitrary constant) is also a solution of the same problem. To be able to guarantee 
uniqueness of the solution, we have to impose a further condition. Usually it is 
required that the function u takes a prescribed value at a given point of the region. 
In the case of an exterior problem, not hing is imposed on the function u except 
the condition that u vanishes at infinity. Then uniqueness of the solution of the 
Neumann problem (for both the interior and exterior case) for equations (3), (4), 
(6), (7) is ensured. 

REMARK 8 (Existenee 0/ Solution 0/ the Diriehlet and Neumann Problems). (As 
in Remark 7, when solving exterior problems we consider -only solutions that are , 
respectively, bounded in n or vanishing at infinity, according to whether aplane 
or aspace problem is in questiono) The solution of the interior Dirichlet problem 
for equations (3), (4), (6), (7) always exists, if the boundary of the region n is 
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smooth enough, i.e. if it has a continuously changing tangent everywhere (or a 
tangent plane, if the three-dimensional problem is consideredj see, however, Remark 
23) and if the function f has continuous derivatives of the first order in [} when 
Poisson's problem is considered. (For a generalization or a different formulation of 
the considered problems see §§ 18.8 and 18.9.) 

The solution of the exterior Dirichlet problem for the equations considered may 
be reduced to the solution of the interior problem as folIows: Let us consider first the 
plane problem and let il be the region exterior to the curve k. Let the origin lie in 

y 

Fig. 18.3. 

the interior of that curve. (Otherwise a translation of the coordinate system should 
be carried out.) Transformation to polar coordinates R, cp gives (see Example 
12.11.3) 

(13) 

The transformation r = I/R (Fig. 18.3, where the point P(r, cp) corresponds to 
the point Q(R, cp)) carries the curve k into a curve k' and its exterior il into the 
interior il' of the curve k'. It may be easily proved that the function 

u(R, cp) = u(~, cp) = v(r, cp) (14) 

satisfies the equation 

{}2 v 1 QV 1 {}2 v 1 (1 ) 
~v == ~ 2 + -jl + 2~ = 4"a -, cp ur r ur r ucp r r 

(15) 
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in [l'. In particular, if a == 0 in [l, so that u is harmonic in [l, then v is harmonie 
in [l'. It follows readily from equation (15) and from what has been said at the 
beginning of this remark that: If the function a(R, cp) tends to zero rapidly enough 
as R ---+ 00 so that r-4 • a(r-t, cp) is continuous together with its first derivatives 
in [l (more precisely: if r-4 • a(r-1 , cp) has a removable singularity at r = 0), 
then existence of the solution of the exterior Diriehlet problem is ensured also 
for Poisson's (and, thus, also for Laplace's) equation. The boundary function 9 
prescribed on the boundary k is transformed into a boundary function G on k' in 
such a way that G assumes, at every point M E k', the same value as 9 does at the 
corresponding point NE k (with the same value of cp). Hence, having determined 
the function v(r, cp), i.e. the solution of the interior Dirichlet problem for equation 
(15) under the boundary condition v = G, equation (14) directly yields the desired 
solution u(R, cp). 

The treatment of the three-dimensional case is similar. We make use of spherical 
coordinates R, {), cp, carry out the transformation r = I/Rand define the function 
v by the relation 

u(R, {), cp) = u(~, {), cp) = rv(r, {), cp). (16) 

The function v satisfies Poisson's equation 

Again, we obtain the appropriate function G on the boundary of the region [l' 
easily from the function 9 by defining G = Rg at corresponding boundary points 
(i.e. with the same values of {) andcp). Having solved the interior Dirichlet problem 
for Poisson's equation (17), Llv = r-5a(r-t, {), cp) with boundary condition v = G, 
we obtain the desired solution by (16): 

u(R, {), cp) = ~v(~, {), cp). 

The existence of the solution of the Neumann problem for the Laplace equation 
(3) or (4): Let the given region have a smooth boundary. (For the exterior problem 
see the supplementary conditions mentioned at the beginning of this Remark.) A 
necessary and sufficient condition for existence of solution is that the integral of 
the boundary function h over the boundary S of [l be equal to zero, Le. 

fs h(Q)dS = 0 _ (18) 
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(Q being a variable point of the boundary.) For plane problems the boundary 
function h is usually given as a function of the are length, so that (18) reads 

11 h(s) ds = 0, (19) 

where 1 stands for the length of the boundary; in the three-dimensional ease, (18) 
represents a surfaee integral, see Definition 14.8.2. In the ease of the exterior 
problem in three-dimensional spaee, eondition (18) is omitted. 

Even if the function 1 is smooth enough, the solution of the Neumann problem 
for Poisson's equation need not exist. For instanee, in the ease of the Neumann 
interior problem in three-dimensional spaee, a neeessary and suffieient eondition for 
existenee of a solution is 

!! 1 I(x, y, z) dxdydz - fls h(Q) dS = o. (20) 

REMARK 9 (Properties 01 Harmonie Funetions). The most important property 
has been formulated in Theorem 2 (the Maximum Prineiple). Equations (15) 
and (17) (for a = 0) express another property: If u(x, y) is harmonie in a two­
-dimensional region, then the inversion r = 1/ R earries this function again into a 
harmonie funetion. In the three-dimensional ease the situation is rather different, 
for, if u(x, y, z) is harmonie, then to obtain a harmonie function v by the inversion 
r = I/R, the transformed function must be divided by r (see(16)). 

Further properties of harmonie functions: 

1. (Mean Value Theorem). If a function is harmonie in an n-dimensional sphere 
K and eontinuous in the closed sphere K, then its value, at the eentre of this 
sphere, is equal to its average value over the boundary of the sphere. In partieular, 
for n = 2 (when K is a eircle with cent re at the point (xo, Yo) and radius R) we 
have 

1 12
'l\" u(xo, Yo) = -R u(xo + Reoscp, Yo + Rsincp)Rdcp 

2'1\" 0 

(see also Example 3 below). 

2. (Converse 01 the Mean Value Theorem.) Let u be eontinuous in Q and such 
that its value at the cent re of an arbitrary n-dimensional sphere K E Q is equal to 
the mean value over the boundary of the sphere. Then u is harmonie in Q. 

3. (The First Harnaek Theorem.) If a sequenee of functions un , eaeh of whieh 
is harmonie inside a bounded region Q and eontinuous in Q, eonverges uniformly 
on the boundary of that region, then the sequenee U n converges uniformly in the 
entire region Q and the limiting function is harmonie in Q. 
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00 

4. (The Second Harnack Theorem.) If aseries L: U n of functions U n , each of 
n=l 

whieh is harmonie and non-negative in a region il, eonverges at an interior point of 
that region, then it eonverges everywhere in il and the limiting function is harmonie 
in il. The eonvergenee is uniform in any closed bounded part of the region il. 

5. (Theorem on a Removable Singularity.) If a function U is harmonie and 
bounded in a neighbourhood of a point P, with the exeeption of the point P, then 
the function u may be defined at the point P in sueh a way that u will be harmonie 
in the entire neigbourhood of the point P. 

6. A function harmonie and bounded outside an n-dimensional sphere has a finite 
limit at infinity. 

7. (Liouville's Theorem.) A function, harmonie and bounded in the entire 
n-dimensional spaee, is a eonstant. (Henee, if a harmonie function is not eonstant 
in the entire n-dimensional spaee, then it eannot be bounded.) 

8. A function harmonie in the region il is analytic in that region, i.e. it ean be 
expanded into apower series (in n variables) in the neigbourhood of any point of 
the region il. 

9. A harmonie function bounded in a eircle K is angular extensible almost 
everywhere on the boundary. This means that the following assertion is true for 
every point P of the boundary with the possible exeeption of points eonstituting a 
set of measure zero: If a sequenee of points (xn, Yn) eonverges to the point P and if 
all these points (xn , Yn) lie in an angle a < 1800 the arms of whieh lie, in a eertain 

Fig. 18.4. 

neighbourhood of the point P, in the eircle under eonsideration (see Fig. 18.4), then 
there exists a finite limit lim u(xn, Yn) (whieh is the same for every sequenee with 

n-+oo 

the above mentioned properties). 

Theorem. 3. Let two points 

be given in n-dimensional space. Let us write 
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Then, if Q is regarded as fixed, the functions 

1 
--2 for n> 2, r n -

1 
In - for n = 2 

r 

18.4 

(21) 

constitute (as functions of the variables Xt, X2, ••. , x n ) solutions of Laplace 's 
equation in the entire space, provided P =I Q. The same holds for these functions 
considered as functions of 6, 6, ... , (n with P fixed , provided Q =I P. 

Example 1. For n = 3 and P =I Q the function u = l/r is a solution of the 
equation 

Definition 8. The function 

or 

r (~) 1 
'Y(r) = 2(n-2)(y'1I")n rn-2 

for n > 2 

1 1 
'Y( r) = - In - for n = 2 

21f r 

is called the fundamental solution of the Laplace equation in n-dimensional space 
(r denoting the gamma function, § 13.11). 

Example 2. The fundamental solution in three-dimensional space is thus 

1 1 
'Y(r) = - -. 

411" r 
(22) 

Definition 9. Let us consider the interior Dirichlet problem (Definition 6) for 
Laplace's or Poisson's equation, respectively. The function 

G(P, Q) = 'Y(r) + v(P, Q) 

is called the Green function for the problem considered provided that 'Y(r) is the 
fundamental solution of the Laplace equation (see Definition 8) and that, moreover, 
v(P, Q) is (for a fixed Q) a harmonie function of the point P in the entire region n 
in question (including the point Q) and 'Y(r) + v(P, Q) vanishes on the boundary 
of the region n. 

REMARK 10. The Green function for the problem mentioned is therefore a har­
monie function of the point P in the entire region n with the exception of the point 
Q. At this point it has a singularity given by the singularity of the fundamental 
solution (for example, in three-dimensional space by the singularity of the function 
(22)). Moreover, the Green function is zero if Pis a point on the boundary. 
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Theorem 4. The Green function is asymmetrie funetion of the points P and Q, 
i.e. G(P, Q) = G(Q, P). 

REMARK 11. To ensure existenee of the Green function in a plane or in three­
dimensional space it is sufficient to assurne that the boundary of the region n is 
smooth or pieeewise smooth (see also Remark 23). 

Theorem 5. Let the Diriehlet problem be given for the Poisson equation with 
a eontinuously differentiable right-hand side f ( Q) (or for the Laplaee equation, if 
f = 0) and let the region nunder eonsideration have a pieeewise smooth boundary 
8. Let the boundary function g(8) be eontinuous on 8. If G(P, Q) is the Green 
function for this problem, then the solution is given by the formula 

u(P) = - L G(P, Q)f( Q) dQ - fs g(8) 8G~ Q) d8, (23) 

where 8G / 8n denotes the outward normal derivative (Remark 6) of the function G 
(taken as a funetion of Q with P fixed). 

REMARK 12. In the particular ease of a plane problem, let the boundary function 
on the boundary eurve k be given as a function of are length s, i.e. 9 = g(s). Let 
us denote by al (s), a2(s) the direction eosines of the outward normal at the point 
(~, 71) eorresponding to the parameter s. Then (see equation (12)) formula (23) 
takes the form 

u(x, y) = - J L G(x, y, ~, 71)f(~, 71) d~ d71-

_ { ( ) [ ()8G(x, y,~, 71) + ()8G(x, y,~, 71)] d lk 9 s al s 8~ a2 s 871 s. (24) 

REMARK 13. To find explieitly the Green function for a given region is in general 
a diffieult task. We mention some partieular eases: 

REMARK 14. Green function for the interior of the eircle n with radius Rand 
eentre at the origin of the eoordinate system is of the form 

1 1 1 R 
G(x, y,~, 71) = -ln- - -ln--, 

21r r 21r Tl T2 
(25) 

where 

T = J[(x - 0 2 + (y - 71)2], Tl = J(e + 712 ) , 

r, = J[ (x -:; {)' + (Y - :; q)']. 
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REMARK 15. For the interior of a sphere [l with radius Rand centre at the 
origin we have 

1 1 R 
G(x, y, z,~, Tf, () = -4 - -4 --, 

'Irr 'Ir rlr2 
(26) 

where 

r = J[(x - ~)2 + (y - Tf)2 + (z - ()2] , rl = J(e + Tf2 + (2) , 

", ~ / [ (x _ ~ ~ )' + (y - ~; ")' + (z - ~; ( ) ']. 

REMARK 16. For 1 = 0 we obtain from (23), (25) and (26) the solution of the 
Dirichlet problem for the Laplace equation in the interior of a circle or a sphere in 
the form of the so-called Poisson integral: 

1 1211:R R 2 - r 2 

u(x, y) = 2 R R2 + 2 2R g(s)ds, 
'Ir 0 r- rcoscp 

(27) 

or 

u(x, y, z) = 4'1r~2 fl (R2 + r2R~ ;;;,.2cos cp)3/2 g(Q) dS, (28) 

R standing for the radius of the circle or of the sphere ( with centre at the origin), 
and 

(29) 

respectively, cp being the angle between the radü drawn to the points (x, y) and 
(~, Tf), or (x, y, z) and (~, Tf, (), respectively. The point (x, y) or (x, y, z) is a 
fixed point of the circle (or sphere) considered, the point (~, Tf) (or (~, Tf, ()) traces 
out the circumference of the circle, or the boundary of the sphere, respectively. 
The function (27) (or (28)) is a solution of the interior Dirichlet problem for an 
arbitrary continuous g. Actual evaluation of the integral may be difficult and is 
usually carried out approximately. 

REMARK 17. We shall now investigate the so-called potential 01 a single layer 
and potential 01 a double layer in a plane and in three-dimensional space. We 
shall assurne, without repeating it explicitly, that the curves or surfaces in question 
are simple and smooth (see, however, Remark 22). Moreover, the curves will be 
required to have a continuous curvature, and the surfaces will be assumed to be of 
so-called Liapunov type. We do not attempt to give the precise definition of such 
surfaces here (the reader is referred e.g. to [438]); all smooth surfaces we meet in 
practice are of Liapunov type. The curve k or the surface S is supposed to be closed 
even though this assumption is not necessary for the definition of potentials. The 
derivative auf an will always mean the derivative in the direction of the outward 
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normal to the closed curve or surface under consideration. The fixed point (x, y) or 
(x, y, z) at which the potential is evaluated will be denoted by P, the variable point 

.­
of integration which traces out the curve k or surface S will be denoted by A; AP 
is the vector with initial point A and the end point P, and nA and np the vectors 
of the outward normals at the points A, P, if P E k, or PES, respectively. (See 
Fig. 18.5 below.) The given functions /1, Fb or 12, F2 (the so-called densities), are 
assumed to be continuous on k or on S, respectively. 

Definition 10. The integrals 

v(P) = r /1 (A) In ~ ds Jk r 
(30) 

and 

(31) 

are called the potentials of a single layer in the plane and in the space, respectively. 

The integrals 
.-

w(P) = r h(A) cos(nA, AP) ds 
Jk r 

(32) 

and .-
W(P) = - Jr r F2(A) cos(nA, AP) dS 

J8 r 2 
(33) 

are called the potentials of a double layer in the plane and in the space, respectively 
(for notation and assumptions see Remark 17); r stands for the distance between 
the points A, P. 

Theorem 6. The functions (30) - (33) are harmonie (as functions of P) in the 
interior as well as in the exterior of the curve k and the surface S, respectively. 

Theorem 7. The integrals (30) and (31) are convergent for P E k and PES, 
respectively. The function v and V are continuous functions of the point P in the 
entire plane and in the entire space, respectively (including the curve k and the 
surface S). 

Theorem 8. The integrals (32), (33) converge for PE k and PES; however, the 
functions w, W have ajump on k and on S, respectively. If Po E k, or Po E S, then 
the function w, or W, is continuously extensible to the point Po !rom the interior 
as well as fram the exterior of the curve k, or of the surface S, respectively. Let 
us write W e , or W e , for the value of the continuous extension !rom the exterior and 
Wj, or Wi, for the continuous extension from the interior of the curve k, or of the 
surface S, respectively. Funher, let us denote by Wo, or Wo, the value at P = Po 
of the integral (32), or (33), respectively. Then the following relations hold at Po: 

We = Wo + 7fh(Po), Wj = Wo - 7fh(Po), (34) 

We = Wo - 27fF2(PO), Wj = Wo + 27fF2(PO). (35) 
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Theorem 9. Let npo be the vector 01 the outward normal at Po E k, or Po E S. 
The lunctions v and V, given by relations (30) and (31), have derivatives in the 
direction 01 npo from the exterior as well as !rom the interior 01 the curve k, or 
01 the surlace S, respectively. 11 the derivatives !rom the interior are denoted by 
(av / an )i, (aV/ an)i and Irom the exterior by (av / an )e, (aV / an )e, then the lollowing 
relations hold at Po: 

(~~)e = (~~)o -1T!I(PO), (~~\ = (~~)o + 7r!I(Po), (36) 

(~:)e = (~:)o - 21TF1(PO), (~:)i = (~~)o + 27rF1(PO), (37) 

where 

----7 ----+ 

( av) = _ r !I(A) eos(npo, APo) ds, (aV) = _ Jr r F1(A) eos(npo; APo) dS. 
an 0 1 kran 0 1 s r 

(38) 

REMARK 18 (Solution olthe Dirichlet and the Neumann Problems lor the Laplace 
Equation by making Use 01 Potentials; Reduction to Integral Equations). The in­
terior of the eurve k (of the surfaee S) will be denoted by Jl, the exterior by 
Jl'. The Diriehlet problem involves finding a function u(x, y), or U(x, y, z) in the 
three-dimensional ease, harmonie in Jl or in Jl', respectively, whieh assurnes on the 
boundary the preseribed values 9 (or G in the three-dimensional ease). When solv­
ing the Neumann problem, the values h or H of the outward normal derivative with 
respeet to the region eonsidered (see Definition 7 and Remark 6) are preseribed. In 
the ease of exterior problems the function u should be bounded, while the function 
U should vanish at infinity. 

REMARK 19. Notiee that in the above equations as weIl as in the foIlowing equa­
tions the normal nA, or npo points into the exterior of the eurve, or of the surfaee 
in question, respectively, so that in the ease of the exterior Neumann problem it is 
not an outward normal with respect to Jl' in the sense of Remark 6. 

REMARK 20. 

A. THE INTERIOR DIRICHLET PROBLEM. The functions u, U are assumed to be 
of the form (32), (33) (P E Jl), respectively, where hand F2 are the functions to 
be found. Making use of the seeond equations in (34) and (35), we obtain from 
the eondition u(P) -. g(Po), or U(P) -. G(Po) (Po E k, or Po E S) the foIlowing 
integral equations for h, F2 , respectively: 

----+ 
h(Po) _.!. r eos(nA, APo) h(A)ds = _g(Po) 

1Tlk r 7r 
(39) 
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and 
--+ 

F2(PO) - ~ r ( cos(nA, APo) F2(A) dS = G(Po). 
2~ JJs r 2 2~ 

(40) 

B. THE EXTERIOR DIRICHLET PROBLEM. The functions u and U are again 
assumed in the form (32), (33) with unknown functions 12, F2 , respectively. Now, 
of course, we have P E Q'. Making use of the first of equations (34), (35), we 
obtain for the unknown functions 12 and F2 the equations 

--+ 
h(Po) + .!.1 cos(nA, APo) h(A) ds = g(Po) , 

~ k r ~ 
(41) 

--+ 
F (Po) ~ 1~ cos(nA, APo) F (A)dS = _ G(Po) 

2 0 +2 2 2 2 . 
~ s r ~ 

(42) 

(The vector nA points into the exterior of the curve k or of the surface S.) 

C. THE INTERIOR NEUMANN PROBLEM. The functions u, U are assumed in 
the form (30), (31). By making use of the second of equations (36) and (37), 
the conditions au/an = h(Po) and au/an = H(Po) (from the interior) yield the 
following integral equations for the unknown functions hand Ft : 

--+ 
h(Po) _.!. ( cos(npo, APo) h(A)ds = h(Po) 

1I"Jk r 11" 
(43) 

or 
--+ 

Ft(Po) - ~ r r cos(npo, APo) Ft(A) dS = H(Po). 
211" J Js r 2 2~ 

(44) 

D. THE EXTERIOR NEUMANN PROBLEM. The functions u, U are assumed in the 
form (30), (31) (where PE Q'). The first of equations (36) and (37) imply that 

--+ 
h(Po) +.!.1 cos(npo, APo) h(A)ds = h(Po) , 

11" k r 11" 
(45) 

--+ 

Ft(Po) + 2~ ffs cos(n~; APo) Ft(A)dS = H;:o). (46) 

In (43) - (46), the vector npo points to the exterior of the curve k, or of the surface 
S, respectively (hence, in the case of the exterior problem it points into the interior 
of the region Q' under consideration). In the case of the exterior problem, h or H, 
respectively is the prescribed derivative of u or U in the direction of the exterior 
normal to Q', i.e. of the inward normal to the curve h, or to the surface S. 

REMARK 21 (solvability 0/ equations (39) - (46». Equations (39), (40), (45), 
(46) are uniquely solvable for every continuous right-hand side. (In practice, to 
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find the solution may be difficult and numerical methods are usually employed.) 
Having solved these equations, the functions u, U are given by the integrals (32), 
(33) and (30), (31), respectively. Of course, we have PEil for the interior Dirichlet 
problem and P E [2/ for the exterior Neumann problem. The integral (30) (for the 
solution of the exterior Neumann problem) defines a function which is bounded 
in [2' if and only if Ik h(s) ds = 0, consequently (30) is a solution in the sense of 
Remark 7 if and only if this condition is satisfied. 

Equations (43), (44) are solvable if and only if 

1 h(s) ds = 0 or ffs H(Q) dS = 0, 

respectively, in agreement with (18), (19). 

Equations (41), (42) are not, in general, solvable (for an arbitrary continuous 
right-hand side). By Remark 8, the exterior Dirichlet problem has a solution, this 
solution, however, need not be of the form (32) or (33), for we do not require that 
the solution be, for large T, of the order I/T in the plane or l/r2 in the space. How 
to overcome this difficulty, see e.g. [369] (for the plane problem) or [438] (for the 
three-dimensional problem). 

Example 3. Consider the Dirichlet problem for the unit circle with centre at 
the origin and with the boundary condition given by a continuous function g( s). 
Making use of (32) and (39) we shall evaluate the required harmonie function at 
the origin. It is readily seen from Fig. 18.5 that: 

------+ ( 'IT S - So ) s - So 
cos(nA, APo) = cos "2 + -2- = - sin -2-' 

y 

--
0 0 

s - So 
r = 2sin-2-. 

- e -1/2x 
~_-:-----

, 
X , , 

, , 

"0 

Fig. 18.5. Fig. 18.6. 
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Equation (39) becomes: 

1 12
'1< g(80) 12(80) + -2 12(8) d8 = ---, 

'Ti 0 'Ti 

and its solution is of the form (see § 19.2) 

g(so) 
12(80) = --- + k, 

'Ti 

where k is a constant. Substituting this in (47), we get 

whence 

g(80) 1 1 2
'1< 1 12'1< g(80) - -- + k - - g( s) d8 + - k d8 = ---

'Ti 2'Ti2 0 2'Ti 0 'Ti 

k = ~ r2
'1< g(8) d8. 

4'Ti Jo 

189 

(47) 

If we substitute the expression obtained for 12(8) into (32), where P denotes the 
--+ 

origin,we get (because r = 1, cos(nA' AP) = -1) 

r21< (9(8)) 1 r2'1< 1 r2'l< 
w(O, 0) = Jo --:;-+k .(-I)d8=;Jo g(8)d8-2'Tik=2'TiJo g(S)d8. 

(The above example is, of course, only an illustrative one; see Mean Value Theorem, 
Remark 9, point 1.) . 

REMARK 22. The assumption of smoothness of the boundary in the theory of 
potentials is rather restrictive for applications. In recent years, J. KraI and his 
school have produced a modern theory which makes it possible to apply potentials 
even in the case of nonsmooth boundaries. (J. KraI, Berlin, Springer 1980.) 

Let us note that the theory of potentials is applicable also to other equations 
than to that of Laplace. 

REMARK 23. Existence of solution of problems investigated in this paragraph can 
be proved under more general conditions than are those given in Remark 8. For 
instance, the Dirichlet problem for the Laplace equation in the plane is (uniquely) 
solvable (for a given continuous function on the coundary) if the boundary is a 
Jordan curve (Remark 14.1.3) only. 

In three-dimensional space we have the following situation: Let S be the surface 
which is formed by revolution about the x-axis of the curve shown in Fig. 18.6. The 
point 0 is a cusp of this curve. In cases of this type, we encounter the following 
fact: There exists a function G continuous on S such that the interior Dirichlet 
problem for the Laplace equation has no solution in the above-defined classical 
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sense (that is, there exists no function U, which is harmonie in the interior V of S, 
continuous in V + Sand assumes the values G on S). However, there does exist 
a bounded function Ul, harmonie in V, continuous in V + S with the exception of 
the point 0 and assuming the prescribed values G on S (except at the point 0). 
It can be shown that such a situation cannot occur, if the point 0 may be taken 
as the vertex of a cone K having a non-zero solid angle at the point 0 and such 
that K has only the point 0 in common with V + S. (This was not possible in the 
foregoing example, since the cross-section passing through the x-axishad a cusp at 
0.) In this case, we say that the exterior cone condition is satisfied at the point O. 

A region V is said to be regular with respect to the interior Dirichlet problem for 
the Laplace equation if the interior Dirichlet problem is solvable for every continuous 
function prescribed on the boundary of V. In space, every region whose boundary 
consists entirely of points whieh satisfy the above-mentioned exterior cone condition 
is regular with respect to the interior Dirichlet problem; in particular, a region with 
a smooth boundary is regular. In the plane, a Jordan region is a regular region. In 
every regular region, there exists a Green function for the interior Dirichlet problem. 

Many results which we have presented for the Laplace and Poisson equation here 
may be generalized to other elliptie equations. 

In applications, the prescribed boundary function is frequently discontinuous at 
some points of the boundary. In this case we must define what is meant by a solu­
tion: In applications, when solving the Dirichlet problem, a "classical" solution is, 
generally, understood to be a bounded function which satisfies the given differential 
equation and is continuously extensible to the given boundary function at all points 
where it is continuous. 

REMARK 24. Areader, who is interested in being briefly acquainted with funda­
mental ideas of functional-analytieal methods of solving sufliciently general prob­
lems in elliptie equations, is referred to § 18.8 (theorem on minimum of functional of 
energy, generalized solutions) and § 18.9 (the Lax-Milgram theorem, weak solutions, 
nonlinear problems). 

REMARK 25 (Methods of Solution). As mentioned in introduction to this chapter, 
solution in a closed form can be obtained in very special cases only. In this section, 
the solution of the Poisson equation in the whole space (Theorem 1) and of the 
Dirichlet problem for the Laplace equation for a circle and for a sphere have been 
given (Remark 16). See also Chap. 26 concerning the Fourier method which makes 
it possible to get the solution in the form of an infinite series in some cases. See 
also Remarks 20 and 21 on the method of potentials. 

In a majority of cases the solution is to be found approximately. For elliptie 
problems the most suitable methods are variational methods (Chap. 24), especially 
the finite element method, from among classieal methods the method of finite dif­
ferences. 
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18.5. Hyperbolic Equations. Wave Equation, the Cauchy Problem, 
the Mixed Problem. 

Generalized Solutions of Hyperbolic Equations 

REMARK 1 (informative). We shall deal only with problems relating to the so­
-called wave equation, first with the Cauchy problem and then with the mixed prob­
lem (involving boundary conditions). When investigating hyperbolic equations, we 
encounter the following phenomenon which does not occur in the case of elliptic 
and parabolic equations with sufficiently smooth coefficients: If we understand, as 
usual, by a solution of the given problem a function which satisfies the given dif­
ferential equation in the region considered and the prescribed initial and boundary 
conditions, then a solution need not exist (Remark 7) if the initial and boundary 
functions are not sufficiently smooth. Consequently, we introduce so-called gener­
alized solutions (Definition 3). 

Definition 1. The equation of the form 

(1) 

is called the wave equation. In paricular, for n = 1 we obtain the so-called equation 
of the vibrating string 

f)2 u f)2 u 
f)t 2 = f)x2' (2) 

for n = 2 the equation 

(3) 

and for n = 3 the equation 

(4) 

By a (classical) solution of equation (1) in a region n we understand such a 
function u(t, Xl, X2, ••• , x n ) which has, in n, continuous derivatives of the second 
order with respect to all variables and satisfies , in n, equation (1). 

Definition 2. The Cauchy problem for equation (1) is to find, for t > 0, such a 
solution u of equation (1) that u and f)u/ f)t are continuously extensible for t -+ 0 
and the relations 

u(O, Xl, ... , x n ) = <po(Xt, ..• , x n ), 

f)u 
8t (0, Xl, ... , x n ) = <Pt (xt, ... , x n ) 

(5) 

(6) 
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hold. 

REMARK 2. The functions (5), (6) are usually prescribed in the entire hyperplane 
Xl, X2, •.• , X n (for n = 1, for instance, on the entire x-axis). However, they may 
be prescribed only on apart of that hyperplane. 

REMARK 3. The Cauchy problem for the equation 

(7) 

(with conditions (5), (6)) may be reduced to the Cauchy problem for equation (1) 
by the substitution at = 'T. We have 

with initial conditions for 'T -+ 0: 

u(O, Xl, ... , Xn ) = 'PO (Xl , ... , Xn ), 

{}u 1 
-{} (0, Xl, ... , x n ) = -'PI(XI, ... , x n ). 

'T a 

(8) 

(9) 

(10) 

Theorem 1 (Kirchhoff's Formula for n = 3). If the functions 'PO, 'PI have contin­
uous partial derivatives of the second order, then the solution of the Cauchy problem 
(Definition 2) for n = 3 is 

(11) 

where 

(12) 

Integration is carried out over the surface St of the sphere of radius t with centre 
at the point (Xl, X2, X3). 

To obtain uepo and Uepl and to be able to use (11), we must, of course, evaluate 
(12) first for 'P = 'PO and then for 'P = 'PI· 

REMARK 4. Formula (11) is also applicable for n = 2 and n = 1. For n = 2 
(retaining the assumption that 'PO and 'PI have continuous derivatives of the second 
order), the expression 
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is to be substituted in the formula für u (Poisson's formula). Here K t stands for 
the circle of radius t with centre at the point (Xl, X2). For n = 1 we have 

11,,+t 
u",(t, x) = 2 ,,-t cp(a)da (14) 

so that 
(t ) - cpo(x + t) + cpo(x - t) + 11,,+t () d 

u ,x - - CPI a a 
2 2 ,,-t 

(15) 

(d 'Alemberl 's formula). 

REMARK 5. For the equation 

= 8x2 ' 

equation (15) together with (8) and (10) implies that 

( ) CPo(x + at) + CPo(x - at) 1 l,,+at () d 
u t, x = 2 + -2 CPI a a. 

a ,,-at 
(16) 

If it is required to solve the non-homogeneous equation 

with initial conditions (5), (6), then the following expressions are to be added to 
(11): 

for n = 3: 

where Lt is the sphere with centre at the point (Xl, X2, X3) and radius t, 

for n = 2: 

for n = 1: I1 t l,,+t-r 2 d7- f(a, T) da. 
o ,,-t+r 
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REMARK 6 (Uniqueness and Well-posed Nature 0/ the Cauchy Problem). Under 
the assumptions mentioned, the solutions presented in Theorem 1 and Remark 4 
are unique. Further: the problem formulated in Definition 2 is well-posed, i.e. the 
solution depends continuously on the initial conditions. For n = 1, this fact may be 
readily seen from (15). In the general case (for n dimensions) the following assertion 
is valid: Consider the solution in the interyal [0, T], T being any (finite) positive 
number. Denote by the symbol [n/2] the greatest integer which is less or equal to 
n/2. (For n = 1, [n/2] = 0, for n = 2 and n = 3 we have [n/2] = 1, etc.). Then 
for an arbitrary E > 0 there exists a 6 > 0 such that the change in u (in absolute 
value) is less than E whenever the change in 'Po and 'Pt and their derivatives up to 
the order [n/2] is less than 6. In particular, for n = 1 it suffices to consider only 
changes in the functions 'Po and 'Pt, as may be seen directly from (15), of course. 
For n = 2, however, it is not sufficient to consider only 'Po and 'Pt; the derivatives 
must also be taken into account. It can be shown that lul may become large even 
if I 'Po I and I 'Pli are small since thay may, nevertheless, have large derivatives. 

REMARK 7 (generalized solution). It is readily seen from (15) that ifthe functions 
'Po and 'PI are not smooth enough (for example, if 'Po does not possess the second 

y y 

x o x 

Fig. 18.7. Fig. 18.8. 

derivative, see Fig. 18.7, or 'Pt the first derivative), then the function u is not a 
solution (in the classical sense), since it does not possess derivatives of the second 
order. To come to a reasonable concept of the solution in such a case, let us 
proceed in the following way: Let, for example, the functions 'Po and 'Pt in (15) be 
merely continuous. As shown above (Remark 6), the change of the function (15) 
will be arbitrarily small if the functions 'Po and 'Pt are replaced (with a sufficient 
accuracy) by functions 'l/Jo, 'l/Jt having two continuous derivatives. The function (15) 
corresponding to 'l/Jo and 'l/JI will then constitute a solution in the usual sense. In 
this way we arrive at the concept of a generalized solution: 

Definition 3. A function u is said to be a generalized solution of the given problem 
(in the given domain Q) if there exists a sequence Ut, U2, ... , u n , ... of solutions 
(in the usual sense) of this problem converging, for n --+ 00, uniformly to u in Q. 

REMARK 8. It is readily seen that if 'Po and 'PI are continuous, then (15) rep­
resents a generalized solution of the Cauchy problem for equation (2), for instance 
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in every rectangle -a + T ~ x ~ a - T, 0 ~ t ~ T, while u is continuous in 
this rectangle. It is sufficient to make use of Remark 10 below and in virtue of 
the Weierstrass Theorem to replace the functions CPo and CPl by polynomials in the 
interval [-a, a]. (By a suitable choice of T and a, any point of the xt-plane can 
be induded, so that in this sense (15) represents a generalized solution in every 
bounded part of the plane.) 

REMARK 9. Generalized solutions may be introduced in various ways according 
to the purpose we wish to achieve. (See, for example [438], where existence and 
uniqueness of a generalized solution is proved for a wide dass of problems.) 

REMARK 10. It follows from (15) that the values of u in the entire triangle T 
drawn in Fig. 18.8 depend only on the values of CPo and CPl in the interval (a, b) and 
are independent of the values of these functions outside that interval. Similarly, it 
may be shown that the values of the solution (13) in a right circular cone K having 
its base P in the plane Xl X2 and formed by generators which make an angle of 
45° with the axis of the cone are uniquely determined by the functions CPo and CPl 

in P. The sides of the triangle T or the generators of the cone Kare obviously 
characteristics of the equation (2), or (3), respectively. A similar result is valid also 
for n > 2. 

On the Cauchy problem posed on a characteristic see § 18.1, especially Theorem 2, 
Examples 10 and 11. 

REMARK 11 (a mixed problem). In so me problems, the required solution u of 
the wave equation (1) is not only subject to the initial conditions (5), (6), in which 
(Xl, X2, ... , x n ) denotes a point in the given region n, but must also satisfy certain 
conditions on the boundary. Such a problem is said to be a mixed problem, and 
so me typical examples follow. 

Example 1. Find a solution of the equation 

(17) 

in the semi-infinite strip n(O < x < l, t > 0) such that it is continuous and has 
a continuous derivative with respect to t for 0 ~ x ~ l, t ~ 0 and satisfies the 
following initial and boundary conditions: 

u(O, x) = cpo(x), (18) 
au 
at (0, x) = CPl(X), (19) 

u(t, 0) = 0, (20) 

u(t, l) = 0, (21) 
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where lPo(O) = lPo(l) = 0, lPI (0) = lPI (l) = O. (This is the problem of vibration of a 
string of length l, fixed at both ends; the initial position of the string u(O, x) being 

given by the function lPo(x) and the initial velo city ~; (0, x) by the function lPl (x); 

for the solution see § 26.1.) 

Example 2. In a similar way, the mixed problem can be formulated in the case 
n > 1. For example, if n = 2, a solution of equation (3) is to be found which is 
continuous with its derivative with respect to t for (Xl, X2) E il and t ~ 0 (il being 
the given region in the Xlx2-plane, with boundary S), satisfies conditions (5), (6) 
(for n = 2), and vanishes for (x}, X2) E S, t > 0 (i.e. on the lateral surface of the 
cylinder in the interior of which the solution is to be found). 

REMARK 12. Other conditions may be prescribed on the boundary S for 
t > 0; we may, for instance, have au/an = 0, or, more generally, au/an + au = 0, 
where au/an stands for the outward normal derivative and a is a non-negative con­
stant (more generally a non-negative continuous function), or the corresponding 
non-homogeneous conditions. The usual requirement is that not only u but also 
the derivatives of the first order should be continuous for all t ~ 0 and all points 
of the dosed region il. These assumptions ensure uniqueness of the solution of the 
given problems and also continuous dependence on initial conditions in the follow­
ing sense: Two solutions which satisfy the same boundary conditions on S for t > 0 
(i.e. their difference satisfies u = 0 or au/au = 0 or au/an + au = 0) are arbitrarily 
dose to each other if the difference of the functions lPo and lPI and their derivatives 
up to the order [!n] + 1 is sufficiently small. Here [!n] denotes the greatest integer 
which is less than or equal to !n. 

REMARK 13 (Methods of Solution). A typical mehod of solving mixed problems 
is the Fourier method. Details are given in Chap. 26, especially in § 26.1, where the 
problem for equation (17) under conditions (18)-(21) is solved. The Fourier method 
can also be applied to problems concerning more general equations of hyperbolic 
type and also in multidimensional cases. 

Another typical method of finding solutions of mixed problems, especially use­
ful for time-dependent boundary conditions, is the Laplace transformation (see 
Chap. 28). (Cf. a similar example for the heat-conduction equation presented in 
that chapter.) 

The reader will find a variety of practical examples solved by Laplace transfor­
mation methods, for example in [77]. 

A typicalnumerical method is the method of finite differences (Chap. 27). 

In recent years, the so-called method of discretization in time (the Rothe method, 
the horizontal method of lines) turned out to be a rather universal method of 
solution of sufficiently general hyperbolic problems (of "arbitrary" order in the 
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space variables), being both an effective theoretical tool (for obtaining sufficiently 
general existence theorems) and an efficient numerical method. See [390]; see also 
§ 18.10. 

On the other hand, the vertical method of lines (the Galerkin method) is fre­
quently used, where space variables are discretized using the finite element method. 
See § 24.6. 

The initial conditions are sometimes prescribed in a different way from that of 
the Cauchy problem defined in Definition 2. For instance, we may have to find a 
solution of equation (2) such that it assurnes prescribed values on a curve y = h(x), 
where h'(x) < 0, 

ul = 'Po(x), 
y=h(x) 

oul a = 'PI (x). 
t y=h(x) 

For this case, a suitable method of solution has been proposed by Riemann (see 
[438], for example). A method due to Kirchhoff [438] is suitable for solutions of some 
multidimensional problems. On some questions concerning hyperbolic systems of 
equations see, for example, [369]. 

18.6. Parabolic Equations. The Heat-conduction Equation. 
The Cauchy Problem. Mixed Boundary Value Problems 

REMARK 1. In this paragraph we deal with the heat-conduction equation which 
for n = 3, 2, or 1 is of the form 

ou o2 u 02u 02u 
ot = ox2 + oy2 + oz2 + !(x, y, z, t), (1) 

or 

(2) 

or 
oU 02U 
ot = ox2 + !(x, t), (3) 

respectively. 

If! == 0 (which means physically that in the region considered no sources of heat 
are present) the equation is said to be homogeneous. 

The equation 
1 ou 02U 02u 02u 

a2 ot = ox2 + oy2 + oz2 + g(x, y, z, t) 

is transformed by the substitution a2t = r to the form (1) in the same way as in 
Remark 18.5.3. 



198 SURVEY OF APPLICABLE MATHEMATICS 18.6 

Definition 1. The following'problem is called the Cauchy problem for equation 
(1): To find a function u(x, y, z, t) which is bounded and continuous at all points 
of the three-dimensional space xyz and for all t ~ 0, for t > 0 satisfies equation (1) 
and for t ---t 0 is continuously extensible to a continuous function rp(x, y, z), 

u(x, y, z, 0) = rp(x, y, z). (4) 

REMARK 2. The Cauchy problem for equation (2) (i.e. in the plane E2) and for 
equation (3) (the one-dimensionalproblem) is defined in a similar way. 

Theorem 1. The function 

( t (: ( ) _ 1 -r2 /[4(t-r)] 
V X, y, z, ,.",7], ,7 - 811'3/2(t _ 7)3/2 e , (5) 

where 
(6) 

when regarded as a function 01 the variables x, y, z, t (Ior fixed e, "I, (, 7) satisfies 
equation (1) whenevert > T. On the other hand, when regarded as afunction oie, 
7], (, 7 it satisfies the equation 

(7) 

lor 7< t. 

Theorem 2. For t > 7 the relation 

(8) 

holds. 

REMARK 3. The function (5) is called the fundamental solution 01 the homo­
geneous equation (1). The physical interpretation of this fundamental solution is, 
roughly speaking, that it decsribes the temperature field in space at time t due to 
a unit heat impulse at the point (e, 7], () at the instant 7. 

REMARK 4. The fundamental solutions of the homogeneous equations (2) and 
(3), namely 

v(x, y, t, e, 7], 7) = 411'(/- 7) e-r2 1!4(t-r)] (r = J[(x - e)2 + (y - 7])2]), (9) 

v(x t e 7) = 1 e-(z-~)2/[4(t-r)] (10) 
, "2v'(1I')v'(t-7) , 



18.6 PARTIAL DIFFERENTIAL EQUATIONS 199 

have quite similar properties. 

Theorem 3. 11 the lunctions f(x, y, z, t), <p(x, y, z) and their derivatives 01 the 
first order are bounded and continuous in the entire space xyz and lor alt t > 0, 
then the solution 01 the Cauchy problem (Definition 1) is 

u(x, y, z, t) = 1:1:1: <p(~, 1], () v(x, y, z, t, ~, 1], (, 0) d~ d1] d( + 

+ lt [1:1:1: I(~, 1], (, T)V(X, y, z, t,~, 1], (, T)d~d1]d(] dT. (11) 

REMARK 5. This solution is unique (in Definition 1 we require the function u to 
be bounded). In addition, Cauchy's problem is well-posed in the sense that small 
changes of the functions land <p cause small changes of the function u. 

REMARK 6. It can be shown that if I :::::: 0 (i.e. if equation (1) is homogeneous), 
the function u given by formula (11) is, for t > 0, continuously differentiable 
infinitely many tim es no matter whether <p has derivatives or not. The heat­
conduction equation differs essentially in this property from the wave equation 
(see Remark 18.5.7). 

On the other hand, it should be noted that the Cauchy problem need not possess 
a solution for t < o. 

REMARK 7. The results for equations (2) and (3) are quite similar. The solution 
of the Cauchy problem is as follows: 

REMARK 8. Very frequently mixed (boundary value) problems are encountered. 
The following problem is typical: Find a solution of equation (3), continuous and 
bounded for a ~ x ~ b, t ~ 0, such that on the segment a ~ x ~ b, t = 0 it assurnes 
the values of a prescribed function <p(x), i.e. 

u(x, 0) = <p(x), (14) 
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while for x = a, x = b it takes the values of other prescribed functions 

u(a, t) = 1/11 (t), u(b, t) = 1/12(t) (t > 0). (15) 

(This is the problem of heat conduction in an insulated bar of length b - a having 
initial temperature u(x, 0) = <p(x) whose end points are kept at the temperatures 
1/11 (t) and 1/12 (t), respectively. The inner sources of heat are characterized by the 
function I(x, t). See Example 28.2.2 and § 26.3.) 

Theorem 4 ( The Maximum Principle). Let 1 (x, t) == 0 (i. e. equation (3) is ho­
mogeneous). Then the solution 01 the problem mentioned in Remark 8 has the 
lollowing property: For any rectangle a ~ x ~ b, 0 ~ t ~ T (T being a positive 
number) the solution takes its maximum and minimum values either on the lower 
base (for t = 0), or on one 01 its lateral sides (x = a, x = b). 

REMARK 9. Theorem 4 implies immediately uniqueness of the solution. More­
over, the problem is weH posed (for the non-homogeneous equation (3) as weH) in 
the foHowing sense: In every rectangle a ~ x ~ b, 0 ~ t ~ T the solution u changes 
only little if the function 1 and the functions (14) and (15) change only little. If 
the function 1 remains unchanged and if the change of the functions (14), (15) is 
sm aller than c, then the change of u is also sm aller than c. 

REMARK 10. In the same way as in Remark 8 the problem may be formulated 
for equations (1) and (2). In the case of equation (2) a dosed region il of the 
plane xy is given instead of the segment a ~ x ~ b, t = 0, in the case of equation 
(1) a (dosed) three-dimensional region is given. Boundary functions corresponding 
to those of (15) are not only functions of time but also, in general, functions of 
position on the boundary. Theorem 4 and Remark 9 are again valid. 

REMARK 11. It is possible to pose some other problems different from those 
formulated in Remark 8. For example, it may be prescribed that for x = b, au/an = 
= 0 should hold (physical interpretation: the end x = b of the bar a ~ x ~ b is 
insulated) or the condition au/an + au = 0 (a > 0; Newton's condition of heat 
transfer) may be prescribed, or the corresponding non-homogeneous conditions are 
given, etc. For a wide dass of such problems existence and uniqueness theorems 
can be proved (see e.g. [369]). As far as existence and uniqueness of the solution 
are concerned it does not matter if the boundary conditions are discontinuous at a 
finite number of points (if, for example, in the problem of Remark 8 the relations 
1/11(0) = <p(a) or 1/12(0) = <p(b) do not hold, etc.) provided that we require the 
solution to be bounded and to satisfy the bundary conditions everywhere except at 
those points. 

Homogeneous equations (1)-(3) may be solved by transformation into integral 
equations using the so-called heat potentials (see e.g. [323]) which are similar to 
those introduced in Definition 18.4.10. 
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For generalization of some results see [369]. 

REMARK 12 (methods 01 solution). The method of the Laplace transform is 
widely used. The problem of Remark 8 and problems of a similar nature are 
typical cases in which this method can be used (see Example 28.2.2). A variety of 
ex am pIes may be found, e.g., in [77]. In the case where several space coordinates 
are involved, the use of Laplace transforms is complicated by the fact that the 
transformed equation is again a partial differential equation. 

Another efficient method is the Fourier method. If, for instance, we have '1j;1 == 0, 
'1j;2 == 0 and also 1 == 0 (the homogeneous equation) in the problem of Remark 8, 
then using the Fourier method (§ 26.3), we arrive at the result (here a = 0, b = l) 

00 

~ n'ITX 22/12 u(x, t) = L.. an sin -l-e-n " t 

n=l 

(16) 

where 
2 t n'ITX 

an=ZJo cp(x)sin-l-dx. (17) 

If cp(x) is continuous in [0, l] and cp(O) = 0, cp(l) = 0, then (16) is the desired 
solution. If cp(x) is bounded and continuous except at a finite number of points or 
if cp(O) "# 0 or cp(l) "# 0, then the condition (14) is satisfied with the exception of 
those points (Remark 11). 

An efficient and frequently used numerical method is the method of finite differ­
ences (Chap. 27). For solving more complicated problems, the method of discretiza­
tion in time (the Rothe method, the horizontal method of lines) is rather universal, 
from the theoretical point of view (to obtain sufficienty general existence theorems) 
as weIl as from the numerical point of view (as an efficient numerical method, in 
particular in combination with the finite element method). See e.g. [390]. See also 
§ 18.10. On the other hand, the "vertical" method of lines (cf. Remark 18.5.13) is 
very frequently used (see § 24.6). 

18.7. Some Other Problems of Partial Differential Equations. 
Systems of Equations. Pfaffian Equation. 

Equations of Higher Order, Biharmonic Equation. 
Potential Flow, the Navier-Stokes Equations 

REMARK 1. Solvability of the so-called Pfaffian equation is studied in geometry 
(Remark 2). The question of solvability of the system of two equations 

{)z 
{)x = A(x, y, z), (1) 

{)z 
{)y = B(x, y, z) (2) 
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for one unknown function z(x, y) is connected with it. Let us assume that the 
functions A, B have continuous partial derivatives of the first order in a region il 
where the system (1), (2) is investigated. Then it can be shown that in order that 
this system should be solvable (or, as we say, that equations (1) and (2) should be 
eonsistent) a necessary condition is: 

8A + 8A B = 8B + oB A. 
8y 8z ox oz 

(3) 

If il is simply connected and if (3) is satisfied identically (Le. for all x, y, z of the 
region il), then there exists a system of surfaces z(x, y) satisfying (1), (2). (One 
and only one integral surface of the system (1), (2) passes then through each point 
(xo, Yo, zo) Eil.) 

If (3) is not satisfied identically, it is possible, in general, to express z as a function 
of x, y, thus z = rp(x, y). Ifthe system (1), (2) has a solution, then it is given by this 
relation. Whether z = rp(x, y) is a solution or not should be verified by inspection. 

REMARK 2. The equation of the form 

P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0 (4) 

is called the Pfaffian equation. 

Geometrie interpretation: To every point (xo, Yo, zo) E il (il is the simply con­
nected region in questionj P, Q, R and their derivatives of the first order are 
assumed to be continuous in il) there corresponds a vector with components P, Q, 
R. To solve equation (4) means, geometrically, to find a system of surfaces that 
are orthogonal to the field of those vectors (in il). The necessary and sufficient 
condition for such a system to exist is that the condition of integrability 

P (oQ _ 8R) + Q (8R _ 8P) + R (8P _ 8Q) = 0 
8z 8y 8x OZ 8y OX 

(5) 

be satisfied identically in il. 

If condition (5) is not satisfied, then it can be shown that such a system of surfaces 
does not exist. However, it is possible to find one-dimensional integral manifolds 
(curves) of equation (4), 

y = y(x), z = z(x). (6) 

One of the functions (6) may be chosen arbitrarilYj the other is then determined 
by solving the ordinary differential equation 

dy dz 
P{x, y, z) + Q(x, y, z) dx + R(x, y, z) dx = o. 
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REMARK 3. Systems of partial differential equations which are encountered in 
problems of physics and engineering are mostly of a different character. The solution 
of these systems is often reduced to the solution of a single equation of higher order. 
A typical example of such systems is the system of equations 

O(Tx OTxy _ 0 
ox + oy - , 

OTxy O(Ty _ 0 
ox + oy - , (7) 

appearing in the so-called plane problem 0/ elasticity, where the components (Tx, 

Txy and (Ty of the so-called stress-tensor are to be found (.6. being the Laplace 
operator). It can be shown that, in a simply connected region il, the solution of 
this system is equivalent, in the following sense, to the solution of the biharmonic 
equation 

(8) 

for the so-called Airy stress /unction U: Every biharmonic function U(x, y) (thus 
every function satisfying equation (8)) has the property that the functions 

(9) 

satisfy the system (7), while, conversely, to every tripie of functions (Tx, Txy , (Ty 

satisfying (7) there exists a biharmonic function U connected with these functions 
by the relations (9). Boundary conditions corresponding to the system (7) can 
be transformed into those for the function U, and the so-called biharmonic prob­
lem is then to be solved. For details see e.g. [22]. A very universal method for 
solving the biharmonic problem is the finite element method. Plane (and also 
three-dimensional) problems of elasticity can be solved as weIl in components of 
the displacement. Also here the finite element method is frequently applied. 

Solution of systems of equations in the theory 0/ shells can be reduced, similarly 
as in the case of equations (7), to the solution of a single equation of the eighth 
order. 

In a similar way, equations of hydrodynamics and electromagnetic field are trans­
formed into those for scalar and vector potentials, respectively. Two-dimensional 
problems for the flow of nonviscous incompressible fluids are solved fairly simply, 
as usual, using the theory of functions of a complex variable (see Example 21.3.3). 

The flow 0/ viscous incompressible fluids is governed by the system of equations 

ov 1 2 'Vp 1/ - + ('V x v) x v + -'V(v ) = -- - 'VU + -.6.v ot 2 P P 
(10) 

(the N avier-Stokes equation) , 
div v = 0 (11) 
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(the continuity equation), with corresponding initial and boundary conditions. Here 
1/', or p, or U, or p, or 1] is vector 01 velocity of the fluid, or pressure, or gravitational 
potential, or density, or dynamic viscosity of the fluid, respectively. To the solution 
of such problems, the method 01 discretization in time (§ 18.10) combined with the 
finite element method (Chap. 24) have been applied with success. Recently, these 
methods were successfully applied even in the case of compressible fluids. 

18.8. Elliptic Boundary Value Problems of Arbitrary Order. 
Generalized Solutions. Eigenvalue Problems 

REMARK 1. Results, obtained for unbounded positive definite operators by means 
of functional analysis and summarized in Theorems 22.6.9 and 22.6.10, make it 
possible to prove existence of (generalized) solutions for a relatively very broad 
dass of elliptic boundary value problems and to apply current variation al methods 
to obtain these solutions, or their sufficiently dose approximation. Let us remind 
these results, in brief: 

Let us investigate equations of the form 

Au= I, (1) 

where 1 is an element of a Hilbert space Hand A is an operator with his domain 
of definition D(A) dense in H. (For concrete equations see Example 1 below.) Let 
A be positive definite on D(A) (Definition 22.6.4) and let 

Fu = (Au, u) - 2(/, u) (2) 

be corresponding lunctional 01 energy (22.6.24). (Here, (., .) is the scalar product 
in H.) Then (see the quoted Theorem 22.6.9) an element Uo E D(A) is a solution 
of equation (1) exactly if it minimizes functional (2) on D(A). However, (see 
Remark 22.6.10), neither an element Uo E D(A) satisfying (1) nor an element 
minimizing (2) need exist. To ensure existence of a solution of (1) (in a generalized 
sense), let us introduce, following Remark 22.6.10, a new scalar product 

(u, V)A = (Au, v) (3) 

on D(A) and, on its base, the norm and distance (22.6.26). In this way, D(A) is 
converted into a metric space. Und er the assumption of positive definiteness of the 
operator A, this space can be completed, in a relatively simple way, adding certain 
elements of H to D(A) and extending the scalar product (3), defined originally 
only for elements of D(A), onto those new elements. In this way a complete, and 
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thus Hilbert space is obtained, called the energetic space and denoted by HA. The 
functional (2) is then extended onto this space by 

Fu = (u, U)A - 2(/, u) (4) 

and can be shown to attain actually its minimum on HA, for an element 

(5) 

uniquely determined by the right-hand side J of equation (1). This element Uo is 
called the generalized solution of that equation. Thus, iJ the operator A is positive 
definite on DA, then equation (1) actually has a solution - in the just explained 
generalized sense. This generalized sohition can then be obtained by minimizing, 
in HA, the functional (4), thus using current variational methods (Chap. 24). H 
Uo E D(A), then Uo is the solution of equation (1) in the usual sense. (In boundary 
value problems for differential equations this case occurs if the given data of the 
problem are sufficiently smooth.) 

For details see, e.g., [389], in particular Chaps. 10 and 11. 

Usefulness of results, recalled in Remark 1, can be weIl shown in the following 
example: 

Example 1. Let us consider the following boundary value problems: 

tl.2u = J in Q = (0, a) x (0, b), 
GU 

u = 0, GV = 0 on the boundary S. 

(6) 

(7) 

(Deflexion oJ a clamped rectangular plate loaded vertically by a load proportional 
to the function J(x, y).) 

-u" + (1 + sin2 x) u = J, 
u(O) = 0, u("J{) = O. 

(8) 

(9) 

(A boundary value problem for an ordinary differential equation with non-constant 
coefficients. ) 

Each of these problems is a problem of the form 

Au=J, (10) 

where in the first case we have 

(11) 
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in the second one 
Au = -u" + (1 + sin2 x) u. (12) 

If we choose, in the first case, H = L 2(il) and 

ÖU 
D(A) = { u ; u E C(4)(il), u = 0, Öl/ = 0 on S} (13) 

(i.e. D(A) is the set of all functions u continuous with their partial derivatives up to 
the fourth order inclusive in the closed region il and satisfying the boundary condi­
tions (7», then the operator A, given by (11), can be shown to be positive definite 
on D(A). (See, for example, Tab. 24.1.) Thus, if f E L 2 (il), there exists exactly 
one generalized solution Uo of the problem (6), (7), and this solution minimizes the 
corresponding energetic functional, given as weIl in Tab. 24.1. 

The same results foIlow for the problem (8), (9), if we choose H = L 2 (0, 11") and 

D(A) = {u; u E C(2) ([0, 11"]), u(O) = 0, u(1I") = O}. (14) 

REMARK 2. For how to establish positive definiteness of an operator A on its 
domain of definition see, in details, in [389J. See also Example 22.6.6 and, in 
particular, Chap. 24 of the present book, devoted to the application of variational 
methods to the solution of problems of the just discussed types. 

REMARK 3. It is evident that if the right-hand side f in (8) is "sufficiently" dis­
continuous, the problem (8), (9) cannot have a classical solution, and consequently, 
a generaHzation of that concept - e.g. in the sense of Remark 1 - is necessary. A 
similar remark concerns the problem (6), (7). Here, the loading of the plate is very 
often a discontinuous function. To introduce the concept of a generaHzed solution 
is then quite natural. 

REMARK 4 (Eigenvalue Problems). As stated in Theorem 22.6.11, a positive 
definite operator A (or, in other words, the corresponding equation Au - .Au = 0) 
has a countable set of eigenvalues 

o < .Al ~ .A2 ~ .A3 ~ ... , lim.An = +00, 
n-->oo 

(15) 

while the orthonormal (in HA) system of corresponding (linearly independent) 
eigenelements (eigenfunctions) is complete in both the spaces HA and H. These 
eigenelements (eigenfunctions) minimize, subsenquently, in the space HA and in its 
subspaces, in the sense of the quoted theorem, the Rayleigh quotient 

R(v) = (v, V)A , 
(v, v) 

(16) 
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giving sueeessively the eigenvalues >'1, >'2, .... 

In partieular, the operator A given by (11), being positive definite on its domain 
of definition (13), all just mentioned results given in Theorem 22.6.11 ean be applied 
to the eigenvalue problem 

in Q, 

on S. 

(17) 

(18) 

Thus, this problem has a eountable set of eigenvalues (15), ete. The same assertion 
holds for the problem 

-u" + (1 + sin2 x) u - >.u = 0, 

u(O) = 0, u(1\") = O. 

(19) 

(20) 

REMARK 5. Similar results ean be obtained for eigenvalue problems of the form 

Au - >'Bu = 0 (21) 

with operators A, B positive definite on their domains of definition D(A), D(B). 
A typical problem of this form is the eigenvalue problem 

u = 0, 8u =0 S 811 on. 

For details see e.g. [389], Chap. 39. See also Chap. 24 of the present book. 

18.9. Weak Solutions of Boundary Value Problems. 
Nonlinear Problems 

(22) 

(23) 

The theory of generalized solutions, diseussed in the preeeding paragraph, is 
suffieiently general and, being based on minimalization of the funetional of energy, 
relatively familiar to "eonsumers" of mathematies, especially to engineers. However, 
its disadvantage lies in the fact that, positive definite operators being symmetrie, 
only symmetrie problems ean be investigated. In this paragraph, we mention a 
more general theory based on the eoneept of the so-called weak solution of the 
given problem and of the Lax-Milgram theorem. The idea of that theory will be 
shown in the following simple example: 
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Example 1. Let us consider the boundary value problem 

-!lu == - (~:~ + ~:~) = f(x, y) in il, 

u = 0 on S, 

18.9 

(1) 

(2) 

where il is a bounded region in E 2 with a Lipschitz boundary S (Remark 22.4.10), 
and f E L 2 (il). Denote 

V = { v; v E WP)(il), u = 0 on S in the sense of traces} = Wil)(il). (3) 

Thus, V is the subspace of such functions from the Sobolev space Will (il) (Remark 
22.4.10) for which v = 0 on S is satisfied in the sense of traces (Remark 22.4.11). 
This subspace is denoted by WP)(D), as usual. Let, first, u be a classical solution 
of the problem (1), (2). (Such a solution need not exist, of course.) Let us choose 
a fixed function v E V, multiply equation (1) by this function and integrate over 
the region il. Using the Green theorem and the fact that, v belonging to V, v = 0 
on S, we obtain 

- fL ~:~VdXdY = fL~: ~~ dxdy. (4) 

A similar result holds for a2u/ ay2. Equation (1) thus yields 

Je r (au av au av) Je r Jn axax+ayay dxdy= Jnfvdxdy. (5) 

This result has been obtained for every v E V. Therefore, (5) is often called an 
integral identity. Let us rewrite it in the form 

((u, v)) = (f, v) for all v E V, (6) 

where the expression 

(( u, v)) = Je r (au av + au av) dx dy, 
Jn ax ax ay ay (7) 

linear both in u and v, is called the bilinear form corresponding to the Laplace 
operator -!l (appearing on the left-hand side of (1)) and to the boundary condition 
(2), and 

(f,v) = fLfVdXdY. (8) 

The integral identity (5), or (6), has been derived under the condition that u 
is a classical solution of the problem (1), (2). (Thus assuming u E C(2)(il), etc.) 
However, the integral (7) has sense if au/ax and au/ay belong to L 2(il) only. This 
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is the case, for example, if u E WJ1\st). Condition (2) can then be considered in 
the sense of traces. These facts establish the reason why to look for the solution u 
of the problem (1), (2) among the functions from the space WPl(st), and lead to 
the following rather natural generalization of the concept of a classical solution: 

Definition 1. Under a weak solution of the problem (1), (2) we understand a 
function 

(9) 

for which the integral identity 

((u, v)) = (f, v) for all v E WPl(st) (10) 

is satisfied, with ((u, v)) and (f, v) given by (7), (8). 

Existence of exactly one weak solution of the problem (1), (2) (with f E L2(st) 
only) is ensured by the following Lax-Milgram Theorem: 

Theorem 1. Let in a Hilben space V abilinear form (( u, v)) be given. Let there 
exist two constants K > 0 and 0: > 0 (independent of u, v) such that for every 
u, v E V we have 

I ((u, v))1 ~ K lI ullv IIvliv (V-boundedness of the form ((u, v))), (11) 

(( v, v)) ~ 0: IIvlit (V -ellipticity of the form (( u, v))). (12) 

Then every bounded linear functional F on V can be expressed in the form 

Fv = ((uo, v)) for all v E V (13) 

with Uo uniquely determined by this functional. 

The right-hand side (f, v) of the integral identity (6) is evidently a bounded 
linear functional in V = WJl l (st), for due to the Schwarz inequality, we have 

because (see Remark 22.4.10) 

(15) 

In a similar way, we get 
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and similarly for the derivatives with respect to y. Thus 

(16) 

Moreover the so-called Friedrichs inequality ([389], Chap. 30) yields 

for all v E WJ1}(il), with a > 0 independent of v. 

All assumptions of the Lax-Milgram theorem being fulfilled, for every f E L 2 (il) 
there exists exactly one weak solution Uo E WJ1}(il) ofthe problem (1), (2). (While 
existence of a dassieal solution is not ensured - if f is discontinuous, for example, 
dassieal solution does not exist.) Moreover (see e.g. [389], Chap. 34), the weak 
solution Uo minimizes, on V, the functional 

((u, u)) - 2(1, u), 

and current variational methods to this minimalization can be applied. 

REMARK 1. In Example 1 only the idea of the theory of weak solutions of bound­
ary value problems has been shown. For the whole theory see, e.g., [389]. The prob­
lem (1), (2) is so simple (and moreover symmetrie) that the concept of a generalized 
solution, discussed in the preceding paragraph, would have been quite sufficient for 
its treating. On the other hand, this problem being so simple, it was possible to 
demonstrate, in a very lucid way, that no symmetry is needed in the case of the 
weak formulation of a problem. Just this fact represents a very advantage of this 
approach, in the general case. Moreover, the weak formulation makes it possible 
to inv~ate non-homogeneous boundary conditions in a much more unified and 
surveyable way than in the case of generalized solutions. 

REMARK 2 (Nonlinear Problems). The concept of the Gateau differential, dis­
cussed in § 22.8, enables us to treat a broad dass of nonlinear problems in a proper 
way. The idea how to do it is shown in the following example: 

Example 2. Let us consider the nonlinear problem 

-u" + 20u3 = sin 7fX, 

u(O) = 0, u(1) = O. 

Similarly as in Example 1, denote 

(18) 

(19) 

V = WJ1}(0, 1) = {Vj v E WJl}(O, 1), v(O) = 0, v(1) = O}. (20) 
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In contrast to the quoted example, it is not necessary to add "in the sense of 
traces" in (20) because (see (33) below), for functions from WJ1) (0, 1), the boundary 
conditions (19) are fulfilled in the ordinary sense. 

Following the way of Example 1 and multiplying (18) by an arbitrary function 
v E WJl)(il), integrating over the interval [0,1] and using integration by parts in 
the first term, we come to the weak formulation of the problem (18), (19): To find 
such a function 

(21) 

that the integral identity 

11 
u'v' dx + 2011 u3vdx = 11 

vsin1\"xdx for all v E WJl)(il) (22) 

be satisfied, i.e., 

with 

((u, v)) = (v, sin1\"x) for all v E WJl)(il) 

((u, v)) = 11 
u'v' dx + 20 11 

u3v dx, 

(v, sin1\"x) = 11 
vsin1\"xdx. 

(23) 

(24) 

(25) 

To ensure existence of such a weak solution u, it is sufficient - following § 22.8 -
to construct on WJ!)(O, 1) a functional G for which 

G'(u, v) = 1 1 
u'v' dx + 20 11 

u3vdx -11 vsin 1\"xdx (26) 

holds and to prove that there exists an Uo E WJ!)(O, 1) for which that functional 
attains its minimum on WJl)(O, 1). Because, by Theorem 22.8.1, we then have, at 

that point, G'(uo, v) = 0 for all v E WJ!)(O, 1), i.e. 

11 u~v' dx + 2011 u3vdx -11 
vsin1\"xdx = 0 for all v E WJ!)(O, 1), (27) 

so that for that Uo the integral identity (22) is satisfied. 

In our case, the functional G is easily obtained by (22.8.21) from Remark 22.8.6: 

Gu = 1 1 [11 tu'u' dx + 2011 (tu)3u dx -11 USin1\"Xdx] dt = 

= ~ r1 u'2 dx + 5 r1 u4 dx _ r1 u sin 1\"X dx. 
2 Jo Jo Jo 

(28) 
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Evidently, we have 
Gu= Fu- gu, 

where 

gu = 1 1 
usin1\"xdx 

and 

Fu = - u,2 dx + 5 u4 dx 11
1 11 

2 00 

is the functional discussed in details in Example 22.8.1. 

Using the weH-known formula for the norm in WJ1}(0, 1), 

Ilull~~l)(O,l} = 11 
u2 dx + 11 

u,2 dx 

and an embedding result (Example 22.4.7), 

u E WJ1}(0, 1) => u is continuous in [0, 1], 

while a constant c (independent of u) exists such that 

lIullc[o 1) = max lu(x)1 ~ c lIull~(l)(O I} , 
'O~x~l 2 ' 

18.9 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

the functional (31) has been proved, in the quoted Example 22.8.1, to be weH defined 
on the entire space WJ1}(0, 1). Then its first and second Gateaux differentials have 
been determined, 

F'(u, v) = 11 
u'v' dx + 20 11 

u3vdx, 

FI/(u, v, w) = 11 
u'w' dx + 60 11 

u2vwdx. 

(35) 

(36) 

Now, because of u E WJ1}(0, 1) => u E L 2(0, 1), the functional 9 is also defined for 

all u E WJ1}(0, 1). Moreover, 

g(u + tv) = 1\u + tv) sin 1\"xdx, 

so that 

d 11 11 9' (u, v) = -d g( u + tv) I = v sin 1\"X dXj 
t 0 t=O 0 

(37) 

further, 

g'(u+tw, v) = 11 
vsin1\"xdx, 
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whence 

g"(U, V, w) = dd g'(U + tw, V)I = 0. 
t t=o 

(38) 

Thus, the functional Gis also defined on the whole space WJ!)(O, 1), and, con­

sequently, on the wh oIe space l-VP)(O, 1), because wi 1)(0, 1) is a subspace of 
(1) ( ) d W 2 0,1, an 

G'(u, v) = F'(u, v) - g'(u, v) = 

= 1
1 u'v' dx + 20 1

1 u3vdx -11 vsin '7rxdx 

(as known from (26) already), 

(39) 

G"(u, v, w) = F"(u, v, w) = 11 v'w' dx + 60 11 u2vwdx. (40) 

To establish that a functional G attains its (only) minumum on wi1)(0, 1), it is 
sufficient (Theorem 22.8.3) to prove that 

(i) Gis defined on the wh oIe space wi 1)(0, 1) and has everywhere its first and 
second Gateaux differentials; 

(ii) G' (u, v) is bounded in the following sense: Let M be the set of all u E 

E wi1)(0, 1) such that lIullwJl)(O,l) ~ r. Then a constant K (dependent on r, but 

indepedent of u E M) exists such that 

IG'(u, v)1 ~ K Il vll w?)(O,l) 

holds for all u E M and v E wi 1)(0, 1); 

(iii) a constant k > ° exists (independent of v, u) such that 

( 41) 

G"(u, v, v) ~ k IlvI1wJl)(O,1)' (42) 

For oUf functional (28) the requirements (i) have already been established. 

Ad (ii): We have 

IG'(u, v)1 ~ 11
1 

u'v' dxl + 20 11
1 

u3vdxl + 11
1 

vSin'7rxdxl ~ 
~ (r + 20r3c3 + )2) Il v llwJl)(O,l) (43) 

for every u E M and v E WP)(O, 1), because by the Schwarz inequality and by (32) 

we have, first, 

111 
u'v' dxl = I(u', V'h2(O,1)1 ~ lI u'IIL2(o,1) Ilv'IIL2 (o,1) ~ 
~ Il u ll wJ')(O,l) II v ll wJ1)(o,l) ~ r IlvllwJl)(O,l); 
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further, by (34) and the Schwarz inequality, 

and, finally, 

20111 u3vdxl ~ 20 l11ul31vl dx = 20r3c3 11 
lvi dx ~ 

~ 20r3c31IvIIL2(O,1) ~ 20r3c31IvllwJl)(O,1) 

111 
vSin'1\'xdxl = I(v, sin'1\'xh2(O,1)I ~ 
~ Iisin '1\'XII L2 (O,1) IIv Il L2 (O,1) ~ 

1 
~ ";2 Il vll wJl)(O,l)' 

Thus, r being fixed, the value r + 20r3c3 + * for K in (41) can be taken. 

18.9 

Ad (üi): Let us note, first, that the Friedrichs inequality (see, e.g. [389], Chap. 
30) yields for functions from WJ1\0, 1) 

(44) 

with m > 0 independent of u. So we have 

(45) 

with 

All the requirements (i), (ü), (üi) being fulfilled, Theorem 22.8.3 ensures existence 
of exactly one Uo E WJ1)(0, 1) for which the functional G assumes its minimum on 
WJ1)(0, 1) and for which, consequently, the integral identity (27) is fulfilled. 

In this way, existence of a (unique) weak solution of the problem (18), (19) has 
been established. 

REMARK 3. A relatively simple problem (18), (19) has been choosen to show the 
ideas. The Hilbert space WJ1)(0, 1) could be taken for the space V in (20), because, 
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thanks to the embedding theorems, the "nonlinear" integral J01 u3v dx masts here. 
In a similar way we can go on when solving, for example, the problem 

-Au+u7 = / in Q, 

u = ° on S, 

where G is a bounded region in E2 with a Lipschitz boundary S. Also here the 
Hilbert space V = WP)(Q) can be choosen, because, thanks to (22.4.22), the inte­
gral J.a uqv dx exists with an arbitrary q E [1, +00), thus with q = 7, for example. 
However, in general, Banach spaces should be applied when nolinear problems are 
to be solved. For a detailed theory see, e.g., [160), where also "nonpotential" prob­
lems are investigated (thus such where the theory based on the concept of the 
Gateuax differential of a functional cannot be applied). 

18.10. Application of Variational Methods to the Solution 
of Partial Differential Equations Containing Time. 

The Method of Discretization in Time 
(the Rothe Method, the "Horizontal" Method of Lines) 

Variational methods, developed originally for solution of elliptic boundary value 
problems, can be as weIl applied to the solution of parabolic and hyperbolic prob­
lems. One of the ways how to achieve it is to apply the Galerkin semidiscretization 
method (the "vertical" method of lines) mentioned in § 24.6. Another possibil­
ity gives the method 0/ discretizaton in time (the Rothe method, the "horizontal" 
method 0/ lines) investigated extensively in [390). Its very simple idea becomes 
clear from the following example: 

Example 1. Consider the parabolic equation 

ou 02u . 
---=Slnx ot ox2 

in the region Q = (0, 'Ir) X (0, 1), with the initial and boundary conditions 

u(x, 0) = 0, 

u(O, t) = 0, u('Ir, t) = O. 

Here, the solution can be easily found: 

u(x, t) = (1 - e- t ) sin x. 

(1) 

(2) 

(3) 

(4) 
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o a x 

Fig. 18.9. 

Thus, the example is only illustrative. We have chosen it because it is simple 
enough to show the idea and, moreover, it gives the possibility of comparing results, 
obtained by the method considered, with the exact solution. 

Let us divide the interval [0, 1] into p subintervals of the length h = l/p by the 
points 

it = h, t2 = 2h, t3 = 3h, 

(Fig. 18.9), with to = 0, tp = ph = 1. Choose zo(x) == 0 in accordance with (2) and 
find succesively for t = tl, t = t2, t = t3, ... , the functions Zl(X), Z2(X), Z3(X), ... 
as solutions of the problems 

Zl - Zo 11 • 
Zl(O) = 0, Zl(1\") = 0, (5) 

h 
- zl = Slnx, 

Z2 - Zl 11 • Z2(0) = 0, Z2 Cl\") = 0, (6) 
h 

- z2 = Slnx, 

Z3 - Z2 11 • 
Z3(0) = 0, Z3(1\") = 0, (7) 

h 
- z3 = Slnx, 

............................... 

We thus have replaced, for every tk, the derivative ßu/ßt in (1) by the corresponding 
difference quotient and the derivative ß2 u/ ßx2 by the ordinary second derivative. 
The given problem has been reduced, in this way, to successive solution of ordinary 
differential equations with the boundary conditions Zk(O) = 0, Zk(1\") = 0 (by (3)). 

Solution of these problems is very simple in our case. Because of zo(x) == 0 and 
of the boundary conditions given, the solution of the problem (5) can be evidently 
assumed in the form 

(8) 
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An easy computation yields 

Zl = (1 - 1 ~ h) sin Xj (9) 

substituting this result into (6) for Zl and assuming Z2 in the form a2 sinx again, 
we get 

Z2 = (1 - (1: h)2) sinxj 

in the same way we obtain 

Z3 = (1- (1: h)3) sinx 

and, generally, 

Zk = (1- (1: h)k) sinx. (10) 

If we choose, for example, h = 0·01 and k = 20, or k = 40, or k = 100 (which 
correspond to the values t = 0·2, or t = 0·4, or t = 1), we get 

Z20 = (1 - (1 + ~'01)20 ) sin x = 0·1805 sin x, 

or 

or 

Z40 = (1 - (1 + ~'01)40 ) sinx = 0·3284 sinx, 

ZlQO = (1 - (1 + 0~01)100 ) sin x = 0·6303 sin x, 

respectively. Corresponding values of the exact solution (4) are 

Z(x, 0·2) = 0·1813 sin x, 

z(x, 0·4) = 0·3297 sin x, 

z(x, 1) = 0·6321sinx. 

Thus, the values of the approximate solution, obtained by the method of discretiza­
tion in time at these points, and the values of the exact solution are in a very good 
harmony. 

We see that this method gives an approximate solution at certain discrete points 
t 1 , t2, ... , t p of the given interval only. An approximate solution defined on the 
whole region Q can be obtained, if required, by constructing the so-called Rothe 
function, defined in every subinterval h = [tk-l, tkl by 

(11) 
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k = 1, 2, ... , p. So for every fixed x = a from the interval [0, 'Ir], this function is 
a piecewise linear function of t in the interval [0, 1] and for t = t!, t = t2, ... it 
assumes the values zl(a), z2(a), etc. (Fig.18.9). 

If we are interested in convergence of the method, let us consider the divisions 
dI, d2 , d3 , ••• , dn , ... of the interval [0, 1] into subintervals of the length h, h/2, 
h/4, ... , h/2n - 1 , ••• , respectively, and for each of these divisions construct the 
corresponding Rothe function. In our case it is easy to prove that the sequence 

... , Un(x, t), ... 

of these Rothe functions converges in Q to the solution (4) of the problem (1), 
(2), (3). (Roughly speaking, the approximate solution, obtained by the method of 
discretization in time, is the "better" , the finer is the division of the given time 
interval.) 

As said above, Example 1 is only illustrative, because the problem (1)-(3) was 
so simple that there was no need to apply any approximate method. However, it 
has weH shown characteristic features of the method and, at the same time, what 
can be expected when using it. 

In the case of boundary value problems with one space variable we solve, suc­
cessively, ordinary differential equations with corresponding boundary conditions. 
However, the main importance of the method lies in its application to approximate 
solution of partial differential equations in several space variables, first of all of 
equations of the form 

~; + Au = f in Q = il x (0, T) (12) 

with corresponding initial and boundary conditions. Here A is an elliptic operator 
(e.g. the operator -~, or the operator ~2, or an elliptic operator of an even order 
with variable coefficients) and f is the given function. The method of discretization 
in time then yields elliptic equations of the form 

Zl - Zo A f ---+ Zl = 
h 

Z2 - Zl A f 
h + Z2 = 

in il, 

in il, 

(13) 

(14) 

with corresponding boundary conditions, to be solved, successively, to obtain the 
functions Zl, Z2, etc. The function Zo is known from the given initial condition (in 
Example 1 we had Zo == 0). (For the sake of simplicity, we assumed, when writing 
down equations (13), (14), the function fand the coefficients of the operator A 
not to depend on time; if it is not the case, equation (13) is to be replaced by the 
equation 

(15) 
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where h, or Al, is the function /, or the operator A, respectively, taken for t = tl, 
etc. Also boundary conditions may depend on time.) The elliptic problems (13), 
(14) can then be solved by current variation al methods (the finite element method, 
etc.). If the boundary conditions and the operator A are independent of time (and 
this is a very frequent case in applications), the successive solution of problems (13), 
(14), ... goes forward very quickly, because the matrix of corresponding systems 
of equations remains unchanged. Moreover, the method 0/ discretization in time is 
numerically stable. 

As concerns theoretical questions (existence, convergence), let us assume, first, 
that the initial and boundary conditions are homogeneous. Let the region il be 
bounded and its boundary Lipschitzian (see Remark 22.4.10; thus not necessarily 
smooth). If / E L2(il) and the operator A is positive definite or the corresponding 
bilinear form V-elliptic (see §§ 18.8,18.9), then each ofthe problems (13), (14), ... 
is uniquely solvable (it has exactIy one generalized, or weak solution in the sense 
of the quoted paragraphs), and the sequence of corresponding Rothe functions, 
constructed similarly as in (11), converges in a certain sense (in a certain functional 
space not characterized exactly here, see [390]) to the so-called weak solution of the 
given problem. This result can be extended, without difficulties, to the case of non­
-homogcneous initial and boundary conditions. For details, the reader is referred 
to [390], where also the cases are analysed when the operator A is nonlinear, or 
when the problem is hyperbolic (thus when an equation of the form 

(Pu 
fJt2 + Au = / 

with corresponding initial and boundary conditions is given), etc. In that book, 
also a lot of numerical examples can be found. 
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19.1. Integral Equations of Fredholm's Type. Solvability, 
Fredhohn's Theorems. Systems of Integral Equations 

REMARK 1. Many problems encountered in applications, as weIl as in mathe­
matics itself, lead to the solution of integral equations, in particular of the so-called 
Fredholm equations (see below). As shown in Example 22.5.3, the integral operator, 
given by 

Au = lb 
K(x, s)u(s) ds, 

occurring in these equations, is a completely continuous operator. Hence, the the­
ory of integral equations can be taken as a special case of the theory of operator 
equations with completely continuous operators. However, we are not going to 
treat integral equations in such an abstract way in this chapter. We give here the 
"classical" theory of integral equations in the space L2 (a, b) which is a very natural 
space for these equations to be treated in. 

Basic concepts, concerning the space L2 (a, b) of square Lebesgue integrable func­
tions, have been given in § 16.1. For abrief orientation of the reader, let us remind: 

Every (real) function which is continuous, or piecewise continuous in [a, b], is 
Lebesgue integrable in this interval. A (Lebesgue) measurable function f (un­
bounded in general) is called square integrable on (or in) [a, b] if the integral 

is convergent (= of finite value). We write 
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By a scalar product of two (real) functions I, 9 E L2 (a, b) we understand the 
number 

(j, g) = lb I(x)g(x) dx, 

by the norm of a function I the number 

and by the distance of functions I, 9 the number 

e(j, g) = 11I - gll = J {lb 
[g(x) - l(x)]2 dX} . 

The set of all square integrable functions on the interval [a, b], with the just men­
tioned operations of scalar product, norm and distance, is called the (real) space 
L 2 (a, b). (See, however, the following text.) 

Two functions I, gare called equivalent in the space L 2 (a, b), if their distance is 
equal to zero, i.e. if 

lb [g(x) - l(x)]2 dx = O. 

We write 

1= 9 in L2(a, b). 

Two equivalent functions can differ, in [a, b], on a set of measure zero, e.g. at a 
finite number of points. We say also that they are equal almost everywhere in [a, b]. 
In the space L2 (a, b), they are taken for equal, or, in other words, they represent 
the same element of this space. (In this sense, one speaks about the space L 2 as 
about the set of classes of mutually equivalent square integrable functions, with the 
operations of scalar product, norm and distance defined as corresponding operations 
with arbitrary representants of these dasses. ) If we say that I is a zero function in 
L2 (a, b) (we write 

1=0 in L 2 (a, b)), 

then this function is a function which is either equal to zero in the whole interval 
[a, b], or is different from zero at points constituting a set of measure zero, e.g. at 
a finite number of points. If we say that I is a non-zero lunction in L 2 (a, b) (we 
write 

then this function is different from zero on a set of positive measure, e.g. on the 
whole interval [a, b] or on a subinterval of that interval. For example, the function 
sin5x is a non-zero function in L2 (O, 'Ir). 
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In this sense we speak about zero or non-zero lunctions in the whole chapter. 

Let us note that if two equivalent functions I, gare continuous in [a, b], then 
they are equal at all points of that interval. 

In the theory of integral equations we often deal with complex lunctions 01 areal 
variable, i.e. with functions of the form 

I(x) = h(x) + ih(x), 

where hand h are real functions. A (measurable) function f is then called square 
integrable in [a, b] if 

(what happens if and only if both the functions hand h are square integrable in 
that interval ). All what has been said about the real space L2 (a, b) in the preceding 
text, remains valid for the complex space L 2 (a, b), except that the scalar product 
is defined here by the relation 

(I, g) = l b 
f(x)g(x)dx 

(g( x) being the complex conjugate to g( x)) and that the integrals 

appearing in the definitions of the norm and distance, are to be replaced by the 
integrals 

respectively. 

In a similar way the real, or complex space L 2 (Q) is defined, where Q is a bounded 
region in E 2 (or, more generally, in E n ), with the scalar product (for n = 2) 

(I, g) = J In f(x, y)g(x, y) dx dy, 

or 

(I, g) = J In f(x, y)g(x, y) dx dy, 

respectively. 

In this chapter, under L 2 (a, b), or L 2 (Q), complex spaces L 2 are to be understood, 
in general. 
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Definition 1. The equation 

I(x) -lb 
K(x, s)/(s) ds = g(X) (1) 

is called a linear integral equation of the second kind. (On integral equations of 
the first kind see in § 19.7. A brief analysis of a typical nonlinear equation can be 
found in Example 22.5.1.) Here x, s E [a, bJ are real variables, the function K(x, s), 

called the kernel of equation (1), is defined in the closed square Q = [a, bJ X [a, b], 
g( x) is a given function defined in [a, b], 1 (x) is the unknown function. 

In general, we have 

K(x, s) = K 1 (x, s) + iK2 (x, s), g(x) = gl(X) + ig2 (x), 

with K 1 , K 2, gl, g2 real. In whatfollows, we assume that K E L 2 (Q), gE L 2(a, b), 
i.e. (see Remark 1) that 

are finite numbers. In this case, (1) is called the Fredholm equation. (Let us note 
that there is no uniformity in terminology. For example, many authors understand 
und er a Fredholm equation every equation of the form (1), thus every integral 
equation of the second kind. Also other definitions are in use.) 

Definition 2. By a solution of equation (1) we understand such a function 1 E 
E L 2 (a, b), for which equation (1) is satisfied in the interval [a, bJ almost everywhere, 
i.e. for all x E [a, bJ with the possible exception of points constituting a set of 
measure zero (e.g. with the possible exception of a finite number of points). 

Example 1. The function 

(see Example 19.2.1) is a solution of the equation 

I(x) -11 6(x + s)/(s) ds = x 2 , 

because for x E [0, 1J the equality 

251 251_2 11 

X - 8" x - 8" - 0 6 (x + s) (s - 8" s - 8") ds - x 

is satisfied (even for all x of that interval here). 
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REMARK 2. In the case of two variables, the equation of the second kind is of 
the form 

f(Xl, X2) - J 1 K(Xl, X2, X3, x4)f(X3, X4) dX3 dX4 = g(Xl, X2), 

where [l is a given domain; very frequently [l is the square a ~ X3 ~ b, a ~ X4 ~ b. 
The variables Xl, X2, x3, x4 run through the set Q = [l X [l (thus (X3' X4) E [l, 

(Xl, X2) E [l). In the special case, where [l is a square, Q is the four-dimensional 
interval a ~ Xi ~ b, i = 1,2,3,4. Ifthe kernel K(xl, X2, X3, X4) is square integrable 
in Q, the equation is called Fredholm's equation. The (Fredholm) integral equation 
for an unknown function of several variables is defined similarly. The theory and 
computing methods are very much alike for cases both of one and several variables. 
Therefore, in the following text, we shall deal with the one-dimensional case only. 
The results obtained may easily be generalized to the case of functions of several 
variables. 

REMARK 3. A parameter>. (generally complex) is often introduced into equa­
tion (1), 

f(x) - >.lb K(x, s)f(x) ds = g(x). (2) 

For >. = 1 we obtain equation (1) as a special case. If g(x) == 0, we obtain the 
equation 

f(x) - >.lb K(x, s)f(x) ds = 0, (3) 

the so-called homogeneous equation corresponding to the equation (2). 

Definition 3. The equation 

F(x) - ~ lb K(s, x)F(s) ds = 0 (4) 

is called the adjoint equation to equation (3). Recall that the bar above >. and 
K(s, x) denotes the complex conjugate value (i.e. if >. = >'1 + i>'2 and K(x, s) = 
Kl(x, s)+iK2 (x, s), >'1, >'2, Kl, K2 real, then ~ = >'1-iA2 and K(s, X) = Kl(s, x)­
-iK2 (s, X), respectively). The kernel K(s, X) is called the adjoint kernel to the 
kernel K(x, s). 

Example 2. The equation 

f(x) - >.12 (x3 + s)f(s) ds = 0 

is a Fredholm equation (for any value of >'). The equation 

F(x) - ~ 12 (s3 + x)F(s) ds = 0 
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is the corresponding adjoint equation. Note the interchange of variables x and s in 
the kerneis of the original and the adjoint equations. 

Definition 4. Any number A = AO for which equation (3) possesses a non-zero 
(Remark 1) solution cp( x) is called a characteristic value or a characteristic number 
or an eigenvalue of equation (3) (or of the kernel K(x, s)).The function cp(x) is 
called the characteristic function or the eigenfunction associated with the number 

AO' 

(The terms characteristic value and characteristic number are preferred to the 
term eigenvalue in the literature, bacause, in the operator theory, the lattcr is used 
in the case of equations of the form Af - Af = 0, while we consider equations of 
the form f - AAf = 0 here.) 

FREDHOLM'S THEOREMS. Let (3) be a Fredholm equation, z.e. let K E L2(Q). 
Then: 

Theorem 1. In any bounded part of the complex A-plane, there exist only a finite 
number of characteristic values. 

Thus the only possible point of accumulation of the characteristic values is the 
point A = 00. 

Theorem 2. At least one characteristic function is associated with each charac­
teristic value. The number of linearly independent (Definition 12.8.2) characteristic 
functions associated with a fixed characteristic value is finite. 

Theorem 3. If AO is a characteristic value of equation (3) (with kernel K(x, s)), 
then the complex conjugate number AO is a characteristic value of the adjoint equa-
tion 

F(x) -"X l b 
K(s, x)F(s) ds = O. (5) 

Equations (3) and (5) have the same number of linearly independent characteristic 
functions (corresponding to AO and AO, respectively). 

Theorem 4 (Fredholm 's Alternative). For the equation 

f(x) - A l b 
K(x, s)f(s) ds = g(x) (6) 

there are only two possibilities: 

either this equation possesses one and only one solution f E L 2 (a, b) for any 
gE L 2 (a, b) (in particular, f(x) == 0 is the only continuous solution for g(x) == 0), 

or the corresponding homogeneous equation (3) has a non-zero solution. 
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REMARK 4. In the second case, Ais a characteristic value of the kernel K(x, s) 

and hence (Theorem 3) );" is a characteristic value of the kernel K(s, x). Conse­
quently, the equation 

'IjJ(x) -);" l b 
K(s, x)'IjJ(s) ds = 0 (7) 

has a finite number (Theorem 3) of linearly independent characteristic functions. 
Let us denote them by 

(8) 

Then equation (6) is solvable precisely for those functions g E L2 (a, b) which are 
orthogonal to all functions (8), i.e. for which the relations 

l b 
g(x)'ljJi(x)dx = 0, i = 1, 2, ... , k (9) 

hold. 

In this case, equation (6) has obviously more than one solution: For if I(x) is a 
solution of equation (6), corresponding to g(x) (g(x) satisfying conditions (9)) and 
if 

(10) 

are linearly independent solutions of the homogeneous equation 

<p(x) - A l b 
K(x, s)<p(s) ds = 0, (11) 

then, obviously, the function 

where Cl> ... , Ck are arbitrary constants, is again a solution of equation (6). 

REMARK 5. The Fredholm alternative is often applied: If it is known that equa­
tion (11) has (in the domain of square integrable functions) only the zero solution 
(as can often be expected because of the nature of the technical problem in ques­
tion), then equation (6) has one and only one solution 1 E L2 (a, b) for each function 
gE L2 (a, b). 

Theorem 5. 11 K(x, s) is continuous in Q and g(x) is continuous in [a, bJ and 
if equation (6) is required to be satisfied at all points 01 the interval [a, bJ, then its 
solutions (if they exist) are continuous lunctions in [a, bJ. 
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REMARK 6. A system of two integral equations 

h (x) - l b 
Ku (x, 8)h (8) d8 - l b 

K 12 (x, 8)12(8) d8 = gl(X), (12) 

h(x) - l b 
K 21 (x, 8)h (8) ds -lb 

K 22 (x, 8)12(8) d8 = g2(X) (13) 

may be reduced to a single integral equation as follows: 

Instead of the interval [a, b], consider the interval [a, 2b-a] whose length is double 

, , 

~ 
, I 

x 

2b-a ---

b --

a ----

1(21 K22 

1(11 K12 

, 

o ~ t 2b~a X o a 2b-a s 

Fig. 19.1. Fig. 19.2. 

that of [a, b] (Fig. 19.1) and define functions F(x) and G(x) by the formulae 

() { h(x) for a ~ x ~ b, 
F x = h (x - (b - a)) for b < x ~ 2b - a 

(12 (x - (b - a)) is the function h (x) "shifted" by the distance b - a to the right), 

G(x) = {gl(X) for a ~ x ~ b, 
g2 (x - (b - a)) for b < x ~ 2b - a. 

Similarly (see Fig. 19.2): 

{ 

Ku(x, 8) 
K( )_ K 12 (X,8-(b-a)) 

X,8 - K 2t{x-(b-a),8) 
K 2z{x - (b - a), 8 - (b - a)) 

for a ~ x ~ b, a ~ 8 ~ b, 

for a ~ x ~ b, b < 8 ~ 2b - a, 
for b < x ~ 2b - a, a ~ 8 ~ b, 
for b < x ~ 2b - a, b < 8 ~ 2b - a. 

In this notation, we may rewrite equations (12) and (13) in the form 

j b r2b-a 

F(x) - a K(x, s)F(s) d8 - Jb K(x, 8)F(s) ds = G(x) 

j b r2b-a 

F(x) - a K(x, s)F(s) ds - Jb K(x, s)F(s) ds = G(x) (b< x ~ 2b - a) 
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or 
[2b-a 

F(x) - Ja K(x, s)F(s) ds = G(x) (a ~ X ~ 2b - a). (14) 

The equation (14) and the system of equations (12) and (13) are equivalent. If 
Kij E L2(Q) (i = 1,2; j = 1, 2), then K E L2(R) (R is the square a ~ x ~ 2b - a, 
a ~ s ~ 2b - a) and equation (14) is a Fredholm equation, so that Theorems 1 - 4 
may be applied. Coming back to the system (12), (13) and using, in particular, 
Theorem 4 we conclude that: 

If Kij F L 2(Q) (i = 1, 2; j = 1, 2), then either the system (12), (13) possesses 
a non-zero solution for zero right-hand sides, or to each pair of functions gl E 

E L2 (a, b), g2 E L2 (a, b) there exists one and only one pair of functions h E 

E L2 (a, b), h E L2 (a, b) which constitute the solution of the system (12), (13). 

19.2. Equations with Degenerate Kernels 

The equation of the form 

(1) 

is said to have adegenerate kernel. Thus, such a kernel is a finite sum of products, 
the factors of which are functions of only one variable x or s, respectively. The 
functions ak (x) may be assumed to be linearly independent (otherwise the number 
of terms of the kernel could be reduced). 

Theorem 1. Any solution of equation (1) is of the form 

n 

f(x) = g(x) + I: Ckak(X). (2) 
k=l 

In fact, 

n b n b n 

I: 1 ak(x)bk(s)f(s) ds = I: adx) 1 bk(s)f(s) ds = I: Ckak(X). 
k=l a k=l a k=l 

Substituting (2) into (1) and comparing coefficients of linearly independent func­
tions ak(x), we obtain a system of n linear algebraic equations for the n unknown 
coefficients Ck. This system is solvable if and only if the corresponding integral 
equation is solvable. 
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Example 1. 

f(x) -11 6(x + s)f(s) ds = x 2. 

According to (2), the solution is of the form 

(because a1(x) = x, a2(x) = 1). Substituting (4) into (3) we obtain 

x 2 + C1X + C2 -11 6(x + s)(s2 + CIS + C2) ds = x 2, 

(Cl - 2 - 3C1 - 6C2)X + (C2 - ~ - 2C1 - 3C2) = O. 

Comparing the coeflicients of corresponding powers of x, we find that 

-2C1 - 6C2 - 2 = 0, -2C1 - 2C2 - ~ = 0, 

from which it follows that 

hence 
f(x) = x2 -lx - ~. 

Example 2. 

f(x) - Al l 
xf(s) ds = o. 

Here a1(X) = x, b1(s) = A. So by (2) the solution is of the form 

f(x) = cx. 

Substituting (6) into (5), we get 

cx - A 11 
X . cs ds = 0, 

or 
cx-tACX=O. 
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(3) 

(4) 

(5) 

(6) 

(7) 

If >. i:- 2, then C = 0 and (5) has as its only solution zero. (Thus by Fredholm 
alternative (Theorem 19.1.4) the corresponding non-homogeneous equation has for 
Ai:- 2 exactly one solution for an arbitrary right-hand side 9 E L2(O, 1)). 

If >. = 2, then (7) is satisfied for any Cj A = 2 is the (only) characteristic value of 
equation (5). The corresponding characteristic functions are of the form 

f(x) = cx (c = const. i:- 0), 
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each of them being thus a multiple of Xj so there is only one linearly independent 
characteristic function corresponding to the value >. = 2. 

The equation adjoint to equation (5) is of the form (Definition 19.1.3) 

'ljJ(x) - >..11 s. 'ljJ(s)ds = o. (8) 

According to Theorem 19.1.3, >. = 2 is the (only) characteristic value of equation 
(8). The solution of the equation 

'ljJ(X)-211 s.'ljJ(s)ds=O (9) 

is of the form 
'ljJ(x) = a (a = const.) (10) 

and, as can easily be verified by substitution, is the solution of (9) for arbitrary a. 
Solutions of another type do not exist (for, by Theorem 1, any solution of (9) must 
be of the form (10». According to Remark 19.1.4, the equation 

f(x) - 211 xf(s) ds = g(x) (11) 

has a solution if and only if the function g(x) is orthogonal to the functions (10), 
i.e. if and only if 

11 
a. g(x) dx = 0 

holds for any a, i.e. if and only if 

11 g(x) dx = o. (12) 

If we find such a solution, we obtain all other solutions by adding an arbitrary 
multiple of the solution cx of the corresponding homogeneous equation 

f(x) - 211 xf(s) ds = 0 

(Remark 19.1.4). 

Let us choose g(x) = 1 - 2x, satisfying evidently the condition (12). For this 
function, equation (11), i.e. the equation 

f(x) - 211 xf(s) ds = 1 - 2x, 
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has obviously a solution 
f(x) = 1 - 2x, 

beeause 

11 
xf(s)ds = x 11 

(1- 2s)ds = O. 

All solutions of the equation (11) (with g(x) = 1 - 2x) will then be of the form 

(13) 

where Cl is an arbitrary eonstant. 

19.3. Equations with Symmetrie Kernels 

The kernel K (x, s) (or the eorresponding integral equation) is said to be sym­
metrie if 

K(x, s) = K(s, x), (1) 

i.e. if the kernel equals the function whieh is obtained by interehanging the variables 
in K(x, s) and by taking the eomplex eonjugate value. In partieular, if the kernel 
is real (the most frequent ease in applieations), then the symmetry is expressed by 
the relation 

K(x, s) = K(s, x). (2) 

Example 1. The kerneis x + s, i(x - s) are symmetrie, the kerneis x 2 + s, i(x + s) 
are not symmetrie (for example, in the last ease we have 

K(x, s) = -K(s, x) 

sinee I = -i). 

For a Predholm equation 

f(x) - A lb 
K(x, s)f(s) ds = 0 (3) 

with symmetrie kernel the following assertions are true: 

Theorem 1. If K(x, s) is not a zero function (Remark 19.1.1), then there exists 
at least one eharaeteristie value of equation (3). 

Theorem 2. All charaeteristie values of equation (3) are real (even if K(x, s) is 
not real). 
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Theorem 3. The maximum of the expression 

I/fa K(x, S)~(X)~(S)dxdsl, (4) 

taken over all functions ~, which are square integrable and normalized, i.e. for 
which the relation 

(5) 

holds, is equal to lI/All, where Al is the characteristic value with smallest modulus. 
The function ~l (x) which maximizes expression (4) is a characteristic function 
corresponding to this characteristic value Al. 

Theorem 4. The characteristic functions associated with different characteristic 
values are orthogonal, i.e. 

(6) 

REMARK 1. By Theorem 19.1.2, to each characteristic value there corresponds 
a finite number of linearly independent characteristic functions 

(7) 

We shall assume in the sequel that the functions (7) are normalized (i.e. that they 
satisfy the relation (5)) and orthogonal, i.e. that they fulfil 

lb ~i(x)~j(x)dx = 0 if i i= j. (8) 

The orthogonalization process is described in Remark 16.2.15. 

It is convenient to number the characteristic values in such a way that to every 
characteristic function (7) there corresponds exactly one characteristic value; then 
to the k linearly independent functions (7) there correspond k characteristic values 
A(1), A(2), ... , A(k), which of course are all equal, i.e. A(1) = A(2) = ... = A(k). Let 

the characteristic values corresponding to all normalized and mutually orthogonal 
characteristic functions of equation (3) be numbered in such a manner that their 
absolute values form a non-decreasing sequence, i.e. 

(9) 

Theorem 5. Let ~l (x), ... , ~n (x) be characteristic functions corresponding to 
characteristic values AI, ... ,An. Let ~(x) be any function satisfying the condition 
(5) and also the conditions 

l b ~(x)~l(x)dx = 0, ... , l b ~(X)~n(x)dx = o. (10) 
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Then the absolute value of the characteristic value An +1 is equal to the reciprocal of 
the maximum value of the integral (4) in the dass of functions 'P( x) with the above 
properties. 

REMARK 2. To determine lAll we use (4), and we find also the characteristic 
functions 'PI (x) corresponding to Al. To find I A21 we again look for the maximum 
of (4), hut among all functions 'P which are normalized in [a, b] we consider only 
those that are orthogonal to 'PI (x). Proceeding in this way, we find successively 

IA31, IA41, etc. 

Theorems 3 and 5 are of importance for the practical evaluation of characteristic 
values, hecause they make possihle to apply variation al methods (see e.g. § 29.5). 

Theorem 6 (The Hilbert-Schmidt Theorem). Equation (3) has a finite or count­
able set of normalized and mutually orthogonal characteristic functions 

'PI (x), 'P2(X), ... , 'Pn(x), ... , (11) 

which correspond to the characteristic values Al, A2, ... , An, ... (I All ;;:; I A21 ;;:; ... ;;:; 
;;:; IAnl ;;:; ... ). Por each function f(x) which can be expressed in the form 

f(x) = l b 
K(x, s)h(s) ds, h(s) E L 2 (a, b), (12) 

the relation 

holds, where 

(13) 

i. e. the series 
00 

(14) 

converges in the mean to the function f(x). 

If, in addition, the integral 

(15) 

is bounded by the same constant for all x E [a, b], then the series (15) converges to 
f(x) absolutely and uniformly in [a, b]. 
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The coefficients an can be expressed in terms 0/ the characteristic values >'n and 
0/ the function h(x) as /ollows: 

an = ~:' where hn = l b 
h(x)CPn(x) dx. (16) 

19.4. The Resolvent 

Definition 1. The number >. is said to be regular for the equation 

/(x) - >.l
b 
K(x, s)/(s) ds = 0 (1) 

if >. is not a characteristic value of that equation. 

Definition 2. If for each regular>. and for an arbitrary function 9 E L2 (a, b) the 
solution of the equation 

/(x) - >.lb K(x, s)/(s) ds = g(x) 

can be written in the form 

/(x) = g(x) + >.lb r(x, s, >.)g(s) ds, 

then the function 
r(x, s, >.) 

is called the resolvent of equation (2). 

Example 1. The solution of the equation with degenerate kernel 

/(x) - >. 101 (x + s)/(s) ds = g(x) 

is, in view of equation (19.2.2), of the form 

/(x) = g(x) + CIX + C2. 

Substituting (6) into (5) and equating corresponding coefficients, we get 

>'(1- !>.) Jo1 g(s) ds + >.2 Jo1 sg(s) ds 
c - ----'----=---'--''"''--'---,---=---
1- 1_>._2....>.2 ' 

12 

1>.2 Jo1 g(s) ds + >'(1 - !>.) J; sg(s) ds 
C2 -- 1_>._2....>.2 

12 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Substitution of these values of Cl and c2 into (6) yields 

I( ) - () fl \ (12 - 6,A)x + 4,A + s(12,AX + 12 - 6,A) ( ) d 
x - 9 x + Jo A 12 _ 12,A _ ,A2 9 s s. (8) 

Hence 
r( ,A) = (12 - 6,A)x + 4,A + s(12.AX + 12 - 6.A) 

x, s, 12 _ 12.A _ .A2 . (9) 

(Cf. Example 19.2.1, where.A = 6, g(x) = x 2.) 

For a Fredholm equation (2) the following theorems are valid: 

Theorem 1. For equation (2) there exists aresolvent lor every regular.A. 

Theorem 2. The resolvent is a meromorphic function (see Remark 20.4.10) 01 
the complex variable .A in the entire .A-plane. The characteristic values are poles 01 
the resolvent. 

Theorem 3. 11.A is regular, then 

( ) D(x, s, .A) 
r x, S,.A = D(.A) , (10) 

where 
00 (_I)n 

D(x, s, .A) = L --,-Bn(x, s).An, 
O n. 

n= 

(11) 

(12) 

and 
Bo(x, s) = K(x, s), (13) 

Bn(x, s) = l b 
••• 1b 

ßndtl dt2 ... dtn, (14) 

K(x, s), K(x, tl), K(x, t2), ... , K(x, tn) 
K(tl, s), K(tl, tt}, K(tt, t2), ... , K(tl, tn) 

ßn(x, s, tt, t2, ... , t n) = K(t2, s), K(t2, tl), K(t2, t2), ... , K(t2, tn) , (15) 

Co = 1, (16) 

(17) 
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The series (11), (12) are convergent for all values of >.. 

REMARK 1. If 

then there is another expression for the resolvent, namely 

00 

r(x, s, >') = L Km(x, s».m-1, 
m=1 

19.4 

(18) 

where Km(x, s) is the so-called m-th iterated kernel (corresponding to the kernel 
K(x, s)) given by the recurrence formula 

Km(x, s) = lb 
K(x, t)Km_1(t, s)dt (m ~ 2), 

K1(x, s) = K(x, s). 

(19) 

REMARK 2. The functions (14) and (17) can be evaluated by applying the fol­
lowing recurrence formulae: 

(20) 

Bn{x, s) = cnK(x, s) - n lb K(x, t)Bn_1(t, s) dt. (21) 

Example 2. Let us determine the resolvent of equation (5). From (16) and (13) 
Co = 1, Bo(x, s) = x + s. Using (20) and (21) we find 

C1=112SdS=1, 

B1(x,s) =x+s-1
1
(x+t)(t+S)dt = !(x+s) -xs-~, 

C2 = 11 
(s - s2 - ~) ds = -i, 

B2 (x, s) = -i(x+ s) - 21\x+tH!(t + s) -ts -~] dt = O. 

It follows readily from (20) and (21) that C3 = 0, B 3 (x, s) == 0, C4 = 0, B4 (x, s) == 
== 0, .... Hence, according to (11), (12) and (10) the resolvent of equation (5) is 

x+s- p.(x+s)-xs- 1 ]>. 
r(x, 5, >') = 12_ >. _ ..1..>.2 3 

12 
(22) 
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in agreement with (9). (This example is used only to illustrate the underlying idea; 
in fact, the equation has adegenerate kernel and can be solved by the procedure 
of § 19.2) 

If >. is sufficiently small (more exactly, for \>.\ ~ J~ in view of Remark 1 and of 

the relation C2 = J; Jo1(x + s)2 dxds = ~), then the resolvent of equation (5) can 
be expressed in the form (18). We have 

K 1(x, s) = K(x, s) = x + s, 

K 2(x, s) = 11 
(x + t)(t + s) dt = ~(x + s) + xs + !' 

K 3 (x, s) = 11 
(x + t) [~(t + s) + ts + !] dt = xs + 172 X + 172S + ! 

so that in view of (18) 

We can obtain the same formula from (22) if we write 

and consider terms up to and including >.2. 

Having found the resolvent (22), we can easily find the solution of equation (5) 
for any given (regular) >. and any given g(x); e.g. if >. = 6, g(x) = x 2, then by 
virtue of (3) we get 

f() 2 r1x + s - 6 a(x+s)-xs-!] 2 2 5 1 
X = X + 6 Jo 1 _ 6 _ 3 s ds = x - 8x - 8' 

in agreement with example 19.2.1. 

Theorem 4. If K(x, s) possesses continuous partial derivatives of the first or­
der in Q, then for every regular>. the resolvent r(x, s, >') has continuous partial 
derivatives of the first order with respect to x and s. 

REMARK 3. From the form of (3) the continuous dependence'" of the solution on 
g(x) clearly follows. 

'" The solution f(x) of (2) is "continuously dependent" on g(x) if, roughly speaking, a slight 

change in g(x) causes a slight change in f(x) for .>. fixed and regular. 
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19.5. Equations Involving Weak Singnlarities. Singular Equations 

Definition 1. Equations of the form 

l b H(x s) 
f(x) - >. a Ix _ 'sr f(s) ds = g(x), (1) 

where H(x, s) is a bounded (integrable) function, 0 < Cl! < 1, are said to have a 
weak singularity. (If Cl! < ~, we have Fredholm's equations.) 

Theorem 1. All iterated kernels (Remark 19.4.1) of equation (1) starting from a 
certain kernel are bounded. 

Theorem 2. All four of Fredholm 's theorems (Theorems 19.1.1 - 19.1.4) hold for 
equation (1). 

REMARK 1. It can be shown that Fredholm's theorems remain valid not only for 
equations involving a weak singularity but, more generally, for any equation whose 
iterated kernels, starting from a certain kernel, are bounded. 

REMARK 2. Theorems 1 and 2 hold also for equations in several variables with 
a weak singularity. For two independent variables such equations are of the form 

(2) 

where [} is a bounded two-dimensional region, H(Xl' X2, X3, X4) is a bounded 
integrable function, r is the distance between the points (Xl, X2) and (X3, X4), 
o < Cl! < 2. The equation corresponding to (2) for the case of n variables is of 
similar form, with 0 < Cl! < n. For details see e.g. [323]. 

Definition 2. Integral equations of the form 

l b A(x s) 
f(x)->. a x~s f(s)ds = g(x) (3) 

where A(x, s) is a differentiable function of the variables x and s, are called singular 
integral equations. 

REMARK 3. The integral appearing in (3) may be divergent, in general. If it is 
considered in the sense of its principal value (Remark 13.8.3), an extensive theory 
for equation (3) can be established. For details see [342]. We shall merely consider 
two typical cases: 

A. The equation with the so-called Hilbert kernel, 

b 12
1< 1 af(x) + - cot -2 (x - s)f(s) ds = g(x), 

27r 0 
(4) 
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possesses for a =I- 0, a2 + b2 =I- ° (a, b may be complex) the following solution: 

a b 121< 1 
j(x) = 2 b2g(x) - (2 b2) g(s)cot -2(s - x)ds+ 

a + 2'TC a + 0 

b2 121< + (2 b2 ) g(s) ds. 2'TCa a + 0 
(5) 

If a = 0, b =I- 0, equation (4) becomes an equation of the first kind (see § 19.7) 
and has a solution if and only if 

r21< Jo g(s) ds = 0. (6) 

The solution is then 

1 r2 1< 1 
j(x) = - 2'TCb Jo g(s) cot "2(s - x) ds + C (7) 

where C is an arbitrary constant. 

When a2 + b2 = 0, then equation (4) cannot, in general, be solved. 

B. The equation with the so-called Cauchy kernel is of the form 

aj(z) + ~ 1 j(t) dt = g(z), 
'TCl ct-z 

(8) 

where c is a simple curve in the complex plane, piecewise smooth, closed and 
positively oriented with respect to its interior V (Remark 14.7.1), while g(z), or 
j(z) is a function of the complex variable z = x + iy, given, or to be found as the 
function of the point z on c, respectively. If a2 - b2 =I- 0, then equation (8) has the 
solution 

a b 1 g(t) 
j(z) = 2 b2g(z) - (2 b2)' - dt. a - a - 'TCl ct-z 

(9) 

REMARK 4. Other kinds of singularities may occur when the given interval is 
infinite and is transformed to a finite one. For example, the interval (0, 00) is 
transformed by the substitution x = t/(l - t) into the interval (0,1); using this, 
simultaneously with the substitution s = a/(l - a), the new kernel (which is a 
function of t and a) may become unbounded. In such cases, for existence theorems 
and also for construction of approximate solutions, it is often convenient to employ 
the method of successive approximations. 
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19.6. Equations of Volterra Type 

These equations are of the form 

f(x) - >. lx 
K(x, s)f(s) ds = g(x) (a ~ x ~ b), (1) 

where the kernel K(x, s) is bounded and integrable. Thus these equations are 
special cases of equations of the form 

f(x) - >. l b 
K(x, s)f(s) ds = g(x) 

if K(x, s) is bounded and equal to zero for x < s ~ b. 

Theorem 1. 1f g(x) is absolutely integmble, then equation (1) possesses one and 
only one solution for every >.. The solution may be obtained as the limit of a 
uniformly convergent sequence of successive approximations 

fo(x) = g(x), 

h(x) =g(x)+>. l x 
K(x,s)fo(s)ds, 

(2) 

fn+l(X) = g(x) + >. lx 
K(x, s)fn(s)ds, 

Theorem 2. Let IK(x, s)1 < M. Then 

1>'l n Mn(b - a)n-l l b 

Ifn+l(X) - fn(X)1 ~ (_ )' Ig(s)1 ds. 
n 1. a 

(3) 

REMARK 1. The inequality (3) is of importance for estimating the error, when 
using the method of successive approximations. 

REMARK 2. Volterra's equation can often be reduced to a differential equation 
(and vice versa). 

Example 1. The equation 

f(x) - >. l x 
eX - s f(s) ds = g(x) (4) 

differentiated with respect to x (g( x) is assumed to be differentiable) gives 

f'(x) - >.ex - x f(x) - >. l x eX - s f(s) ds = g'(x). (5) 
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Eliminating the integral between (4) and (5) we obtain a simple differential equa­
tion for f(x) 

f'(x) - (,X + l)f(x) = g'(x) - g(x). (6) 

If we prescribe for the solution of this equation the condition f(O) = g(O), as 
follows from (4) by setting x = 0, then the solution of equation (6) is the solution 
of equation (4), and conversely. 

Example 2. Let us transform the problem 

y" + a(x)y = f(x), y(O) = Yo, y'(O) = y~, (7) 

into an integral equation of the Volterra type. 

On integrating equation (7) twice we get 

Further 

1U y" (t) dt = y' (u) - y'(O), 1x [y' (u) - y' (0») du = y(x) - y(O) - xy' (0). (9) 

According to Cauchy-Dirichlet's formula (17.7.4), 

1x 
du 1u 

a(t)y(t) dt = 1x 
(x - u)a(u)y(u) du, 

1x 
du 1u 

f(t) dt = 1x 
(x - u)f(u) du = F(x). 

Putting (9), (10), (11) into (8), we get 

y(x) - y(O) - xy'(O) + 1x (x - u)a(u)y(u) du = F(x) 

or 

y(x) + 1x 
(x - u)a(u)y(u) du = F(x) + Yo + xy~. 

19.7. Integral Equations of the First Kind 

Integral equations of the form 

lb K(x, s)/(s) ds = g(x), 

(10) 

(11) 

(12) 

(1) 
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where /(x) is the unknown function, are called integral equations 0/ the first kind. 

Generally speaking, equation (1) has no solution. 

Example 1. The equation 

(2) 

does not possess a solution; for any function /(s), the left-hand side is of the form 
kx and this is evidently not identically equal to x 2 in the interval [0, 11 for any k. 
Clearly it is easy to decide whether an equation of the first kind with degenerate 
kernel is solvable or not. 

Equations of the first kind are not encountered in practice so often as equations 
of the second kind. Equations of the first kind are extensively dealt with in [4151. 

The following equation, known as Abel '8 integral equation, is of importance: 

The solution is 

r /(s) ds = g(x) (0< 0: < 1). 
Ja (x-s)er 

/(x) = sino:'IT (g(O) + r g'(s) dS) . 
'IT xl-er Ja (x - s)1-o< 

In particular, for the case 0: = t (which frequently occurs), this becomes 

(X /(s) 
Ja J(x - s) ds = g(x), /(x) = ~ (g(O) + r g'(s) dS). 

'IT Jx Ja J(x - s) 
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A. FUNCTIONS OF ONE COMPLEX VARIABLE 

By KAREL REKTORYS 

20.1. Fundamental Concepts. Limit and Continuity. The 
Derivative. The Cauchy-Riemann Equations. Applications of 

the Theory of Functions of One Complex Variable. 

REMARK 1. A complex number z = x + iy is often represented by a point with 
coordinates x, y in the so-called complex (or Gaussian) plane (see § 1.6). We usually 
speak of the point z instead of the number z. If we speak of a region G of complex 
numbers, we mean the corresponding region of points (x, y) in the plane. A similar 
meaning is to be given to the statement "the point z lies on the curve c" , etc. 

On operations with complex numbers see § 1.6 and § 1.21. 

REMARK 2. Complex numbers can also be represented on the so-called Riemann 
sphere touching the Gaussian plane at the origin (which is taken as the "south pole" 
of the sphere). If we join an arbitrary point of the Gaussian plane to the "north 
pole" of the sphere (as centre of projection), then there is a one-to-one correspon­
dence between the points z and z' of the Gaussian plane and of the spherical surface, 
respectively (the so-called stereographic projection, Fig. 20.1). To the "north pole" 
there corresponds the point z = 00. In this sense, there exists exactly one point at 
infinity, z = 00. 

The (Gaussian) plane of complex numbers together with the point z = 00 is 
callcd the closed (or completed or extended) plane 0/ complex numbers (the closed 
plane, in brief). 
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Definition 1. Let M be a set of complex numbers in the Gaussian plane (in the 
sense of Remark 1). If a relationship is given, by virtue of which to every point 
z E M there corresponds one and only one number w (complex, in general), we say 
that a function 

w = J(z) (1) 

is defined on M. The set M is called the domain oJ definition oJ the function (1). 

Fig. 20.1. 

REMARK 3. The function (1) can also be interpreted in the following way: to 
every point (x, y) E M (where z = x + iy) there corresponds a complex number 
w=u+iv,i.e. 

J(z) = u(x, y) + iv(x, y). (2) 

Thus, the investigation of functions of a complex variable can be reduced to the 
investigation of two functions u, v of the real variables x, y. 

Example 1. 

Thus 
u(x, y) = x2 - y2, v(x, y) = 2xy. 

REMARK 4. We write briefly 

ReJ(z) = u or R[J(z)] = u; 

ImJ(z) = v or I[J(z)] = v 

(3) 

(4) 

(and call these functions the real part and the imaginary part oJ the function J(z)). 
In particular, 

Rez=x, Imz=y. 
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REMARK 5. A function w = I(z) can be interpreted geometrically as a mapping 
from one complex plane into another (see also "conformal mapping", Chap. 21). 

Definition 2. By a 8-neighbourhood 01 a point Zo we mean all the points of the 
complex plane whose distance from Zo is less than 8, Le. all the points z satisfying 

Iz - zol < 8. 

(Note that the relation Iz - zol = 8 characterizes an points whose distance from Zo 
is equal to 8, i.e. the circumference of the circle with centre Zo and radius 8.) 

Definition 3. We say that I(z) has a limit A (A being a complex number, in 
general) at the point Zo (which need not belong to the domain of definition M), or 
that I(z) tends to the limit A for z - zo, if for an arbitrary c > 0, there exists 
a 8 > 0 such that the inequality 

I/(z) - AI< c 

holds for all z =I Zo of the 8-neighbourhood of zo, Le. for all z satisfying 

o < Iz - zol < 8. 

We write 

lim I(z) = A. 
z~zo 

REMARK 6. This definition is equivalent to the following one: I(z) has a limit A 
at Zo if the relation 

holds for every sequence of points Zn =I Zo converging to zoo 

Definition 4. If Zo E M and if 

lim I(z) = I(zo) , 
%--+%0 

(5) 

we say that I(z) is continuous at zoo 

If I(z) if continuous at every point of a region G, we say that I(z) is continuous 
in G. 

Definition 5. If Zo E M is not an interior point (Definition 22.1.1) of the domain 
of definition M of the function I(z) and if (5) holds for z E M (i.e. I/(z) - l(zo)1 < c 
for I z - Zo I < 8 and z E M), we say that 1 (z) is continuous at Zo with respect to M. 
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REMARK 7. This occurs especially in connection with continuity at boundary 
points of the domain of definition, or continuity on a given curve, if I(z) is defined 
only at points of this curve, etc. 

Definition 6. If I(z) is continuous in a region G and continuous with respect to 
the closed region G (G = G U e) at every point ofthe boundary e, we say that I (z) 
is continuous in G. 

Definition 7. If I ( z) is defined and continuous only in G and if there exists 
a function g(z) defined on the boundary e of the region G such that the function 
h(z) defined by h(z) = I(z) in G and by h(z) = g(z) on e, is continuous in G, then 
we say that I(z) is continuously extensible on the boundary e to the funetion g(z). 
(If g(z) exists, then it is uniquely determined by I(z).) 

Definition 8. If the limit 
1. I{z) - I(zo) 
1m .:......:......:...---'--'---'-

% .... %0 Z - Zo 
(6) 

exists, we say that I{z) has a derivative at the point Zo (or that I(z) is differentiable 
or monogenie at zo). We denote the limit (6) by J'(zo). 

Note (cf. Remark 6) that the limit in (6) should be independent of the manner 
in which z -t zoo This fact leads to interesting consequences, among others to 
conditions (7) below. 

Theorem 1. In order that a function I(z) = u(x, y) + iv(x, y) should have a de­
rivative at the point Zo = Xo + iyo it is neeessary and suffieient that u(x, y) and 
v(x, y) have total differentials (see § 12.3) and that their derivatives at this point 
satisfy the so-called Cauehy-Riemann equations 

ou ov 
-=-, 
ox oy 

ou 
= 8y - 8x· 

ov 
(7) 

REMARK 8. Hence, if I(z) has a derivative at zo, then u and v have total 
differentials at (xo, Yo) and satisfy (7). Conversely: If u and v have total differentials 
at (xo, Yo) and satisfy (7), then the function u+iv has a derivative at Zo = Xo +iyo. 

Theorem 2. 11 the derivative 01 a function 

I(z) = u(x, y) + iv(x, y) 

exists, then it is given by the lormulae 

j'(z) = ou + i ov = 01 
ox ox ox 

1'( ) . (8U .8v) .81 or z = -1 8y + 1 8y = -1 8y . (8) 
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REMARK 9. For the evaluation of derivatives of functions of a complex variable, 
the same rules hold as for functions of a real variable. In particular, (f g)' = J' g+ J g', 
(zn)' = nzn-l for every positive integer n, etc. 

Theorem 3. 1J J(z) has a derivative at the point Zo, then J(z) is eontinuous at zo. 

Definition 9. If J( z) has a derivative at every point of a region G, it is said to be 
holomorphie (regular) in G. 

REMARK 10. A holomorphic function is often called an analytie funetion. How­
ever, this concept is also used for multi-valued functions (e.g. In z) which have 
a derivative (compare § 20.6). * 

Theorem 4. 1f the function J(z) = u(x, y) + iv(x, y) is holomorphie in G, then 
u and v are harmonie (Definition 18.4.4) in G. 

Theorem 5. 1f J( z) is holomorphie in G, then it has derivatives of all orders 
in G. 

REMARK 11. We use a bar to denote the complex conjugate: 

z=x-iy, J(z)=u(x,y)-iv(x,y). 

Theorem 6. 1f J(z) is holomorphie in G, then J(z) is not holomorphie in G, in 
general. 

Example 2. The function 

J( z) = z2 = (x + iy)2 = x2 - y2 + i .2xy (9) 

(where thus u( x, y) = x2 - y2, v( x, y) = 2xy) is holomorphic in the whole Gaussian 
plane, for u, v have everywhere continuous partial derivatives and, consequently, the 
total differential, and they obviously satisfy the Cauchy-Riemann conditions (7), 
slnce 

ou 
-=2x, ox 

ov 
-=2x, oy 

ou 
- = -2y, oy 

Further, j'(z) = 2z. In fact, according to (8) we have 

ov 
-=2y. ox 

j'(z) = 2x + i . 2y = -i( -2y + i. 2x) = 2(x + iy) = 2z. 

*In the English literature there are further variations; when consulting other works the reader 
should carefully examine the definitions used. 
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(See also Remark 9, of course.) The functions u and v are obviously harmonie, for 

The complex conjugate function 

is not holomorphic in any region of the Gaussian plane, because - with the ex­
ception of the point z = 0 - the Cauchy-Riemann conditions (7) are nowhere 
satisfied. 

REMARK 12. Using equations (7), we can find, corresponding to a given function 
u(x, y) (or v(x, y)) which is harmonie in a simply connected region G, a so-called 
eonjugate Junction v(x, y) (or u(x, y), respectively), so that the function 

J(z) = u(x, y) + iv(x, y) 

be holomorphic in G. This conjugate function is uniquely determined up to an ad­
ditive constant. 

Theorem 5 then implies that every Junction harmonie in G has derivatives in G 
oJ all orders. 

REMARK 13. We call a function J(z) univalent or simple in a region G, if for 
every pair of different points Zl, Z2 of this region the relation J(zd =J:. J(Z2) holds. 

Hence a univalent function does not assurne the same value at two different 
points of G. Univalent holomorphic functions are of great importance in confor­
mal mappings where a one-to-one mapping of regions is concerned. The following 
assertion holds: If !'(zo) =J:. 0, then J(z) is univalent in a certain neighbourhood 
of zoo 

REMARK 14. Functions of a complex variable have extensive applications. For 
example, in the study of two-dimensional irrotational sourceless flow we define 
the so-called eomplex potential oJ the fiow, i.e. a holomorphic function J(z) = 
= u(x, y) + iv (x, y). Equations u = const. then represent equipotential curves, 
while equations v = const. give the trajectories of the flow (cf. Example 21.3.3). 
In electrotechnics, functions of a complex variable are used on the one hand in ele­
mentary considerations where vectors of basic electrical quantities are expressed by 
complex numbers, and on the other in solving more complicated problems (e.g. in 
solving differential equations with the help of the Laplace transform, etc.). We also 
use functions of a complex variable to solve two-dimensional problems in elasticity, 
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where the so ealled Airy stress function is expressed by two holomorphie func­
tions (see e.g. [22]). Properties of series, integral theorems (especially the Residue 
Theorem, see § 20.5) and eonformal mappings are also widely applied. 

20.2. Integral of a Function of a Complex Variable. The 
Cauchy Integral Theorem. Cauchy's Integral Formula 

Integral of a function of a eomplex variable along a eurve c is defined in a similar 
way as the line integral of a function of a real variable. Let us eonsider a simple 
finite pieeewise smooth oriented curve c (Definition 14.1.1; in the following text, we 
speak briefly of a eurve) with initial point Zo (Fig. 20.2) and a function 

w = J(z) 

defined on this eurve. Let us divide the eurve at the points Zl, Z2, ... , Zn-I, 

y 

o 
Fig. 20.2. 

numbered in the sense of its positive orientation, into n ares Cl, C2, ••. ,Cn . Let 
us denote by h, Z2, ... , Zn the lengths of these ares. The norm v (d) 0 J the chosen 
partition d is defined as the greatest of the numbers h, Z2, ... , Zn. On eaeh are Ci 
let us ehoose an arbitrary point ~i and let us eonstruet the sum 

n 

a(d) = 2: J(~i)(Zi - Zi-l) (1) 
i=l 

(depending on the partition d and on the points ~i on Ci). 

Definition 1. If there exists a (generally eomplex) number I such that 
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holds for every sequence of partitions dn satisfying 

lim v(dn ) = 0 
n-+oo 

and for every choice of points ~i on Ci, then we call this number the integral 01 the 
function I (z) along the (orientea) curve c and write 

1 I(z)dz = I. (2) 

Roughly speaking, the integral (2) is the limit of integral sums (1) for the case 
that the norm of the partition of the curve c tends to zero. 

Theorem 1. 111(z) is continuous on c (cf. Remark 20.1.7), then the integral (2) 
exists. In particular, ill(z) is continuous (or even holomorphic) in a region G, then 
there exists the integral oll(z) along every curve c (with the properties mentioned 
above) which lies in G. 

Theorem 2. The inequality 

holds, where I is the length 01 the curve c and M is the maximum (or l.u.b., see 
Definition 1.3.3) oll/(z)1 on c. 

REMARK 1. The integral (2) has properties similar to those of line integrals. In 
particular, 

lrk1!I(z) + k2h(z)] dz = k1 1 !I(z) dz + k21 h(z) dz, 

1 I (z) dz = - L I (z) dz , 

where Cl is the curve c with opposite orientation, etc. 

Definition 2. A function F(z) satisfying 

FI(z) = I(z) 

in G is called a primitive function oll(z) in G. 

Theorem 3. To every lunction I(z) holomorphic in a simply connected region G 
there exists a primitive lunction. 
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REMARK 2. For regions which are not simply connected the assertion of this 
theorem does not hold, in general. 

Theorem 4. 1J F(z) is a primitive function oJ J(z) in G and iJ cis an arbitrary 
curve lying in G (with the properties mentioned above) with initial point Zl and 
end point Z2, then 1 J(z) dz = F(Z2) - F(zI). (3) 

REMARK 3. The fact that the value of the integral does not depend on the path 
of integration in this case but only on the initial and end points of the curve c is 
often expressed by writing it as 

('"2 J(z)dz. 
lZl 

(4) 

Example 1. The primitive function of J(z) = z2 is F(z) = !z3 + ein the whole 
plane. Hence (for every curve) 

REMARK 4. If an integral cannot be evaluated with the aid of a primitive function 
(i.e. if either the primitive function does not exist, or is diflicult to find), we represent 
the integral by line integrals (see § 14.7); we write J(z) = u(x, y) + iv(x, y), dz = 
= dx + i dy, then multiplying formally we obtain 

1 J(z) dz = l[u(x, y) dx - v(x, y) dy] + i l[v(x, y) dx + u(x, y) dy]. 

We can also use other methods (see Example 3). In particular, the substitution 
method and method of integration by parts (under similar assumptions as in § 13.2) 
can be applied. 

Example 2. Let us evaluate the integral 

l ~dz, 
c z 

where c is the circumference of the circle with centre at the origin and radius a, 
oriented positively (Remark 14.7.1) with respect to its interior. 

For every point on the circumference we have z = a( cos cp + i sin cp) = aeirp . 

Differentiating, we get dz = aieirp dcp, so that 

11 _121r aieirp dcp _ ·121r _ . - dz - . - 1 dcp - 2'7rl • 
c Z 0 ae'rp 0 
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The function In z could not be used as a primitive function directly, since it is 
not a single-valued function in the region under consideration, and hence is not 
holomorphic. 

This example also shows that the integral of a holomorphic function along 
a closed curve need not vanish. (Cf. Theorem 5 below. Here - by contrast with 
the assumptions of that theorem - the function J(z) = l/z has a singular point 
z = 0 in the interior of the given circle.) 

REMARK 5. The method of integrating by parts leads to the formula 

r2 Jt(z)F2(z) dz = [FI (z)F2(z)1~~ - r2 FI (z)h(z) dz, 
./Zl ./Zl 

(5) 

where FI(z), F2(z) are primitive functions (Definition 2) of Jt(z), h(z), respec­
tively, in G and cis a curve lying in G with initial point Zl and end-point Z2. This 
formula gives for a closed curve c the result 

(6) 

since for a closed curve we have F I (Z2 )F2 (Z2) = F I (Zl )F2 (zI) and the first term of 
the right-hand side in (5) vanishes. Equation (6) finds frequent application. 

As Jar as curves are investigated in what Jollows, we will always assume them to 
be simple, finite and piecewise smooth (as in the preceding text). 

Theorem 5 (The Caychy Integral Theorem). Let c be a closed oriented curve 
(with the properties mentioned above). Let J (z) be a function holomorphic in the 
interior G oJ the curve c and continuous in G = G u c. Then 

1 J(z) dz = o. (7) 

REMARK 6. Theorem 5 holds the more true if c lies in a region G where J(z) is 
holomorphic and if the whole interior of c belongs to G. 

A similar remark holds for Theorems 6 and 7 below. 

If J(z) is not holomorphic in the whole interior of the curve c, then (7) is not 
valid, in general. See Example 2, where this condition was violated at the point 
z = o. 

Theorem 6. Let co, Cl be closed curves with the same orientation (as shown in 
Fig. 20.3) and with the above-mentioned properties, the curve Cl lying in the interior 
oJ Co. Let J(z) be holomorphic in the doubly connected region G, the boundary oJ 
which is constituted by these curves (Fig. 20.3, the shaded area) , and let it be 
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continuous in G = G U Co U Cl. (It is not necessary to assurne that J (z) be defined, 
or even holomorphic in thc interior of the curve Cl.) Then 

11 J(z) dz = 10 J(z) dz. (8) 

Fig. 20.3. Fig. 20.4. 

REMARK 7. Theorem 6 has frequent applications. For example, the integral 
of the function J(z) = l/z along any closed curve Co (of the above-mentioned 
properties), positively oriented with respect to its interior in which the point z = 0 
is contained, has the value 27ri. Because - according to Theorem 6 - this integral 
is equal to that of Example 2, a being chosen sufliciently small in order that C be 
contained in the interior of Co. 

REMARK 8. Theorem 6 can be generalized: Let Co, Cl, C2, ••• , Cn be closed 
curves with above-mentioned properties and with the same orientation (see Fig. 20.4 
sketched for n = 2). Let the curves Cl, C2, •.• , Cn lie mutually in their exteriors 
(i.e. C2, C3, ••• , Cn outside of Cl, etc.) and let all of them lie in the interior of Co. 

If J(z) is holomorphic in the (n + 1)-tuply connected region G, the boundary of 
which is constituted by the curves co, Cl, C2, ••• , Cn (Fig. 20.4, the shaded area) , 
and continuous in G = G U Co U Cl U C2 U ... U Cn , then 

10 J(z) dz = 11 J(z) dz + 12 J(z) dz + ... + in J(z) dz. (9) 

Theorem 7 (The Cauchy Integral Formula). Let C be a closed curve (of properties 
mentioned above), positively oriented with respect to its interior G, and let J(z) be 
holomorphic in G and continuous in G = G U c. Let Zo E G (Fig. 20.5). Then we 
have 

J(zo) = ~ [ J(z) dz . 
27rl Je Z - Zo 

(10) 

Moreover, 

J (n)( ) = ~ [ J(z) dz 
Zo 27ri Je (z _ zo)n+l' n = 1, 2, ... , (11) 

holds, where J(n)(zo) denotes the n-th derivative oJthefunction J(z) at the point zoo 
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REMARK 9. If the point Zo lies in the exterior of the curve c, then the functions 
g(z) = J(z)j(z - zo), gl(Z) = J(z)j(z - zO)2, ... are holomorphic in G and 
according to Cauchy's theorem 5 the integrals (10), (11) are equal to zero. 

Fig.20.5. 

Example 3. Let us evaluate the integral 

1 dz 
z3 c 

Fig.20.6. 

along a closed curve positively oriented with respect to its interior G and let G con­
tain the origin z = o. 

Ifwe choose J(z) == 1 (so that J(z) is holomorphic even in the entire plane), and 
Zo = 0, then (11) gives, for n = 2, 

1"(0) = ~ 11. dz 
2'Jri c (z - 0)3 

and hence, because J"(z) == 0 and, consequently, J"(O) = 0, 

1 dz = O. 
z3 c 

REMARK 10. Theorem 7 can be generalized quite similarly as Theorem 6 (see 
Remark 8). In the situation shown in Fig. 20.6 (note the orientation of the curves 
kt, k2 !) we have 

J(zo) = ~ [1 J(z) dz + f J(z) dz + f J(z) dZ] . (12) 
2'Jrl c z - zo J k 1 Z - Zo J k2 Z - Zo 

Formula (11) can be generalized in a quite similar way. 

20.3. Integrals of Cauchy's Type. The PlemeJj Formulae 

REMARK 1. In this paragraph, by the word curve we understand a simple finite 
piecewise smooth closed curve, positively oriented with respect to its interior. We 
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denote its points by t instead of z, i.e. t = x + iy. The interior of the curve will be 
denoted by S+, the exterior by S-. 

Definition 1. Let a function f(t) be given on a curve c. We say that f(t) has 
a derivative with respect to the curve c (brieflyon c) at a point to E c, if there exists 
a finite (generally complex) limit 

1. f(t) - f(to) 
1m .:......:....-'---.....:.....:'---'-

t - to 
(1) 

for t ~ to along the curve c. 

Definition 2. We say that f(t) satisfies the Hölder condition with the exponent J-L 

in the neighbourhood of a point to E c if there exists an arc 1 on c such that t o is 
its interior point and that there exist two constants M and J-L (M > 0, 0< J-L ~ 1) 
such that for every two points tl, t 2 of 1 the relation 

(2) 

holds. In particular, if there exist constants M and J-L (M > 0, 0 < J-L ~ 1) such 
that (2) holds for every pair of points tt, t2 of the curve c, we say that f(t) satisfies 
the H ölder condition (with exponent J-L) on c. 

REMARK 2. We shall briefly say that f(t) fulfils the condition H (or, in more 
detail, the condition H(J-L)). 

Theorem 1. 1f f( t) has a continuous (or, more generally, a bounded) derivative 
on c, then it satisfies the condition H on c (and hence in the neighbourhood of every 
point of c) with the exponent 1. 

Definition 3. Let a function f(t) be defined on c. The integral 

F(z) = ~ 1 f(t)dt 
211"1 c t - z 

(3) 

is called an integral of Cauchy's type. 

Theorem 2. 1f f(t) is continuou& on c (it is sufficient if f(t) is integrable on c), 
then F(z) is a holomorphic function of z both in S+ and in S- (for the meaning 
of S+ and S- see Remark 1). The derivatives of F(z) in S+ as weil as in S- are 
given by the formulae 

F'(z) = ~ 1 f(t) dt , ... , F(n)(z) = ~ 1 f(t) dt (4) 
211"i c (t - z)2 211"i c (t - z)n+t 

which are obtained by formal differentiation with respect to zunder the integral sign 
in (3). 



256 SURVEY OF APPLICABLE MATHEMATICS 20.3 

REMARK 3. Ifwe choose a point z on the curve c, then, in general, the integral (3) 
does not exist (it is divergent). However, the principal value (see Definition 4 below) 
of this integral can exist. 

Definition 4. Let the point to lie on c. Choose c > 0 such that the circumference 
of the circle with centre to and radius c (and also all circumferences of such circles 
with radius less than c) intersect the curve c exactly at two points (denote them by 
tl, t2; Fig. 20.7). (If the curve c has the properties mentioned in Remark 1, then 
such an c > 0 exists for every point to E c.) If there exists a finite limit 

f(t) dt 

t - to ' 
(5) 

where tl t2 is the arc of the curve c lying within the circumference of the circle with 
cent re to and radius c, we say that the integral 

1 f(t) dt 

c t - to 
(6) 

exists in the sense 0/ its principal value. 

y 
c s-

o 
Fig. 20.7. 

REMARK 4. If the point to lies on c, then, in what follows, we shall always 
interpret the integral (6) to mean its principal value. The function f(t) will always 
be assumed to be integrable on c. 

Theorem 3. If f (t) has a continuous derivative in the neighbourhood of to (Def­
inition 1) (it is sufficient to require only that f (t) fulfils condition H in the neigh­
bourhood of to, cf. Definition 2 and Remark 2), then the principal value of the 

integral (6) exists. 

REMARK 5. By the continuous extensibility (on the curve c) offunctions defined 
in S+ (or S-) we mean the extensibility in the sense of Definition 20.1.7. Further, 
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we say that a function g(z) defined in S+ (or S-) is continuously extensible on c 
at the point to E c if there exists a number A such that 

lim g(z) = A, where z E S+ (or z E S-, respectively). 
z .... to 

REMARK 6. Hence, g(z) is continuously extensible to a value A at the point 
to E c if, for every sequence of points Zn E S+ (or Zn E S-, respectively) satisfying 
lim Zn = to, we have 

n .... oo 

lim g(zn) = A. 
n .... oo 

Theorem 4. Let f(t) satisfy the condition H in the neighbourhood of the point 
to E c. (A sufficient condition for this is that f(t) have a continuous derivative in 
a neighbourhood ofto.) Then the function 

F(z) = ~ 1 f(t) dt 
21\"1 c t - z 

(7) 

is continuously extensible on the curve c from S+ as well as from S- at that point 
and we have 

F+(t ) = If(t ) + _1 1 f(t) dt 
o 2 0 2· t t' 1\"1 c - 0 

- 1 1 1 f(t) dt F (to) = -"2f(to) + -2. --. 
1\"1 c t - to 

(8) 

(9) 

Here F+(to) and F-(to) stand for the values of the continuous extension of F(z) 
from S+ and from S-, respectively; by integrals (8), (9) we mean their principal 
values. 

Formulae (8) and (9) are called the Plemelj formulae. 

REMARK 7. Formulae (8) and (9) show that if we cross the curve c from S­
to S+ at the point to, then the function (7) has, at that point, a jump f(to). 

REMARK 8. It can be shown that if f'(t) (Definition 1) satisfies the condition H 
in the neighbourhood of the point to, then the function 

F'(z) = _1 1 f(t)dt 
21ri c (t - z)2 

is continuously extensible at to on the curve c from S+ as weil as from S-. An anal­
ogous assertion is valid for derivatives of higher order. 
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Theorem 5 (Cauchy's Theorem). Let l,O(z) be holomorphic in S+ and continuous 
in S+ (i.e. in S+ U c). Then (cf. Theorem 20.2.7 and Remark 20.2.9) 

~ ll,O(t) dt = l,O(z) if z E S+ , 
21fl c t - z 

(10) 

~ ll,O(t) dt = 0 if z E S- . 
21fi c t - z 

(11) 

If l,O(z) is holomorphic in S- and at infinity (i.e. if l,O(l/z) has a removable 
singularity at the origin, cf. Remark 20.4.11 below) and continuous in S- (i.e. 
in S- U c), then 

~ ll,O(t) dt = 1,0 ( 00) (= tim l,O(z)) if z E S+ , 
21fl c t - Z %-+00 

(12) 

~ ll,O(t) dt = -1,O(z) + 1,0(00) if z E S- . 
2m c t - z 

(13) 

Example 1. Let the origin belong to S+. Then 

1 dt =0 
t 2 ' c 

(14) 

because the function 1,0 ( z) = 1/ z is holomorphic in S- and at infinity and is con­
tinuous in S-: According to (12), we have 

~l~dt=O 
21fi c t - z 

(15) 

for every z E S+. Putting z = 0 in (15) we obtain (14). 

Theorem 6. A function l,O(t) continuous on c is a continuous extension of some 
function 1,0 ( z) holomorphic in S+ if and only if 

-21.11,O(t) dt = 0 for every z E S-; 
1fl c t-z 

(16) 

l,O(t) is a continuous extension of some function 'IjJ(z) holomorphic in S- and at 
infinity if and only if 

_1_11,O(t) dt = a for every z E S+ , 
21fi c t - z 

where a is a constant. (This constant is equal to the value 'IjJ( 00 ).) 

(17) 
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REMARK 9. The relation 

F(z) = ~ 1 f(t) dt, z E s+ , 
2'1fl c t - z 

(18) 

does not imply (even if f(t) has a derivative on c) that f(t) is acontinuous extension 
of F(z) from S+ on c (F+(t) = f(t) need not hold). According to Theorem 6 we 
can have f(t) - F+(t) = g(t), where g(t) is a continuous extension of a function 
holomorphic in S- and vanishing at infinity. 

REMARK 10. The results of this paragraph can be generalized, for instance, to 
the case of multiply connected regions. Similar results also hold for the case where c 
is not a closed curve but, for example, the x-ws (the ws of real numbers) in the 
Gaussian plane. S+ and S- are then half-planes. The formulation of these results 
can be found in [22], § 5.7 and § 5.11. 

20.4. Series. Taylor's Series, Laurent's Series. 
Singular Points of Holomorphic Functions 

In this paragraph we use the notation a = a + iß, an = an + ißn, where a, ß, 
an, ßn are real numbers. 

Definition 1. We say that a sequence of complex numbers 

has the limit a (or tends to the limit a) if to every c > 0 there corresponds a num­
ber no such that for every n > no we have 

We write 

Definition 2. Let us write 

We say that the series 
(1) 

is convergent and has the sum s if 
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Theorem 1. The series (1) is convergent i/ and only i/ both series 0/ real numbers 

GI + 0'2 + ... + Gn + ... , ßI + ß2 + ... + ßn + ... 

are convergent. I/ the first 0/ them has the sum G and the second the sum ß, then 

S = G +iß. 

Theorem 2. The convergence 0/ the series 

implies the convergence 0/ the series (1). The series (1) is then said to be absolutely 
convergent. 

In the theory of functions of a complex variable, series 0/ /unctions (function 
series) play an important role. Many functions can be expressed (or directly de­
fined) by infinite series. 

Basic definitions and results are very similar to those discussed for the case of 
functions of a real variable in Chap. 15. They will be formulated for regions here, 
although they can be easily generalized for the case of more general domains. 

Definition 3. Let a sequence of functions 

h(z), h(z), ... , fn(z), ... , 

defined in a region G, be given. We say, that this sequence is convergent in G and 
that /(z) is its limit, if the sequence of numbers 

h(zo), h(zo), ... , fn(zo), ... 

is convergent for every fixed Zo E G and has the limit f(zo). 

Denote 

h (z) + h(z) + ... + fn(z) = sn(z). 

We say that the series 

h(z) + h(z) + ... + fn(z) + ... (2) 

is convergent in G and has the sum s(z), if the sequence {sn(z)} (the so-called 
sequence 0/ partial sums 0/ the series (2)) is convergent in G and has the limit s(z). 
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REMARK 1. (i) It may happen that the functions h(z) (k = 1, 2, ... ) are defined 
in a region G, however, the series (2) does not converge for all z E G, but converges 
in a "smaller" domain, say D. Then D is called the domain of eonvergenee of the 

series (2). 

(ii) (Uniform Convergenee). According to Definitions 3 and 1, the series (2) is 
convergent in G if to an arbitrary 0; > 0 and an arbitrary point Zo E G such an no 

can be found, dependent on the choice of 0; and Zo, in general, that 

holds for all n > no. If to an arbitrary 0; > 0 the same no can be found for the whole 
region G (thus dependent on 0;, but independent of Zo E G), the series (2) is said to 
be uniformly eonvergent in G. A simple criterion for uniform convergence gives the 
so-called Weierstrass M -Test: Let sueh non-negative numbers Al, A2 , ••• , An, ... 
exist that 

... , 

holds for every z E G and let, at the same time, the series (of numbers) 

Al + A 2 + ... + An + ... 

be eonvergent. Then the series (2) is uniformly eonvergent in G. 

Often the case is encountered that the series (2) is not uniformly convergent 
in the whole region G, but that it converges uniformly in every bounded closed 

region (say B) contained in G. (Thus, corresponding to a given 0; > 0, the above­

-mentioned no may be different for different regions B.) Then we say that the 
series (2) converges almost (or loeally) uniformly in G. 

If (2) converges uniformly in G, then it converges almost uniformly in G, of 
course. 

Theorem 3 (The Weierstrass Theorem). Let the functions 

JI(z), h(z), ... , fn(z), ... 

be holomorphie in a region G and let the series (2) be almost uniformly eonvergent 

in G (Remark 1). (The seeond assumption is satisfied, for example, if the series (2) 

is uniformly eonvergent in G.) Then 

1. The function s(z) defined by the sum of the series (2) is holomorphie in G. 

2. 1f we differentiate the series (2) n tim es term by term, we obtain aseries 

whieh is again almost uniformly eonvergent in G and whose sum in G is equal to 

the n-th derivative of the function s(z). 
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3. If Zo E G, z E G, then 

r s(t)dt= r ft(t)dt+ r f2(t)dt+ ... + r fn(t)dt+ .. ·. 
1%0 lieo 1%0 }%O 

Definition 4. By apower series (in complex variable) we mean the series 

(3) 

where the an are constants (generally complex). 

REMARK 2. For Zo = 0, apower series has the form 

(4) 

Since the series (3) can be transformed into aseries of the form (4) by the substi­
tution z - Zo = z' (translation in the Gaussian plane), it is sufficient to consider 
the series (4). Theorems valid for the series (4) hold for the series (3) as weil, if we 
write z - Zo instead of z. 

Theorem 4. To every series (4) there corresponds a number r ~ 0 (r = +00 is 
also admitted) such that (4) is convergent for all z satisfying Izl < rand divergent 
for all z satisfying Izl > r. 

The number r is called the radius of convergence of the series (4). The circle 
with centre at the point Zo and with radius r is called the circle of convergence. 

REMARK 3. In order to find the radius of convergence of the series (4), we can 
use rules analogous to those governing real series. In particular: The series (4) and 
the series 

(5) 

have the same radius of convergence. 

Since (5) is aseries with non-negative terms, the criteria of § 10.2 may be applied 
to determine its radius of convergence. In particular, they imply: 

Theorem 5. If there exists a limit 

then 

or lim ~Ianl = 1, 
n ..... oo 

1 
r= z. 

(For 1 = 0 we have r = +00, for 1 = +00 we have r = 0.) 
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Theorem 6 (Abel's Theorem). Let apower series 

having a radius 0/ convergence r, converge at a point t on the circum/erence 0/ its 
circle 0/ convergence (i. e. at a point t such that It - Zo I = r). Let S be its sum at 
this point. Then there exists the angular extension S 0/ s(z) /rom the interior K 
0/ the circle 0/ convergence to the point t. In details: For every sequence 0/ points 
Zn E K which converges to t and which lies in the interior 0/ some angle a < 'I\" 

with vertex at t whose arms lie, in a neighbourhood or t, inside 0/ K (Fig. 20.8), 
we have 

lim s(zn) = S. 
n-+oo 

Fig. 20.8. 

Theorem 7. Apower series converges absolutely in its circle 0/ convergence K 
(Iz - zol < r). In addition, it converges uni/ormly in every closed region contained 
in K (i. e. almost uni/ormly in K). 

Hence Theorem 3 applies to power series in K. It implies especially: The 
sum s(z) 0/ apower series is a holomorphic function in K. Its derivatives can 
be calculated by differentiating the given series term by term. All these series have 
the same radius 0/ convergence. 

REMARK 4. Some functions in complex variable may be defined by power series 
(naturally, in their domain of convergence). The most important are the following: 

Z z2 z3 
e% = 1 + I! + 2! + 3! +... (r = +00), 

z3 z5 z7 
sin z = z - 3! + 5! - 7! +... (r = +00) , 

z2 Z4 z6 
cos Z = 1 - """"I + """"I - """"I + . . . (r = +00) . 2. 4. 6. 
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For real arguments (z = x), these functions coincide with the well-known functions 
eX , sin x, cos x. (We say that they are an extension 0/ these /unctions into the 
complex plane (cf. § 20.6).) For the functions eZ , sinz, cosz all formulae valid for 
functions of a real argument still hold. For example, 

eZ1 eZ2 = eZ1 +Z2 , sin(zl + Z2) = sin Zl cos Z2 + COS Zl sin Z2 , 

(e z )' = eZ , (sin z)' = cos z, (cos z)' = - sin z, 

etc. From the expansions in series we easily get the so-called Euler relation 

eiz = cos z + i sin z 

which is often used for z = x when solving linear differential equations with constant 
coeflicients. Further we have 

eZ + e-Z 

cosh z = 2 = cos iz , 

cos z = cosh iz , 

sin z = sin x cosh y + i cos x sinh y , 

eZ _ e- Z 

sinh z = 2 = -i sin iz , 

sin z = -i sinhiz, 

cos z = cos x cosh y - i sin x sinh y , 

cos( z + 2k7c) = cos z , sin( z + 2k-rr) = sin z , ez+2k1ri = eZ 

(k being an integer), etc. 

Definition 5. We say that a point Zo (zo =I 00) is a regular point (ordinary point) 
of a function /(z) if there exists a (circular) neighbourhood of Zo such that /(z) is 
holomorphic in this neighbourhood. A point which is not regular is called a singular 
point of /(z). 

Example 1. The function /(z) = l/z has only one singular point, namely z = o. 
Every other point of the Gaussian plane is a regular point of this function. 

Theorem 8 (The Taylor Series). Let z = Zo be a regular point 0/ a function / (z). 
Then, in the neighbourhood 0/ zo, we have 

(6) 

where 

(7) 

The radius 0/ convergence r 0/ the series (6) is equal to the distance,o/ the point Zo 
from the nearest singular point 0/ /(z). (More exactly: The radius r is equal to the 
g. 1. b. 0/ the distances 0/ Zo /rom all singular points 0/ /(z).) The series (6) is 
uniquely determined by the /unction / ( z ) . 
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REMARK 5. It follows from Cauehy's integral formula that the eoeffieients of the 
se ries (6) ean also be evaluated as the integrals 

1 1 J(z)dz 
an = 2'J1"i c (z - zo)n+1 

(8) 

along an arbitrary simple closed eurve c positively oriented with respeet to its 
interior, lying in a neighbourhood of Zo in which J(z) is holomorphic and eontaining 
the point Zo in its interior. 

Example 2. For J(z) = Ijz and Zo = 2, we have 

and, aeeording to (6) and (7), 

111 1 2 1 3 
~ = "2 - 22 (z - 2) + 23 (z - 2) - 24 (z - 2) + .... 

The radius of eonvergence r is equal to the distance of the point z = 2 from the 
singular point z = 0, henee r = 2. 

REMARK 6. Here (and often for other simple rational functions) it is also possible 
to get the Taylor expansion in sueh a way that we first rearrange the formula for 
the funetional relation to be of the form of a sum of a geometrie series; from 
the condition for the eonvergenee of a geometrie series (the absolute value of the 
eommon ratio is to be less than 1), we find the radius of eonvergence r: 

1 1 __ 1_" _ ~ [ _ z - 2 (z - 2)2 _ (z - 2)3 ] . 
"2 . z - 2 - 2 1 2 + 22 23 + . .. , 

1+-2-

1 

2+(z-2) z 

I_Z_;_21 < 1, i.e. Iz - 21< 2, hence r = 2. 

Theorem 9 (The Laurent Series). Let J(z) be holomorphic in the annulus M 

with centre zo, inner radius rl and outer radius r2. Then Jor z E M we have 

(9) 
n=-oo 

where 

(n = 0, ±1, ±2, ... ), (10) 

c being the circumJerence oJ an arbitrary circle with centre zo, lying in M and 
positively oriented with respect to its interior. 
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REMARK 7. By the convergence of the series (9) we mean the convergence of 
both series 

00 00 

Lan(z - zot, 
n=O 

~ a_n 

~ (z - zo)n· 
n=l 

(11) 

The first series is called the regular part, the second series the principal part 01 
the Laurent series. The domain of convergence of series (11) can be a set greater 
than M. The regular part (as apower series) converges inside a certain cirele 
(with centre zo), the principal part outside a certain cirele. The series (9) then 
converges in the common annulus. If 1 (z) is holomorphic everywhere inside the 
sm aller cirele, then the principal part of the Laurent series vanishes (which also 
follows from Cauchy's integral theorem, since the integrand in (10) is then a holo­
morphic function for n = -1, -2, ... ) and the Laurent series coincides with the 
Taylor series. 

Theorem 10. The series (9) is uniquely determined by the holomorphic func­
tion I(z). 

REMARK 8. It is not always necessary, if we expand a function into its Laurent 
series, to calculate the coeffieients of this series according to (10). We can often 
- especially in the ease of simple rational functions - use a similar method as 
in the case of the Taylor series (Remark 6), i.e. write the given function in a form 
involving fractions each having the form of the sum of a geometrie series. 

Example 3. Let us expand the function 

1 
I(z) = (z - l)(z - 3) 

in Laurent series with eentre at the point z = 0 (i.e. in powers of z) and converging 
in the annulus 1 < Izl < 3. We have 

1 1( 1 1) 1 1 1 1 
(z - 1) (z - 3) = -"2 z - 1 - z - 3 = - 6 . 1 _ ~ - 2z . -1 1 = 

3 -~ 

1 00 (z)n 1 00 (l)n [ 1 1 1 z ] ---2: - --1: - -- -+-+-+-+ - 6 n=O 3 2z n=O Z - ••• 2z2 2z 6 18 . . . . 

We must be careful to ensure that the common ratio of each of the. geometrie 
series be of absolute value less than 1. Therefore we first put the function in the 
form shown above, for in this example we are eonsidering values of z for which 
1 < Izl < 3. In fact, after this arrangement is made, the common ratios of both 
geometric series will be of absolute value less than 1, since 
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Example 4. Let us develop the same function in a Laurent series with centre 
z = 1 (i.e. in powers of z - 1), converging for 0 < Iz - 11 < 2. We have 

1 1 1 1 
(z - l)(z - 3) (z - l)[(z - 1) - 2] = 2(z - 1) . 1 - Hz - 1) = 

1 00 (z l)n 1 1 1 
= - 2(z -l)n~o T = 2(z -1) - 4 - g(z -1) - .... 

REMARK 9. Example 4 illustrates an important case of the development of 
a function J(z) in a Laurent series in the neighbourhood of an isolated singular 
point (i.e. of a singular point such that there is no other singular point in a suffi­
ciently small neighbourhood of it). In this case, the inner circle reduces to a point. 

REMARK 10. Let (9) be a Laurent expansion of a (holomorphic) function J(z), 
converging in a neighbourhood Gof an isolated singular point Zo of J(z) (we natu­
rally consider the neighbourhood G without the point zo). Exactly three cases can 
then arise: 

1. If there exists a k > 0 such that we have a-k "I 0 in (9) but a-l = 0 for all 
1 > k (hence the principal part of the Laurent series has only a finite number of 
terms), we say that J(z) has a pole oJ the k-th order or a pole oJ order k at zoo 

A pole is characterized by the relation 

lim J(z) = 00. 
z--+zo 

In details: To an arbitrary K > 0 such a ti > 0 can be found that in the 
ti-neighbourhood of the point Zo - except for the point Zo itself - we have 

IJ(z)1 > K. 

A pole of the first order is often called a simple pole and a pole of the second 
order a double pole. 

A (holomorphic) function which has no singular points in the complex plane other 
than poles is called a meromorphic function. It can be shown that if a function 
J(z) is single-valued in the closed plane (Remark 20.1.2) and has at infinity at most 
a pole (not an essential singularity, see Remark 11 below), then it is meromorphic 
if and only if it is a rational function, i.e. a function which can be expressed in the 
form 

J(z) = aO+alz+···+anzn 
bo + b1z + ... + bmzm 

2. If the principal part of the Laurent series has an infinite number of terms, we 
say that J(z) has an essential singularity at zoo 

In this case, in an arbitrary small neighbourhood of Zo the difference between J(z) 
and an arbitrarily chosen number A can be made arbitrarily small. More precisely: 
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Given an arbitrary (generally complex) number A we can find a sequence of points 
Zl, Z2, Z3, ... converging to the point Zo such that 

lim J(zn) = A. 
n-+oo 

This is true even for A = 00. 

3. Ifthe Laurent series has only the regular part, we say that J(z) has a removable 

singularity at zoo For example, the function 

sin z z2 Z4 
-z- = 1 - 3! + 5! - ... 

(see Remark 4) has a removable singularity at z = O. If we define J(z) at Zo 

by the value ao (in this ex am pIe by the value 1), then J(z) is holomorphic in 
a neighbourhood of zoo A (holomorphic) function J(z) has a removable singularity 
at an isolated singular point if and only if it is bounded in the neighbourhood of 
this point. 

These three cases are the only possible types of singularities of (single-valued) 
holomorphic functions at isolated singular points. 

Multi-valued functions (§ 20.6) can have other types of singularities. 

REMARK 11. If f (z) is defined for all sufficiently large z (briefl.y: in a neigh­

bourhood of infinity) , we speak of a Laurent series in the neighbourhood oJ infinity. 
By the substitution 

1 
z - Zo = -

t 
(12) 

we reduce the investigation of a Laurent series in the neighbourhood of infinity 
to the investigation of another Laurent series at t = O. If this se ries has a pole, 
an essential singularity or a removable singularity at the point t = 0, we say that the 
original se ries (in powers of z - zo) has a pole, an essential singularity or a removable 

singularity at infinity, respectively. For example, if the regular part of the original 
Laurent series has an infinite number of terms, then the corresponding Laurent 
series in the variable t has its principal part with an infinite number of terms and 
we say that J(z) has an essential singularity at infinity. (Cf. also Remark 10, 
point 2.) 

REMARK 12. A holomorphic function given by apower series with an infinite 
number of terms and radius of convergence r = +00 (i.e. converging for every 
finite z) is called an entire or integral transcendental Junction. As examples we 
have the functions sin z, cos z, eZ (Remark 4). An entire transcendental function 
has its only singular point at z = 00 and this point is an essential singularity. 
Conversely, every function holomorphic in the entire plane and having an essential 
singularity at infinity is an entire transcendental function. 
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Theorem 11 (Liouville 's Theorem). IJ a function J(z) is holomorphic and bounded 
in the whole plane, then it is merely a constant. 

20.5. The Residue of a Function. 
Residue Theorem and its Applications 

Definition 1. Let J( z) be a holomorphic function and Zo its isolated singular 
point. Then we can develop J(z) in the neighbourhood of Zo (for z i- zo) in its 
Laurent series (Theorem 20.4.9), 

The number a-l is called the residue oJ the function J(z) at the point zoo 

Example 1. The residue of the function 

1 
J(z) = (z _ l)(z - 3) 

at the point z = 1 is -t (Example 20.4.4). 

REMARK 1. According to (20.4.10) we have (since n = -1) 

a-l = -21 . (J(z)dz. 
11"1 Je 

In some cases we can find the residue of a function more easily: 

If J(z) has a pole of the first order at Zo, then 

a-l = lim (z - zo)J(z), 
z-+%o 

while if J(z) has a pole of the k-th order (k > 1) at Zo, then 

If J(z) has, in the neighbourhood of Zo, the form 

J(z) = <p(z) 
tjJ(z) 
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(cp( Z), 1jJ( Z) being holomorphic in the neighbourhood of the point zo) and if cp( zo) =I 
=10, 1jJ(zo) = 0, 1jJ'(zo) =I 0, then I(z) has a pole of the first order at zoo In this 
case, the residue is equal to 

Example 2. The function 

cp(zo) 
a-l = 1jJ'(zo) . 

I(z) = ~ 
smz 

has at z = ° a pole of the first order and the residue is a-l = 1, since 

sinO = 0, cosO =I 0, 
1 1 

a-l = -- = - = 1. 
cosO 1 

(2) 

Theorem 1 (Residue Theorem). Let c be a simple piecewise smooth closed curve, 
positively oriented with respect to its interior V. Let 1 (z) be a function holomor­
phic in V with the exception 01 a finite number 01 singular points Zlo Z2, ••• , Zn 

(Fig. 20.9, where n = 3) and continuous in V = V U c with the exception 01 these 
points. Then the integral 

2~ 11(z)dz 

is equal to the sum 01 residues at the points Zl, Z2, ••• , Zn. In symbols: 

1 1 n -2. I(z) dz = :E res[/(z)]Z=Zk . 
'lrl c k=l 

(3) 

y y 

o x x 

Fig.20.9. Fig.20.10. 

REMARK 2. This theorem has many applications, one of the most important of 
which is its use in evaluating integrals which cannot be calculated with the help of 
elementary primitive functions, e.g. 

{CO sinx dx, 
Jo x 1CO xt:r 

-1-dx (-1<0<0), 
o +x 

etc. Here we shall give an illustrative example showing the fundamental idea of the 
method: 
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Example 3. Let us evaluate the integral 

100 dx 
--2' 

-00 1 + x 
(4) 

(In this case, of course, the integral can be computed by means of the primitive 
function arctanxi we know that its value is 1\.) 

The integral (4) is convergent and therefore 

100 dx 1R dx --- lim --
-00 1 + x2 - R ..... +oo -R 1 + x 2 . 

(5) 

Let us draw a semi-circle C2 with centre at the origin and radius R > 1 and write 
C = Cl U C2, where Cl is the segment -R ~ x ~ R of the x-axis. The orient at ion is 
evident from Fig. 20.10. Within the curve C the function 

1 
J(z)=1+z2 

has only one singular point, namely z = +i, where it has a pole of the first order. 
The residue can be calculated, for example, by means of (2) (putting cp(z) == I, 
'Ij;(z) = 1 + z2), 

Then from (3), we obtain 

a-l = [~] 
2z z=; 

1 
2i 

l J(z) dz = 21\i~ = 1\. 
C 21 

The relation (6) holds for every R > I, hence 

lim 1 J (z) dz = 1\ . 
R ..... +oo c 

Consequently (by (5)) 

100 ~ = lim 1R ~ = lim 1 J(z)dz = 
-00 1 + x 2 R-++oo -R 1 + x 2 R ..... +oo Cl 

(6) 

= lim 1 J(z) dz - lim 1 J(z) dz = 1\ - lim 1 J(z) dz. (7) 
R ..... +oo c R ..... +oo ~ R ..... +oo ~ 

However, für every R > I, we have (according to Theorem 20.2.2) 
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because Iz2 + 11 ~ Iz21- 1 and on C2 we have Izl = R. Since 

lim R =0 
R-t+oo R2 -1 

we have, using (8), 

lim I r f (z) dz I = 0 
R-t+oo lC2 

and hence also 

lim r f(z)dz = 0 
R-t+oo lC2 

whence, using (7), 100 dx 
---7( 

-00 1 + x 2 - • 

20.6. Logarithm, Power. Analytic Continuation. Analytic Functions 

The so-called principal branch of the function "logarithm z" is defined by the 
relation 

lno z = In r + irp , r > 0, -7( < rp ~ 7( , (1) 

where r is the absolute value and rp the argument of the number z, i.e. 

z = r(cosrp + i sin rp) , -7( < rp ~ 7(. (2) 

The function (1) is holomorphic ({lno z)') = l/z) in the entire (open) plane with 
the exception of the point z = 0 and all the points on the negative real axis; on this 
axis it is discontinuous, because its imaginary part has a jump of -27(. In order to 
eliminate this discontinuity, we define the so-called second branch of the logarithmic 
function by the relation 

Let U be a neighbourhood of an arbitrary point Zo on the negative real axis which 
does not contain the point z = O. Let us define, in this neighbourhood, 

f(z) = lno z if Im z ~ 0 (Le. for points of the upper half-plane), 

f(z) = In! z ifImz < 0 (Le. for points of the lower half-plane). (3) 

Then f(z) is continuous and holomorphic in U. We say that Inl z is the analytic 
continuation of the function lno z from the upper half-plane into the lower half-plane 
through the negative real axis. 
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Similarly, we define other branches of the logarithmic function, 

Inn z = lno z + 2n'1\"i = In r + i(<p + 2n'1\") (n an integer). 

Definition 1. The set of all these branches is called the multi-valued function In z 
and the function Ino z the principal branch of the function In z. 

x 

Fig. 20.11. 

REMARK 1. If G is an arbitrary simply connected region which does not contain 
the point z = 0, then we can assign to each point z E G a value of the function 
In z (i.e. the value of a certain branch of this function) such that the function In z 
is holomorphic (hence single-valued) in G. 

Example 1. In the region G illustrated in Fig. 20.11, we can choose the branches 
of the function In z in the following way: 

In z = Ino z in GI , 

In z = Inl z in G2 , 

In z = In2 z in G3 • 

REMARK 2. Each of the branches of the function In z is single-valued in the 
Gaussian plane. Let us consider an infinite number of Gaussian planes ... , R_2 , R-I, 
Ra, R}, R2 , ••• and let us assign to each branch oflnn z the plane Rn. Let us im ag­
ine that these planes are made of stiff paper and that they are cut along the negative 
real axis. We have obtained the function In z by "joining" the function In} z to the 
function Ino z, etc. Similarly, let us "attach" the plane R I to the plane Ra so that 
we join the left lower half-plane R I to the left upper half-plane Ra along the neg­
ative real axis. In the same way, let us "attach" the plane R 2 to R I , etc., and 
proceed similarly with the planes R_ I , R_2 , •••• Thus we get a surface consisting 
of an infinity of sheets which is called the Riemann surface of the function In z. To 
each sheet of this SUrface, there corresponds a certain branch of the function In z 



274 SURVEY OF APPLICABLE MATHEMATICS 20.6 

(and conversely). If z moves round the point z = 0 in the positive sense and does 
not leave the Riemann surface (i.e. if z, after moving once round the point z = 0, 
passes from Rn to Rn+I), then the values of the function lnz change continuously 
with z. Since during this movement the function In z never returns to the initial 
value (the imaginary part of In z continually increases), the singular point z = 0 
of In z is called a branch point 01 infinite order or a transcendental branch point of 
this function. A singularity of this kind is often called a logarithmic singularity. 

REMARK 3. The notation In z, lnn z is not uniformly used in the literature. The 
multi-valued function here denoted by In z is often denoted by log z or Log z. For the 
argument 'P .of the function lno z, the interval [0, 21r) is often chosen. We therefore 
recommend the reader to study the notation individually in each publication. 

REMARK 4. The co-called general power 01 z is a (generally multivalued) function 
defined by the relation 

zn = eninz = en[lnr+i(rp+2k11:)] (k an integer). (4) 

For real irrational n, this function is infinitely multi-valued, the point z = 0 being 
a transcendental branch point, and its Riemann surface has an infinity of sheets. If 
n is rational, then, since ei.hl = 1 if 1 is an integer (eLhl = cos 21rl + i sin 21rl = 1), 
we come back after a finite number of rotations of the point z round the origin (i.e. 
for a certain k in equation (4)) to the same value. The function zn then has only 
a finite number of different branches, the point z = 0 is a so-called algebraic branch 

point (branch point 01 finite order). The corresponding Riemann surface has then 
only a finite number of sheets. 

For example, the function Jz = ZI/2 has two branches (in (4) we choose k = 0 
and k = 1), each of which is a (-1)-multiple of the other (since e(1/2).hi = -1). 
To each of them, there corresponds one sheet of a two-sheet Riemann surface. Let 
us denote them by Ro, R I . We obtain the Riemann surface (cf. Remark 2) by 
"attaching" the left lower half-plane of the plane R I to the left upper half-plane of 
the plane Ro and then (after a further rotation of the point z round the origin) the 
left upper half-plane of the plane R I to the left lower half-plane of the plane Ro. 
(All these operations we naturally perform only mentally.) 

Generally, for a natural number m, the function ylz = zl/m has m (different) 
branches, which can be defined (for example) by the following relations: 

Z = e(l/m) Ino z Z _ e(l/m) In, z Z _ e(l/m) In"'_l z 
1 ,2- , ... , m- . 

REMARK 5. Everything which has been said concerning the functions In z, zn 
is also valid for the functions ln(z - zo), (z - zo)n; it is sufficient to substitute 
z - Zo = z'. Of course, the branch point will now be the point zo. 
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Definition 2. Let a region il be the intersection of the regions 01 and O2 

(Fig. 20.12). Let a holomorphic function h(z) be defined in 01. H there masts 
a holomorphic function h(z) in O2 such that h(z) = h(z) in il, we say that 
h (z) is an analytic continuation (extension) 0/ the /unction !t (z) from 01 onto O2 

through il. 

REMARK 6. If there exists such a function, then it is the only one, as the following 
theorem implies: 

Theorem 1. Let M be an infinite set 0/ points lying in a region Band having in B 
at least one point 0/ accumulation (Definition 22.1.3). (For example, a segment or 
a region lying in B satisfy these conditions.) Let a function g( z) be defined on M. 
1/ there exists such a holomorphic /unction G( z) in B that G( z) = g( z) at the points 
0/ the set M, then this /unction is unique. 

Fig.20.12. Fig. 20.13. 

REMARK 7. Theorem 1 implies, for example, that the function sin z defined 
in Remark 20.4.4 is the only holomorphic function in the Gaussian plane which 
coincides, for real z, with the function sin x defined in the calculus of functions of 
a real variable. 

REMARK 8. Let us have a so-called chain 0/ regions 0 1 , O2 , ... , On, i.e. a system 
of regions Ok such that each region Ok (k = 2, 3, ... , n - 1) has non-empty inter­
sections ilk - 1 , ilk precisely with the regions Ok-l and 0k+l and that these inter­
sections ilk - 1 , ilk are simply connected regions, all mutually disjoint (Fig. 20.13). 

Let h(z) be holomorphic functions defined in Ok, such that /k(Z) = h+l(Z) 
in ilk . Then the function / n( z) is called an analytic continuation 0/ the function h 
onto the region On through the given chain 0/ regions. 

REMARK 9. H we make two chains of regions, both leading to the region On, it 
may happen that we reach On in each case with a different analytic continuation 
of the function !t (z). Ür, in other words, if the chain under consideration is closed 
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(On = od, then, after passing through the chain, we come to the region On with 
a holomorphic function different from the one we started with. If, for instance, we 
start from the circle K 1 (Fig. 20.14) with the value of the function lno z, we return 
to K 1 after passing through the chain with values of the function ln1 z. 

REMARK 10. We also often denote the function h(z) of Definition 2, which 
is an analytic continuation of the function !t (z), by !t (z) again and say that we 
have continued the function !t (z) (analytically) from the region 0 1 onto the region 
0 1 U O2 • We similarly speak of a continuation (extension) of the function !t (z) 
in the case of achain of regions. A function (generally multi-valued) which arises 
as an analytic continuation of a holomorphic function onto a region D is called 
an analytic function in D. If we carry out all possible analytic continuations of 
the function !t (z) we come to a so-called complete analytic function (generally 
multivalued) which cannot be furt her continued. Its domain is called the natural 
domain of the analytic function in question. 

y 

x 

Fig. 20.14. 

For example, the natural domain of the analytic function In z is the whole (open) 
plane except the point z = o. In the same way (as in the case of the function In z) 
we speak also in the general case of branches of a (multi-valued) analytic function. 

REMARK 11. The idea of a simple method of constructing the analytic continu­
ation of a given function was suggested by Weierstrass: Let J (z) be a holomorphic 
function in a region G. Let us choose Zl E G and expand J(z) in apower series with 
centre at Z1. This series converges at least in the circle K 1 which lies in G and has 
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its radius equal to the distance of the point Zl from the boundary of the region G. 
It may happen that the circle of convergence is greater. Then I(z) is continued 
onto the region G U K l . Further, we choose Z2 E G, and proceed similarly at all 
the points of G. We then expand the function I(z) thus continued into apower 
series at the points of the new region, and so on. In this way, we obtain a complete 
analytic function. 

REMARK 12. Let us consider the function I(z) defined by the series 

I( ) 2 6 n! 
Z =z+z +z +···+z + .... (5) 

The series (5) converges in the circle Izl < 1. It can be shown that the function (5) 
cannot be continued to any region greater than this circle. We say that no point of 
the circumference of the circle Izl = 1 is a point 01 continuability of the function (5) 
or that this circumference is a natural boundary of the function. The function f (z) 
defined by the series 

1 - z + Z2 - z3 + ... (6) 

also converges in the circle Izl < 1. Its sum equals 1/(1 + z). The function (6) 
can be analytically continued to the entire plane with the exception of the point 
z = -1. The analytic function so obtained is actually single-valued and is the func­
tion 1/(1 + z). Every point of the circumference Izl = 1 is a point of continuability 
of the function under consideration, with the exception of the point z = -1 which 
is its only singular point. 

Theorem 2. Let I(z) be an analytic (generally multi-valued) function in a re­
gion G. Let D be a simply connected region lying in G. Then we can assign to 
the function 1 (z) at every point z E D such a value (i. e. the value 01 one 01 its 
branches) that the function thus defined is holomorphic (hence single-valued) in D. 

REMARK 13. Compare Remark 1 and Example 1. Theorem 2 is a special case 
of a more general Monodromy Theorem, see e.g. [408]. 

B. FUNCTIONS OF SEVERAL COMPLEX VARIABLES 

By JAROSLAV FUKA 

INTRODUCTORY REMARK. The theory of functions of several complex variables 
is not a straightforward generalization of the theory of functions of one complex 
variable: in some questions concerning holomorphy, integral formulae, Taylor ex­
pansion etc., there is a certain similarity, but many essential properties of functions 
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of several complex variables have no analogue in the one-dimensional case. It is very 
important to have a good geometrical idea of the regions in which the functions 
of several complex variables are investigated. Therefore, in § 20.7 so me regions 
important in the theory of these functions as weH as in applications are analysed. 

Recently, functions of several complex variables have been applied in many 
branches of theoretical physics, especially in the axiomatic field theory (holomor­
phic relativistic fields). 

In the foHowing paragraphs 20.7-20.11 we write z = (Zl, Z2, ..• , zn), where 
Zj = Xj + iYj (j = 1, 2, ... , n), Xj, Yj real, and speak simply of the point z. 
The space en of such points is identified with the space ]R2n of the correspond­

ing points (Xl, Yl, X2, Y2, ... , Xn , Yn) and the distance d(z, w) of two points z = 
= (Zl, Z2, ... , zn), W = (Wl, W2, ... , W n ), (Zj = Xj + iyj, Wj = Uj + iVj), is then 
defined by the formula 

In this way, aH concepts such as the 8-neighbourhood 0/ a point, the open or closed 
set, the boundary 0/ a set, bounded sets, regions (= open connected sets), compact 
sets (= closed bounded sets), etc., can be defined in ·cn word by word similarly as 
in § 22.1. 

20.7. Important Regions in en 

We give some important examples of regions and their boundaries in cn and 
point out how one visualizes them for the purpose of studying holomorphic func­
tions. The reader is recommended to compare the case n = 1 with n ~ 2. 

Example 1. The ball with radius r > 0 and centre at the point a = (ab a2, ... 
... ,an) E cn: 

B n (a, r) = {Z E en : 11 Z - all < r} . 

It is the ordinary Euclidean ball of dimension 2n; its boundary is the (2n - l)-di­
mensional Euclidean sphere 

s2n-l(a, r) = {z E cn: Ilz - all = r}. 

Example 2. The polydisk (polycylinder) with radius r > 0 and cent re at the point 
a E cn: 
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Evidently un(a, r) = U(al, r) x U(a2, r) x ... x U(an, r), i.e. un(a, r) is the 
Cartesian product of n plane disks U(aj, r) of radius r centred at the points aj. 
The boundary of un(a, r) is the set of all points z, for which at least one coordinate, 
say Zk, lies on the boundary of the k-th disk U(ak, r), i.e. IZk - akl = r, and the 
other coordinates Zj, j =1= k, change arbitrarily in the closed disks U(aj, r). 

We describe in more detail the bidisk 

of radius 1 cent red at the origin. This four-dimensional body is the intersection 
of two unbounded four-dimensional cylinders xi + yr < 1 (X2' Y2 arbitrary) and 
x~ + y~ < 1 (Xl, Yl arbitrary). The boundary 8U2 = r l U r2 is three-dimensional. 
Here 

The frame (the distinguished boundary) is the intersection 

the Cartesian product of two circles, hence geometrically the torus (see § 3.2 and 
Fig. 20.15). 

More generally, one can consider the polydisk 

with the vectorial radius r = (rl' r2, ... , rn ). 

Fig. 20.15. 
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Example 3. The Reinhardt domain with centre at the point a E Cn is a region C 
satisfying the following condition: If the point Z = (Zl, ... , zn) belongs to C, then 
every point 

o ~ Bj < 21r, j = 1, 2, ... , n, 

belongs to G. Without loss of generality one can put a = 0 = (0, 0, ... , 0). Such 
a Reinhardt domain (thus with cent re at the point a = 0) contains, with every 
point Z = (Zl' ... , zn), also every point with the same moduli IZjl and all possible 
arguments Bj , 0 ~ ()j < 21r, j = 1,2, ... , n, i.e., the n-dimensional torus 

the Cartesian product of n circles. Hence it is possible to represent the 2n-di­
mensional Reinhardt domain in an n-dimensional diagram, whose construction is 
clear from Fig. 20.16, where the diagrams of the unit ball and unit polydisk in 
C2 and C3 are presented. In the two-dimensional diagram, every point (IZll, IZ21) 
represents a torus 

and analogously in the three- or n-dimensional diagram every point represents 
a three- or n-dimensional torus, i.e. the Cartesian product of three or n circles. 

The Reinhardt domain is called complete if it contains, with every point z, also 
every point ( = ((I, ... , (n) such that I(j - ajl ~ IZj - ajl, j = 1, 2, ... , n, i.e. 
if it contains, with every point z, the closed polydisk centred at the point a with 
the vectorial radius r = (IZl - all, ... , IZn - anl). Reinhardt domains sketched 
in Figs. 20.16 a-d are complete, the domain in Fig. 20.16 e is not complete. For 
n = 1, every complete Reinhardt domain is a disk {z E C: Iz - al < R}, every 
non-complete Reinhardt domain is an annulus {z E C: r< Iz - al < R}. The balls 
(Example 1) and the polydisks (Example 2) are complete Reinhardt domains. Com­
plete Reinhardt domains play, for the Taylor expansion of holomorphic functions 
in cn, n > 1, a similar role as the disks do in the case n = 1 (see e.g. [187], [381]). 

Example 4. Given a region B in IRn, the tube domain with the base B is a region 
in cn of the form TB = B + iIRn (or IRn + iB), i.e. (Xl + iYI, ... , X n + iYn) E TB if 
and only if (Xl, ••. , X n) E B (or (Yl, ... , Yn) E B). For n = 1, the tube domains 
are strips a < x < ß (or a < y < ß) and halfplanes a < X (or a < Y), X < a (or 
y< a). 

Example 5. The following tube domains M+ and M_, the co-called complexified 
light ( absolute) cones, playa considerable role in mathematical physics, especially in 
the axiomatic quantum field theory, being natural domains for defining holomorphic 
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aJ 

dJ e) 

Fig. 20.16 a, b, c, d, e. a) Fourdimensional sphere Ilzll < 1. b) Sixdimensional sphere 

IIzll < 1. c) Bidisc U2 . d) Tridisc U3. e) [} = U2 " U2(!). 

relativistic fields. M+ = ]R4 + iC+, where 

is the forward light cone representing physically the propagation of a light signal 
se nt in all directions from the origin Yl = Y2 = Y3 = 0 at the time Yo = 0, and 
similarly M_ = ]R4 + iC_, where 

is the backward light cone representing physically the points, from which the light 
signal may reach the origin at the time Yo = O. 

The boundary of M+ (M_) is the seven-dimensional set]R4 +i8C+ (]R4 +i8C_), 
where 
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The common part of ]R4 + iöG+ and ]R4 + iöG_ is the four-dimensional "edge" 
R4 + iO, where 0 = (0, 0, 0, 0). 

20.8. Functions of Several Complex Variables. Complex 
Derivative, Complex Differential, Holomorphic Functions 

In what follows we will be concerned (until otherwise stated) with functions 
f(zt, ... , zn) (with complex values, in general) defined in a region G c Cn • For 
such functions the concepts of limit, continuity, derivative etc. are defined in a quite 
similar way as for n = 1 (§ 20.1). The following definitions are of fundamental 
importance. 

Definition 1. Let U6 be a neighbourhood of a given point a = (at, ... , an). We 
say that 

(i) f has a complez derivative with respect to the variable Zj at the point a (we 

write ~f (a)) if the limit 
UZj 

exists (i.e. if f has, at the point a, the complex derivative in the sense of Defini­
tion 20.1.8 as a function of the j-th variable Zj only, the other variables being kept 
fixed). 

(ii) f is complez differentiable at the point a, if there exists a complex linear 
function 

l(z) = ltzt + ... + Inzn (li E C) (1) 

so that 
lim IIf(a+h)-f(a)-l(h)1I =0. 

IIhll-O IIhll 
Here h = (h t , ... , hn), IIhll = J(h~ + ... + h!), 0 = (0, ... ,0), a + h= 
= (at + ht, ... , an + hn). l(z) is called the complez differential of the function f 
at the point a. 

REMARK 1. From (ii) continuity of f at the point a easily follows and, moreover, 

existence of ~f (a) for every j = 1, 2, ... , n, with Ij = ~f (a); hence 
UZj UZj 

n öf 
l(z) = L öz. (a)zj. 

j=t J 
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Definition 2. Let G be a region in eR. The function J is said to be holomorphic 
in G, if it has a complex differential at every point a E G. 

Example 1. For the function of two complex variables J(z) = ZlZ2 we calculate 

J(a + h) - J(a) = alh2 + <hh l + hlh2. From I v(ht~ hD I ~ 1 for j = 1,2 it 

follows 

Thus J(z) is complex differentiable at every point a = (0, a2), with the com­
plex differential l(z) = a2zl. At every point a = (al, a2), al -I 0, J is only real 
differentiable (as a function of four real variables Xj, Yj, j = 1,2), not complex 
differentiable. The differential at such points is of the form l(z) = a2z1 + alz2, 
and this is not a complex linear function (i.e. a function of the form (1)), because 
of the "bad" second term alz2. The function J is not holomorphic in any domain 
G C ((?, because every open set in e2 contains some point (al, a2), al -I O. 

Theorem 1. The Jollowing conditions are equivalent: 

(i) J is holomorphic in the region GeeR; 

(ii) ~J (a), j = 1, 2, ... , n, exist at every point a E G. 
VZj 

REMARK 2. The assertion (ii)=>(i) is a very deep theorem by Hartogs (see [271]). 
The finest step of the proof is the proof of continuity of J, following from (ii). 

20.9. Cauchy-Riemann Equations. Pluriharmonic Functions 

Let J(z) = U(Xl, Yl, ... , Xn, Yn)+iV(Xl' Yl, ... , Xn , Yn) be holomorphic in Ge 
c en • Because it is holomorphic in every variable Zj (see Remark 20.8.1), U and v 

satisfy in G, for every j = 1, 2, ... , n, the Cauchy-Riemann equations (see (20.1.7)) 

OV 
-ox· . 

J 

(1) 

Fix f..l, v, 1 ~ f..l ~ n, 1 ~ v ~ n. Differentiating the first of equations (1) for 
j = f..l with respect to Xv and the second one for j = v with respect to Y/-L and then 
the first ofthese equations for j = f..l (j = v) with respect to Yv (Y/-L) and eliminating 
the corresponding derivatives of the function v, we obtain for the function U the 
system of n 2 equations 

(2) 
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The same system is obtained for the function v. 

Definition 1. Let G be a region in Cn . The real function u with eontinuous seeond 
order derivatives in G, satisfying in G the system (2), is ealled pluriharmonic. 

Example 1. Summing equations (2) for I-l = l/ = 1, 2, ... , n, we see, that every 
pluriharmonie function is harmonie (Definition 18.4.4). The following example 
shows that for n > 1 the dass of pluriharmonie functions is a proper sub dass of the 
dass of harmonie functions. The function u(z) = U(Zl, Z2, ... , zn) = XIX2 + YIY2 
(= Re Zl Z2) is dearly harmonie (it is linear in eaeh variable) but not pluriharmonie: 

Theorem 1. Let u be a pluriharmonic lunction in G C cn, a E G. Then there 
exists a polydisk un (a, r) C Un (a, r) C G and a function v pluriharmonic m 
Un(a, r) so that I = u + iv is holomorphic in Un(a, r). 

20.10. Local Properties of Holomorphic Functions. 
The Cauchy Integral Formula. The Taylor Expansion 

By a repeated application of the one-dimensional Cauehy formula (Theorem 
20.2.7) one obtains: 

Theorem 1. Let I be holomorphic in a region G C cn and let a E G. Then 
there exists a polydisk Un(a, r) with Un(a, r) C G, r = (rl, T2, ... , Tn), so that 
lor every Z E Un(a, r), Z = (z}, Z2, ... , zn), the lollowing lormula holds: 

where erj is the circumlerence I(j - ajl = Tj. 

This formula is in a certain sense an analogue of the Cauehy integral formula 
(20.2.10), to whieh it reduees in the ease n = 1. But there is an essential differenee 
here: In one-dimensional ease one integrates over the full topological boundary of 
the disk U(a, r), while for n > 1 one integrates only over its part, namely over the 
frame (the distinguished boundary, Example 20.7.2) of the polydisk. 

From (1), the following loeal properties of holomorphie functions ean be derived 
in the same way as for n = 1: 
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Theorem 2 (Existence oJ derivatives oJ all orders). Every Junction J holomorphic 
in a region G has, at every point a E G, derivatives oJ all orders; they may be written 
in the Jorm 

(Cf. (20.2.11). Notation as in Theorem 1.) 

Theorem 3 (Local Taylor's Expansion; cf. Theorem 20.4.8). Let J be holomorphic 
in G and let a E G. Then Jor every Un(a, r) with Un(a, r) c G the Jollowing 
Jormula holds: 

J(Z) = L 

where 

The series converges uniJormly on compact subsets oJ Un(a, r). 

Theorem 4 (The Uniqueness Theorem). Let a Junction J be holomorphic in 
a region G C Cn . IJ J and all its derivatives vanish at some point a E G, then f is 
identically zero in G. 

REMARK 1. Here it is essential that G is connected. If G consists of two (or 
more) components, e.g. if G = Un(O, 1) U Un(a, 1), where a = (0, 0, ... ,2), then 
the function f equal to 0 in Un(O, 1) and 1 in Un(a, 1) fulfils the conditions hut 
not the assertion of Theorem 4. 

Theorem 5 (The I dentity Theorem). Let G C Cn be a region and h, h be 
holomorphic Junctions in G. Let BeG be a non-empty open set on which h 
and h are equal to each other. Then h = h in G. 

REMARK 2. For n ~ 2, Theorem 20.6.1 does not hold. The functions h (ZI, Z2) = 
= Z2 and h (Zl, Z2) = Zl Z2 are not identical, although h (ZI, 0) = h (z}, 0) holds 
for every Zl E C. 
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20.11. On Some DiH"erent Properties of Functions of One and 
Several Complex Variables. Analytic Continuation. 
Domain of Holomorphy. Biholomorphic mapping 

The most important part of the theory of holomorphie functions of several vari­
ables (n > 1) is that one which is in some sense radically different from the com­
plex functions theory of one variable. This concerns, first of all, global properties 
of holomorphic functions. We give only a few examples of such rather surprising 
phenomena here. We suppose n ;:;; 2 all the time. 

Example 1. Analytic continuation. Let G = U2 ...... U2 (~) be the region from 
Fig. 20.16 e. Then every function / holomorphic in G can be holomorphically 
extended to the whole U2 , i.e. to every function /, holomorphic in G, there exists 
a unique F holomorphic in U2 so that F = / holds in G. This situation is thus 
different from that in one variable, where in every domain G c C it is possible to 
construct a function /, which has no holomorphie extension to a greater domain. 

Theorem 1 (the so-called Kugelsatz). Let G be a region in cn, K c G a compact 
set, G ...... K connected. Then every function holomorphic in G ...... K can be uniquely 
extended to a function holomorphic in G. 

A specific theorem on analytic continuation in tube domains with conie bases is 
the following one: 

Theorem 2. Let M+, M_ be the light cones /rom Example 20.7.5. Let the complex 
function /, defined in the set W = M+ U M_ U (1R4 + iO), be continuous in Wand 
holomorphic in M+ U M_. Then there is a region G in d containing Wand 
a /unction F holomorphic in G such that F = / on W. 

REMARK 1. This theorem is a very special case of the so-called Edge 0/ the Wedge 
Theorem, which has fundamental application in the scattering theory (see [477]). As 
we have seen in Example 20.7.5, 1R4 +iO is the common boundary of M+ and M_, 
so it is the "edge" of the "wedge" W. Every function, holomorphic on the open 
set M+ U M_ and continuous up to its four-dimensional "edge", can be extended 
holomorphically to the eight-dimensional neighbourhood of the "edge" - a truly 
surprising fact; cf. also the relevant assertion about light cones in Example 2 below. 

The domains 0/ holomorphy in cn are, roughly speaking, regions, in which there 
exists a holomorphic function that can be no more extended holomorphically to 
a greater domain. The following exact definition (seemingly complicated) takes 
into account the possibility that the boundary of a domarn can "intersect" itself 
and that the phenomenon of the multivalence, already known from the construction 
of the logarithmic function (see § 20.6), could occur. 
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Definition 1. A region G C cn is called the domain 0/ holomorphy, if to every 
pair (U1 , U2) of non-empty sets in Cn , Ul C U2 n G, U2 a region not contained in G, 
there exists a function I holomorphic in G with the following property: for every 
function F holomorphic in U2 there is a point Zl E Ul such that I{zt) =I- F{zt), i.e. 
I cannot be the restriction on U1 of any function holomorphic in U2 (see Fig. 20.17). 

Fig. 20.17. 

Example 2. The bidisk U2 is a domain of holomorphy: take I(Zll Z2) = 
= ip{Zt).ip(Z2), where ip is the function (20.6.5). More generally, every polydisk 
is a domain of holomorphy. Every convex domarn in cn (especially the ball) is 
a domain of holomorphy. The tube domain (see Example 20.7.4) is a domain of 
holomorphy if and only if its base is convex, thus especially the complexified forward 
and backward light cones from Example 20.7.5 are domains of holomorphy. The 
region from Example 1 and the regions of the form G" K, K c G, K compact, 
are not domains of holomorphy (Theorem 1). 

There arises a fundamental problem: How to characterize geometrically the do­
mains of holomorphy. For its solution the reader is referred to the books {[187] , 
[197], [271], [381]). 

An easy consequence of the Kugelsatz (Theorem 1) are the following facts with 
no analogues in the case n = 1: 

Theorem 3. Let I be a holomorphic function in a region G C cn, Za = {z E G; 
I(z) = a} the level set 0/ /. Then 

(i) no point 0/ Za is isolated, 
(ii) Za is either empty or reaches up to the boundary 0/ G. 

REMARK 2. For n = 1, every point of Za is isolated, except tha.t I(z) = const. 
identically. The set Za can evidently be finite and, consequently, cannot reach up 
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to the boundary, in such a case - e.g. 

G={z;lzl<l}, I(z)=z(z-~), a=O. 

REMARK 3. In contrast to functions of one complex variable, the singularities 
of a holomorphic function cannot be isolated for n ~ 2 (as stated in Theorem 3). 
Therefore the quotients of two holomorphic functions, the so called meromorphic 
functions, can be interpreted as functions only in a very broad sense. For example, 
the function 1 (z) = Z2 / ZI has a pole, i.e. 

(cf. Remark 20.4.10) at every point z = (0, a), a =I o. The point z = (0, 0) is the 
point of indetermination of function f: One cannot assign any reasonable value 
to 1 at that point, because, e.g., for every k E C we have 

Definition 2. Let G be a region in cn, <PI, ... , <Pn complex functions in G. 
A function F = (<pI, ... , <Pn) from G into cn is called a holomorphic mapping, if 
each function <Pj, j = 1, 2, ... , n, is holomorphic in G. A biholomorphic mapping 
is defined as a one-to-one holomorphic mapping. 

REMARK 4. For n = 1, the biholomorphic mapping is just conformal, i.e. con­
serves locally the angles of curves (§ 21.1). For n ~ 2 the concepts of biholo­
morphicity and conformality do not agree. For example, for n = 2 the mapping 
F = (ZI, 2z2 ) is biholomorphic but not conformal, and the conformal mapping 

F = (h12 ~ IZ212' IZI12 ~ IZ212) is not biholomorphic. 

In contrast to the Riemann Mapping Theorem for n = 1 (Theorem 21.2.1) we 
have 

Theorem 4. There exists no biholomorphic mapping 01 the ball B2 C C2 onto the 
bidisk U2 C C2 . 



21. CONFORMAL MAPPING 

By J AROSLAV FUKA 

References: [3], [66], [213J, [227J, [252], [262], [267], [296], [313], [352], [357J. 

The book [262J which is a dictionary of common conformal mappings is particularly 

recommended to the reader. 

21.1. The Concept of Conformal Mapping 

The theory of conformal mapping is of great importance in many branches of 
technology and physical sciences (for example, in the theories of elasticity, of How 

around aerofoils, of two-dimensional stationary vector fields, etc.). 

y 

x 

Fig. 21.1. The mapping by the function w = zn. 

Definition 1. Let a region G be mapped on a region B with one-to-one correspon­
dence by a function w = J(z) = u(x, y) +iv(x, y). If, moreover, the function J(z) is 
holomorphic on G (Definition 20.1.9), then the mapping given by the function J(z) 
is called a conformal mapping (or transformation) of the region G on or on to the 

region B. We also say that f(z) maps the region G conformally on the region B. 

REMARK 1. The function z = J-l(W), inverse to the function w = J(z), maps 
B conformally on G. 

Example 1. The function w = zn (n is a positive integer) maps the sector 
o < arg z < 2'IT/n of the z-plane conformally on the w-plane, from which the positive 
part of the real axis (including the origin) is excluded (Fig. 21.1). 



290 SURVEY OF APPLICABLE MATHEMATICS 21.1 

Example 2. The function w = eZ maps the strip h1 < Im z < h2 , 0 < h2 - h1 ~ 

~ 21\", of the z-plane on a sector in the w-plane with vertex at the origin and arms 
making angles h1, h2 with the positive real axis (Fig. 21.2). 

REMARK 2. A conformal mapping of a region G on B has the following two basic 
properties: 

y 

x u 

Fig. 21.2. The mapping by the function w = eZ • 

1. It transforms every circle (we write "circle", in this chapter, instead of "cir­
cumference of a circle", for brevity) of infinitely small diameter into a circle of 
infinitely small diameter. The exact meaning of this assertion is as folIows: Let 
a curve ßr be the image of a circle er, the equation of which is I z - Zo I = r (cf. 
Definition 20.1.2) and which lies in G (Fig. 21.3a). Let us construct a circle kr 

in B: 

I( - f(zo)1 = If'(zo)1 r. (1) 

Let e( r) denotes the maximum of the distances of points w = f (z) lying on ßr from 
the circumference of the circle kr . Then 

e(r) ~ 0 as 0 
~ r -+ . 

r 
(2) 

o x u 

Fig. 21.3a. 

2. It preserves angles. More precisely: Let 1'1, 1'2 be smooth curves lying in G 
and let Cl! be the oriented angle between 1'1 and 1'2 at their point of intersection zo. 



21.1 CONFORMAL MAPPING 291 

Then the images ßl, ß2 of the curves ')'1, ')'2 are also smooth curves and the oriented 
angle between them (at the point J(zo)) is also Cl! (Fig. 21.3b). 

v 

x o u 

Fig. 21.3b. 

REMARK 3. From (1) and (2), we deduce the geometrical significance of the 
absolute value of the derivative J'(z): 1f'(zo)1 determines the "change of scale" 
at the point Zo. The number arg f' (zo) has the following geometrical significance: 
Let')' denote an arbitrary smooth curve in the z-plane, passing through the point zo, 
and ß its image in the w-plane, where w = J(z). If we superimpose the z- and 
w-planes so that the coordinate axes remain parallel and the points Zo and Wo = 
= J(zo) coincide, then arg J'(zo) is the angle between the curves ')' and ß. We say 
briefly that arg f' (zo) is the angle ofrotation at the point Zo. 

REMARK 4. As an important example of conformal mapping, let us mention the 
mapping ofthe form w = (az+b)j(cz+d), ad-bc i= 0, which is called homographie 
and has the following properties: 

The mapping composed of two homographic mappings is a homographic map­
ping. The mapping inverse to a homographic mapping is also homographic. The 
image of a straight line or of the circumference of a circle is again a straight line 
or the circumference of a circle and the image of a circle or of a half-plane is again 
a circle or a half-plane. Conversely, every conformal mapping of a circle or a half­
-plane on a circle or a half-plane is homographic. A homographic mapping maps 
the closed plane, or the closed plane from which one point is excluded, conformally 
on the closed plane or on the closed plane excluding one point. Conversely, if J(z) 
is a conformal mapping of the closed plane, or the closed plane excluding one point, 
on a region B, then J (z) is a homographic mapping and B is the closed plane or 
the closed plane excluding one point. 

Further: Three mutually different points ZI, Z2, Z3 either determine the circum­
ference k of a circle or lie on a straight line p. Let the circle k (or the straight 
line p) be oriented curves. Let G denote the interior of k (in this case let the cir­
cumference k be oriented in such a way that G lies on the left-hand side of k if we 
move along k in the positive sense of its orientation). Alternatively, let G denote 
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that one of the two half-planes determined by the straight line p which lies on the 
left-hand side if we move along p in the positive sense. Let the points Zl, Z2, Z3 

follow each other in the order mentioned according to the positive orientation of k 
or p. Similarly, let the points Wl, W2, W3 of the w-plane lie either on a circumfer­
ence k' or on a straight line p', and let us have the same convention concerning the 
orientation of k' or p' with respect to the corresponding circle B or the half-plane 
B, respectively, and concerning the ordering of the points Wl, W2, W3 on k' or p', 
respectively (Fig. 21.4). Every conformal mapping of the region G on B is a ho­
mographic one. If this mapping (let us denote it by W = f (z)) maps the points 
Zl, Z2, Z3 on the points Wb W2, W3 (in this order), then it is uniquely determined 
(see Remark 21.2.1) by the relation 

( W-Wl) I (W3 -Wl) (~) I (Z3 -Zl) 
W - W2 W3 - W2 Z - Z2 Z3 - Z2 

(3) 

o x o u 

Fig. 21.4. 

Example 3. Let us find a conformal mapping of the upper half-plane G of the 
z-plane on the unit circle B with cent re at the origin of the w-plane such that the 
points Zl = -1, Z2 = 0, Z3 = 1 of the x-axis are mapped on the points Wl = 1, 
W2 = i, W3 = -1 lying on the boundary of the circle B; Fig. 21.5. 

v 

u 

Fig. 21.5. 

According to (3), we have 

( W-~)/(-l-~) = (Z-(-l))/(l-(-l)) 
W-1 -1-1 z-O 1-0 
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and consequently 
Z -1 

W = i(z + i) . (4) 

REMARK 5. The formula (3) can be used even if one of the points under consider­
ation is the point at infinity. If e.g. Z3 = 00, then in (3) we put (Z3 -Zt}/(Z3 -Z2) = 1, 
so that the right-hand side of equation (3) is (z - Zl)/(Z - Z2). If, e.g., Wl = 00, 

then we write the left-hand side of equation (3) in the form 

( W - Wl ) / ( W - W2 ) 

W3 - Wl W3 - W2 

and put (w - Wt}/(W3 - wt) = 1, so that the left-hand side of equation (3) is 
(W3 - W2)/(W - W2), etc. 

In our example it follows from (4) that to the point z = 00 there corresponds 
the point W = -i. If we now choose the mutually corresponding points 

Zl = -1, Z2 = 1, Z3 = 00 , Wl = 1, W2 = -1, W3 = -i 

we again obtain, by the method just described, the mapping (4). 

21.2. Existence and Uniqueness of Conformal Mapping 

If two regions G and Bare given in the plane, a fundamental question arises as 
to whether there exists a conformal mapping of the region G on B. In the case of 
simply connected regions, the answer is given by the following theorem: 

Theorem 1 (The Riemann Theorem). Let G be a simply connected region with 
a boundary containing at least two points (see Remark 2) and let Zo E G. Then 
there exists a conJormal mapping W = J (z) which maps the region G on the unit 
circle Iwi < 1 such that 

J(zo) = 0, !'(zo) > o. (1) 

The function J(z) is uniquely determined by the conditions (1). 

REMARK 1. Conditions (1) have the following geometrical meaning (Fig. 21.6): 
Two mutually corresponding points z = Zo and w = 0 are given and the angle of 
rotation at Zo is zero (see ß,emark 21.1.3). The conditions determining uniquely 
the function J{z) can also be chosen in other waySj for example, if G and B are 
Jordan regions (see Remark 14.1.3), then J(z) is uniquely determined if three pairs 
of mutually corresponding points on the boundaries of the regions G and B are 
given (Fig. 21.7: see Example 21.1.3). (Cf. also Theorem 21.4.1.) 
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y v 

o x u 

Fig. 21.6. 

o x 0 

Fig. 21.7. 

REMARK 2. Theorem 1 gives no information about regions, the boundary of 
which consists of only one point or no point at all, e.g. the closed plane or the 
closed plane excluding one point (this point can also be the point z = 00). These 
cases have been discussed in Remark 21.1.4. Neither the closed plane, nor the closed 
plane excluding one point, can be conformally mapped on a circle. The region G 
of Fig. 21.8 (the closed plane with a circular hole with cent re at the origin and 

v 

u 

Fig. 21.8. 

radius R) can be mapped, by the so-called "inversion" w = 1/ z, on the circle with 
centre at the origin and radius a = 1/ R. (If the cent re is at a point zo, then the 
corresponding mapping will be w = 1/ (z - zo); if the hole is not circular and, at 
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the same time, Zo is an interior point of it, then we can first map the region G by 
the function w = l/(z - zo) on a bounded simply connected region, and then map 
this region on a circle.) If we exclude one point (e.g. the point z = 00) from the 
above-mentioned region G (the closed plane with a circular hole and with one point 
excluded), we can map G in a similar way on a circle excluding one point. 

In the case of multiply connected regions, the following theorem holds: 

Theorem 2. Every n-tuply eonneeted region G (n ~ 2) ean be eonformally mapped 
on one of the following regions Bi (i = 1, 2, ... , 5), where 

BI is an annulus with eentre at the origin excluding n - 2 eoneentrie eireular 
ares; 

B2 is a eircle with eentre at the origin excluding n - 1 eoneentrie eireular ares; 
B 3 is the plane excluding n eoneentrie eireular ares; 
B 4 is the plane excluding n segments lying on rays starting from the origin; 
B 5 is the plane excluding n parallel segments with the same angle {) between 

their direetion and the x-axis (Fig. 21.9a, b, c, d, e). 

v v 

aJ bJ 

v 

cJ 

Fig. 21.9. 
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REMARK 3. The difference between Theorem 2 and Theorem 1 consists in the 
fact that the shape of the region Bi (e.g. the ratio of the radü of the annulus BI) 
cannot be arbitrarily chosen apriori, as distinct from the case of simply connected 
regions. For example, a conformal mapping of an annulus rl < Izl < r2 on an 
annulus (!l < Iwl < (!2 exists if and only if rI/r2 = (!I/ (!2' 

The closed plane with two circular holes (Fig. 21.10) can be conformally mapped 
by the inversion w = 1/ z (or w = 1/ (z - zo), see Remark 2) on an eccentric an­
nulus (which can then eventually be mapped on a concentric annulus as in Exam­
pIe 21.3.2). In general, the closed plane with two holes can be mapped conformally 
on an annulus. The open plane (or the closed plane excluding one point) with two 
holes cannot be conformally mapped on an annulus. Obviously, an annulus cannot 
be a conformal image of the closed plane with more than two holes. 

Theorem 3. There exists only one function w = f(z) whieh maps an n-tuply 
eonneeted region G on a region of type B 5 (cf. Theorem 2) so that to a given point 
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y v 

u 

Fig. 21.10. 

Zo E G there corresponds the point w = 00 and that the expansion of f(z) in the 
neighbourhood of the point Zo has the form 

1 2 
f(z) = -- + Q;l(Z - zo) + Q;2(Z - zo) + ... 

Z - Zo 

if Zo is a finite point and 

( ) ßl ß2 f Z =z+-+-z+ ... 
z z 

if Zo = 00. 

REMARK 4. Analogous theorems hold for regions of type Bi (i = 1, ... ,4). 

21.3. Methods of Performing Conformal Mappings 

Example 1. Let us find the conformal mapping of the exterior of the cireumferenee 
c of a eircle on the plane excluding a cireular are 'Y (Fig. 21.11). The cireumferenee c 
has its eentre at the point z = ih, h > 0, and passes through the point a, a > 0; 
the are 'Y is given by the points -a, ih, a (-a, a being its end-points). 

If cp stands for the angle shown in Fig. 21.11, then the angle between c and the 
positive x-axis is Q; = t7r - cp and the angle, at the point w = a, between 'Y and the 
positive u-axis is ß = 7r - 2cp. The mapping 

z-a 
Zl·= -­z+a 

maps the eireumference of the circle c on a straight line passing through the origin 
of the zl-plane. (Aeeording to Remark 21.1.4, the image of the cireumferenee of 
a eircle is either a straight line or a circle, if a homographie mapping is used. 
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y 

v 

c 

Fig. 21.11. 

However, for z = a we have Zl = 0, for z = -a we have Zl = 00, so that a cirele is 
out of the question. ) This straight line makes an angle a with the xl-axis, since the 
x-axis is mapped on the xl-axis and conformal mappings preserve angles. Hence, 
the function 

2 (z - a)2 
Z2 = Zl = Z + a 

maps (see Example 21.1.1) the exterior of the circumferenee of the circle c on the 
z2-plane excluding the ray from the origin making an angle 2a = ß with the positive 
X2-axis. By the mapping 

w-a 
WI=--

w+a 

(see Remark 21.1.4), the eomplement of the are 'Y is mapped on the wl-plane 
excluding the ray from the origin making an angle ß with the positive ul-axis, 
since the u-axis is transformed on to the ul-axis and eonformal mappings preserve 
angles. Henee, putting Z2 = WI, we get 

(1) 

REMARK 1. Let us draw the cireumferenee of a circle (denoted by C) touehing c 
at the point a and lying in the exterior of c (Fig. 21.11). The mapping (1) maps C 
on a eurve r containing the are 'Y in its interior and having a eusp at a. The 
function (1) maps the exterior of C on the exterior of r. This provides a basis for 
the study of aerofoils (the so-ealled Joukowski aerofoils). 

In Example 1, we have used a simple method of combining elementary confor­
mal mappings whieh is often very effective since simple mappings (such as the 
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homographic mapping) have simple properties which can be weIl illustrated geo­
metrically. 

Fig. 21.12. 

The following example shows a further simple application of homographic map­
pings. 

Example 2. In electrostatic field theory (when determining the field of an ec­
centric cylindrical condenser), the conformal mapping of an eccentric annulus on 
a concentric one is frequently used. If we use notation of Fig. 21.12 (TO > S + TI, 

Tl > 0, S ~ 0) and write 

y 

0 
al 

J 
cl 

J(TO + s)2 - T~ 
t = 2 ' (To-s)2_ TI 

Ro = TO (t + 1) - (s + TI)( t - 1) , 
(s + TI)(t + 1) - TO(t - 1) 

X -hz 

I I 

hZ Uz -h 

Fig. 21.13 a, b, c, d. 

0 u1 
bJ 

J ~ I 

h U 

dJ 
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then the mapping 

CONFORMAL MAPPING 

W = Ro (t + 1)z - ro(t - 1) 
-(t - 1)z + ro(t + 1) 

299 

maps the given eccentric annulus on a concentric annulus with centre at w = 0 and 
inner radius Ro, outer radius R I = 1. 

Example 3 (Flow Round an Obstacle). Let us consider a steady irrotational flow 
in the upper u-half-plane with an obstacle of height h (Fig. 21.13a). Without this 
obstacle the flow would be uniform and the streamlines would be parallel to the 
x-axis. Let the velo city at infinity be unity, Voo = 1. 

We have to find the corresponding complex potential of the flow, i.e. a holomor­
phic function w = J(z) defined on the upper half-plane with the necessary slit of 
length h along the imaginary axis (let us denote this region by G) and such that 
v = ImJ(z) = const. are the streamlines, u = ReJ(z) = const. are the equipoten­
tiallines, perpendicular to the streamlines. At the same time, the complex number 
J'(z) at each point z will determine the velo city vector of the flow, not only in 
direction, but also in absolute value. Obviously, in the limit the boundary of the 
region G (i.e. the x-axis + the slit) is to be a streamline. Further, the condition 
V oo = 1 implies J'(z) -+ 1 for z -+ 00. 

We are going to map the region G on the upper half-plane il. We shall see 
that this mapping w = J (z) is the required function. (For more detailed treatment 
of these problems see, e.g., [296]). We shall apply a combination of elementary 
mappings. First, the function WI = z2 maps the region G on a region GI of the 
wrplane with a slit [-h2 , +00) on the real axis, Fig. 21.13b (since the mapping 
wl = z2 doubles angles with vertex at the origin, Example 21.1.1). Next, the 
function W2 = WI + h2 maps the region GI on a region G2, with a slit [0, +00) 
on the real axis (Fig. 21.13cj this is a translation in the direction of the x-axis). 
Finally the mapping w = .jw 2 maps the region G2 on the upper half-plane il of 
the w-plane (Fig. 21.13d). Hence, the required nmction is 

The flow in the region G corresponds, according to this equation, to the flow in 
the half-plane il. The streamlines v = Im J(Z2 + h2) = const. in G correspond to 
the streamlines v = const. in the half-plane il. Obviously 

J'(z) = .j(z2: h2) , 

so that J'(z) -+ 1 as z -+ 00. For z -+ ih we have J'(z) -+ 00 (the so-called deJect 
on the edge). 
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In the case where Voo = a is specified, the required function is 

Theorem 1 (Boundary-Correspondence Principle). Let w = J(z) be a function 
continuous on a closed region G, bounded by a Jordan curve r (Remark 14.1.3) 
and holomorphic on G. 

IJ the function J (z) is uniquely invertible on rand maps r on a Jordan curve ß, 
then J(z) is uniquely invertible on G and maps G conJormally on the interior oJ 
the curve ß. 

REMARK 2. Theorem 1 holds even if G is the exterior of r or if r is a general­
ized Jordan curve (this is a curve which is a stereographic projection (i.e. a pro­
jection from the "north pole") of a Jordan curve lying on the Riemann sphere (see 
Remark 20.1.2) on to the complex plane) and G is one of the regions with the 
boundary r (e.g. if r is a straight line, and G is a half-plane). (See e.g. [313], 
[296].) 

Example 4. Let us study the mapping of the upper half-plane, given by the 
following function (for notation, see Remark 20.2.3): 

% f dt 
w = J(z) = V[(1 _ t2 )(I- k2t 2 )] ' 0< k2 < 1 

o 

(the "elliptic integral of the first kind" in Legendre's normal form). 

(2) 

We take that branch (§ 20.6) of the double-valued function y'[(1 - t2 )(1 - k2t 2 )] 

which, for t E (0, 1), assumes positive values. (To be precise we denote the positive 
root of a (a > 0) by the symbol va.) Then the function (2) is holomorphic on the 

+ 
upper half-plane and continuous on the closed upper half-plane. 

Let us find the image of the whole real axis under the mapping (2) (Fig. 21.14). 
If z = x, 0 < x < 1, then the value of J(x) lies in the interval (0, wt), where 

In the interval (1, l/k), the integrand is of the form 1/ ± iy'[(t2 - 1)(1 - k2t 2 )]. 

+ 
We must choose thc sign so that the above-mentioned branch is continuous in the 
upper half-plane. If we pass from the point 1- {j to the point 1 + {j along a semicircle 
with centre at the point 1 and lying in the upper half-plane (suppose 0< 1- {j < 1 
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y 

-1/k -1 o 

Fig. 21.14. 

and 1 < 1 + 8< 1/k), the value of the expression cp(t) = (1 - t2)(1- k2t2) ehanges 
from + to -, while arg cp(t) ehanges from 0 to -'IT, sinee if t passes along the given 
semi-eircle, the values of cp(t) lie in the lower half-plane. Thus, arg y'[cp(t)] beeomes 
equal to -'IT /2, and therefore the minus sign is to be chosen. 

Henee, for 1 < x < 1/k we have 

The points J (x) therefore lie on the segment parallel to the imaginary axis, with 
endpoints Wl, Wl + iW2, where 

J,l/k dt 
W2 -

- 1 J[(t2 - 1)(1 - k 2t2 )] • 

+ 

Similarly, it ean be seen that J(x) deseribes the segments from Wl +iW2 to iW2, from 
iW2 to -Wl + iW2, from -Wl + iW2 to -Wl and fra m -Wl to 0, when x describes the 
segments of the real axis from 1/k to +00, from -00 to -1/k, from -1/k to -1 
and from -1 to 0, respeetively. 

Henee, from Theorem 1 and Remark 2, we may eonclude that the function (2) 
maps the upper half of the z-plane eonformally on the reet angle with vertiees 
-Wl, Wl, Wl + iW2, -Wl + iW2 in the w-plane, without being obliged to verify the 
one-to-one eorrespondenee of the mapping, which would be a rather eomplieated 
operation. 

Theorem 2 (The Riemann-Sehwarz Refieetion Prineiple). Let G be a region 
bounded by a Jordan eurve rand let the eurve r eontain a segment 8. Let w = J (z) 
be eontinuous on G + 8 and holomorphie on G and let the segment 8 be mapped by 
the Junction J(z) on a segment>. (Fig. 21.15). Let G* be the region symmetrie to 
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G with respect to the straight line containing 8 and let us define the function j*(z) 
on G* in the Jollowing way: j*(z) = J(z) iJ z E 8 and j*(z*) is the point in the 
w-plane symmetrie to the point J(z) with respect to the straight line containing >., iJ 
the point z* is symmetrie to the point z in the z-plane with respect to the straight line 
eontaining 8. Then the function j*(z) is the analytic continuation oJ the function 
J(z) from G + 8 into the region G + G* + 8. 

y 

o x u 

Fig. 21..15. 

REMARK 3. The segments 8 and >. very often lie on the real axis. The values 
J(z) and j*(z*) are then conjugate complex numbers. 

The principle of reHection has numerous applications in conformal mapping and 
can be easily generalized (see, e.g. [313], [296]). For example, by its help the 
following (the so-called Sehwarz-Christoffel theorem) may be proved: 

Theorem 3. IJ a function w = J (z) maps the upper halJ-plane Im z > 0 con­
Jormally on the interior oJ a bounded polygon G with angles ak'l\" (0 < ak ~ 2, 

n 
k = 1, 2, ... , n, 2: ak = (n - 2)) so that the vertices oJ the polygon correspond to 

k=l 
the points ak oJ the real axis (-00 < al < a2 < ... < an < +(0), then 

J(z) = cl% (z - ad<ll-l(z - a2)<l2-1 ... (z - an)<ln-l dz + Cl, (3) 
%0 

where zo, C, Cl are certain constants. 

REMARK 4. If e.g. an = 00, i.e. if one of the vertices of the polygon corresponds 
to the point at infinity, then in formula (3) the factor containing an is excluded. 

REMARK 5. Formula (3) holds even for a polygon with avertex (or several 
vertices) lying at the point 00, if we define the angle between two straight lines at 
the point 00 as equal to the angle at their intersection, multiplied by -1. 
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REMARK 6. Theorem 3 may be eonverted in the following way: The function (3) 
with 0k and ak (k = 1, 2, ... , n) satisfying 

n 

- 2 ~ 0k ~ 2, L 0k = n - 2 and - 00 < al < a2 < ... < an < 00 , 

k=l 

maps the upper half-plane eonformally on some polygon with n sides. However, in 
practiee this polygon is usually given and we wish to map it eonformally on the 
upper half-plane, i.e. to find the points ak, k = 1, 2, ... , n, and the eonstants C 
and Cl' For more detailed treatment see § 21.8. 

An example of the mapping (3) is the mapping (2), where we have 01 = 02 = 
= 03 = 04 = ~ and the points ak are ±1, ±1/k. 

Theorem 4 (The Green Function). Let a simply eonneeted region G with a bound­
ary rand a point Zo E G be given. IJthere exists aJunetion U(z) (= U(x, y), where 
z = x + iy), harmonie on G and eontinuous on G + r, whieh assumes the value 
ln(I/le - zol) at eaeh point e E r, then the Junction 

where V(z) is a harmonie Junction eonjugate to U(z) on G (cf. Remark 20.1.12) 
and ° is an arbitrary real number, maps the region G conJormally on the unit circle 
so that J(zo) = O. 

Conversely, iJ J(z) is a conJormal mapping oJ the region G on the unit eircle 
sueh that J(zo) = 0, then g(z, zo) = (1/2'7r).ln (1/IJ(z)l) is the Green Junction (cf. 
Definition 18.4.9) oJ the region G with a pole at zo. 

Henee, under eertain assumptions eoneerning the smoothness of the boundary 
of the region G, for every function u(z), harmonie on G and eontinuous on G + r, 
the following relation holds: 

u(z) = -Ir u(() Og~(~ z) ds, 

where r is the boundary of the region G and og / on the derivative of the function 9 

with respect to the outward normal. 

REMARK 7. Theorem 4 reduees the seareh for a eonformal mapping to the seareh 
for the solution of a Diriehlet problem (§ 18.4) together with the problem of finding 
a harmonieally eonjugate funetion, and eonversely. 

Theorem 5 (Extremal Properties oJ ConJormal Mappings). Let G be a simply 
connected domain containing the origin and let its boundary contain at least two 
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points. Then from among all the functions f (z), holomorphic on G and such that 
f(O) = 0, 1'(0) = 1, only the function f(z) mapping the region G conformally on 
a circle yields 

(a) the minimum of the value M(f) = sup If(z)l, 
zEG 

(b) the minimum ofthe value P(f) = IIG II'(z)12 dxdy (i.e. the minimum ofthe 
area of the image of G), 

(c) the minimum of the value D(f) = Ir If'(z)1 ds (i.e. the minimum of the 
length of the image of the curve r; we suppose that r is of finite length). 

REMARK 8. Also in the case of multiply connected regions, it is possible to seek 
conformal mappings by means of variation al problems. 

21.4. Boundary Properties of Conformal Mappings 

Theorem 1. Let f(z) be a conformal mapping of a Jordan region G on a Jordan 
region B (Remark 14.1.3). Then the function f(z) is continuously extensible on the 
boundary of the region G, i.e. a function g(z) exists which is equal to the function 
f (z) in G and is continuous on the closed region G (i. e. including the boundary). 
Moreover, 9 is one-to-one. 

REMARK 1. The theorem holds even for n-tuply connected regions bounded by 
Jordan curves. 

REMARK 2. The study of the correspondence between boundaries of general 
simply connected regions led C. Caratheodory to the so-called theory of prime 
ends. (See, e.g. [313J.) 

In the theory of conformal mappings an important question arises, whether 
a "smali" change of the mapped region implies a "small" change of the region 
into which it is mapped. 

Theorem 2. Let Gi (i = 1, 2, ... ) be a sequence of regions containing the point 
z = 0 and lying in a certain circle K. Let Gi C Gi+! for every i (i.e. the Gi 
form an "increasing" sequence of regions, each of them being contained in all the 
following ones). Let us write G = lim Gn (i.e. Gis the union of all these regions). 

n-+oo 

Let {fn(z)} be a sequence of functions mapping conformally the regions Gn on the 
unit circle Iwl < 1 and normed by the conditions f(O) = 0, f'(O) > 0 (compare 
Theorem 21.2.1); let {CPn(w)} be functions inverse to the functions fn(z) (i.e. map­
ping Iwl < 1 on Gn). Let f(z) map the region G conformally (with the conditions 
mentioned above) on Iw I < 1 and let cp( z) be its inverse function. Then the sequence 
fn(z) converges to f(z) alm ost uniformlyon G (Remark 20.4.1) and the sequence 
CPn(w) converges to cp(w) almost uniformlyon Iwl < 1. 
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Hence, if the Gn converge to G, then the !n(z) converge to !(z). Theorem 2 is 
a special case of a much more general theorem of C. CaratModory (see [313]). 

NUMERICAL METHODS IN CONFORMAL MAPPINGS 

21.5. Variational Methods 

REMARK 1. Let G be a bounded simply connected region containing the origin. 
Let H 2 (G) denote the space of all functions !(z) holümorphic on G and such that 

P(f) = Jia!(Z)!(Z)dXdy < +00. (1) 

We define the scalar product of the functions !(z), g(z) in H 2 (G) in the following 
way: 

(f, g) = Jia!(Z)9(Z)dXdY . 

By Theorem 21.3.5, the derivative of the function 'P(z) which maps G conformally 
on a circle and fulfills the conditions 'P(O) = 0, 'P'(O) = 1 is the solution of the 
variational problem 

For the solution of this variational problem, we shall use the Ritz method. 

Let us consider an arbitrary system of linearly independent functions belonging 
to H2 (G): uo(z), Ul(Z), ... , Ui(Z), ... , with uo(O) # 0 and let us seek an approxi-
mate solution in the form 

n 

'P~(z) = L CiUi(Z), (3) 
i=O 

with the condition 

'P~(O) = 1, (4) 

so that the integral P( 'P~) be minimal. Für this it is necessary and sufficient that 
the relation 

J ia 'P~(zh(z) dx dy = 0 (5) 
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be satisfied for every function of the form (3) satisfying the condition 17(0) = O. 
(In fact, if 'Ij;(z) = cp~(z) + 17(Z) is another function satisfying condition (4), i.e. 
17(0) = 0, we have 

P('Ij;) -P(cp~) = fl CP~17dxdy+ fl CP~17dxdy+ fl1717 dx dy, 

whence it easily follows that P( 'Ij;) - P( <p~) ~ 0 for all "admissible" functions 'Ij; 
if and only if the condition (5) is satisfied.) If we choose, for 17(Z), the functions 
Vi(Z) = Ui(Z) - [Ui(O)juO(O)]uo(z), i = 1, 2, ... , n (cf. Example 1 below), we get 
from (5) a system of equations to determine the coefficients Ci: 

n 

L<XijCi = 0, 
i=O 

where <Xij = JJaui'Üjdxdy (j = 1,2, ... , n). 

Simultaneously with condition (4), 

n 

L Ui(O)Ci = 1, 
i=O 

we obtain a system of n + 1 equations which has a unique solution. 

(6) 

(7) 

As usual, it is advantageous to use an orthonormal system {un (z)}. In this case 
the radius R of the circle on which the region G is mapped is 

where S is the area of the region G. 

In numerical calculations, the evaluation of the integrals <Xij and the solution of 
the above-mentioned system of equations are problems of importance. The calcula­
tions may be very laborious even in the case of very simple regions. Calculation of 
the <Xij can be simplified by choosing the Ui(Z) so that Ui(O) = 0 if i # 0, uo(O) = 1. 
(This can evidently interfere with the orthonormality of the system considered.) 
Then (7) implies Co = 1 so that the number of unknown quantities is decreased by 
one; furt her Vk(Z) = Uk(Z), and hence 

Example 1. Let us apply the method of Remark 1 in order to find the conformal 
mapping of the square G( -1 ~ x ~ 1, -1 ~ y ~ 1) on a circle. Let us choose 
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U n = zn, n = 0,1,2, .... Then 

CXij= fizizjdXdY, i=O,l, ... ,n, j=1,2, ... ,n. 

Let us choose n = 4. We calculate easily that 

8 232 264 16 8 . 2131 
CXI ,I=3"' CX2,2= 45' CX3,3= 35' cxo,4=-15' CX4,4=25.7.9· 

The remaining coefficients vanish. Hence, the system of equations (6), (7) for the 
unknown quantities Ci has the form 

CXO,jCO +CXj,jCj = 0, j = 1, ... ,4, Co = 1, 

and therefore Co = 1, Cl = C2 = C3 = 0, C4 = -CXO,4/CX4,4 = 210/2131 = 0 . 09855. 
Thus the approximate solution is ep~(z) = 1 + C4Z\ <p4(Z) = Z + 0·019 71z5 • 

Fig. 21.16. 

Theorem 1. If the system Ui(Z), i = 0, 1,2, ... , is complete (cf. § 16.2 and 
Remark 22.4.9) in H2 (G) (see Theorem 2 below), then 

lim Jr r ep~(z)ep~(z) dxdy = Jr r ep'(z)ep'(z) dxdy, 
n-+oo Ja Ja 

ep~ (z) -+ ep' (z) and epn (z) -t ep( z) almost uniformlyon G. H ere we have 

(according to our assumptions, the origin lies in G and ep(O) = 0). 
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Definition 1. By a Caratheodory region, or briefly by aC-region, we mean a sim­
ply connected bounded region whose boundary is at the same time the boundary 
of that region lying in the complement of Gwhich contains the point 00. 

REMARK 2. A Jordan region is, therefore, aC-region. The region in Fig. 21.16 
(the "interior" of a spiral winding round a circle) is aC-region, but the regions in 
Figs. 21.17 and 21.18 are not C-regions. 

Theorem 2. In aC-region, there exists a complete orthonormal system 01 poly­
nomials. 

REMARK 3. In the regions of Figs. 21.17 and 21.18, neither the polynomials, nor 
even an arbitrary system of entire functions form a system complete in H2(G). 

Fig. 21.17. Fig. 21.18. 

REMARK 4. As we have seen, in aC-region we can seek the function which maps 
G on a circle by means of the Ritz method; as a complete system we can use, for 
instance, an orthonormal system of polynomials. 

REMARK 5. We can use analogous methods also in case (c) of Theorem 21.3.5. 

21.6. The Method of Integral Equations 

REMARK 1. In the case of a simply connected region, we can reduce our problem 
with the aid of Theorem 21.3.4 to a Dirichlet problem which can be solved by the 
method of integral equations (§ 18.4; see also § 24.6). 

Example 1. We shall show the procedure for the construction of a system of 
integral equations for the real part of the function w = 1 (z) which maps the exterior 
of a system of oriented curves r b n, ... , rn with continuous curvature on the plane 
w = u + iv with slits parallel to the real axis, 

v = Vk (k = 1, 2, ... , n) 

(Fig. 21.19) so that 1(00) = 00. 
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v 

x o u 

Fig. 21.19. 

Let us draw a circle C with cent re at the origin, sufficiently large so that all 
the curves rk lie in the interior of C, and let us apply the Cauchy formula (Re­
mark 20.2.10). We have 

J(z) = ~ [ f J(()d( - t f J(()d(] 
2'11"1 Je (- z J rL (- z 

k=1 '. 

(the point z E G lying in the interior of C). Since the expansion of J(z) in the 
neighbourhood of infinity is 

we have 

Cl 
J(z) = cz + Co + - + ... , 

z 

Hence, the function J (z) will be of the form 

J(z) = cz+co - t ~ f ~k(()d( 
2'11"1 Jn (- z ' 

k=1 • 

(1) 

where ~k(() = ~k(() + i7]k(() = J(() for ( lying on n. Since 7]k(() = Vk on rk and 
the point z lies in the exterior of rk, we have 

Therefore, if we separate the real parts in (1), we obtain 

R J() R ( ) ~ 1 1 ek(a) cos(v, r) d e z = ecz+eo - L...J- a, 
k=12'11" rk r 
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where z - ( = r, (v, r) is the angle between the outward normal v and the radius­
vector r at the point (, r = Irl and a is the parameter of the length of arc. 

If we let the point z tend to a point of the curve r k from the exterior of rk, we 
have 

(cf. equation (18.4.34); in the first integral the point z does not lie on rk , in the 
second integral it does). Consequently, we get 

(: () 2R ( ) ~ 11 ~j(a) cos(v, r) d 
.. k a = e cz + Co rk - L..J - a . 

j=111" r; r 
(2) 

Under the assumption of continuity of the curvature of the curve rk, the kernel 
cos(v, r)lr is continuous on rk. Hence, the Fredholm Alternative (Theorem 19.1.4) 
holds for the system (2). It can be proved that the homogeneous system (2) (i.e. 
that obtained by setting c = 0, Co = 0 in (2» has a unique solution ~k = 0, 
k = 1, 2, ... , n. This implies, by the Fredholm Alternative, that the system (2) is 
solvable for an arbitrary choice of c :j:. 0, co. If we solve the system (2) byany of 
the approximate methods (cf. Chaps. 29 or 24), we get ~k (a) and then calculate 
f(z) by (1), where it is evidently sufficient to write ~k(() instead of JLk(()' 

21.7. Mapping of "Adjacent" Regions 

REMARK 1 (The Method 01 a Small Parameter). Let us have s system of Jordan 
curves r>. depending on a real parameter.>. and containing the origin in their inte­
rior. Let the curve r>. be given in the parametric form z = z(t, .>.). Let the function 
w = f(z, .>.) satisfying 1(0, .>.) = 0, I~(O, .>.) = 1 map the interior G>. of the curve 
r>. on the circle Iwl < R>.. If z(t, .>.) is an analytic function of the parameter.>. in 
the neighbourhood of the point .>. = 0, we can expect, at least in some cases, the 
function I(z, .>.) also to be analytic in the neighbourhood of the point.>. = 0 and 
hence expressible in a Taylor series 

I(z, .>.) = lo(z) + '>'h(z) + ... +.>.n fn(z) + ... (1) 

If we know how to find the functions In (z), then we can also find the function 
I(z, .>.). Let {un(z)} be a complete system of functions defined on a region B 
containing all the G>. for sufficiently small .>., un(O) = 0 (n = 1, 2, ... ), u~ (0) = 1, 

00 

u~(O) = 0 for n > 1. Then I(z,.>.) = E O!n('>')un(z). On the boundary, we 
n=1 

00 

have I/(z, '>')1 2 = Rl. Hence if we expand the function I E O!n(.>.)un(z(t, '>'»12 into 
n=1 
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00 

a Fourier series Co + ~ (Cncosnt + C~sinnt) on the boundary, we obtain, by 
n=l 

comparing coefficients, Cn = 0, C~ = 0, Co = Rl. This is an infinite system of 
quadratic equations for the coefficients an (>') which can be solved by successive ap­
proximations, taking, as a rule, only a few first coefficients an (>.). The convergence 
of the approximation process has been proved only under very special assumptions 
(see [252]). 

REMARK 2. Let r be a curve given in polar coordinates by the equation r = 

=r(cp) = 1- c5(cp) and let 1c5(cp) I < c, 1c5'(cp)I < c, 1c5"(cp) I < c. Then the function 

( 1 12
11" 1 + ze-it ) 

w = j*(z) = z 1 + -2 ·t c5(t)dt 
'Ir 0 1 - ze-1 

differs from the function w = j(z), j(O) = 0 (which maps the interior of the curve 
r on Iwl < 1) by quantities of at least the second order in c. 

REMARK 3. A similar expression for the principal part of the function j(z) 
holds also for a region adjacent to a half-plane or a region adjacent to another 
region (see [296]). 

21.8. Mapping of the Upper HaH-plane on a Polygon 

Let K be a polygon with n sides in the w-plane. We wish to find the mapping of 
the upper half-plane on K, i.e. to find the constants a1, ... , an, ab ... , an, C, Cl 
in formula (21.3.3). 

We solve the problem in the following way: 

1. We take O!i = ßi, where 'lrßi are the magnitudes of the angles of the polygon K. 

2. We determine the ak from the relations 

where li are the lengths of the sides of K, and 

we choose three of the points ai arbitrarily, e.g. al = PI, a2 = P2, an = Pn· 

3. The function 

j(z) = 1" (z - al)O<l-1 ••. (z - an)O<n-1 dz 
"0 
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maps the upper half-plane on a polygon K*, similar to K. The eonstants C and Cl 
are then determined by a translation, a rotation and a homothetic transformation 
so that K* is transformed into K. 

The eonstants a3,"" an-l ean be determined by the Newton-Fourier method 
which we proeeed to deseribe. 

The equations for a3,"" an-l have the form 

(1) 

Let us take, for initial values, numbers a~O), . .. , a~2l whieh differ little from the 
numbers a3,'" , an-I, then expand the expressions in (1) into a Taylor series in 
dl) (0) d l ) (0) t ki th' fi t t Th" U3 = a3 - a3 , ... , Un_1 = an-1 - an-1 a ng eu rs erms. lS glves 

.!l (0) .!l (0 [ (0) (0) 1 i O) 8(1) ~ . . . 8(1) ~ _ lk 1(0) 8(1) öll • • • 8(1) ~ 
k + 3 (0) + + n-1 (0) - l 1 + 3 (0) + + n-l (0) 

öa3 öan_1 1 öa3 öan_ 1 

(k = 2, 3, ... , n - 2), where 

This is a system of linear equations in 8~1), ... , 8~~1 whieh we solve and then repeat 
(1) (0) (1) (1) (0) (1) the same proeess for a3 = a3 +83 , ... , an-1 = an_ 1 +8n _ 1, ete. It ean be proved 

that the system of equations for 8~k), ... , 8~kJ.1 are always solvable and that this 
proeess converges for a certain dass of initial values. The reader will find a detailed 
treatment of this method in [252]. 

21.9. A Small Dictionary of Conformal Mappings 

REMARK 1. In this paragraph, we present several examples of regions, whose 
eonformal mapping on a canonical region (i.e. on the unit disk or its exterior, the 
upper half-plane or the strip in the case of simply eonnected region, on some of 
regions of type BI - Bs from Theorem 21.2.2 in the ease of multiply eonneeted 
regions, ete.) can be explicitly written. The explicit formula is of use, indeed, 
only if one succeeds in describing the functional dependence of the parameters of 
the conformal mapping on the constants characterizing the geometrie shape of the 
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region (cf. e.g. formula (21.3.3) and § 21.8); however, this dependence is essentially 
known only in very special cases (see [267]), and in general it is necessary to use 
numerical methods, e.g. some of those described in §§ 21.5-21.8. 

REMARK 2. (a) The function w = sn z = sn( z, k) occurring in the texts to 
Figs. 21.28, 21.29 is one of the so-called Jacobi elliptic functions. It is defined, for 
example, as the inverse function of the elliptic integral (21.3.2), i.e. as the unique 
solution of the equation 

[W dt 

z = Jo V[(l - t2 )(1 - k2t2 )] 

for given z and k (cf. also § 13.12). The functions (h(z, r), (J2(Z, r) from the same 
texts are the so-called Jacobi theta-functions. For basic information about elliptic 
and theta-functions see [227]. 

(b) Observe that one function can realize conformal mapping of different regions; 
cf. the texts to Figs. 21.22 and 21.30. 

(c) In the book [267], the reader can find a detailed information on the depen­
dence of the conformal mapping on the geometry of the region. 

x u 

Fig. 21.20. The mapping of an infinite strip with a cut by the function 

w = (H/,rr)ln(e Trz / H +eTra / H ), H> 0, areal, 

on an infinite strip. 
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v 

u 

Fig. 21.21. The mapping of the sector of a circle by the function 

on the upper half-plane. 

v 

.. '-20 -0 0 o 20 ... X u 

Fig. 21.22. The mapping ofthe upper half-plane, with segments x = ka (k = 0, ±1, ±2, ... ), 
o ~ y ~ h excluded, by the function 

(
COSh 'J\"Z ) 

w = (a/,rr) arccos ,..ah , 
cosh a-

h ~ 0, a> 0, 

on the upper half-plane. 

v 

x u 

Fig. 21.23, The mapping of the exterior of the parabola y2 = 2p (x + ;;) by the function 

w = Jz - .J(;;) i on the upper half-plane. 
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v 

x u 

Fig. 21.24. The mapping of the interior of the parabola y2 = 2p (x +~) by the function 

w = i y'(2) cosh ( 1( J ( ~ ) ) 
on the upper half-plane. 

y v 

• x o u 

Fig. 21.25. The mapping of the exterior of the hyperbola 

by the function 

on the upper half-plane. 
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y / 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

v 

x u 

Fig. 21.26. The mapping of the interior of the right-hand branch of the hyperbola 

x2 y2 
a2 - b2 = 1 

by the function 

w = i y'(2) cosh (2~ arcosh~), c = J(a2 + b2 ) , iJ = arcsin ~ , 

on the upper-half plane. 

y v 

r 
Fig. 21.27. The mapping of the exterior of the ellipse 

by the function 

z + J(z2 - c2) > / 2 2 
w = a + b ' a = b, c = V (a - b ) , 

on the exterior of the unit circle with centre at the origin. 

21.9 
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v 

-0 -1 1 u 

2 2 

Fig. 21.28. The mapping of the interior of the ellipse :2 + ~2 = 1 by the function 

w = y'(k) sn (2: arcsin y'(z2Z
_ b2)' k), a > b > 0, 

on the interior of the unit circle with centre at the origin. Here, 

k = (92(0, 7))2 = (2·/ )1 a+b 93(0,7) ,7 1 11" n a _ b . 

y v 

x u 

Fig. 21.29. The mapping of the plane, with segments excluded as shown in the figure, by 
the function 

_ (7</K')sn(z,k) .th k _ (92(0, 7))2 _ iK' 
w-e Wl - 93(0,7) ,7- K' 

on the annulus e-7J.l(/K' < Iwl < e7<K/K' . 
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y 

v 

Fig. 21.30. The mapping of the plane, with segments -a ;:::; x ;:::; a, y = kH 
(k = 0, ±1, ±2, ... ) excluded, by the function 

(
COSh 1fZ ) 

w = arccos h ;;: 
cos 7T 

21.9 

on the plane with segments br-b;:::; u;:::; br+b (k = 0, ±1, ±2, ... ), v = 0 
excluded. Here 

1 
b = arccos h 1fa • 

cos 7T 
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22.1. Open and Closed Sets of Points in E n • Regions 

In many branches of mathematics, we come across the concepts of region, bound­
ary of a set under consideration, etc. Let us clarify these concepts first for aplane. 

Denote by d the distance between two points A and B in the plane. If, in this 
plane, a cartesian system of coordinates x, y is given (§ 5.1), then 

(1) 

where Xl, Yl and X2, Y2 are coordinates of the points A and B, respectively. The 
set of all points of the plane with distance defined by (1) is called the Euclidean 
space E 2 • (An elementary definition of this space has been presented here.) 

All points in the plane, the distance of which from a given point P is less than 
a positive number 8, constitute the so-called 8-neighbourhood 0/ the point P. (The 
point P belongs to this 8-neighbourhood.) 

Definition 1. Let a set M of points in the plane be given. A point P E M is 
called an interior point of the set M if a (sufliciently small) 8-neighbourhood of P 
can be found which belongs entirely to M (i.e. all its points belong to M). 

Definition 2. A point P E M is called an isolated point of a set M if a (sufliciently 
s!llall) 8-neighbourhood of P can be found such that from among all the points of 
this 8-neighbourhood only the point P belongs to the set M. 

Definition 3. P is called a point 0/ accumulation (accumulation point, cluster 
point, limit point) of a set M if every 8-neighbourhood of P contains infinitely 
many points of M. 
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Definition 4. A point Pis called a boundary point of a set M if every 8-neighbor­
hood of P contains at least one point belonging to M and at least one point which 
does not belong to M. All boundary points of a set M constitute the so-called 
boundary of the set M. 

Example 1. Let MI be the set of all points of a circle (= circular disc) K I; let 
the circumference hl of this circle does not belong to MI (Fig. 22.1). Each point of 

y 
0Q 

• h2 

o x 0 x 

Fig. 22.1. Fig.22.2. 

the set MI is an interior point of MI' Points of the circumference h l are boundary 
points of the set MI' 

Example 2. Let the set M 2 consist of the point Q and of all points of a circle K 2 

including its circumference h2 (Fig. 22.2). The point Q is an isolated point and, at 
the same time, a boundary point of the set M2 . Points of h2 are boundary points 
and points lying inside of h2 are interior points of the set M 2 • 

REMARK 1. From Examples 1 and 2 it is clear that a boundary point of a set 
M may, but need not, belong to M. The same is true for a point of accumulation 
of M. 

REMARK 2. A boundary point need not be a point of accumulation, and vice 
versa. Each interior point is a point of accumulation but not a boundary point. An 
isolated point is a boundary point but not a point of accumulation. 

Definition 5. A set M is called open if each point of the set M is an interior point 
of this set (Example 1). 

Definition 6. An open set M is called connected if every two points of M can be 
joined by a polygonal line (i.e. by a curve consisting of a finite number of straight 
line segments) which lies entirely in M (i.e., each point of it belongs to M). An 
open connected set is called a region. 

Example 3. Examples of a region are: the set MI of Example 1 (the so-called open 
circle (= open disc)); an annulus with both boundary circumferences excluded; the 
plane xy. 
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REMARK 3. If every two points of a given set M can he joined by a segment lying 

entirely in M, then the set M is said to be convex. The set MI from Example 1 

furnishes an example of such a set. 

Definition 1. A set N obtained by completing a set M by all points of accumu­

lation of M is called the closure of M. Notation: N = M. (The symbol [M] is also 

used.) 

Definition 8. If M = M, then the set M is called closed. 

REMARK 4. If M is a region, then it is customary to call its closure M a closed 
region. An example of a closed region is a circle with its boundary included (the 

so-called closed circle or closed disc). 

Definition 9. A set M is called bounded if a circle with a finite radius R can be 

found that M lies inside of that circle. 

Definition 10. A bounded region is called k-tuply connected if its boundary con­

sists of k closed curves. 

Instead of an 1-tuply, or 2-tuply connected region we speak of a simply, or doubly 

connected region, respectively. 

REMARK 5. We have presented an intuitive but not quite exact definition here. 

An exact definition can be found e.g. in [408]. (See also Remark 9.) 

Example 4. The set MI from Example 1 (the open circle) is a simply connected 

region. An annulus is a doubly connected region. (Here we speak of a doubly 
connected region even if the inner circumference degenerates into a single point -
which, of course, does not belong to the annulus.) 

REMARK 6. In three-dimensional (or n-dimensional) space with a Cartesian co­

ordinate system (in the Euclidean space E3 (or E n)), the distance d between two 

points A(al, a2, a3), B(bl , b2, b3) (or A(al, a2, ... , an), B(bl , b2, ... , bn )) is de­
fined by the formula 

(or 

(2) 

(In EI, the formula (2) reduces to d = J(bl - al)2 = Ibl - all.) A b-neighbourhood 
of a point P in E n is defined in the same manner as in the two-dimensional case 
(in E 2). It is often called an n-dimensional sphere with centre P and radius b 
and denoted by S(P, b). In E3 a b-neighbourhood of a point P is a sphere in 
the ordinary sense, with cent re at P and radius b (and with its surface excluded), 
while in EI it is the open interval (xo - b, Xo + 8) with cent re at the point P(xo). 
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All definitions given above for the case of the space E2 (concerning the concepts 
of interior, isolated, accumulation and boundary points, open and connected sets, 
regions, etc.) remain the same for E n (see, however, Remark 9). Here, a polygonal 

line in En consists of a finite number of segments, while by a segment, joining the 
points A(at, a2, ... , an}, B(bt , b2, ... , bn }, the set of points with coordinates 

ak + (bk - ak}t, 0 ~ t ~ 1, k = 1, 2, ... , n, (3) 

is understood. An example of a region in E3 is an (open) sphere (= the interior of a 
spherical surface), a cube without its boundary faces, etc. In EI, to the concept of 
a region there corresponds an open interval, to the concept of a closed one a closed 
interval. 

A set M in En is called bounded, if a sphere S with a finite radius R exists such 
that M lies inside of that sphere. If M is a region, we speak about a bounded region 

in En . 

REMARK 7. An analogue of the real Euclidean space En is the complex n-dimen­

sional space Cn, whose elements are points with complex coordinates. The distance 
between two points A(at + ict , a2 + iC2, ... , an + icn }, B(bt + idt, b2 + id2 , ••• , 

bn + idn } (ak' bk , Ck, dk being real numbers) is defined by the formula 
n n 

d = J[:L(bk - ak)2 + :L(dk - ck )2] . 
k=t k=l 

REMARK 8. The concept of a complement of a set M c N in the set N is often 
used: the complement is the set N \ M, i.e., the set N with the points belonging to 
M removed. For example, the complement of a closed circle in E 2 is an (unbounded) 
region obtained by removing this closed circle from the xy plane. 

REMARK 9. Using the concept of a complement, a simply connected region in 
E 2 ( in the xy plane) may be defined as folIows: A bounded region M C E2 is 
called simply connected, if its complement is a connected set. 

For example, the interior of an ellipse is a simply connected region, since its 
complement is a connected set. 

In the space E3 , however, the above-stated definition is not adequate; it fails 
to express characteristic properties of simple connectivity (ensuring, e.g., validity 
of some important theorems in integral calculus; for example, a torus would be a 
simply connected region, in the sense of the above definition). The reader familiar 
with the fundament als of topology knows that a bounded region M in E3 is simply 
connected if it is the so-called homeomorphic image of a sphere. (Very roughly 
speaking: if M can be obtained from a sphere by a "continuous deformation" .) For 
an other definition see [350]. 
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Definition 11. A set (of points) is called eountable if there is a one-to-one cor­
respondence between all its elements (points) and the positive integers 1, 2, 3, ... 
(i.e. if its elements (points) can be ordered in a sequence.) It is called at most 
eountable, if it is countable or has only a finite number of elements. 

It can be shown, for instance, that the set of points in E1 with rational coordinates 
(the set of rational numbers) is countable. The same can be shown to hold in En . 

22.2. Metric Spaces 

In the last paragraph, we introduced the Euclidean space E n , the elements of 
which were points and in which the distance was defined by formula (22.1.2). In a 
similar way, spaces of a more general nature can be introduced. In Chap. 16 (§ 16.1) 
the so-called space L2 (a, b) has been defined. In the real case its elements are real 
functions which are square integrable (in the Lebesgue sense) in the interval [a, b]. 
The distance dU, g) between two elements 1 and gof L2 (a, b) is defined by the 
formula 

dU, g) = J {lb 
[g(x) - l(x)]2 dX} . (1) 

The space En and L 2 (a, b) are examples of so-called metric spaces. 

Definition 1. A set M is called ametrie spaee X if, for each pair of elements u, 
v belonging to M, the distanee d( u, v) is defined, having the following properties: 

d(u, v) ~ 0, while d(u, v) = 0 if and only if u = v, 

d(u, v) = d(v, u), 

d(u, z) ~ d(u, v) + d(v, z) 

for every u, v, z E M. 

(2) 

(3) 

(4) 

We also say that ametrie is given in (or on) the set M. Instead of elements, we 
often speak of points of the set M, or of the space X. 

Example 1. For E n and L2 (a, b) it can be easily verified that the distance, defined 
by (22.1.2), or (1), respectively, satisfies the above three requirements (the so-called 
axioms 01 the metrie). (For the space L2 see, of course, Remark 1 below.) 

REMARK 1. Let us remind (see Chap. 16) that two functions I(x), g(x) are called 
equivalent in the space L2 (a, b), if their distance is equal to zero, i.e. if 

J {lb 
[g(x) - I(X)]2 dX} = 0 
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(or, what is the same, if 

l b [g(x) - f(x)]2 dx = 0), (5) 

or, in other words, if these functions are different, in the interval [a, b), at most on 

a set of (Lebesgue) measure zero (for example, at a finite number of points of that 
interval). We write 

f = 9 in L 2 (a, b). (6) 

All mutually equivalent functions are taken for equal in the space L2 (a, b), they 
form a single element of this space; an arbitrary of these functions can be taken as 

a representant of this element. A similar remark holds for spaces Lp(a, b), L2 (fl) 
and Lp(fl) defined below. 

REMARK 2 (complex space L2 (a, b)). In applications, most often real functions 

are encountered. Then the just mentioned real space L2 (a, b) with the metric (1) 
is introduced. Its generalization is the complex space L2 (a, b), the elements of 

which are functions of the form f(x) = h(x) + ih(x), where hand h are real 
functions square integrable (in the Lebesgue sense) in the interval [a, bJ. (Then also 

the function f is square integrable in [a, b), as follows from the relation If(x)1 2 = 
= Jl (x) + Ji (x).) The distance dU, g) is then defined by the formula 

(7) 

(See also § 16.1.) 

REMARK 3 (generalizations). A more general metric space than L2 (a, b) is the 

metric space Lp(a, b) consisting of functions integmble in [a, bJ (in the Lebesgue 
sense) with the p-th power (1 ~ p < 00); the distance is defined by the formula 

[
rb ] l/p 

dU, g) = Ja Ig(x) - f(x)I P dx . 

For p = 2 we get the space L2 (a, b). 

Let fl be a bounded region in En (Remark 22.1.6). Analogously to the space 
L2 (a, b), or Lp(a, b), the space L2 (fl), or Lp(fl), can be defined, respectively, as the 

space of functions square integrable, or integrable with the p-th power (1 ~ p < 00) 
in fl (in the Lebesgue sense), with the distance defined by 

d(u, v) = J {In [v(x) - u(x)]2 dX} (8) 
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(by 

d(u, v) = J[lIV(X) - U(X)12 dX] 

in the complex case), or by 

d(u, v) = [lIV(X) - u(xW dX] l/p 

(in the real as weH as complex case), respectively. Here, the brief notation 

is used instead of 

1 u(x)dx 

J J···1 U(XI, ... , xn ) dXI· .. dxn · 

'---v----" 
n-times 

For n = 1, the space L2(a, b), or Lp(a, b) is obtained. 

(9) 

(10) 

The space L2 (D) and Lp( D) can be defined for more general sets than for bounded 
regions. 

REMARK 4. Further important metric spaces are the spaces C([a, bj) and C(D): 

The space C([a, bj) (often denoted by C[a, b], sometimes also by C(a, b)) is a 
space whose elements are functions continuous in [a, b], with the distance defined 
by 

d(u, v) = max Iv(x) - u(x)l. 
a$;",$;b 

(11) 

Similarly, the space C(D) is defined as the space of functions continuous in a 
bounded closed region D in En , with the distance defined by 

d(u, v) = m~ Iv(x) - u(x)l, 
",Eil 

(12) 

where x = (Xl, ... , x n ). 

In what foHows, the brief notation L2, Lp, C will often be used instead of L2(a, b), 
Lp(a, b), C([a, bj), L2(D), Lp(D), C(D), if no misunderstanding may arise. 

Definition 2. An element u of a metric space X is caHed the limit of a sequence 
UI, U2, U3, ... of elements from X (or the sequence UI, U2, U3, ... is said to be 
convergent in the space X to-the element u) if 

lim d( u, un ) = O. 
n-+oo 

(13) 

This fact is denoted by U n ---+ u (in X). 
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REMARK 5. Instead of convergence in L 2 (a, b), the term eonvergenee in the mean 
(see § 16.1) is often used. The relation (13) reads in this case (for the real case) 

l~moo J {lb 
[u(x) - u n (x)]2 dX} = 0, (14) 

or, wh at is the same, 

lim l b 
[u(x) - u n (x)]2 dx = O. 

n-+oo a 
(15) 

A similar remark holds for the space L 2 (il). 

Theorem 1. A sequenee Ul, U2, U3, ... 0/ elements 0/ a metne spaee X has at 
most one limit u. (For equality offunctions in the space L 2 (or L p ) see Remark 1.) 
1/ it has a limit, i. e. i/ it is eonvergent, then any subsequenee 0/ it is also eonvergent, 

with the same limit. 

Definition 3. The set of all elements (points) of ametrie space X with distances 
from a given element (point) U E X less than 8 (8 > 0) is called a 8 -neighbourhood 
0/ u. (Instead of 8-neighbourhood, the term a sphere with eentre at the point U and 
radius 8 is often usedj in symbols S(u, 8).) 

Definition 4. Let M be a set of elements of X. The element u E X is called a 
point 0/ aeeumulation of the set M if any 8-neighbourhood of the element u contains 
infinitely many elements of the set M. (Obviously, a point of accumulation of a set 
M need not belong to M.) 

Definition 5. The set M obtained by adjoining, to M, all its points of accumu­
lation is called the closure of the set M (in the space X). 

Definition 6. A set M is called closed (in X) if M = M. A set M is called open, 
if the complement X \ M (Remark 22.1.8) is a closed set. 

Let us note that the open set can also be defined as a set consisting of interior 
points only. Here, a point of the given set is called its intenor point, if such a 
(sufficiently smalI) 8-neighbourhood of that point exists which belongs entirely to 
that set. 

Definition 1. The set M (equipped with the metric of the space X) is called 
dense in X, if M = X. (That is, if to every element u E X and to every c > 0 
an element v E M can be found such that d(u, v) < c, or, in other words, if every 
point of the space X is either an element of the set M, or a point of accumulation 
of this set.) 

Example 2. It can be shown that the set M of all polynomials is dense in the space 
C([a, b)), i.e. that for every function u E C([a, b)) and every c > 0 a polynomial P 
can be found such that 

max lu(x) - p(x)1 < c 
a~x~b 
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(the Weierstrass theorem). 

The set of all polynomials is dense as weIl in the space L2 (a, b), or, more generally, 
in Lp(a, b) with 1 ~ P < 00. 

Similar assertions are true for the spaces C(il) and L2(il) (or Lp(il)). Here, 
polynomials in n variables are in question, of course. 

22.3. Complete, Separable, Compact Spaces 

Definition 1. A sequence {un } of elements of a metric space X is called a Cauchy 
sequence (or a fundamental sequence) if for every c > 0 a number no (depending 
on the choice of c) can be found such that 

(1) 

holds whenever both numbers m and n exceed no. 

Theorem 1. Every convergent sequence in X is a Cauchy sequence. 

Definition 2. A metric space X is called complete if any Cauchy sequence {un } 

of elements from X has a limit belonging to the space X. 

Theorem 2. If M is a closed set in a complete space X, then M (equipped with 
the metric of this space) itself is a complete metric space. 

Theorem 3. The spaces E n , C, Lp (in particular, L2 ) are complete. 

Not every space is complete: 

Example 1. It is weIl known that the number ";2 is not a rational number. At 
the same time, a sequence of rational numbers 

(2) 

exists in E l such that 
(3) 

The sequence (2) is a Cauchy sequence in EI (by Theorem 1). Let X be the metric 
space elements of which are rational numbers, with the same metric d(XI, X2) = 
= IX2 - xII· Thus the sequence (2) is as weIl a Cauchy sequence in X. This 
sequence has no limit in the space X (";2 does not belong to X), so that X is not 
complete. 

REMARK 1 (Completion of ametrie space). If a metric space X is not complete, 
then it can be completed by "adding the so-called ideal elements". In details: 
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Two metrie spaces X, Y with met ries p, or a, respectively, are called isometrie, 
if a one-to-one mapping F of the space X onto the space Y exists that preserves 
the distance: a(Fu, Fv) = p(u, v) holds for each couple of elements u, v from X. 

From the point of view of metric properties only (convergence, completeness, 
etc.), such two spaces are equivalent. 

Let X be not complete. Then it can be shown that a complete space Z can 
be constructed, containing a subspace Y, dense in Z, whieh is isometrie with the 
space X. 

The idea of construction of the space Z is the following: All Cauchy sequences in 
the space X are divided into two groups A, B of (Cauchy) sequences which have, 
or do not have a limit in the space X, respectively. It can be shown that for any 
two Cauchy sequences {un }, {vn } a finite limit 

lim p( un , vn ) = a (4) 
n-+CXl 

always exists, without regard to which of the groups A, B they belong. All Cauchy 
sequences for which a = 0 are said to belong to the same dass. All these dasses are 
then taken as elements of a new space Z in which ametrie is introduced on base 
of (4), and the so constructed space is shown to be complete. Also the so-called 
stationary sequenees {u, u, u, ... } are considered, belonging obviously to the group 
A. The dass of Cauchy sequences, corresponding to such a stationary sequence, 
corresponds then to the element u E X. All those dasses constitute the space 
Y mentioned above. The space Y is shown to be dense in Z. The "remaining" 
dasses then represent the above mentioned "ideal elements". In this sense the 
completion of an uncomplete metric space is to be understood. In general, it is 
difficult to characterize the nature of the "ideal elements". However, in many 
important cases, in particular in the case of many functional spaces, current in 
applications, the given space X can be completed simply by adding elements of 
a well-known character. For example, the Sobolev space wik)(il) is obtained by 

completing the space S~k)(il) with such functions from the space L 2 (il) which have 
square integrable generalized derivatives up to the order k in il (Remark 22.4.10). 
A similar situation is encountered when constructing the space HA in Remark 
22.6.10. 

Definition 3. A metric space is called separable if it contains an at most countable 
(i.e. finite or countable, Definition 22.1.11) set M which is dense in X . 

. Theorem 4. Spaees E n , C, L p with 1 ~ p < 00 (in partieular, the space L 2 ) are 
separable. 

REMARK 2. In E n , all points with rational coordinates constitute a countable 
set M considered above. So also do all polynomials with rational coefficients in the 
spaces C and Lp (1 ~ P < 00). (When spaces C(il) and Lp(il) are in question, 
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polynomials in n variables are to be considered, of course; in the case of complex 
spaces, coefficients of the polynomials are of the form r + is, where r, s are rational 
numbers.) 

Definition 4. A set M of a metric space X is said to be precompact (or relatively 
compact) in that space, if any sequence of elements from M contains a subsequence 
convergent in X. If, in addition, the limits of all these subsequences belong to M, 
we say that M is compact (in X). 

REMARK 3. In particular, a metric space X is called compact, if any sequence of 
elements of X contains a subsequence converging to an element of X. 

Theorem 5. Every bounded set M in E n is relatively compact. IJ, in addition, 
M is closed, then it is compact (in E n ). 

REMARK 4. Spaces E n , C, Lp (in particular, L2 ) are not compact. To show 
it, for example, for the space EI, it is sufficient to consider the sequence of points 

Xl = 1, X2 = 2, X3 = 3, .... 

The interval M = [3,5] is a compact set in EI (because it is bounded and closed). 

Theorem 6. IJ X is complete, then a necessary and sufficient condition Jor a set 
M c X to be relatively compact in X is that to every € > 0 a finite €-net Ne Jor 
the set M exists, i.e. a finite set Nt: C X such that to each u E M an Ut: E Nt: with 
d( u, ut:) < € can be Jound. 

Theorem 7. A necessary and sufficient condition Jor a set M C C([a, b]) to be 
compact (in C ([a, b])) is that allfunctions u E M be equicontinuous and uniJormly 
bounded (see the ArzeHt-Ascoli theorem, § 15.1). 

A similar theorem holds in the space C(D). 

Theorem 8. A compact metnc space is separable. 

Theorem 9. Let a (real) Junction U(XI' X2, .•. , x n ) be continuous on a set Me 
c E n . Then, iJ M is compact, u assumes its maximum and minimum on M. 

REMARK 5. Theorem 9 is a generalization of well-known theorems relating to 
extrema of functions continuous in a cIosed finite interval or in a closed bounded 
region. Further, we have: 

Theorem 10. Let J(u) be areal continuous Junctional (Remark 22.5.3 and Def­
inition 22.5.2) on M C X. IJ M is compact, then J(u) assumes its maximum and 
minimum on M. 
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22.4. Linear Spaces. Normed Spaces. Banach and Hilbert Spaces. 
Orthogonal Systems. Generalized Derivatives, Sobolev Spaces, 

Embedding Theorems. Distributions 

Definition 1. A set M of elements u, v, z, ... is called a linear set (linear space, 
vector space) if it has the following properties: 

If u, v are any two elements of M and a is a number (real or complex), then the 
sum u + v and the product au are defined, and both u + v and au belong to M; 
moreover, these operations obey the usual rules of linear algebra, i.e. 

u+v = v+u, 

a(u + v) = au + av, 

a(bu) = (ab)u, 

u+(v+z) = (u+v)+z, 

(a+b)u=au+bu, 

1.u = u, 

if u + v = u + z, then v = z. 

REMARK 1. From these rules it follows that for any two elements u, v of M we 
have o. u = o. v. The element o. u is denoted by 0 (or simply by 0), and is called 
the zero element of the linear set in question. It can be shown that the familiar 
rules of algebra are still preserved. For example, ifax = 0, a -=P 0, then x = O. If 
ax = bx with x -=p 0, then a = b, etc. 

Let a linear set M be given and let, on M, a metric be introduced (thus the 
distance d between every two elements of M is defined satisfying (22.2.2)-(22.2.4)). 
If, moreover, 

d(x+z,y+z) =d(x,y) 

holds for every x, y, z E M, then the metric is called invariant. 

Definition 2. A liner set M equipped with an invariant metric d in such a way 
that An -t A in Rand X n -+ x in M => AnXn -t AX in M, is called a linear metric 
space. 

REMARK 2. The above mentioned property of invariance of the metric is "almost 
obvious": It means that the distance between the elements u and v is the same as 
the distance between these elements "displaced paralelly along the element z". It 
can be shown that a metric, derived from the norm (see (iii) in the Definition 4 
below) has both the properties required in Definition 2. Thus every normed space 
is a linear metric space. 

Let us note, moreover, that as concerns the concepts of linear set, linear space 
and linear metric space, there is no uniformity in the literat ure. 

Among linear metric spaces, linear normed spaces and Hilbert spaces are of par­
ticular importance. See Definitions 4 - 7 below. 
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Example 1. Spaces E n , C, Lp (in particular, La) are linear metric spaces. In C 
and L p , the sum of two functions and the product of a function and a constant 
are defined in the usual manner. We know, for example, that if I E Lp , g E Lp 

(1 ~ P < 00), then also 1+ g E L p and cl E L p , where cis an arbitrary number 
which is, of course, real, or complex, according to whether areal, or complex space 
Lp is under consideration. In the space C, the zero element is the function which 
vanishes identically in [a, b] (or in il), while in the space La, or Lp , it means every 
function equivalent to the zero function, i.e. every function vanishing everywhere in 
[a, b] (or in il) except, possibly, for points which constitute a set of measure zero. 

Definition 3. A linear subset L of elements of a linear metric space X, equipped 
with the metric of that space, is called a linear subspace (or briefly subspace ) of the 
linear space X. (In particular, we may have L = X.) If, moreover, the subset L 
is closed (in the metric of the space X), then L is called a closed (linear) subspace 
olX. 

Example 2. As can be shown, constant functions, i.e. functions of the form I (x) = 
= c (c being a constant), constitute a closed subspace L in C([a, b]). 

A similar assertion on constant functions holds in the space C(il). 

Definition 4. A set X is called the linear normed metric space (normed space, in 
brief), if 

(i) elements of X constitute a linear setj 

(ii) to each element u E X there is uniquely assigned a number lIull, called the 
norm of the element u, which satisfies the following so-called axioms 01 the norm: 

/lu/l ~ 0, while /lu/l = 0 if and only if u = 0 in X (i.e. if u is the zero element 
of the set X), 

Ilau/l = lai· /lu/l for every number a, 
/lu + v/l ~ lIu/i + IIvll (triangular inequalitY)j 

(iii) the distance d(u, v) is defined by the formula 

d(u,v)=lIu-vll· 

Let us note that if two normed spaces X, Y with generally different normes 
are considered, the norms are denoted by /lu/lx , or lIu/ly, respectively, to avoid a 
misunderstanding. 

Definition 5. A complete linear normed space is called a Banach space (B-space). 

Example 3. Spaces E n , C, L p (1 ~ p < 00, in particular, La) are Banach spaces 
provided the respective norms are defined by the relationships: 

IIx/i = J(x~ + x~ + ... + x!) , 
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In G([a, b]): lIulI = max lu(x)l, a::;;x::;;b 
In G(il): lIull = m~lu(x)l, 

xEn 

In Lp(a, b): (jb ) I/p 
Ilull = a lu(x)IP dx , 

in Lp(il): Ilull = (!alu(x)I P dX) I/P. 

(We use the brief notation 

!alu(x)IP dx instead of J J ... !alu(xl, X2, ... , xn)IP dXI dX2.·. dXn-) 

-------n~times 

22.4 

REMARK 3. By introducing a metric, the concept of convergence is defined in X 
(see Definition 22.2.2); thus, in our case, the notation 

lim U n = u in the space X (or briefly U n --+ u in X) (un E X, u E X) 
n-+oo 

means that 
lim lIu - unll = O. 

n-+oo 

(We speak also about the convergence in norm.) For example, 

means that 

( rb ) I/p 
!~moo Ja lu - unlP dx = 0, 

or, what is the same, that 

lim jb lu - unlP dx = O. 
n-+oo a 

If aseries 
00 

n=1 

(un E X) is given in the space X, then we construct the sequence of partial sums 

{Sk}' 
k 

Sk = L un , k = 1, 2, ... , 
n=1 
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and say that the given series is convergent in the space X and that its sum is s, if 

We write 

lim Sk = S in X. 
k-+oo 

00 

LUn=S inX. 
n=l 

If we consider, for example, the real space L2(a, b) and write 

00 

L un = S in L2 (a, b), 
n=l 

it means that 

k 

or, writing L U n for Sk, that 
n=l 

l b k 2 

lim (s- LUn) dx=O. 
k-+oo a n=l 

Theorem 1. I/ U n --+ u, then /lun /I --+ Ilull. 
The converse is not true, in general. 

Definition 6. A set P is called a unitary or a pre-Hilbert (prehilbert) metric space 
(brieflya unitary or a pre-Hilbert (prehilbert) space), if 

(i) Pis linear (see Definition 1); 

(ü) to each pair of elements u, v from P there is uniquely assigned a number 
(u, v) (complex, in general), called the scalar (or inner) product of the elements u, 
v, such that 

(u, v) = (v, u) 

(thus (v, u) is the complex conjugate of (u, v)), 

(Ul + U2, v) = (Ul, v) + (U2, v), 

(au, v) = a(u, v) 

(and, consequently, (u, av) = a(u, v)), 

(u, u) ~ 0, while (u, u) = 0 if and only if u = 0; 

(iü) the norm of an element u is defined by the formula 

/lull = J(u, u) ; 
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(iv) the distance is given by 

d(u,v) = IIv-ull. 

Similarly as in the case of normed spaces, also here the notation (u, v) Pt' or 
(u, v)p2 is used if Pl and P2 are two unitary spaces with different scalar products, 
respectively. 

Definition 7. If a unitary space P is complete, it is called a Hilbert space. 

In what follows, the notation H will most often be used for a Hilbert space. 

REMARK 4. It follows from Definitions 5, 6 and 7, that a Hilbert space is also a 
Banach space. 

In applications, very often real Hilbert spaces are encountered. Then the notation 
of complex conjugate, appearing in the first property of the scalar product, is 
superfiuous and we have 

(u, v) = (v, u). 

Example 4. The complex space L2 (a, b), or L 2(n) with the scalar product 

(u, v) = lb 
u(x) v(x) dx, 

or 

(u, v) = l u(x) v(x) dx, 

respectively, is a complex Hilbert space. The real space L2(a, b), or L2(n) (of real 
functions) with the scalar product 

l b . 

(u, v) = a u(x) v(x) dx, 

or 

(u, v) = l u(x) v(x) dx, 

respectively, is areal Hilbert space. 

The spaces C and L p (1 ~ p < 00, p "# 2) are not Hilbert spaces. 

Theorem 2. For the scalar product and the norm the so-called Schwarz inequality 
is true: 

I(u, v)1 ~ lIull·llvll· 

This inequality is often written in a rather more appropriate form 

1 12 2 2 
(u,v) ~lIull ·lIvll· 



22.4 FUNDAMENTALS OF THE THEORY OF SETS AND FUNCTIONAL ANALYSIS 335 

Example 5. In the real space L2 (a, b), or L2(n), the last inequality becomes 

or 

respectively. 

Definition 8. The elements u, v are called orthogonal, if (u, v) = O. Notation 
u.l v. An element u is called normed, or normalized, if it has a unit norm, i.e. if 

lIull = 1. 

Theorem 3. If L is a closed subspace (Definition 3) of a Hilbert space H, then 
each element u E H can be uniquely represented in the form 

u = v+z, (1) 

where v E L, z .1 L (i.e. z is orthogonal to all elements of L). 

The element v is called the orthogonal projection of the element u into the sub­
space L. 

REMARK 5. It can be shown that all elements of H which are orthogonal to a 
given closed subspace L constitute another closed subspace (the so-called orthogonal 
complement of L), let us denote it by M. In the sense of equation (1) we then write 

H=L+M (2) 

(the notation H = L $ M is also often used) and we say that His a direct sum of 
the subspaces L and M. 

REMARK 6. Theorem 3 is a certain generalization of the well-known decomposi­
tion of a vector in the space l/3 of three-dimensional vectors: Construct aplane p 
passing through the origin and a straight line 1 perpendicular to it, passing as weIl 
through the origin. Vectors, lying in the plane p, or in the straight line 1, form a 
two-dimensional, or one-dimensional subspace of the space l/3, respectively. Each 
vector u E V3 can be uniquely written in the form u = up + U" i.e. as the sum of 
two orthogonal vectors, the first of which lies in p, the second in I. 

Theorem 4. Let U n E H (n = 1, 2, ... ) and let Ui .1 Uk for i =I- k. Then the 
senes 
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is eonvergent ( in the sense of the metrie of the Hilbert spaee H, see Remark 3) if 
and only if the series 

is eonvergent. 

Definition 9. We say that the elements 

constitute an orthogonal system in H, if 

If, moreover, all these elements are normed, Le. if 

(Definition 8) holds for all k = 1, 2, ... , the given system is called orthonormal. 

An orthonormal system is thus characterized by the relatiQns 

Definition 10. Let 
(3) 

be an orthonormal system in H, let u be an arbitrary element of H. The numbers 

an = (u, un ), n = 1, 2, ... , (4) 

are called the Fourier eoeffieients of the element u with respeet to the (orthonormaQ 
system (3). The series 

(5) 

is called the Fourier series of the element u with respect to that system. 

Theorem 5. A neeessary and suffieient eondition for aseries 

(6) 

(the U n being elements of the orthonormal system (3)) to be eonvergent (in H) is 
that the series 

(7) 



22.4 FUNDAMENTALS OF THE THEORY OF SETS AND FUNCTIONAL ANALYSIS 337 

converges (cf. Theorem 4). If the series (7) converges, then the series (6) converges 
to a certain element v E H, and bn are Fourier coefficients of v with respect to the 
system (3). 

Theorem 6. For the Fourier coefficients (4) of any element u E H we have 

00 

L lan l2 ~ lIul1 2 (8) 
n=l 

(the so-called Bessel inequality). 

REMARK 7. From Theorem 5 it then follows that, for any element u E H, the 
corresponding Fourier series (5) is convergent in H (hut not necessarily to the 
element u; see Theorem 7). 

Theorem 7. A necessary and sufficient condition for the series (5) to converge 
exactly to the element u is that 

00 

L lan l2 = IIul1 2 • (9) 
n=l 

Definition 11. If (9) is satisfied for every element u E H (i.e. if for every u E H 
the corresponding Fourier series (5) converges to u), the orthonormal system (3) is 
called complete in H. Equation (9) is called the Parseval equality (or equation of 
completeness) . 

Definition 12. The system (3) is called closed in H if H does not contain any 
non-zero element u orthogonal to each element of the system (3). 

We note that as far as the terms "complete" and "closed" are concerned, termi­
nology is not consistent in the literat ure (due, perhaps, to the following theorem): 

Theorem 8. The system (3) is complete in H if and only if it is closed. 

Theorem 9. In a separable (Definition 22.3.3) Hilbert space there is at least one 
complete orthonormal system. 

REMARK 8. In L2 (0, l), a typical example of a complete orthonormal system is 
furnished hy the system of functions 

/(2) . n1fX 
CPn(x) = V T sm -l-' n = 1, 2, .... 

For any function u E L2 (0, l) we thus have, in L2 , 

00 

u = L anCPn 
n=l 

/(2) t . n1fX (with an = V T Jo u(x) sm -l- dx), 

(10) 
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i.e. (see Remark 3) 

k 

Ilu - L an~nll-+ 0 for k -+ 00. 

n=l 

(11) 

However, (11) does not imply pointwise convergence in the interval [0, ll, see § 16.3. 

REMARK 9. If the elements 

(12) 

are not orthogonal in H, the concept of a complete sequence may also be defined. 
We say that the elements (12) constitute a complete sequence (or a base) in H, if 
to each element u E Hand to each c > 0 a positive integer k and constants bl , b2 , 

... , bk can be found such that 

k k 

p(u, L bnun} = Ilu - L bnUnl1 < c. 
n=l n=l 

Using the familiar orthonormalization process (see § 16.2), a complete orthonor­
mal system (= an orthonormal base) can be obtained from any complete sequence. 
For example, the orthonormalization of the sequence 

1 2 3 ,x, X ,x , ... 

which is complete in L 2 (-1, 1) yields a complete orthonormal system of functions 

where Pn{x) are Legendre polynomials. 

REMARK 10 (Sobolev spaces). Simple examples of Hilbert spaces were given in 
Example 4. An other example of a Hilbert space is the so-called Sobolev space 
wik)(Q) which plays an important role in modern methods of solving problems in 
partial differential equations. Here we present the definition of this space for the 
case of a bounded region Q in En with the so-called Lipschitz boundary (Lipschitz 
region, in brief). Exact definition of these regions is rather complicated and can 
be found, e.g., in [389], Chap. 28. To that type of regions there belong, in E2 , 

bounded regions (multiply connected, in general) with boundaries constituted by 
a finite number of smooth, or piecewise smooth curves, without cuspidal points 
(a circle, a rectangle, a triangle, an annulus, etc.), in E3 bounded regions with 
smooth or piecewise smooth boundaries, without corresponding singularities, i.e. 
edges of regression (§ 9.13), etc. (a sphere, an ellipsoid, a cube, a pyramide, a.s.o.). 
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Let C(k)(il), or C(k)(il) be the set of all functions which have continuous (partial) 
derivatives up to the order k inclusive in il, or il, respectively. (Instead of C(O)(il), 
or C(O)(il) (thus if continuity of the functions themselves is required only), the brief 
notation C(il), or C(il) is used.) 

On the set C(k)(il), let us define the scalar product 

(13) 

of two (real) functions u(x) = U(Xl, ... , xn ), v(x) = V(Xl' .•• , xn ) as a sum of 
scalar products, in L 2(il), of the functions u, v and of their (partial) derivatives up 
to the order k inclusive. Thus, for n = 2, k = 1, for example, we have 

Let us define the norm and the distance of these functions by 

In this way, the set C(k)(il) is converted into a metric space. Denote it by S~k)(il). 
It can be shown that for k ~ 1, this space is not complete. 

Its completion (Remark 22.3.1) can be made with the help of functions from 
L 2 (il) with the so-called generalized derivatives. Let us introduce this concept in 
brief: Let i = (i1 , ... , iN) be an n-dimensional vector the components of which are 
non-negative integers (the so-called multiindex). Denote lil = i 1 + ... + in. Let us 
write briefly 

For example, if n = 2, i = (1, 2), we have 

Further, let C(exo)(il), or C(exo)(il) be the set of functions infinitely times continu­
ously differentiable in il, or in il, respectively. Denote by Ca exo) (il) the set of such 
functions from C(exo)(il) which have the so-called compact support in il. Here, the 
compact support of a function u, denoted by 

suppu, 
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means the closure of the set of points x E n at which u(x) =I O. The set suppu 
being closed and lying in n, by definition, each function from c~oo)(n) - and, con­
sequently, also each of its derivatives - is equal to zero in a certain neighbourhood 
of the boundary of the region n (different for different functions from c~oo)(n), in 
general). 

Let u be an arbitrary function from c(k)(n), r.p an arbitrary function from 
c6oo)(il). Applying lil-times the Green theorem and using the just mentioned 

property of functions from Caoo)(il), one obtains 

L u(x) Dir.p(x) dx = (_l)li l L Diu(x) r.p(x) dx for every lil ~ k. (15) 

(Here, the brief notation for the integral over n has been used similarly as in Re­
mark 22.2.3.) The relations (15) have been derived for sufficiently smooth functions 
(we assumed u E C(k)(il)). However, they can be satisfied as weH for some func­
tions from L 2 (il) not belonging to c(k)(n). (An example of such a function is, for 
n = 1 and k = 1, the function defined in the interval [0, 2J by 

u(x)={x forO~x~l, 
2 - x for 1 < x ~ 2 

which does not belong to C(1)([O, 2]), because it does not have the first derivative 
at the point x = 1.) 

We define: 

Let u E L2(il) and a multiindex i = (i1 , ... , in) be given. Let the relation 

L u(x) Dir.p(x) dx = (_l)li l L Vi(X) r.p(x) dx (16) 

be satisfied for every r.p E c~oo)(n). Then we say that the function u has the i-th 

genemlized derivative Vi (of order I i 1). 

It is usual to denote this derivative by the same symbol Diu as in the classical 
case. The function Vi = Diu is by the function u uniquely determined. If the 
function u has the classical derivative Diu, then the generalized derivative Diu is 
equal to that classical derivative. 

It can be shown that the completion (Remark 22.3.1) ofthe space s~k)(n) can be 
done by adjoining, to that space, all functions from L 2 (n) which have, in n, square 
integrable generalized derivatives up to the order k inclusive (and by extending the 
scalar product (13) and the norm and metric (14) to those functions). The so 
obtained complete space (thus a Hilbert space) is called the Sobolev space and is 
denoted by WJkl(il), often also by Hk(n), or Hk(n). 
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Let us note that the original set offunctions from the space S~k)(D) (thus from 
C(k)(D)) is dense in this space. For details see e.g. [389], Chap. 29. 

A generalization of Sobolev spaces are the so-called weighted Sobolev spaces (see 
e.g. [283]) which are applied to the solution of boundary value problems with various 
singularities (in coefficients of the given differential equation, etc.). 

REMARK 11 (TI-aces 0/ functions /rom the space WJk)(D)). As said above, the 
elements of WJk)(D) consist of functions from C(k)(D) and of such functions from 
L2 (D) which have square integrable generalized derivatives up to the order k in 
D. At the same time, the set C(k)(D) is dense in WJk)(D). As announced above, 
Sobolev spaces playafundamental role in the theory of so-called weak solutions of 
problems in partial differential equations. Such a weak solution u is to be found 
among functions from WJk) (D), satisfying certain boundary conditions (see § 18.9). 

However, it is to be made dear what does it mean that a function u E WJk)(D), or 
its derivatives, assume prescribed values on the boundary S of the region D: 

For a function u( x) continuous in D, and thus the more for every function u E 
E C(k)(D), its values u(S) on the boundary are uniquely given. Let us call the 
function u(S) the trace of the function u(x) on the boundary. However, in general, 
the elements of WJk)(D) are functions from L2(D) only (although they have some 
other properties), and it is not dear, in this case, what is meant if we say that u( S) 
is the trace of such a function. 

Let us investigate the space WJ1)(D), at first. Let u E WJl)(D). This function 
need not belong to C(1)(D), of course. However, the functions from C(1)(D), being 
dense in WJl)(D), the function u(x) can be taken for the limit, in WJl)(D), of an 
appropriate sequence offunctions U n E C(1)(D). It can be shown that, at the same 
time, the sequence of corresponding traces un(S) converges in L2(S) to a certain 
function v(S), independently of the choice of the sequence {un(x)} converging 

to u(x) in WJl)(D). This function v E L2(S) is called the trace 0/ the function 
u E WJl)(D) on S. 

Similarly, traces of the functions au/axj (j = 1, ... , n) on S can be defined 

if u E WJ2) (D), giving the possibility of defining, for example, au/ a// on S (the 
outward normal derivative) in the sense oftraces, etc. In this way, various boundary 
conditions for functions from the space WJk)(D) can be formulated. 

In particular, the subspace of such functions v from WJk)(D) for which we have 

niv = 0 on S for lil ~ k - 1 

is usually denoted by W;(D) (or H~(D)). (On the other hand, ~(D) = L2(D).) 

For details see e.g. [389], Chap. 30. See also § 18.9. 

REMARK 12 (Distributions). A furt her important concept is the concept of a 
distribution: 
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In the set doo)(Q) (see Remark 10), let the convergence be introduced in the 

following way: We say that CPn -t cP in Caoo)(Q), if a subregion Q' of Q (Q' c Q) 
exists such that all the functions CPn and the function cP have their supports (Remark 
10) in Q', i.e. if 

sUPPCPn C Q', n = 1, 2, ... , sUPPcP C Q' 

and if, at the same time, the sequence of functions CPn as well as sequences of all 
their derivatives Dicpn converge in the metric of the space C(Q') (thus uniformly 
in Q') to the function cP and to the corresponding derivatives Dicp, respectively. 
Let us denote that space (thus the set Ca 00) (Q) equipped with this definition of 
convergence) by D(Q), briefly by D. 

The dual space to D( Q) (thus the space of all bounded linear functionals I on 
that space, see Remark 22.5.9), is called the spaee 01 distributions. It is denoted 
by D'. 

Thus, a distribution I is a bounded linear functional on D(Q). Let us denote 
the value of I at the point cP E D( Q) by 

(cp,l). 

The derivative D i f of this distribution is defined by 

Convergenee in D' is defined as follows: We say that In -t I in D', if 

lim (cp, In) = (cp, I) for all cp E D(Q). n-too 

The applicability of distributions in different fields of mathematics, in particular 
in the theory of boundary value problems of partial differential equations, lies in 
the fact that they enable to formulate many problems in a sufficiently general and, 
at the same time, rather natural way. Many simple functional spaces can be easily 
embedded (see Remark 13 below) into the space of distributions. For example, we 
can write 

L1,loc(Q) c D'(Q), 

putting 

(cp, I) = l cpl dx for all cp E D(Q) 

for every locally Lebesgue integrable function I. The Dime distribution 0"'0 with 
the "singular point" Xo E Q is defined by 

(cp, 0"'0) = cp(xo) for alI cp E D(Q) 
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which makes it possible to express various singularities, e.g. isolated loads in the 
theory of elasticity, etc., in an appropriate way. 

REMARK 13 (The Spaces wJk)(n), Embedding theorems). More general than 
the space wJk)(n) is the space wJk)(n), with 1 ~ p < 00, elements of which are 
functions from the space Lp(n), having generalized derivatives, up to the order k 
inclusive, in that space. For details see e.g. [284], [348]. 

The wJk)(n) spaces are Banach spaces. For p = 2 we obtain the Hilbert space 
wJk)(n) discussed in Remark 10. 

It can be shown that a function from aspace wJk)(n) belongs simultaneously to 
aspace Lq(n) with q "better" than p. In details: 

Let X and Y be (linear) normed spaces and let every u E X belong simultaneously 
to the space Y. Then we write 

XcY (17) 

and say that the space X is embedded, or, in more details, algebraically imbeded, 
into the space Y. If, moreover, a constant c > 0, independent of u E X, exists such 
that 

/lu/l y ~ cllullx for all u E X, (18) 

we say that X is continuously, or topologically embedded into Y and write 

(19) 

Let n be a bounded region in E n with a Lipschitz boundary (Remark 10), k 
a positive integer, 1 ~ p < 00. Then it can be shown that 

for every q satisfying 

If 

we have even 

l~q~ pnk' n- p 

1 ~ q< 00, 

kp >n, 

if kp< n, 

if kp = n. 

(20) 

(21) 

(22) 

(23) 

(24) 

Thus, if (23) holds, every function u E w~k)(n) is continuous in n and a constant 
c> 0 (independent of u E wJk)(n» exists such that we have 
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(More exactly - because functions from W~k)(.o) are certain functions from Lp(.o): 
if (23) is satisfied, then every function from W~k) (.0) can be converted into a func­
tion continuous in .0 when changed, if necessary, on a set of Lebesgue measure zero; 
at the same time, (25) holds.) 

Example 6. Let n = 3. By (21) every function u E WP)(.o) belongs to each 
space Lq(.o) with 1 ~ q ~ 6. 

Example 7. Let n = 1 (thus, functions of one variable are considered). Then, by 
(23) and (24), every function from Wp)(a, b) is continuous in [a, b], or can be made 
continuous there when changed in a proper way on a set of measure zero, and a 
constant c > 0 exists, independent of u, such that for every u E WJl)(a, b) we have 

(26) 

22.5. Linear and Other Operators in Metric Spaces. 
Banach's Theorem on Contraction Mapping. Functionals. 

Adjoint Operators, Adjoint (Dual) Spaces. 
Completely Continuous Operators. 

Definition 1. Let X and Y be two metric spaces. If to each u E X a uniquely 
determined v E Y is assigned, we write briefly 

v = Au, u E X, v E Y, (1) 

and say that on X (or in X) an operator (or mapping) A is given which maps X 
into Y (or we speak of an operator A from X into Y, in brief). 

REMARK 1. A similar definition can be given for more general sets X, Y than 
for metric spaces (cf. Definition 1.23.6). However, just the case considered in 
Definition 1 is most interesting from the point of view of applications of functional 
analysis. 

REMARK 2. In (1), the element u E X is called the original and the element 
v = Au E Y the image of the original u. Two operators A, B are called equal, if 
Au = Bu for all u E X. The set of all v E Y which are obtained by (1) for all u E X 
is called the range of the operator A and is denoted by R(A). If R(A) = Y (i.e. if 
all elements of the space Y are obtained if u runs through the space X), we speak 
about a mapping from X onto Y (or we say that the operator A is surjective). If 
to any two different originals there correspond different images, i.e. if 
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the operator A is called simple (or injective). A simple surjective operator is called 
one-to-one (or bijective). In this case there exists the so-called inverse operator 
A -1 which assigns to every v E Y just that u E X for which Au = v. We write 
u = A-1v. We have obviously 

u = A-1Au, v = AA-1v for all u E X and v E Y. (2) 

If Y = X, we say that the operator A maps the space X into itself, or we speak 
briefly about an operator in the space X. 

An operator need not be defined on the entire space X, but only on a subset, 
or subspace D(A) c X, on the so-called domain of definition of the operator A 
(denoted also by DA). This case is often encountered in applications. (If, for 
example, X = L 2 (a, b) and A is a differential operator, then it is not possible to 
take the whole space L 2 (a, b) for its domain of definition, but only a subspace of 
those (sufficiently smooth) functions from this space to which the operator A can 
be applied.) All the above-given definitions then remain valid, if X is replaced by 
the domain of definition D(A) of the operator A. Two operators A, B are then 
called equal if they have the same domain of definition D and if 

Au = Bu for every u E D. 

REMARK 3. If Y is the space of real, or complex numbers, the operator is called 
a functional (real, or complex, respectively). An example of a functional defined 
on the (entire) space L2 (a, b) (or, more generally, on Lp(a, b) with p ~ 1) is the 
operator f given by 

fu = l b 
u(x)dx, (3) 

which, therefore, to every function u E L2 (a, b) (or U E Lp ( a, b» assigns the num­
ber (3). 

Theorem 1 (The Banach Fixed-Point Theorem or Contraction Mapping Theo­
rem). Let the operator A, defined on a complete metnc space X, maps X into 
itself (i.e. if u E X, then also v = Au E X). Let a number a (0 < a < 1) exist 
such that 

d(Au,Av) ~ ad(u,v) (4) 

holds for any two elements u, v E X (d being the distance between u, v in X, see 
Definition 22.2.1; thus the operator A "contracts distances"). Then the equation 

u=Au (5) 
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has exactly one solution Uo in X. The element Uo (the so-called fixed-point 0/ the 
operator A) can be obtained by successive approximations as a limit (in the metric 
0/ the space X) 0/ the sequence 

... , (6) 

where the initial element Ul may be chosen arbitrarily. 

The speed 0/ convergence is given by the /ollowing estimate: 

REMARK 4. Using this theorem, existence (and uniqueness) of solutions of vari­
ous problems can be proved, such as problems in the field of differential and integral 
equations, of finite and infinite systems of linear algebraic equations, etc. See the 
following example. 

Example 1. Consider a nonlinear integral equation 

u(x) = -X lb 
K(x, t, u(t))dt, a ~ x ~ b, (7) 

where the function K(x, t, z) is continuous and bounded in absolute value by a 
constant ein a parallelepiped Q (a ~ x ~ b, a ~ t ~ b , Izl ~ k) and, in addition, 
satisfies the Lipschitz condition with respect to z in Q, Le. there exists a constant 
L such that the inequality 

(8) 

holds for all (x, t, Zl), (x, t, Z2) E Q. The assertion is that for every -X sufficiently 
small, more exactly, for every -X satisfying the inequalities 

I-XI c(b - a) ~ k, 

I-XI L(b - a) < 1, 

(9) 

(10) 

there exists one and only one continuous function u(x) satisfying equation (7). 

For the space X let us choose the set of all functions continuous in [a, b] such 
that lu(x)1 ~ k, with the metric of the space C([a, bj), i.e. 

d(u,v) = max Iv(x) - u(x)l· 
a~x~b 

(11) 

In view of (11) (uniform convergence), the space X is complete. If condition (9) 
is satisfied, the operator 

Au = -X lb 
K(x, t, u(t))dt (12) 



22.5 FUNDAMENTALS OF THE THEORY OF SETS AND FUNCTIONAL ANALYSIS 347 

(we write briefiy Au instead of (Au)(x)) maps the space X into itself (because for 
every x E [a, b] we have 

by (9); moreover, v(x) is obviously a continuous function in [a, bJ). 
Furthermore, in view of (8) we have for every pair of functions u, v from X 

d(Au, Av) = a~~J\ l b 
K(x, t, v(t))dt - A l

b 
K(x, t, u(t))dtl ~ 

~ lAI L lbIV(t) - u(t)ldt ~ lAI L(b - a) a~~blv(t) - u(t)1 = 

= lAI L(b - a)d(u, v). 

Thus, if (10) is true, condition (4) is satisfied and equation (7) possesses, by Theo­
rem 1, a unique solution. This solution can be obtained as the limit of a uniformly 
convergent sequence of successive approximations (6). 

Definition 2. An operator A is called continuous at a point Uo E D(A) if for 
every sequence {un } (un E D (A)), U n --+ Uo in the metric of the space X we have 
AUn --+ Auo in the metric of the space Y. 

Definition 3 (Linear Operators in Linear Spaces). An operator A is called linear, 
if 

(i) its domain of definition D(A) is a linear set M (Definition 22.4.1), 

(ii) for any elements Uk E M and any numbers Ck we have 

(13) 

Theorem 2. A linear operator, continuous at some point Ul E D(A), is continu­
ous at every point u E D(A). 

Definition 4. Let X, Y be linear normed spaces (see Definition 22.4.4), A a linear 
operator from D(A) C X into Y. The operator A is called bounded if a positive 
number C, independent of u, exists such that 

(14) 

holds for every u E D(A). (Here, naturally, IIullx denotes the norm of the element 
u in the space X, IIAuily the norm of the element Au in the space Y.) 

Example 2. In the complex space L2 (a, b) with the norm 

(15) 
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the functional f given by 

fu = lb 
u(x)v(x)dx, (16) 

where v( x) is a fixed function from L2 (a, b), is a bounded linear operator. Linearity 
is obvious. Further, by the Schwarz inequality (Theorem 22.4.2), we have 

Iful = 11b 
u(x)V(X)dXI = I(u, v)1 ~ Ilull·llvll· 

Thus, in (14), it suffices to put 

c= Ilvll. 

On the other hand, consider the operator A, given by 

Au= du 
dx 

(17) 

on the linear subspace D(A) C L 2(a, b), consisting of those functions from L 2 (a, b) 
which are continuous, together with their first derivatives, in [a, b]. This operator, 
as an operator from D (A) (with the metric of the space L2 (a, b)) into L2 (a, b), is 
evidently linear, but not bounded. In fact, there exist functions from D(A) with 
Ilull = 1 for which IIAul1 = Ildu/dxli is as large as we please (we can, for instance, 
consider functions of the form 

( ) _ J(_2 ) . n'K(x - a) 
u x - b SIn b -a -a 

(18) 

with n sufficiently large). 

REMARK 5. Among the numbers C for which (14) holds, there exists a unique 
least number which is called the norm oi the operator A and is denoted by IIAII or 
nA. We have 

IIAII = nA = sup IIAull y , (19) 
lI u ll x =l,uED(A) 

i.e. the norm of the operator A can be found as the least upper bound of the set of 
numbers IIAully with uranging over all unit elements of D(A) (or, in other words, 
with uranging over the surface of the unit sphere in D(A)). 

From the definition of the norm of an operator it follows that 

for every u E D(A). 

Theorem 3. A linear operator A lS continuous on D(A) if and only if it lS 

bounded. 
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REMARK 6. In the following text of this paragraph, BI and B 2 are Banach spaces 
(i.e. complete normed linear spaces, see Definition 22.4.5) and A is a continuous 
(= bounded) linear operator /rom BI (or from D(A) C Bt) into B 2 • 

Theorem 4. If D(A) is a linear set dense in Bt, the operator A (linear and 
bounded on D(A), see the foregoing remark) can be (uniquely) extended /rom D(A) 
onto the entire space BI so that the norm of the operator A is preserved. 

REMARK 7. The operator extended in this manner (let us denote it by A') has 
the entire space BI as its domain of definition and satisfies the equality A'U = Au 
for every element u E D(A). Moreover, we have IIA'II = IIAII. The process described 
in Theorem 4 is referred to as the continuous extension of an operator. 

Theorem 5. Let M be the set of bounded linear operators defined on the entire 
space BI' For every element u E BI let there exist a number K(u) (thus depending 
on u, in generaQ such that IIAullB2 ~ K(u) .lIuIlB! holds for every operator A E M. 
Then the system M is uniformly bounded, i. e. a number K (independent of u and 
A) exists such that for all u E BI and for every operator A E M we have 

Theorem 6 (The Banach Theorem on Inverse Operators). Let a bounded operator 
A map the entire space BI in one-to-one correspondence onto the (entire) space B 2 • 

Then the inverse operator A-l (see Remark 2) is also a bounded linear operator. 

REMARK 8. An important dass of bounded linear operators are bounded linear 
functionals, i.e. bounded linear operators with Au being areal or complex number 
(see Remark 3). For functionals a more powerful theorem than Theorem 4 is true: 

Theorem 7 (The H ahn-Banach Theorem). A bounded linear functional f defined 
on a linear subspace L of a (linear) normed space B (L need not be dense in B) 
can be extended onto the entire space B with its norm preserved. 

REMARK 9 (Dual Space). Let us consider all bounded linear functionals f defined 
on a linear normed space Band define the sum of two functionals and the product 
of a functional and of a number (real or complex) as folIows: 

(/1 + h)u = !tu + hu; (aJ)u = a(/u) (20) 

(for all u E B). Furthermore, define the norm of a functional f by 

11111 = nf = sup Iful 
lIu ll B =1 

in accordance with Remark 5. Then an these functionals constitute a linear normed 
space which can be shown to be complete (and thus a Banach space). This space 
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is called the adjoint space or the dual space (briefly dual) to the space B (or over 
the space B) and is denoted by B* (also the notation B' is often used). 

Similarly, the dual space B** to B* can be defined. 

If B* = B (or if B* can be identified with B in a way described below), the space 
B is called sell-adjoint. If B** = B, it is called reflexive. 

For example, by the Riesz theorem (Theorem 22.6.1), every bounded linear func­
tional I on a Hilbert space H can be uniquely represented by an element v E H, 
so that lu = (u, v) holds for all u E H. At the same time, Ilvll = 11/11, the sum 
of two functionals !t, /2 is represented by the sum of the corresponding elements 
VI, V2 E H, etc. Conversely, (u, v) is a bounded linear functional in H - with the 
norm IIvll - for every v E H. Because the correspondence between the elements 
I E H* and v E His one-to-one (while 11/11 = IIvll, etc.), it is possible to identify 
functionals I E X* with corresponding elements v E H and write H* = H. In 
this sense, every Hilben space is sell-adjoint. A similar consideration leads to the 
conclusion that every Hilben space is reflexive. 

Definition 5. A sequence {un} of elements of B is said to be weakly convergent 
to an element Uo E B, if for every bounded linear functional I on B (thus for every 
I E B*) we have 

Notation 
w 

Un ->. Uo, or Un ---+ Uo. (21) 

Theorem 8. II a sequence {un} converges to uo, then it is also weakly convergent 
to the same element Uo. 

The converse is not true, in general. 

Theorem 9. Let B be a reflexive Banach space. Then /rom every bounded se­
quence {un} a subsequence {unk} can be chosen which is weakly convergent to an 
element Uo E B. 

REMARK 10. In particular, /rom every bounded sequence in a Hilben space a 
weakly convergent subsequence can be chosen. 

Definition 6 (Adjoint Operator). Let A be a bounded linear operator which maps 
BI into B 2 , thus v = Au, u E BI, V E B2. Consider a bounded linear functional 
I E Bi (see Remark 9). Then obviously the functional given by 

Iv = lAu = gu (22) 

is a bounded linear functional on BI. Thus, by means of the operator A, to every 
bounded linear functional I E Bi there is assigned a bounded linear functional 
9 E Bi by the relation (21); let us write 

9 = A* f. (23) 
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The operator A" is called the adjoint operator to the operator A. 

REMARK 11. The definition of adjoint operators is simpler and very natural in 
a Hilbert space, see Remark 22.6.2. See also Example 22.6.2. 

Definition 7. A continuous (= bounded) linear operator from Bl into B2 is called 
completely (absolutely) continuous (or compact) if it maps every bounded set M c 
C B 1 onto a relatively compact (Definition 22.3.4) set M' C B2. 

The above given definition can be weH generalized. For example, Bl, B2 can 
be merely linear metric spaces. Let us note thitt there is no conformity in the 
literature as concerns the concept of a completely continuous, absolutely continuous, 
or compact operator. Under compact operators also nonlinear operators are often 
understood which map bounded sets into relatively compact sets. 

Example 3. Let K (x, t) be a function square integrable in a square Q (a ~. x ~ b, 
a ~ t ~ b), thus K E L2(Q). It can be shown that the operator A given by 

(24) 

(we write again briefly Au instead of (Au)(x)) is completely continuous from L 2(a, b) 
into L 2(a, b). Its norm is 

Definition 8. A sequence of operators An is said to be uni/ormely convergent to 
an operator A, if IIA - Anll -+ 0 if n -+ 00. 

For IIAII see Remark 5. 

Theorem 10. 1/ a sequence 0/ completely continuous operators An (/rom B1 into 
B 2 ) is uni/ormly convergent to an operator A, then A is a completely continuous 
operator. 

REMARK 12. In the theory of integral equations, solvability of Fredholm equa­
tions of the form 

u(x) - P, lb 
K(x, t) u(t) dt = v(x) (25) 

in dependence on the parameter p, is investigated. In a similar way, operator equa-
tions 

Au - AU = v (26) 

in various spaces can be discussed. If Ais a completely continuous operator, similar 
results are obtained. See the next paragraph. 
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22.6. Operators and Operator Equations in Hilbert Spaces 

REMARK 1. A Hilbert space is (see Remark 22.4.4) a special case of a Banach 
space. Consequently, everything stated above in § 22.5, concerning operators in a 
Banach space, is true also for operators in Hilbert space. However, in a Hilbert 
space much more about operators, or about corresponding operator equations, can 
be said. 

In Part (a) 0/ this paragraph, we deal with linear bounded operators defined in the 
entire Hilbert space H, a fact which will not be explicitly restated in the following 
text. (A bounded linear operator defined only on a linear subspace L, dense in H, 
can be taken for already extended onto the entire space by Theorem 22.5.4.) 

In Part (b), unbounded operators are considered, typical representants of which 
are differential operators. 

(a) Bounded operators 

Theorem 1 (The Riesz Theorem). Any bounded linear functional I in a Hilbert 
space H can be uniquely represented in the form 0/ a scalar product, i.e. to every 
bounded linear /unctional / on H a unique v E H exists such that 

/u = (u, v) holds tor all u E H. 

Moreover, we have 

I/vl/ = 1//1/. 

Example 1. In particular, if His the space L 2 (a, b) with the inner product 

(u, v) = lb u(x) v(x) dx, (1) 

then to every bounded functional / there corresponds exactly one function 
v E L2 (a, b) such that 

/u = lb u(x) v(x) dx holds for all u E L2(a, b). (2) 

(The converse is obvious: For every fixed v E L 2 (a, b), (1) ia a bounded linear 
functional in L2 (a, b) (see example 22.5.2).) Moreover, by Theorem 1, I/vl/ = 1111/. 

REMARK 2 (Adjoint Operator). If Ais a bounded linear operator in H, then 

(Au, v), 
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with v fixed, is a bounded linear functional in H. By Theorem 1, there is exact1y 
one element v* E H such that 

(Au, v) = (u, v*) for all u EH. (3) 

Thus by (3) (with A fixed) to every v E H a unique v* E His assigned - let us 
write 

v* = A*v (4) 

- such that 
(Au, v) = (u, A*v) holds for all u, v E H. (5) 

The operator A * is called the adjoint operator to A. 

Example 2. The adjoint operator to the operator A in Example 22.5.3, given by 

Au = l
b 

K(x, t) u(t) dt, u E L2 (a, b), 

IS 

A*v = l
b 

K(t, x) v(t) dt, v E L2 (a, b). 

Thus A* is an integral operator whose kernel is obtained from the original kernel 
K(x, t) by interchanging the variables and taking the complex conjugate value. To 
verify that (5) is then satisfied, it is sufficient to observe that 

(Au, v) = l
b 
(l

b 
K(x, t)U(t)dt)V(X)dX = l bl b 

K(x, t) u(t) v(x) dxdt = 

= l
b
l

b 
K(t, x)u(x)v{t)dtdx = l b 

U(X)(l
b 

K(t, X)V(t)dt) dx = (u, A*v). 

Theorem 2. The norm of the adjoint operator A* is equal to the norm of the 
operator A, i.e. 

IIA*II = IIAII· 
(See also Example 2, where this fact is obvious.) 

Definition 1. If A = A *, then A is called a self-adjoint operator. Then for every 
u, v E H we have 

(Au, v) = (u, Av). 

Example 3. An integral operator with a real symmetrie kernel, for whieh therefore 
K(t, x) = K(x, t), is a self-adjoint operator (see Example 2). 
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Theorem 3. A necessary and sufficient condition for a bounded linear operator A 
in a complex Hilbert space to be self-adjoint is that (Au, u) be real for every u E H. 

Definition 2. A self-adjoint operator A is called positive, if for every u E H we 
have 

(Au, u) ~ 0 

while 
(Au, u) = 0 only if u = 0 in H. 

It is called positive definite if such a constant m > 0, independent of u, exists that 

holds for all u EH. 

Evidently a positive definite operator is positive, hut not vice versa, in general. 

Theorem 4. Let A be a positive definite operator in areal Hilbert space H, let 
fEH. Then the equation 

Au=f (6) 

has exactly one solution Uo E H. This solution minimizes, in H, the quadratic 
functional (functional of energy) 

Fv = (Av, v) - 2(/, v). (7) 

(Conversely, an element u, minimizing in H the functional (7), is the solution of 
equation (6).) 

Let us note that for a complex Hilhert space the theorem still holds if functional 
(7) is replaced hy the functional 

Fv = (Av, v) - (/, v) - (v, f) = (Av, v) - 2 Re(/, v) 

which (in consequence of positive definiteness of the operator A) assumes, on H, 
only real values. 

REMARK 3. Let us emphasize once more that Theorem 4 has heen stated for 
linear bounded operators defined in the entire space H. Thus from the practical 
point of view, this theorem can he applied to integral operators, matrices, etc., hut 
not to differential operators which do not have the just mentioned properties in 
current functional spaces. For that case see Theorems 9 and 10 helow. 

REMARK 4. More generally, let us consider, in H, the equation (cf. Remark 
22.5.12) 

Au - AU = f (or (Au - >.I)u = f, (8) 
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where I is the identity operator, i.e. Iu = u holds for every u E H) and also the 
eorresponding homogeneous equation 

Au - AU = 0 (or (A - U)u = 0). (9) 

A value A such that the operator A - AI possesses, in H, a bounded inverse 
operator (usually denoted by R>.), is ealled a regular value (regular point) of the 
operator A; the operator R>. is ealled the resolvent operator (or resolvent). For 
every regular value A, equation (8) has exactly one solution u E H for every fEH. 

In particular, equation (9) possesses only the trivial solution u = o. 
Those values of A which are not regular constitute the so-ealled spectrum of the 

operator A. 

A value A such that equation (9) has (exeept the trivial solution u = 0) a non-zero 
solution u E H, is ealled an eigenvalue of the operator A. This non-zero solution u 
is ealled an eigen element (an eigenvector) eorresponding to that eigenvalue A. 

Let us note that the spectrum of an operator A need not eonsist only of eigen­
values of this operator, in general. 

Theorem 5. 1/ A is a sel/-adjoint operator in H (Definition 1), then 

(i) any complex number A = a + iß (a, ß real, ß I- 0) is a regular value 0/ the 
operator A. The operator A can thus have only real eigenvalues. 1/, in addition, A 
is positive (Definition 2), then A can have only positive eigenvalues. 

(ii) eigenelements corresponding to different eigenvalues are orthogonal. 

About whether an operator A has eigenvalues at all, and about their strueture, 
an information is given in the following theorem: 

Theorem 6. 1/ A is a sel/adjoint completely continuous (Definition 22.5.7) non­
-zero operator in a separable (Definition 22.3.3) Hilbert space H, then 

(i) it has at least one non-zero eigenvalue A (real, by Theorem 5); 

(ii) outside every interval [-c, cl, where c is an arbitrary positive number, there 
can lie only a finite number 0/ eigenvalues, and to each 0/ them there corresponds 
only a finite number 0/ linearly independent eigenelements; 

(iii) an orthonormal (see the text preeeding Theorem 7 below) system 0/ ele­
ments /ormed by all linearly independent eigenelements 0/ the operator A including 
eigen elements corresponding to the eigenvalue A = 0 (i/ A = 0 is an eigenvalue) is 
complete in H. 

Example 4. An example of an operator diseussed in Theorem 6 is furnished by 
an integral operator with a real symmetrie kernel K(x, t) E L2 (see Examples 2 
and 3 and Example 22.5.3). 
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Before stating Theorem 7, let us note that it is customary to order eigenvalues and 
corresponding linearly independent eigen elements in such a way that there is one­
to-one correspondence between them. If, for example, the eigenvalues are arranged 
into a nonincreasing sequence and if to the first eigenvalue ), there correspond two 
linearly independent eigenelements V1, V2 (then ), is called a double eigenvalue, or 
eigenvalue of order, or multiplicity 2), then we require for that ), to appear twice 
in that sequence, writing 

Moreover, it is usual, in theoretical considerations, to assume that all linearly in­
dependent eigenelements have been already orthonormalized by the orthonormal­
ization process shown in Remark 16.2.15. 

Theorem 7. Let A be a completely continuous positive (and thus self-adjoint) 
operator in a separable Hilbert space of infinite dimension. Then this operator has 
a countable set of eigenvalues, all of them being positive, and to each of them there 
correspond a finite number of linearly independent eigenelements. The orthonormal 
system 

of eigenelements corresponding to the system 

of eigenvalues in the sense of the preceding text is complete in H. Moreover, 

lim .xn = O. 
n-too 

For the first eigenvalue .xl we have 

.xl = max (Av, v) 
vEH,v;tO (v, v) 

while for the n-th (n ~ 2) eigenvalue 

(AVb vt) 
(Vb V1) , 

(Av, v) 
max 

vEH,v#O, (v, v) 
(v,vt}=o, ... ,( V,Vn_l)=O 

(Avn , vn ) 

(vn , vn ) , 

holds. 

REMARK 5. (i) Thus the so-called Rayleigh quotient 

(Av, v) 
(v, v) 

(10) 
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(v E H, v -=1= 0) assumes, on H, its maximal value, equal to the largest eigenvalue 
)'1, just for the first eigenelement Vl. Then >'2 is obtained as maximum of (10) 
if v runs through the subspace H l of such elements of H which are orthogonal 
to Vl, this maximum being attained for the second eigen element V2. Then the 
Rayleigh quotient is maximized in the subspace H2 of such elements of H which 
are orthogonal both to Vl and V2, to obtain >'3 just for v = V3, etc. 

As concerns assumptions of Theorem 7, aremark similar to Remark 3 can be 
added. Let us note, further, that Theorem 7, being formulated for positive opera­
tors, is the more valid for positive definite operators. 

(ii) Theorem 7 with the foHowing Theorem 8 imply that if 0 -=1= >. -=1= >'n (n = 1, 
2, ... ), then the equation 

Au - >.u = I 
is uniquely solvable for every right-hand side fEH. 

(iii) As concerns application of the Rayleigh quotient (10) to obtain successively 
the eigenvalues >'1, >'2, ... , a similar process can be applied without the assumption 
of positiveness of the operator A; here self-adjointness and complete continuity are 
essential. However, care is to be taken here, because the eigenvalues can be positive, 
as weH as negative, or equal to zero, in that case. To >. = 0 an infinite number 
of corresponding linearly independent eigenelements may exist. For details see e.g. 
[389], Chap. 38. 

(iv) Let us note, finally, that Theorem 7 can be formulated as weH for finite­
-dimensional spaces (for matrices in n-dimensional vector space, for example). Nat­
urally, in that case there exist only a finite number of eigenvalues, etc. 

REMARK 6. Now, let A be a completely continuous (not necessarily self-adjoint) 
operator (for example, an integral operator with a kernel K E L2 which need not 
satisfy the condition K(t, x) = K(x, t)), and let A* be the adjoint operator to A. 
Let us consider the equations 

Au - >.u = f, 

A*u-"Xu=g, 

Au - >.U = 0,' 

A*u-"Xu=O. 

(11) 

(12) 

(13) 

(14) 

Theorem 8. Let A be a completely continuous operator in H, >. -=1= O. Then 
equation (11) possesses a unique solution for any element fEH if and only if 
equation (13) has, in H, only a zero solution (i.e. if>' is not an eigenvalue of the 
operator A). The same statement is true for equations (12) and (14). If equation 
(13) has a nonzero solution (i.e. if >. is an eigenvalue of the operator A), then 
equation (11) is solvable (not uniquely, in this case) only for those fEH which 
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are orthogonal to all solutions of equation (14). A similar statement is true for 
equations (14) and (12). Funher: if>' is an eigenvalue of equation (13), then >: 
is an eigenvalue 0/ equation (14). Both equations have then the same number 0/ 
linearly independent solutions. 

From the first part of Theorem 8, there follows the so-called Predholm alternative: 
Let A be a completely continuous operator, >. t= O. Then either equation (11) is 
uniquely solvable for every right-hand side fEH, 01' equation (13) has a non-zero 
solution. 

A similar assertion holds for equations (12), (14). 

(b) Unbounded operators 

REMARK 7. In Example 22.5.2 an example of an unbounded operator has been 
given. In the following text of this paragraph, we shall consider linear unbounded 
operators defined on linear sets D(A) dense in a Hilbert space H. This case is most 
often encountered in applications. 

Example 5. An example of such an operator is the operator A given by 

(15) 

(the reason for the sign minus be comes clear in Example 6) on its domain of defini­
tion D(A) consisting of all continuous functions with two continuous derivatives in 
[a, b] (thus of all functions from C(2) ([a, b])), such that u(a) = 0, u(b) = O. These 
functions constitute a linear set in the space H = L 2 (a, b) with the well-known 
scalar product (1). It can be shown (see, e.g., [389], Chap. 8) that this set is dense 
in H. 

An other example is the operator 

considered on a dense (in L 2 (.Q)) linear set D(A) consisting of all continuous func­
tions u(x, y) with two continuous partial derivatives in a closed bounded region .Q 

with a smooth, or piecewise smooth (or a lipschitzian, see Remark 22.4.10) bound­
ary S, which satisfy the condition u = 0 on S. 

REMARK 8 (Adjoint Operator). For so me elements v E H there exists an element 
v* E H such that 

(Au, v) = (u, v*) (16) 

holds for every u E D(A). (The elements v = 0, v* = 0, for example, have the 
just mentioned property.) Since the linear set D(A) is assumed to be dense in 
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H (Remark 7) it ean be shown that the element v* is by the element v uniquely 
determined. Thus, on the set (say M) of all these v, an operator A* is given by 

v* = A*v, v E M, (17) 

such that 
(Au, v) = (u, A*v) (18) 

holds for every u E D(A) and every v E M = D(A*). The operator A* (which 
is clearly linear and, in general, unbounded) is ealled the adjoint operator to the 
operator A. If A* = A (i.e. if D(A*) = D(A) and A*v = Av holds for every 
v E D(A)), A is ealled a self-adjoint operator. 

We reeall the fact that D(A) is assumed to be a set dense in H as stated in 
Remark 7. 

Definition 3. A linear operator A is ealled symmetrie on D(A), if the relation 

(Au, v) = (u, Av) (19) 

holds for every u and v from D(A). 

For a symmetrie operator we have A C A*, i.e. D(A) C D(A*) and A*u = Au 
for u E D(A). (This fact follows immediately from the definition of asymmetrie 
and an adjoint operator.) 

Definition 4. A symmetrie operator A is called positive on D(A), if for every 
u E DA we have 

(Au, u) ~ 0, 

while 
(Au, u) = 0 only if u.= O. 

It is ealled positive definite on D(A), if such a number m > 0 exists independent 
of u E DA, that 

(Au, u) ~ m lIull2 
holds for every u E DA. 

Example 6. Let A be the operator given by 

(20) 

defined on the linear set D(A) of all functions from C(2) ([a, bJ) satisfying the bound­
ary conditions 

u(a) = 0, u(b) = o. (21) 
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D(A) is dense in H = L2 (a, b) (Example 5). It is easy to show that Ais a (sym­
metrie) positive operator in D(A): 

Symmetry: Integrating by parts and using eonditions (21), we have 

, ,b ,- ,-l b lb l b 
(Au, v) = - a u' vdx = -ru v]a + a U v' dx = a U v' dx = 

= [uv']~ -lb 
uv" dx = -lb 

uv" dx = (u, Av) 

for every u E D(A), v E D(A). 

Positiveness: 

" , b - ,- 2 l b lb l b l b (Au, u) = - a U udx = -ru u]a + a u'u' dx = a U u' dx = a lu'l dx ~ 0 

(22) 
for every u E D(A); further, if (Au, u) = 0, then (22) implies u' == 0, henee 
u == c = eonst. in [a, b]. However, u E D(A), so that (21) holds, and thus u == 0 in 
[a, b]. 

REMARK 9. It ean be shown that the considered operator is even positive definite 
(see e.g. [389], Chap. 8). 

The same assertions hold for the seeond operator eonsidered in Example 5. 

Theorem 9 (on Minimum 01 Functional 01 Energy). Let A be a positive operator 
on its domain 01 definition D(A) dense in areal Hilbert space H, fEH. Then: 

(i) 11 the equation 

Au=1 (23) 

has a solution Uo E D(A), then Uo mmzmzzes, on D(A), the quadratic functional 
(the so-called lunctional 01 energy, or energy lunctionaQ 

Fu = (Au, u) - 2(1, u). (24) 

(ii) Conversely, an element Uo E D(A) which minimizes the functional (24) on 
D(A), i.e. such that 

min Fu = Fuo, 
uED(A) 

is (the unique) solution 01 the equation (23). 

Let us note (cf. Theorem 4) that for a complex Hilbert space Theorem 9 and the 
text following it still holds, if the funetional (24) is replaced by the funetional 

Fu = (Au, u) - (I, u) - (u, f) = (Au, u) - 2 Re(l, u). 
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REMARK 10 (The Space HA, Generalized S olutions ). In contrast to Theorem 4 
(stated for bounded positive definite operators definited on the entire space H), 
Theorem 9 does not represent an existence theorem. Here, neither a solution of 
(23) nor the minimum of (24) on D(A) need exist. For example, if A is the operator 
from Exam pIe 6 and if f E L 2 (a, b) is such a "sufficiently" discontinuous function in 
[a, b] that it cannot be made continuous when changed on a set of measure zero (a 
piecewise constant function, for example), then the equation Au = f cannot have 
a solution Uo from D(A), because Uo E C(2) ([a, bJ) implies that Auo is continuous 
in [a, b], while f has not this property. 

If the operator A is positive definite on D(A), then it is possible to ensure exis­
tence of a solution of equation (23) in a generalized sense. This can be done in the 
following way: For every pair of elements u, v E D(A) let us define a new scalar 
product (u, V)A (the so-called energetic (energy) scalar product) by 

(u, V)A = (Au, v), (25) 

and on its base the so-called energetic (energy) norm and distance by 

(26) 

respectively. In this way, D(A) is converted into a metric space -let us denote it by 
SA - with the metric (26). This space is not complete, in general. Let us complete 
it according to Remark 22.3.1. It can be shown that, A being positive definite, 
this completion can be done by joining certain elements from H to the set DA (see 
Remark 12) and by extending the scalar product (u, V)A, defined originally by the 
relation (25) for elements u, v E DA only, to these new elements. The so obtained 
complete space is called the energetic (energy) space and is denoted by HA. It is 
thus a Hilbert space with the scalar product 

(27) 

The functional (24) is then extended onto the whole space HA by 

Fu = (u, U)A - 2(j, u). (28) 

N ow, i t can be shown (com pleteness of HA is essentially appIied here) that this 
functional really assurnes its minimum on HA, for an element Uo E HA uniquely 
determined by the right-hand side f of equation (23). With regard to Theorem 9, 
more exactly to its second part, the element Uo is called the generalized solution of 
equation (23). 

Summarizing, we have: 
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Theorem 10. Let H be a Hilben space, A an operator positive definite on its 
domain 01 definition D(A), dense in H, 1 E H. Let us consider, on D(A), the 
equation 

Au=1 (29) 

and the functional (24). Let HA be the space introduced in Remark 10. Then the 
functional (24) can be extended by (28) onto the whole space HA, and the so extended 
functional attains its minimum on HA. The element Uo lor which this minimum is 
realized, is uniquely determined by the right-hand side 1 01 equation (29). 

REMARK 11. As announced above, the element Uo is called the generalized so­
lution of equation (29). Thus, in this sense, every equation of the form Au = 1 
with a positive definite operator A (and with 1 E H) is solvable. According to 
the definition, its generalized solution minimizes, in HA, the functional (28). To 
the minimization of that functional variation al methods can then be applied (see 
Chap.24). 

If the functional of energy assumes its minimum on D(A), then the minimizing 
element Uo is the solution of equation (29) in the "ordinary" (classical) sense. 

REMARK 12. The whole theory discussed above has been motived, first of all, by 
the problematics of boundary value problems in differential (in particular, partial 
differential) equations. In that case, the space L2 is mostly taken for H, and the 
completion of the space SA (Remark 10) can be done by joining functions from 
L 2 with a sufficient number of generalized derivatives (Remark 22.4.10). In such 
a case, the embedding (Remark 22.4.13) of the space HA into the space H can be 
shown to be compact, i.e. every set bounded in HA is relatively compact in H. 
Moreover, in the just discussed problematics, concerning differential equations, HA 
as wen as H are separable spaces of infinite dimensions. This justifies assumptions 
of the following theorem on eigenvalues for (unbounded) positive definite operators. 
However, before stating that theorem, let us add still a small remark: As seen before 
(Remark 10, Theorem 10), even in the case when the operator A is positive definite 
(and thus special enough), the equation (29), i.e. the equation 

Au=l, 

need not have a solution in an "ordinary" sense (i.e. from D(A)). The same holds 
for an eigenvalue problem. Thus also here the concepts of an eigenvalue, or of an 
eigenelement, need a certain generalization: We say that >. is an eigenvalue 01 the 
operator A (or 01 the equation 

Au - >.u = 0) (30) 

and that u E HA, u f::. 0, is the corresponding eigenelement, il 

(u, V)A - >.(u, v) = 0 (31) 
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holds tor all v E HA. This generalization which makes it possible to state a theorem 
on existence of eigenvalues, is very natural. In fact, if A is an eigenvalue in the 
"ordinary" sense, Le. if such an element u E D(A), u i= 0, exists that (30) holds, 
then, multiplying (scalarly) this equation by an arbitrary element v E H, we obtain 

(Au, v) - A(u, v) = o. 

The generalization consists in writing (u, V)A in (31) instead of (Au, v)j here it is 
no more necessary to assume u E D(A). (In particular, in the case of differential 
equations, the "classical" smoothness of eigenfunctions need not be assumed - such 
eigenfunctions need not exist at all.) 

Theorem 11. Let us consider the equation 

Au- AU = 0 (32) 

with an unbounded operator A positive definite on a linear set D(A) dense in a 
separable Hilbert space 0/ infinite dimension. Let the embedding 0/ the space HA 
into the space H be compact (Remark 12). Then equation (32) (or, in other words, 
the operator A) has a countable set 0/ eigenvalues, each 0/ them being positive, 
and to every eigenvalue there corresponds a finite number 0/ linearly independent 
eigenelements (generalized, in general. Le. from the space HA, see the foregoing 
remark). The system 0/ alllinearly independent eigenelements 

(33) 

(which can be assumed as already orthonormalized in HA, or in H), corresponding 
to the system 0/ eigenvalues 

(34) 

in the sense 0/ the text preceding Theorem 7, is complete in HA as well as in H. 
M oreover, we have 

!im An = +00. 
n ..... oo 

The so-called Rayleigh quotient 

(u, U)A 

(u, u) , 
(35) 

attains, on HA, its minimum, equal to Al, exactly tor the first eigenelement UI, i.e. 
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.A2 is obtained as minimum of (35) on the subspace of HA of such elements which 
are orthogonal, in HA, to the element Ul, this minimum being attained for the 
second eigenelement U2, 

etc., in general 

.A2 = min 
uEHA,U:j<!O (u, u) 
(U,Ut}A=O 

REMARK 13. For.A f .An (n = 1, 2, ... ) the equation 

Au =.AU = f 

is uniquely solvable (in a generalized sense, if necessary, i.e. with a solution from 
HA) for every fEH. 

REMARK 14. The reader may be rather surprised by the fact that in Theorem 11 
we have, for the eigenvalues, .An --+ +00, while in Theorem 7 we had .An --+ o. How­
ever, in Theorem 11 unbounded operators are considered, in Theorem 7 bounded 
operators, even completely continuous. In applications, typical representants of 
unbounded operators are differential operators, of bounded operators integral op­
erators, which - very roughly speaking - have "inverse" properties. 

REMARK 15. For details, generalizations, approximate methods in eigenvalue 
problems, etc., see, e.g. [389]. See also Chap. 24. 

22.7. Abstract Functions. The Bochner Integral 

Definition 1. Let J be a bounded closed interval, 

J= [a, b], (1) 

X a linear normed space. We say that an abstract function 

f:J--+X (2) 

is given on J if to every t E J a unique element u E X is assigned. 
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Let us note that an abstract function can be defined in a more general way (see 
e.g. [284]). 

Example 1. Let J = [0, 1J, let Ul, U2, U3 be elements from the space X. The 
function f(t), defined by 

{ 

Ul for 0 ~ t ~ h 
f (t) = U2 for t < t < i, 

U3 for i ~ t ~ 1, 

(3) 

is an example of an abstract function defined on J. Its "symbolical graph" is 
sketched in Fig. 22.3. A "symbolical graph" of another abstract function g(t) given 
with the help of these three elements by 

for 0 ~ t ~ t, 
for t < t < i, 
for i ~ t ~ 1, 

is given in Fig. 22.4. For t = 1/6, it assumes the "value" ut/2. 
An abstract function (2) is called continuous at an inner point to of the interval 

J if for every € > 0 such a ti > 0 can be found that 

IAtl < ti ~ Ilf(to + At) - f(to)lIx < €. (4) 

Here, Ilullx is the norm of the element u in the space X (and to + At is assumed 
to belong to J, of course). 

Analogously, continuity /rom the right, or /rom the left is defined, respectively, 
in a similar way as in "classical" analysis. 

The function f is called continuous in the interval (a, b) if it is continuous at 
each point of that interval. It is called continuous in the interval J = [a, bJ if it is 
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continuous in (a, b) and continuous from the right, or from the left at the point a, 
or b, respectively. 

Similarly as continuity, the limit lEX (or limit from the right, or left) at a point 
to is defined. Inequalities (4) are then replaced by the inequalities 

0< Ißtl < 15 * Ilf(to + ßt) -liix< c. 

An example of a continuous abstract function in the interval J is the function 
g(t) "sketched" in Fig. 22.4. The function (3) has, for example, at the point t = 1 
the limit from the left equal to the element U1 EX, from the right to the element 
U2 E X. Thus it is discontinuous at that point. 

The function (2) is said to have a derivative f' = hEX at an inner point to of 
the interval J, if 

lim 11 f(to + ßt) - f(to) - hlf = O. 
At-+O ßt x 

(5) 

Similarly the derivative /rom the right, or Jrom the left is defined. 

For an abstract function the so-called Bochner integral can be defined which 
represents a certain analogue of the Lebesgue integral of functions of a real variable. 
First, the so-called simple Junction is defined: The function (2) is called'simple if 
it attains, in the interval J, only a finite number of values gl, ... , gn EX, on 
Lebesgue measurable sets Sl, ... , Sn of measures /L1, ... , /Ln (/L1 + ... + /Ln = b - a), 
respectively. The Bochner integral of such a function is then defined by 

1 J(t) dt = t gi/Li· 
J i=l 

(6) 

An example of a simple function is the function (3). According to (6) we have, 
for that function, 

It is clear that the integral in (6), defined by the sum on the right-hand side of 
(6), is an element of X. In our example it equals to one third of the sum of the 
elements Ul, U2, U3. 

Measurable abstract functions in the Bochner sense are functions which can be 
approximated, with an arbitrary accuracy, by simple functions. More precisely: 
An abstract function (2) is called strongly Bochner measurable, if there exists a 
sequence of simple functions fn(t) such that 

lim IIJ(t) - Jn(t)llx = 0 for almost all tE J. 
n-+oo 

(7) 
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If, moreover, 

2!.rIfx, Illf (t) - fn(t)IIx dt = 0, 

we say that the function (2) is Bochner integrable and define 

r f(t) dt = lim ( fn(t) dt. 
lJ n ...... oo}J 

(8) 

In applieations, the spaee L 2 (J, X) of so-ealled square integrable (in the Bochner 
sense) abstract functions is often eneountered, i.e. of Boehner integrable functions 
for whieh 

I11f(t)II~dt < +00. 

In partieular, if X is a Hilbert space H with the sealar product (Ul, U2)H, then 
L 2 (J, H) is as weIl a Hilbert space with the sealar produet 

For details and generalization see [284]. See also [390]. 

22.8. The Gateaux Differential and Related Concepts 

In nonlinear funetional analysis as weIl as in nonlinear problems of partial differ­
ential equations, the eoneept of the so-ealled Giiteaux differential of a funetional is 
often eneountered. 

Definition 1. Let X be a normed linear space (Definition 22.4.4). A functional 
F (nonlinear in general), defined on X, is ealled continuous at a point Uo EX, if 

U -t Uo in X =* Fu --t Fuo, (1) 

or, what is the same, if 

U -t Uo in X =* IFuo - Ful -t 0. (2) 

It is ealled continuous in the space X if it is eontinuous at every point Uo EX. 

Definition 2. We say that the functional F has the Giiteaux differential at a point 
Uo E X, if for every fixed v E X there exists the (finite) derivative 

dd F(uo + tv)! = F'(uo, v) 
t t=O 

(3) 
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and if, moreover, the functional F'(uo, v) is linear in v. 

The most usual notation 

F'(uo, v), dF(uo, v), DF(uo, v). (4) 

REMARK 1. Let us note that Uo and v being fixed, 

fv(t) = F(uo + tv) (5) 

is an ordinary function of the variable t and that (3) is its ordinary derivative with 
respect to t at the point t = 0. Thus F' (uo, v) is a functional again. The fact 
that Uo being fixed, the value of this functional depends on v, is pointed out in the 
notation (4). Cf. also Definition 7 below. 

Let us note that the terminology is not uniform in the literature. See Remark 1l. 

Definition 3. The second Giiteaux differential is defined by 

F"(uo, vo, w) = dd F'(uo + tw, vo)1 . 
t t=O 

(6) 

Example 1. Let X = WJ1)(0, 1). (For the Sobolev spaces WJk) see Remark 
22.4.10.) Let us investigate the functional 

(7) 

Let us show, first of all, that for every u E wJI) (0, 1) both integrals in (7) have 

sense. For the first one, this fact is obvious, because in WJ1)(0, 1) we have (as 
follows from (22.4.13), (22.4.14) in the quoted Remark 22.4.10) 

Ilull~~l)(O,l) = 11 
u2(x) dx + 11 

u'2(x) dx. (8) 

Thus the first of the integrals (7) is convergent for every u E wJI)(O, 1). 

To establish convergence of the second one, let us remind embedding results 
discussed in Remark 22.4.13 (see also Example 22.4.7): Ifu E wJI)(O, 1), then u is 
continuous in [0, 1] (or can be made continuous there if changed in a proper way 
on a set of measure zero) and a constant c > ° exists, independent of U, such that 
for every U E WJ1)(0, 1) we have 

(9) 
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So the function u being continuous in [0, 1J (or equivalent to a continuous function), 
the second of the integrals (7) is finite. Thus the functional (7) is weil defined on 
wP)(O, 1). 

The Gliteaux differential: 

Thus 

f~(t) = 11 u~v'dx+t 11 
v'Zdx+20 11 u~vdx+ 

+ 60t 11 
U6VZ dx + 60tZ11 uov3dx + 20t311 v4dx (11) 

and 

F'(uo, v) = f~(O) = 11 u~v' dx + 20 11 u~vdx. 
Obviously, for every fixed uo, the functinal (12) is linear in v. 

The second differential: 

F'(uo + tw, vo) = 11 (u~ + tw')v~ dx + 20 11 
(uo + tw)3 vO dx = 

= 11 u~v~ dx + t 11 
w'vh dx + 20 11 u~vo dx+ 

(12) 

+ 60t 11 
U6Vow dx + 60tZ11 uovowZ dx + 20t311 vow3 dx. (13) 

Thus 

and 

F"(uo, vo, w) = dd F'(uo + tw, vo)1 = r1 
vhw' dx + 60 r1 

u&vowdx. (14) 
t t=o Jo Jo 
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The following theorems are significant in the theory of the so-called weak solutions 
of nonlinear boundary value problems (see § 18.9): 

Theorem 1. Let the functional F attain its minimum on X at a point UQ E X and 
let the Gtiteaux differential F'(uQ, v) exist. Then 

F'(uQ, v) = 0 Jor every v E X. (15) 

REMARK 2. The same conclusion holds if that minimum is only local. 

Definition 4. The functional F is called convex, or strictly convex in the space 
X, respectively, if 

(1-t)Fu+tFv ~ F((1-t)u+tv), (16) 

or 
(1- t)Fu + tFv > F((1- t)u + tv) (17) 

holds for every pair of elements u, v E X (U:f:. v) and for all t E (0, 1). 

REMARK 3. This definition represents a very natural analogue of the definition 
of convexity of "ordinary" functions. 

Definition 5. The functional F is called coercive on X if 

lim Fu = +00. 
lIullx-+oo 

(18) 

Theorem 2. Let X be a reflexive Banach space (Remark 22.5.9 and Definition 
22.4.5). Let F be a continuous convex and coercive functional on X. Then there 
exists a point UQ E X in which the functional F attains its minimum on X. 

IJ, moreover, F is strictly convex, then such a point is unique. 

REMARK 4. According to Theorem 1, (15) is then satisfied at that point. 

REMARK 5. As said above, the function (5) is an ordinary function of one variable 
t, for which then ordinary theorems, as the mean-value theorem, etc., are valid 
under corresponding assumptions. This makes it possible to find relatively simple 
criteria establishing assumptions of Theorem 2: 

Theorem 3. Let X be a reflexive Banach space (for example a Hilbert space). 
Let the functional F fulfil the Jollowing assumptions: 

(i) F is defined on the entire space X and has the first and second Gtiteaux 
differentials everywhere in X. 

(ii) F' (u, v) is bounded in the Jollowing sense: let M be the set oJ all u E X such 
that Ilullx ~ r (thus a sphere in X with its centre at the point u = 0 and radius 
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r). Then a constant K(r) (dependent on r, but independent of u E M) exists such 
that 

IF'(u, v)1 ~ K(r) IIvllx (19) 

holds for all u E M and v EX. 

(iii) A constant k > 0 exists (independent of u, v) such that 

F"(u, v, v) f; k IIvlli (20) 

holds for all u, v EX. 

Then there exists exactly one point Uo E X in which the functional F attains its 
minimum on X. 

At that point 
F'(uo, v) = 0 

then holds for all v EX. 

How to apply this theorem is shown in Example 18.9.2. 

REMARK 6. If it is known that a functional is the Gateaux differential F'(u, v) 
of a functional F (conditions for it can be found e.g. in [160]), then the "original" 
functional (with F(O) = 0, if required) can be found as folIows: 

Fu = 11 
F'(tu, u) dt. (21) 

For example, (12) being known, the functional (7) is easily obtained: 

Fu = 11 (11 tu'u' dx + 20 11 
(tu)3u dx )dt = ~ 11 

u,2 dx + 511 
u4 dx. 

REMARK 7 ( Monotone operators). The above problematics, discussed in the 
"language of functionals", can be considered as well in the "language of opera­
tors": 

Let A be an operator (nonlinear, in general) from a Banach space B into its dual 
space B* (Remark 22.5.9). Denote by (I, u) the value of the functional f E B* at 
the point u E B. 

Definition 6. The operator A is called 

(i) potential on B, if a functional F exists such that for all u, v E B we have 

F'(u, v) = (Au, v) (22) 

(for F'(u, v) see Definition 2); 
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(ii) bounded on B, if it maps every set bounded in B onto a set bounded in B*; 

(iii) monotone, or strictly monotone on B, if for every couple of elements u, 
v E B we have 

(Au - Av, u - v) ~ 0, (23) 

or 
(Au - Av, u - v) > 0, u t= v, (24) 

respectively. 

(iv) coercive on B, if 

1. (Au, u) 
1m 11 1 = +00. lIullB-+oo ul B 

(25) 

Theorem 4. Let A be a (nonlinear) potential, bounded, monotone and coercive 
operator from a reflexive (Remark 22.5.9) Banach space B into its dual B*. Then 
the equation 

Au= f 

has a solution Uo E B (i. e. 

(Auo, v) = (f, v) holds for each v E B) (26) 

for every f E B* . 

If, moreover, A is strictly monotone, then this solution is unique. 

REMARK 8. Theorem 4 can be generalized, in particular the requirement of 
potentiality can be removed. Solvability of the equation Au = f in a reflexive 
Banach space can bc proved e.g. for continuous monotone and coercive operators. 

REMARK 9. Let us note that also the Gateuax differential can be defined in the 
"language of operators" . 

Definition 7. Let the operator A (nonlinear, in general) map a linear normed 
space X into a normed space Y. Let Uo be a fixed element from X. Let, for every 
v EX, the limit (in the norm of the space Y) 

1· A(uo + tv) - Auo C 
1m = uov 

t-+O t 
(27) 

exist and let the operator Guo be linear in v. Then we say that the operator A has 
the Gateaux (or weak) differential at the point uo. The operator Cuo (depending 
on Uo, in general) from X into Y is called the Gateaux (or weak) derivative of the 
operator A at the point Uo and Guo v is the Gateaux (or weak) differential (at that 
point) in the direction of v. 

See also Remark 11. 
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REMARK 10. In Definition 2, the operator A was a functional and we could speak 
simply about the derivative (3) instead of the limit (27). This way is usually more 
convenient in applications. 

Rather similar to the definition of the Gateaux differential, there is the definition 
of the Frechet differential: 

Definition 8. We say that the operator A from a normed space X into a normed 
space Y has the Frechet (or strong) differential at the point Uo EX, if such a linear 
operator Duo exists from X to Y that for every v E X we have 

A(uo + v) - Auo = Duov + R(uo, v), (28) 

where 
1· IIR(uo, v)ll y _ 0 r 
1m IIvlix - ~or IIvlix ~O. (29) 

The operator Duo, depending on uo, in general, is often denoted by A'(xo) and is 
called the Frechet derivative 01 the operator A at the point uo, while Cuo v = A' (xo)v 
is then called the Frechet (or strong) differential 01 the operator A at the point Uo 
in the direction 01 v. 

See also Remark 11. 

If Ais linear, then A' = A for every uo. 

REMARK 11. As concerns Definitions 7 and 8, there is no uniformity in the 
literat ure. What we call dilerential here is often called derivative (in the direction 
01 v). Also other definitions are in use. In particular, not only linearity in v, but 
also continuity of the operators Cuo ' Duo is often required. 

Theorem 5. 11 the operator A has the Frechet differential at the point uo, then 
it has the Gateaux dilerential at that point as well, and both the differentials are 
equal. 



23. CALCULUS OF VARIATIONS 

By FRANTISEK N OZICKA 

References: [6], [47], [51], [65], [99], [103], [130], [149], [154], [161], [171], [214], [233], [260], 
[264], [304], [363], [464]. 

The calculus of variations is one of the dassical branches of mathematical opti­
mization. It has numerous applications in physics, especially in mechanics. Usually, 
the problem is to find such a function - from among functions possessing prescribed 
properties - for which the given integral (functional), whose value depends on these 
functions, assumes its extremum value. From the geometrical point of view, the 
problem can be stated as to find such a manifold (curve, surface, hypersurface) in a 
given dass of smooth manifolds that gives the (at least local) minimum or maximum 
to the given functional, with respect to the dass of the manifolds considered. 

In accord with the type of the functional whose extremum is to be found, it is 
convenient to divide the problems of the calculus of variations into certain categories 
for which general theoretical procedures have been worked out. 

The notation 
K = {(x, y) E E2 I y = y(x), x E [a, b]} 

(i.e. K is the set of points (x, y) in E 2 for which x E [a, b], y = y(x)) is frequently 
used in this chapter to describe a curve K in the xy-plane. 

A. PROBLEMS OF THE FIRST CATEGORY (ELEMENTARY 
PROBLEMS OF THE CALCULUS OF VARIATIONS) 

23.1. Curves of the r-th Class, Distance of Order r between 
Two Curves, e-Neighbourhood of Order r of a Curve 

Definition 1. A curve K in the Euclidean plane E2 (with the Cartesian coordi­
nates x and y) described by the equation 

y=y(x), xE [a, b], 
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i.e. the set of points 

K = {(x, y) E E2 1y = y(x), x E [a, b]}, (1) 

is called the curve 0/ the r-th class (or 0/ the class Tr ) in the interval [a, bJ if the 
function y has a continuous derivative y(r) in an open interval (a, b) containing 
the dosed interval [a, bJ (thus y has also continuous derivatives of alliower orders 
induding zero). 

y y 

o a b x o a 

Fig. 23.1. Fig.23.2. 

Definition 2. By the distance between two curves 

K 1 = {(x, y) E E21y = Yl(X), x E [a, b]}, 

K 2 = {(x, y) E E2 1 Y = Y2(X), x E [a, b]} 

(more exactly, by the distance 0/ order zero) we mean the number 

b x 

(2) 

i.e. the maximum of the differences (taken in absolute value) of their y-coordinates 
for all x in [a, bJ (Fig. 23.1). 

Definition 3. If the curves K 1 and K 2 from (2) are of the r-th dass, then the 
largest of the numbers 

Le. the number 
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where y~o)(x) = Yi(X), i = 1, 2, is called the distance 0/ orderr between the curves 
considered. 

Apparently do(KI , K z) = d(KI , K z). 

REMARK 1. The family of all curves 

k = {(x, y) E Ezly = y(x), x E [a, b]} (3) 

whose distance (of order zero) from the given curve K described by (1) is less 
than c (c > 0) is called the c-neighbourhood 0/ the curve K. The c-neighbourhood 
of the curve K is thus the family of all curves described by (3) that lie in the 
zone indicated in Fig. 23.2. More generally, by the c-neighbourhood 0/ order r 0/ 
a curve K, which is at least of dass Tr, we mean all the curves k of dass Tr whose 
distance of order r from the curve K is less than c, i.e. all the curves k for which 
dr(K, k) < c. Apparently each curve that lies in an c-neighbourhood of order r 
of the curve K lies also in its c-neighbourhood of order zero. 

23.2. Extrema of Functionals of the Form l b F("" y, y') d", 

Let F(x, u, v) be a continuous function of variables x, u and v on an open sub­
set il ofthe three-dimensional Euclidean space (with the Cartesian coordinates x, u 
and v). The function 

F(x, y(x), y'(x)) 

is then continuous in [a, b] for any curve K of dass Tl in [a, b] described by (23.1.1) 
and such that (x, y(x), y'(x)) E il. Hence the integral 

I(K) = lb 
F(x, y(x), y'(x)) dx (1) 

represents a certain number (depending on the choice of the curve K from the 
family of curves considered) for each such curve K. Thus, 

I(K) = l b 
F(x, y, y') dx (2) 

is a certain functional (see Remark 22.5.3); its domain 0/ definition is the family L 
of all curves of dass Tl in [a, b] described by (23.1.1) and possessing the property 
(x, y(x), y'(x)) E il for all x E [a, b]. 

The extrema of the functional (2) are defined similarly to those of a function: 



23.2 CALCULUS OF VARIATIONS 377 

Definition 1. We say that the functional (2) assurnes its absolute minimum or 
absolute maximum on its domain of definition L along the curve 

K o = {(x, y) E E2 1y = yo(x), x E [a, b]} E L (3) 

if 

I(K) ~ I(Ko) , or I(K) ~ I(Ko) (4) 

holds, respectively, for all curves K from the family L. 

Definition 2. If there exists such an c-neighbourhood of order zero of the curve Ko 
that (4) holds for all curves K E L belonging to this neighbourhood, we say that 
the functional (2) assumes its strong relative minimum or strong relative maximum 
on L, respectively, along the curve K o. 

Definition 3. If there exists such an c-neighbourhood of the first order of the 
curve Ko that (4) holds for all curves K ELfrom this neighbourhood, we say that 
the functional (2) assumes its weak relative minimum or weak relative maximum 
on L, respectively, along the curve K o. 

Obviously the following theorem holds: 

Theorem 1. An absolute extremum is a strong and a weak relative extremum as 
welt. 

(Obviously, the converse statement does not hold.) 

A similar statement holds for the strong and the weak relative extrema. 

REMARK 1. The previous facts implie the following corollary: In order to find 
necessary conditions for an extremum of the functional (2), it is sufficient to find 
necessary conditions for its weak relative extremum. 

REMARK 2. Sufficient conditions for the existence of an extremum of a functional 
are, even in the considered simplest case, rather complicated and we are not going 
to state them here as weIl as in the following paragraphs (cf. references given at 
the beginning of this chapter). In mechanical and physical problems, that belong 
by their character to the calculus of variations, the existence of the extremum often 
follows from the formulation of the problem itself. 
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23.3. Variation of a Function and Variation of the Functional I 

Let us consider the functional (23.2.2) on its domain of definition L. Suppose that 
the function F, regarded as a function of the variables x, u and v, has continuous 
partial derivatives up to the second order in il. (For the notation see the preceding 
paragraph. ) 

Definition 1. Let the curve Ko given by the function Yo(x) from (23.2.3) be a fixed 
curve of dass Tl in [a, b] and K be an arbitrary curve of dass Tl in [a, b] given by 
a function y(x) from (23.1.1). The difference 

8yo(x) = y(x) - yo(x) (x E [a, b]) (1) 

is called the variation 01 the lunction yo(x) in [a, b]. 

The variation 8yo(x) of a function is thus also a function that apparently depends 
on the choice of the curves Ko and K. 

Let us put 

I(K) = lb F(x, y(x), y'(x)) dx, 

I(Ko) = l b F(x, yo(x), Yb(x)) dx, 

(2) 

(2') 

where K and K o are assumed to be curves from the family L. From (1), (2) and (2') 
we can express their difference in the form 

I(K) - I(Ko) = lb 
{F(x, Yo + 8yo, Yb + 8yb) - F(x, Yo, vb)} dx, (3) 

where Yo = Yo(x), 8yo = y(x)-yo(x) and 8yo = y'(x)-yo(x). Confining ourselves to 
a sufficiently small E-neighbourhood of the first order of the curve Ko, that belongs 
to the family L, and applying the mean value theorem to the function F(x, y, V') 
(regarded as a function of three variables), we can rewrite the right-hand side of (3) 
as 

l b 
{F(x, Yo + 8Ya, Yb + 8Yb) - F(x, Ya, vb)} dx = 

= lb 
{ ~: (x, Ya, yb)8yo + ::, (x, Ya, Yb)8 yb } dx + dl(K, Koh, 

(4) 

where d l (K, K a) is the distance of the first order between the curves K and K a, 

and'TI is a function depending in general on the choice of the curves K and K a and 
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tending to zero as d1 -t O. Hence the expression 

is equal to the increment I(K) - I(Ko) of the functional I if we neglect terms of 
order high er than d1(K, K o). 

Definition 2. The expression 8I(Ko) defined in (5) is called the variation of the 
functional (23.2.2) along the curve Ko. 

Hence 8I(Ko) is also a functional depending on Yo(x) and 8yo(x). It is the 
principal part of the increment I(K) - I(Ko) of the functional I, linear in 8yo 
and 8Yb. 

REMARK 1. Besides the given definition of the variation of the functional I, 
we can introduce another definition which, in the considered case of the func­
tional (23.2.2), is equivalent. Let K o from (23.2.3) and K from (23.1.1) be fixed 
curves from the family L. Let 8yo and 8yb preserve their meaning defined above 
and let I be the functional (23.2.2). Define a function iP of one variable t as 

iP(t) = lb 
F(x, Yo + t8yo, Yb + t8yb) dx. (6) 

From (4) we can express the increment 

where 

K t = {(x, y) E E2 1 y = yo(x) + t8yo(x), x E [a, b]} , 

d1 (Kt, Ko) ft is a bounded function, and "'1 -t 0 as t -t O. This formula and the 
formulae (5), (6) imply 

. iP(t) - iP(O) diP () l b { ()F ') ()F ') '} hm = -d 0 = -() (x, Yo, Yo 8yo + -() (x, Yo, Yo 8yo dx. 
t-+O t t a y Y 

Hence, the variation 8I(Ko) of the functional I along the curve Ko can also be 
defined as the derivative of the function iP(t) with respect to t at the point t = O. 

REMARK 2. The reader, who is familiar with the elements of functional analysis 
knows that the variation defined in this way is the Gä.teaux differential of the 
functional land that a necessary condition for the extremum of this functional is 
that its Gä.teaux differential vanishes. This condition is properly formulated for our 
aims in Theorem 1 of the following paragraph. 
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REMARK 3. The variation of the functional I from (23.2.2) along the curve 
K = {(x, y) E E 2 1 y = y(x), x E [a, b]}, where K E L, is usually written as 

6I(K) = lb {F~(x, y, y')8y + F~I (x, y, y')8y'} dx (7) 

with the notation F~ and F~I used for ö F / öy and ö F / öy', respectively. 

Among all the curves described by the equation y = y(x) (x E [a, b]), different 
from the curve K chosen and belonging to the family L, let us now consider only 

y 

',----7 , y(bJ 
y(aJ! 

I 

o a b x 

Fig. 23.3. 

those curves for which y(a) = y(a) and y(b) = y(b) (Fig. 23.3). Then we have 

8y(a) = y(a) - y(a) = 0, 8y(b) = y(b) - y(b) = O. (8) 

For the curves from the domain L of definition of the functional I, that satisfy 
the boundary conditions (8), the variation of the functional can be rewritten (after 
integrating in (7) by parts) in the form 

8I(K) = lb {F~(X, y, y') - d~ F~I (x, y, y') } 8y dx, (9) 

which is called the Lagrange form of the variation of the functional (23.2.2), or in 
the form 

8I(K) = lb {F~/(x, y, y') - N(x)} 8y' dx, (9') 

where 

N(x) = l x F~(x, y, y') dx 

which is called the Du Bois-Reymond form of the variation (7). 
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23.4. N ecessary Condition for an Extremum of the Functional I 

Let us again consider the functional 

1 = l b 
F(x, y, y') dx 

on its domain of definition L (§ 23.2). 

Theorem 1. Let the function F(x, u, v) possess continuous partial derivatives 
up to the second order in [l. If the functional 1 assumes its extremum (absolute, 
strong relative, or weak relative) on the set of all curves K E L with the property 

y(a) = yo(a) , y(b) = yo(b) 

just along the curve K o E L with the description 

K o = {(x, y) E E 2 1y = yo(x), x E [a, b]}, 

then the function Yo (x) satisfies the differential equation 

(1) 

Further, the following assertions hold: At all the points of the curve Ko for which 
F;:yl "1= 0, there exists a continuous second derivative y~(x). If the curve Ko gives 
a minimum to the functional 1, then F;:yl ;;; 0 holds along this curvej if it gives 
a maximum, then we have F;:yl ~ 0 along it. 

Equation (1) is called the Euler differential equation corresponding to the given 
variation al problem and every its solution y(x) on the interval [a, b] is called the 
extremal of the variation al problem given; the Euler equation (1) is a second order 
differential equation and its solution contains two constants of integration to be 
determined from the given boundary conditions. 

23.5. Special Cases of the Euler Equation. 
The Brachistochrone Problem 

1. If the functional given has the form 

1 = l b 
F(x, y')dx, 
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then F~ = 0 and the Euler equation (23.4.1) reduces to 

d , 
dxFyl = O. 

This implies 
F~I = C (C = const.), 

which is the first integral of the Euler equation. 

2. If the functional given is of the form 

1= lb F(y, y')dx, 

23.5 

if the curve described by the equation y = y(x) (x E [a, b]) is the extremal of 
the corresponding variational problem, and if F;;'y' =F 0 along this curve, then, by 
Theorem 23.4.1, 

d: (F(y, y') - y' F~, (y, y'» = 

F" F'" "F' , d F' '(F' d F') 0 = yY + y'Y - Y y' - Y dx y' = Y y - dx' y' = 

along this curve and thus 

F(y, y') - y'F~,(y, y') = C (C = const.) (1) 

is the first integral of the corresponding Euler equation. 

Example 1 (The Brachistochrone Problem). From among all smooth curves join­
ing the points A(Xl, yt} and B(X2, Y2), Yl > Y2, Xl < X2 (Fig. 23.4), let us find the 
curve along which a particle moving from the rest at the point A to the point B 
in the earth gravity field (described by the vector P with components Pz = 0 
and Py = -mg, where gis the acceleration of gravity) reaches the point B in the 
shortest time. (Practically: We are to find the shape of such a groove joining the 
points A and B that a stone sliding from A along the groove under the infiuence 
of gravity (friction being neglected) reaches the point B in the shortest possible 
time.) 

Since the force with which the constraint (groove) acts on the particle (stone) is 
perpendicular to the direction of motion, it does no work. The energy conservation 
principle thus implies 

Le. 
(2) 
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y 

p 

o x 

Fig. 23.4. 

At the same time we have 

ds J( '2) dx v=-= l+y -
dt dt 

(2') 

along the trajectory of the particle, where the functions x = x(t), y = y(x(t)) 
represent the time course of the motion along a smooth curve described by the 
equation y = y(x) and joining the points A and B. In (2'), s denotes the arc of 
this curve, y' = dy/dx, and t denotes time. According to (2) we have y ~ Yl for 
x E [Xl, X2]. If we had y(x) = Yl at some point x E (Xl, X2), then the scalar speed v 
would be zero at this point due to (2) and further motion would require a certain 
impulse, what is impossible because of the physical interpretation of the problem. 
We thus have y(x) < Yl for X E (Xl, X2] and, consequently, v > O. This fact and 
the equations (2) and (2') imply 

dt-- -ds J( 1 +y,2 ) 
- v - 2g(Yl - y) dx, 

From this, we obtain the formula 

(3) 

for the total time T necessary to traverse the curve. The physical problem given 
is thus reduced to the following variational problem: Find, among all curves of 
class Tl with end points A and B, the curve that gives the minimum value to the 
functional (3). The functional T in (3) is a functional of type 2 but. the function 

/( 1 + y/2 ) 
F(y, V') = V 2g(Yl - y) 



384 SURVEY OF APPLICABLE MATHEMATICS 23.5 

does not satisfy the assumptions stated in the beginning of § 23.3 (it is even unde­
fined for y ~ YI). However, the function F considered has continuous second order 
partial derivatives in the domain x E (Xl, 00), Y < YI and y' E (-00,00). Then 
a simple calculation yields F:'yl > 0 in this domain. 

The physical nature of the problem indicates that among all the smooth curves 
joining the points A and Band described by the equation Y = y(x), where y(x) < YI 
for X E (Xl, X2], there exists a curve possessing the property required. We will find 
a necessary condition for the existence of this extremal and obtain the desired result 
from it. Choose an arbitrary positive number c such that it is less than X2 - Xl. 
Then the arc of this extremal curve with end points A'(XI + C, Y(XI + c)) and 
B(X2' Y2) apparently gives the minimum to the functional 

(3') 

on the family of all curves of dass Tl described by the equation y = y(x), with 
end points A' and B, and possessing the property y(x) < YI for X E [Xl + c, X2]' 
The case of the "modified" functional (3') thus can be induded in the special case 2 
discussed above. From (1) and (3'), we obtain the first integral ofthe Euler equation 
in the form 

/( 1 + y,2 ) 
V 2g(YI - y) 

_ y' y' 1 = C 
y![2g(YI - y)] y!(1 + y'2) 

or, after rearrangement, 

i.e. 

Putting K = 1/(2gC2 ), we can write 

By the parameter method (completely analogous to the method of Remark 17.5.3 
and Example 17.5.2) we get (putting y' = tan cp, so that Y = Yl - K cos2 cp) the 
parametric equations of the curve sought in the form 

K 
y = Yl - '2(1 + cos2cp). 
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These are parametric equations of the extremal of the "modified" variational prob­
lem and thus also the equations of the curve to be found. The constants K and 6 
are determined by the condition that the extremal curve passes through the points 
A(Xl' Yl) and B(X2, Y2). An easy analysis leads to the conclusion that the curve 
found is an arc of a cycloid. 

B. PROBLEMS OF THE SECOND CATEGORY 
(EXTREMA OF FUNCTIONALS OF THE FORM 

l b F(x, Yl, ... , Yn, Y~, ... , y~)dx) 

23.6. Some Concepts and Definitions 

Definition 1. A curve K in the Euclidean space En +1 (with the Cartesian coor­
dinates x, Yl, ... , Yn) with the description 

K = {(x, Yl, ... , Yn) E E n+1 I Yi = Yi(X) (i = 1, ... , n), xE [a, b]} (I) 

is called the curve 01 the r-th class (or of the dass Tr ) in the interval [a, b) if the 
functions Yi(X) (i = 1, ... , n) have continuous derivatives of order r in an open 
interval (a, b) containing the closed interval [a, b) (the functions Yi(X) thus also 
have continuous derivatives of all lower orders, including zero). 

Definition 2. Let K be a curve described by (1) and let 

K o = {(x, Yl, ... , Yn) E En+11Yi = YOi(X) (i = 1, ... , n), xE [a, b]}. (2) 

If both K and Ko are curves of dass Tr in E n +b then the largest of the values 

for i = 1, ... , n and x E [a, b) is called the distance dk{K, K o) 0/ order k between 

these two curves (k E {O, ... , r}). 

The concept of the c-neighbourhood is introduced similarly to the case of a plane 
curve (§ 23.1). If the curve K o from (2) belongs to the class Tr, then the family 
Uk(Ko; c) (where k E {O, ... , r}) of all curves K described by (1) and satisfying 
the inequality dk(K, K o) < c (c > 0) is called the c-neighbourhood 0/ order k 0/ 
the curve K o. 
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23.7. Formulation of the Variational Problem 

Let a function F(x, Ul, •.. , U n , VI, ... , vn ) of 2n + 1 variables (representing 
Cartesian coordinates of a point in the (2n+1)-dimensional Euclidean space E2n+t) 
be given. Let F have continuous partial derivatives up to the second order in an 
open set il of the space E2n+1. We denote by L the family of all curves (23.6.1) of 
dass Tl in [a, b] that have common end points A and B (on each curve, the point A 
corresponds to the value x = a and the point B to the value x = b) and for which 

(x, Yl(X), ... , Yn(x), y~(x), ... , y~(x)) E il 

for x E [a, b]. 

Our task is as follows: 

Find such a curve Ko from the family L which makes the functional 

1 = lb 
F(x, YI, ... , Yn, y~, ... , y~)dx (1) 

have an extremal value on the family L. 

The family L of the curves considered is called the domain 0/ definition 0/ the 
functional (1). 

REMARK 1. The concepts of absolute extremum, strong relative extremum and 
weak relative extremum of the functional (1) are defined in a manner similar to that 
in § 23.2. In what follows we will give only necessary conditions that are satisfied 
by any curve of the family L which gives extremum to the functional (1). 

23.8. Necessary Conditions for an Extremum of the Functional I 

Theorem 1. Let K be a curve 0/ class Tb that is described by (23.6.1), has end 
points A(a, Yl (a), . .. , Yn(a)) and B(b, Yl (b), . .. , Yn(b)), and belongs to the domain 
of definition L of the functional (23.7.1) considered above. Further, let the func­
tion F satisfy the assumptions of § 23.7. 1/ the functional (23.7.1) assumes its 
extremum (absolute, strong relative, or weak relative) on L along this curve, then 
the functions Yi(X) satisfy the system of differential equations 

(1) 
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REMARK 1. The system (1) is called the system 0/ Euler equations corresponding 
to the variational problem given; each curve (23.6.1) which fuHms (1) is called 
the extrem al of this problem. The general solution of the system of differential 
equations (1) (if it exists) depends on 2n constants of integration CI, •.• , C2n and, 
consequently, it has the form 

Yi=Yi(X,CI, ... ,C2n) (i=l, ... ,n). 

The constants Cl, ... , C2n are determined from the boundary conditions, i.e. from 
the requirement that the extremal passes through the points A and B. 

Theorem 2. Let the assumptions 0/ Theorem 1 be satisfied. I/ a curve K belonging 
to the family L yields a minimum of the functional (23.7.1) on the family L 0/ the 
curves considered, then the inequalities (the Legendre conditions) 

,,> y' y" I F" 
Fy~y~ = 0, F" 1 

Y~Y~ , 

F" I y~y~ > F" = 0, ... , 
y~y~ 

F" 
y~y~' 

F" y~y~ , ... , F" 
y~y~ 

F" 
Y~Y~ , 

F" 
y~y~ , ." , F" 

y~y~ ;;;0 (2) ............................ 
F" 
Y~Y~ , 

F" y~y~, .,. , F" 
y~y~ 

hold at every point 0/ the extremal K. In case 0/ a maximum 0/ the considered 
/unctional along the extremal K, the inequalities (2) hold at every its point except 
that the inequality symbols are alternately ~, ;;;, ~, ;;;, .... 

Example 1. Let us find the extremal of the functional 

("/2 Jo (y'2 + zl2 + 2yz) dx 

with the boundary conditions 

y(O) = 0, z(O) = 0, y (~) = 1, z (~) = -1. 

In this particular case, the system of Euler equations (1) reduces to two differential 
equations 

y" - z = 0, z" - y = O. (3) 

Differentiating the first of these equations twice with respect to x and using the 
second one, we get the differential equation 

y(4) _ Y = 0 

whose general solution is 
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This and the first of equations (3) yield 

From the boundary conditions given we calculate that Cl = C2 = C3 = 0, C4 = 1. 
The extremal sought is thus the curve described by the equations 

y = sinx, z = - sinx (x E [0, ~1\"]). 

C. PROBLEMS OF THE THIRD CATEGORY 
(EXTREMA OF FUNCTIONALS OF THE FORM 

l b F(x, y, y', .. ,., y(n») dx) 

23.9. Formulation of the Problem 

Many problems of physics and technology lead to the mathematical problem of 
finding the extrema of functionals of the form 

1= lb F(x, y, y', ... , y(n») dx, (1) 

where the integrand depends not only on the derivative y'(x) but also on the deriva­
tives of higher orders of the function y(x). The function y(x) appears in the de­
scription of the curve 

K = {(x, y) E E2 1y = y(x), x E [a, b]} (2) 

from the domain of definition of the functional (1). To introduce the domain of 
definition L more precisely, we suppose that the given function F(x, Uo, UI, ... , Un ) 

of n + 2 independent variables is continuous on an open set Q of the (n + 2)­

-dimensional Euclidean space (with Cartesian coordinates x, Uo, UI, ... , u n ). Let 

K o = {(x, y) E E2 1 y = Yo(x), xE [a, b]} (2') 

be a curve of dass Tn and have the property 

(x, Yo(x), yb(x), ... , yan)(x)) E Q for xE [a, b]. 
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The domain L of definition of the functional (1) is then introduced as the family of 
all curves of dass Tn that are described by (2), for which 

(x, y(x), y'(x), ... , y(n)(x)) E n for xE [a, b], 

and that satisfy the boundary conditions 

y(a) = yo(a), y'(a) = yb(a), ... , y(n-l)(a) = yan-1)(a) , 

y(b) = yo(b), y'(b) = yb(b), ... , y(n-l)(b) = yan-1)(b) , 
(3) 

where yo(a), ... , yan-1)(b) are given numbers. 

The corresponding variational problem is to find such a curve from L that yields 
an extremum of the functional (1). 

23.10. A Necessary Condition for the 
Extremum of the Functional (23.9.1) 

Under the assumption that the function F(x, y, y', ... , y(n)) in (23.9.1) has 
continuous partial derivatives up to order n + 2 with respect to its arguments 
x, y, y', . .. ,y( n) in the above considered domain n, the following theorem holds: 

Theorem 1. If the functional (23.9.1) assumes its extremum on the family L 

along the curve K o E L described by (23.9.2'), then the equation 

(1) 

is satisfied at all points of the curve K o. 

REMARK 1. The differential equation (1) is called the Euler-Poisson equation. 

In the general case (if F~~n)y(n) =I- 0), it is a differential equation of order 2n and its 
solution (if it exists) involves 2n constants of integration. The general solution of 
the equation (1) has thus the form 

The constants ai and ßi (i = 1, ... , n) can be determined from the 2n condi­
tions (23.9.3) at the end points of the integral curve of equation (1), which is called 
the extremal of the variational problem given. 
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Example 1. The foHowing problem is studied in the theory of elasticity: A cylin­
drical solid beam, elastic and homogeneous, has its ends fixed at the same height 
above the ground (Fig.23.5). The profile of the deflected axis of the beam is to be 
determined. 

y 

x 

Fig. 23.5. 

The formula 

11 [1 y,,2 ] 
E = -I '2IL1 + y,2 + f!y .J(1 + y'2) dx, 

where IL and f! are known positive constants, holds for the total potential energy E 
of the beam. If we Msume the deflection of the beam to be very smaH as compared 
with its length, we can put 1 + y,2 ~ 1 and the formula for the potential energy 
becomes 

E = [I (~ILy"2 + f!Y) dx. (2) 

A weH known physical principle now states: If a mechanical system is in stable 
equiIibrium, then its total potential energy is minimal. Hence our physical problem 
leads to the variation al problem of finding the minimum of the functional (2) on 
the family L of aH curves of dass T2 with the description 

K = {(x, y) E E21y = y(x), xE [-1, l]} 

and with the boundary conditions (characterizing fixed ends) 

y(-l) = y(l) = 0, y'(-l) = y'(l) = O. (3) 

In case of the functional (2), the Euler-Poisson equation (1) reduces to the equation 

d2 
( ") f! + dx2 ILY = 0 , 

i.e. 

f! + ILy(4) = O. (4) 
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The general solution of the differential equation (4) depends on four constants of 
integration a, ß, 'Y and 8, and has the form 

The boundary conditions (3) then imply 

23.11. Generalization to the Case of an 
Arbitrary Finite N umber of Functions Sought 

A more general problem analogous to that formulated in § 23.9 consists in finding 
the extremum of the functional 

whose domain of definition L is the family of curves possessing the following prop­
erties: 

(i) Each curve K E L is described by 

K = {(x, Yl, ... , Ym) E Em+1/ Yi = Yi(X) (i = 1, ... , m), xE [a, b]} , 

where the functions Yi(X) have continuous derivatives y~ni)(x) (i = 1, ... , m) 
in some open interval containing the interval [a, b]. 

(ii) For all x E [a, b] , 

(x, Yl (x), y~ (x), . .. , yind(x), Y2(X), yHx), ... , y~n2)(x), ... 

... , Ym(x), y:n(x), ... , y~m)(x)) Eil, 

where [} is an open set in the space of the arguments of the nmction F. 
Moreover, we suppose that the nmction F has continuous partial derivatives 
of the required (sufficiently high) order in il. 

In the considered more general case we arrive at the following Euler-Poisson 
system 0/ equations: 
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which represents necessary conditions for the curve yielding the extremum of the 
given functional under the boundary conditions prescribed. 

D. PROBLEMS OF THE FOURTH CATEGORY 
(FUNCTIONALS DEPENDING ON 
A FUNCTION OF n VARIABLES) 

23.12. Some Concepts and Definitions 

Let us consider a bounded region G with the boundary S in the n-dimensional 
Eudidean space E n (with coordinates Xl, X2, .•• , x n ). 

Definition 1. A function cp(XI, ... , x n ) is called the function 0/ the dass Tr in 
G = G U S if it has continuous partial derivatives up to the order r in a region G 
containing G. 

Definition 2. Let CP(XI, ... , xn ) be of dass Tl in G. Let E n+l be the (n + 1)­
-dimensional Eudidean space with the Cartesian coordinates Xl, ... , X n , U. The 
set 

is then called an explicitly described regular hypersur/ace in En+I on the considered 
dosed region G. 

Definition 3. Let NI and N 2 be two regular hypersurfaces in E n +l with the 
descriptions 

NI = {(Xl' ... ' Xn , U) E En+l IU = CP(XI, ••• , X n ), (XI, .•• , X n ) E G} , 
N2 = {(Xl' ... ' Xn , u) E En+llu = 'I/J(XI, ... ' X n ), (Xl, ... , X n ) E G} . 

The number 

is called the distance (0/ order zero) 0/ the hypersur/aces NI and N2, and the 
number 

dl (NI,N2 )=max( max _Icp-'l/JI, max _ICPI-'l/Jll,··· 
(X1, ... ,x .. )EG (X1, •.. ,x .. )EG 

... , max _ICPn - 'l/Jnl), 
(Xl , ••• ,X .. )EG 
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{}'P 
'Pi =~, 

VXi 

./.. _ {}7/J ( . ) 
'f't - Z = 1, ... ,n , 

{}Xi 
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is called the distance of the first order of the hypersurfaces NI and N 2 • The family 
of all regular hypersurfaces described by 

whose distance of order zero from the regular hypersurface (1) is less than c (c > 0) 
is called the c-neighbourhood of the hypersurface N in G. Similarly, the family of all 
regular hypersurfaces N in G, for which dl (N, N) < c, is called the c-neighbourhood 
of the first order of the regular hypersurface (1) in G. 

Let the function F(Xi, 'P, 'Pi) = F (Xl,"" Xn , 'P, :~ , ... , ::::) have contin­

uous partial derivatives with respect to its 2n + 1 arguments Xl, ... , X n , 'P, 'PI, .. · 
... , 'Pn up to the third order on an open subset [2 of the (2n + l)-dimensional 
space. Let us denote by L the family of all regular hypersurfaces that are described 
by (1) and for which 

for (Xl,"" X n ) E G. Further let us put 

1= J ... J F(Xi, 'P, 'Pi) dXI ... dxn . (3) 
G 

Definition 4. We say that the functional (3) assumes its absolute minimum or 
absolute maximum on the family L along the regular hypersurface N described 
by (1) and belonging to L if 

I(N) ~ I(N), or I(N) ~ I(N) (4) 

holds, respectively, for any hypersurface N E L. 

If there exists such an c-neighbourhood of order zero of the regular hypersur­
face N described by (1) and belonging to L that (4) holds for any regular hy­
persurface N from this neighbourhood, we say that the functional (3) assumes its 
strang relative minimum, or strang relative maximum on L, respectively, along the 
hypersurface N. If (4) holds for an c-neighbourhood of the first order of the hy­
persurface N, we speak about a weak relative minimum, or weak relative maximum 
of the functional (3), respectively. 

Obviously, necessary conditions for a weak relative extremum are also necessary 
conditions both for a strong relative extremum and an absolute extremum. 
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23.13. Formulation of the Variational Problem 
and Necessary Conditions for an Extremum 

23.13 

Under the above stated assumptions, the vanational problem is formulated in 
the following way: In the set of all regular hypersurfaces N that are described 
by (23.12.1), belong to Land satisfy the boundary condition 

(1) 

where f is a given function continuous at the points of the boundary S of the 
region G, a hypersurface is to be found along which the functional (23.12.3) assumes 
its extremum. 

Necessary conditions for an extremum of the functional (23.12.3) are given in 
the following theorem: 

Theorem 1. Let the regular hypersurface N, that is described by (23.12.1), belongs 
to Land satisfies the boundary condition (1), make the functional (23.12.3) have 
an extremum on the set of all regular hypersurfaces belonging to the family Land 
satisfying the given boundary condition. Then the partial differential equation 

(2) 

where 
F' = äF 

<P äcp , F' = äF (. ) '" ~ = 1, ... , n , 
Ti äcpö 

holds at the points of the hypersurface N. 

REMARK 1. The partial differential equation (2) is called the Euler-Ostrogradski 
equation and every regular hypersurface described by (23.12.1), with cp(XI, . .. , x n ) 

solving equation (2), is called an extrem al n-dimensional manifold (an extremal 
hypersurface) of the variation al problem considered. 

Example 1. The integral 

is called the n-dimensional Dirichlet integral. Let a continuous function 
f(Xl, ... , x n ) be given at the points of the boundary S of the region G. The 
Euler-Ostrogradski equation (2) holds for an extremum of this functional on the 
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set of all functions that are of dass Tl in G and satisfy the boundary condition 
rpls= fis. Equation (2) reads, in this case, 

which is the Laplace equation. 

n {}2rp 
ll.rp = L -2 = 0, 

i=l {}xi 

E. PROBLEMS OF THE FIFTH CATEGORY 
(VARIATIONAL PROBLEMS WITH 

"MOVING (FREE) ENDS OF ADMISSIBLE CURVES") 

23.14. Formulation of the Simplest Problem 

In variational problems belonging to the first three categories, the domains of 
definition of functionals consisted of curves with common end points. These prob­
lems can be generalized in a certain sense. In what follows, we are going to present 
a certain generalization of a variational problem of the first category. 

Let K I and K 2 be two curves with the descriptions 

K I = {(x, y) E E2 1 y = rp(x), x E [al, bl ]} , 

K2 = {(x, y) E E 21 y = 'ifJ(x), xE [a2' b2]} 
(1) 

which belong to the dass Tl in their domain of definition and have no common 
points (i.e. K I n K 2 = 0). Let F(x, y, y') be a function satisfying the assumptions 
stated in § 23.3 (i.e., F has continuous partial derivatives up to the second order 
on an open subset il of the three-dimensional space of its three arguments). The 
problem is: Prom among all the curves of dass Tl with the description 

K = {(x, y) E E21y = y(x), x E [Xl, X2]} , (1') 

which have one end point A(XI, YI) on the curve KI and the other end point 
B(X2, Y2) on the curve K 2 (A and Bare thus not fixed points, but A is some point 
on the curve K I and B is some point on the curve K 2 ), we have to find such a curve 
that makes the functional 

l X2 1= F(x, y, y') dx 
Xl 

(2) 

have an extremum (Fig. 23.6). 
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23.15. Necessary Conditions for an Extremnm 

Let us denote by L the family of all the curves K of dass Tl with the descrip­
tion (23.14.1') for which (x, y(x), y'(x)) E Q for x E [Xl, X2] and which satisfy the 
boundary conditions 

Then the following theorem holds: 

Theorem 1. Let the curve K E L yield an extremum 0/ the functional (23.14.2) 
on the /amily L. Then the Euler equation 

(1) 

holds at points 0/ the curve K and the conditions 

{ F + (cp' - y')F~, } A = 0, { F + ("p' - y')F~, } B = 0 (1') 

are satisfied at its end points A and B. 

REMARK 1. The conditions (1') are called the transversality conditions corre­
sponding to the variational problem given. The symbols {} A and {} B mean that 
the coordinates Xl, YI = y(xI) of the points A and the coordinates X2, Y2 = Y(X2) 
of the points B, respectively, are to be substituted into the expression in braces. 

REMARK 2 (A More General Form 0/ the Transversality Conditions). Let the 
curves K I and K 2 be implicitly described by the equations 

4!(X, y) = 0, 

!P(x, y) = 0, 
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where the functions iJ! and .p have continuous partial derivatives of the first order 
in a two-dimensional domain containing the curves KI and K2 • Further let 

hold at each point (x, y) of the curves KI and K2 • Then the transversality condi­
tions have the form 

{( ,,)OiJ!} {, OiP} 
F - y Fyl oy A = Fyl ox A' 

{( ,,)o.p} {, o.p} 
F - Y Fyl oy B = Fyl ox B' 

(2) 

In particular, if the curves K I and K 2 are straight lines parallel to the y-axis, then 
the conditions (2) reduce to 

{ F~I } A = 0, { F~I } B = 0 . (3) 

Notice that in case when the considered family of curves consists only of the curves 
that have one end point common (fixed) while the other end point lies on a given 
curve, one of the two transversality conditions (1') or (2) no longer applies. 

Example 1. Let K o be aplane curve of dass Tl described by the equation 
y = cp(x), x E [a, b]. Our task is to find the smallest distance of a given point 
A(xo, Yo) from this curve (assuming that A ~ Ko). 

We consider all curves K of dass Tl described by the equation y = y(x) that 
have one end point at the fixed point A(xo, Yo) and the other point B(e, 'TI) is 
a "free point" on the given curve Ko (Fig. 23.7). The length of the arc of each such 
curve K is (assuming e > xo) 

1= I(K) = 1~ y'(1 + y'2) dx. 
"0 

(4) 

Hence we are to find an extremum of the functional (4) on the family of all curves 
of dass Tl that are described by the equation y = y(x), have one end point at the 
fixed point A and the other end point on the given curve Ko. In this case, the Euler 
equation reduces to the equation 

d y' 
dx /(1 + y'2) = 0, 

which implies that y' = c (c = const.) and y = cx+d (d = const.). Consequently, 
the extremal is a straight line. This straight line passes through the point A(xo, Yo) 
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and the unknown constants c and d thus fulfil the relation 

Yo = CXo + d. (5) 

The transversality condition (1') gives in this case 

, 
J(l + y'2) + (cp' - y') v'(1 ~ y'2) = 0, 

i.e. 

1 + cp'y' = 0 (6) 

at the point B of the extremallying on the given curve Ko. It is apparent from (6) 
that the transversality condition is the orthogonality condition in this particular 
case. At the point B, we have y' = c, cp'IB = cp'({). Under the assumption 
cp'({) #- 0, (6) implies 

1 
c = - cp'({) . 

The constant d in (5) can be determined from the condition cp({) = ce + d, i.e. 

Rewriting the condition (5) in the form 

we calculate the first coordinate { oft he point B. Its second coordinate is calculated 
from the relation"., = cp({). 

In a similar way we can determine the distance between two curves in E2 • 

REMARK 3. Variational problems with "moving (free) ends of admissible curves" 
can be easily generalized to the case of functionals of the form (23.7.1), i.e. func­
tionals defined for c.urves in an Euclidean space of arbitrary dimension. Similar 
problems with "moving (free) ends of admissible curves" also arise in the case of 
functionals depending on derivatives of higher orders. The transversality conditions 
in these two cases are naturally more complicated (see, e.g., [51], [65], [130]). 
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F. PROBLEMS OF THE SIXTH CATEGORY 
(THE ISOPERIMETRIC PROBLEM IN THE SIMPLEST CASE) 

23.16. Formulation of the Problem 

Let F(x, y, y') and <li(x, y, y') be two given functions that have continuous par­
tial derivatives up to the second order in an open subset n of the three-dimensional 
space of their three arguments. Let us denote by L the family of all curves K of 
dass Tl with the description 

K = {(x, y) E E2 1 y = y(x), xE [a, b]} , 

for which (x, y(x), y'(x)) E n for x E [a, b]. The problem is: Prom among all the 
curves K from the family L, for which the functional 

G = l b 
<li(x, y, y') dx (1) 

assurnes the same prescribed value (i.e. G = const.), such a curve is to be found 
that makes the functional 

1= l b 
F(x, y, y') dx (2) 

have an extremum on the family of the curves considered. 

This problem can be solved by the procedure shown in the following text, assum­
ing that the curve sought is not an extremal of the functional G (on the family L). 
The variation al problem formulated in this way and completed with the bound­
ary conditions prescribed on the ends of admissible curves is the basic type of the 
so-called category of isoperimetrie problems. 

23.17. A Necessary Condition for an Extremum 

Theorem 1. Let the curve K o E L described by the equation y = Yo(x) (x E [a, b]) 
yield an extremum 0/ the functional 

1= l b 
F(x, y, y') dx 
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on the family of all curves from L that are described by the equation y = y(x) 
(x E [a, bJ) and satisfy the conditions 

y(a) = yo(a) , y(b) = yo(b) , 

G(K) = lb 
!l>(x, y(x), y'(x)) dx = C 

(1) 

(where C, yo(a), yo(b) are given numbers). If the curve K o is not an extremalof 
the functional 

G = lb 
!l>(x, y, y') dx 

on the family of all curves K E L having common end points A(a, yo(a)) and 
B(b, yo(b)), then there exists a constant A such that the curve K o is an extremal of 
the functional 

H = lb 
[F(x, y, y') + A!l>(X, y, y')] dx (1') 

on the family of all curves K E L possessing the properties (1). 

REMARK 1. Theorem 1 gives a method for solving the considered isoperimetric 
problem. The problem reduces to a problem of the first category, i.e. to the problem 
of finding an extremum of the functional (1') under the conditions given. Hence, the 
extremals for the corresponding variational problem satisfy the Euler differential 
equation of the variation al problem with the functional (1'), i.e. the equation 

(2) 

Example 1. F'rom among all the curves K of dass Tl in [a, b] that are described 
by the equation y = y(x) (x E [a, bJ), have the end points A(a, 0) and B(b, 0), are 
of the same length 1, greater than b - a, and lie in the half-plane y f; 0 (Fig. 23.8), 
such a curve is to be found that the area endosed by it and the segment AB is 
maximal. 

y 

o )C 

Fig. 23.8. 
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The area endosed by the segment AB and a curve K of the considered family 
of curves is given by the integral 

I(K) = l b ydx, (3) 

the length of the curve by the integral 

According to our assumptions, we have 

(4) 

The boundary conditions for the family of admissible curves are 

y(a) = y(b) = o. (5) 

Let us consider, first, a variational problem of the first category with the func­
tional G whose domain of definition is the family of the curves of dass Tl described 
by the equation y = y(x) (x E [a, bJ) and possessing only the property (5). Accord­
ing to case 1 of § 23.5, we have 

y' 
v'(1 + y'2) = const. 

at the points of the extremal of this variational problem. Therefore, y' is constant at 
the points of each such extremal. From this and from the boundary conditions (5), 
we conclude that y = 0 (x E [a, bJ) holds for the extremal sought. However, the 
length of the segment with the end points A and B is b - a and is thus less than l. 
Hence, such an extremal of the discussed variational problem with the functional G 
cannot be, at the same time, an extremal of the given isoperimetric problem. We 
can thus apply Theorem l. 

In this particular case, the Euler differential equation reduces to (see § 23.5) 

, 
y + >. V(l + y'2) - y' >. v'(1 ~ y'2) = 0: (0: = const.) 

and, after rearrangement, to 
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This further implies 

Put y' = tan cp (where cp is taken from the interval (- ~, ~)) so that 

y = a - >. eos cp . 

Differentiating with respeet to x, we obtain 

, \. dcp 
y = Asmcp-d 

x 

and, substituting y' = tan cp, we furt her have 

dx = >.eoscpdcp, 

l.e. 

x = >. sin cp + ß (ß = eonst. ). 

The relations (7) and (8) finally imply 

23.17 

(6) 

(7) 

(8) 

(9) 

The values of >., a, ß are determined by the value of 1 and by the eonditions (5). The 
eondition 1 > b - a yields >. =/; O. In fact, let>. = o. Then (6) gives y = a = eonst., 
and the boundary eonditions (5) imply that the extremal of the problem is the 
segment with end points A(a, 0) and B(b, 0) and the length 1 = b - a, whieh 
eontradiets the assumption 1 > b - a. Therefore>. =/; 0 and we obtain from (9) that 
the extremal is the are of a eirde with end points A and B. The radius 1>'1 and 
the eentre S(ß, a) of the cirde ean be determined from the eonditions imposed. 
A detailed analysis gives the following results: 

If 1 < ~ (b - a), then the sought eurve of required properties is the above men­
tioned are of a cirde. 

In the ease 1 = ~(b - a), we obtain the are of the cirde with radius 1>'1 = 
= b;:a and the eentre S (~, 0), i.e. the semicirde deseribed by the equation 
y = J[(b + a)x - ab - x2] (x E [a, b]), and the derivative y' is improper at the 
points A and B. In this ease, the assumptions of § 23.5 are not satisfied (the eurve 
is not of dass Tl in [a, b], but the eurve solves the problem eonsidered, anyway. 

In the ease 1 > ~(b-a), there is no eurve with the deseription y = y(x) (x E [a, b]) 
that would solve the given problem. 
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REMARK 2. Isoperimetric problems can be generalized to isoperimetric prob­
lems with "moving ends of admissible curves", and also to the case of functionals 
depending on curves in aspace of arbitrary dimension, as wen as to functionals of 
the form (23.9.1). 

G. PROBLEMS OF THE SEVENTH CATEGORY 
(PARAMETRIC VARIATIONAL PROBLEMS) 

23.18. Formulation of the Problem 

In variation al problems of the preceding categories, we considered functionals 
whose domains of definition were curves in the space E n+1 with an explicit de­
scription of the form (23.6.1). Naturally, we can also take into account functionals 
defined on a family L of curves given parametrically in the space E n , i.e. curves 
with the description 

Since any curve with this description - considered as a set of points in E n - is 
independent of an arbitrary regular transformation of the parameter t, only such 
functionals 

(2) 

are admissible which are invariant with respect to a regular transformation of the 
parameter. A special property of the function F can guarantee that this functional 
would be invariant: Namely, the function F has to be a positive homogeneous 
function of the first degree with respect to the variables y~ (i = 1, ... , n), i.e., 

F(Yl, ... , Yn, ky~, ... , ky~) = kF(yl, ... , Yn, y~, . .. , y~) 

has to hold in its domain of definition, for an arbitrary k > O. Since 

n 

F = ~ F',y~ 
~ Yi t 

(3) 
i=l 

holds for such homogeneous functions according to the Euler theorem (12.6.1), we 
arrive at the equations (assuming corresponding differentiability of the function F) 

n 

L F~: Yj y~ = 0 (j = 1, ... , n) . (3') 
i=l 
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The variation al problem with a functional of the form (2) is called the parametric 

(or homogeneous) variational problem. 

23.19. Necessary Conditions for an Extremum of the Functional I 

Let the function F(YI, ... , Yn, Yi, ... , y~) possess continuous partial derivatives 
up to the second order in an open set fl of the 2n-dimensional space of the ar­
guments YI, ... , Yn, yi, ... , y~ and let it be a positive homogeneous function of 
the first degree with respect to the variables y~ (i = 1, ... , n) in fl. Let us de­
note by L the family of all curves K with the parametrie description (23.18.1), 
where all the functions Yi (t) (i = 1, ... , n) have continuous derivatives of the 
first order in an open interval (lI, l2) containing the interval [tI, t2] and where 
(YI(t), ... , Yn(t), Yi (t), ... , y~(t)) E fl for t E [tl, t2]. Since (23.18.3) implies 

n 

F' LF" , y = y'y Yi' k , k 

i=l 

we get, taking (23.18.3') into account, the relation 

(1) 

to be satisfied at all points of each curve K E L. 

The following theorem holds: 

Theorem 1. If the functional (23.18.2) assumes its extremum on the family L 

along a curve K E L, then the system of Euler equations 

, d, ( ) Fy,. - - F , = 0 i = 1, ... , n dx y. 

holds at the points of this curve K. 

Note that one of these equations is redundant, in consequence of (1). 
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H. PROBLEMS OF THE EIGHT CATEGORY 
(VARIATIONAL PROBLEMS WITH CONSTRAINTS) 

23.20. Formulation of the Variational Problem 
and Necessary Conditions for an Extremum 

405 

In applications to geometry and mechanics, more general variational problems 
are considered. In these problems, the family of admissible curves consists of 
smooth curves in En+l (with an explicit description) that lie on a given smooth 
d-dimensional manifold (surface, hypersurface) Sd C En+l, (2 ~ d ~ n). The 
corresponding functional I to be minimized or maximized has the form (23.7.1). 
Assume that the manifold Sd has the implicit description 

Sd = {(x, YI,···, Yn) E GI rpj(x, YI, ... , Yn) = 0 (j = 1, ... , n - d + I)} , 

where Gis such a domain in En+l in which the functions rpj have continuous partial 
derivatives of the first order, and the matrix consisting of n - d + 1 rows 

{}rpj {}rpj {}rpj 
{}x ' {}YI , ... , {}Yn (j = 1, ... , n - d + 1) 

has the maximal possible rank, i.e. n - d + 1, at every point of the set Sd. 

In what follows, we are going to study the variational problem with the functional 

1= l b 
F(x, YI, ... , Yn, Y~, ... , Y~) dx (1) 

where the function F is assumed to have continuous partial derivatives up to the 
second order in an open set [} of the (2n + 1)-dimensional space of its arguments. 
We will take the family of all curves possessing the following properties for the 
domain of the functional (1): 

(i) The curves have the description 

K = {(x, Yl, ... , Yn) E En+l I Yi = Yi(X) (i = 1, ... , n), xE [a, b]} (2) 

and are of dass Tl in [a, b]. 
(ü) The curves have common end points 

A(a, YI(a), ... , Yn(a», B(b, Yl(b), ... , Yn(b». 



406 SURVEY OF APPLICABLE MATHEMATICS 23.21 

(iii) For every curve K with the properties (i) and (ü) 

(x, Y1(X), ... , Yn(x), yHx), ... , y~(x)) E {} for all xE [a, bJ. 

(iv) K c Sd for every curve K with the properties (i), (ü) and (ili). 

The problem of finding an extremum of the functional (1) on the family L of 
an curves possessing the properties (i) to (iv) is called the variation al problem with 
constraints or the Lagrange variation al problem. 

Theorem 1. If the functional (1) assumes its extremum on the family L along 
a curve K E L then there exist functions Aj(X) (j = 1, ... , n - d + 1), defined on 
[a, bJ and such that the relations 

d n-d+1 a. 
F~i - dx F~: + L Aj a:: = 0 (i = 1, ... , n), 

j=1 (3) 

IfJj(x, yl, .. . , Yn) = 0 (j = 1, ... , n - d + 1) 

hold at the points of the curve K. 

23.21. Variational Problems with Generalized Constraints 

Variational problems with constraints formulated in § 23.20 can be generalized 
in such a way that the constraints are considered in the form 

CPj(x,Yl,"',Yn,Y~,""Y~)=O (j=1, ... ,n-d+1). (1) 

Under some assumptions (not presented here) on the functions CPj, the domain L 
of the definition of the functional (23.20.1) (in which the function F satisfies the 
assumptions of § 23.20) is introduced as the family of curves possessing the proper­
ties (i), (ü) and (ili) of § 23.20 and satisfying the conditions (1). Necessary condi­
tions for the existence of an extremum of the functional (23.20.1) on this family L 
are similar to the conditions (23.20.3) and have the form 

F~i - dd F;: + nf1 Aj (~cp~ - dd ~cp~) = 0 (i = 1, ... , n), 
x j=1 Y. X Y. 

cPj(x, yl, .... , Yn, y~, ... , y~) = 0 (j = 1, ... , n - d + 1). 
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23.22. Canonical Form of the Euler Equations. 
Hamiltonian Equations 

If the function F(x, YI, ... , Yn, Y~, ... , Y~) in the definition of the functional 
(23.7.1) satisfies the assumptions of § 23.7, then the Euler equations (23.8.1) can 
be rewritten as 

(1) 

which are differential equations of the second order for the functions Yi(X) (i= 
= 1, ... , n) to be found. It is known from the theory of ordinary differential equa­
tions (§ 17.18) that every system of second order differential equations can be 
transformed into an equivalent system of first order differential equations. In our 
particular case, this can be carried out with the help of the so-called Legendre 
transformation, given by 

Pi = F~:(x, YI,.··, Yn, Y~,···, Y~) (i = 1, ... , n) (2) 

provided that the quantities Y~ can be expressed from (2) as functions of the vari­
ables x, YI, ... , Yn, PI, ... , Pn, i.e. 

, , ( . ) Yi = Yi X, VI, ... , Yn, PI, ... , Pn (i = 1, ... , n). (2') 

If we introduce the function 

H(x, YI,···, Yn, PI,···, Pn) = 
n 

= L F~:(x, YI,···, Yn, Y~,···, y~)yi - F(x, VI,···, Yn, y~, ... , y~), (3) 
i=l 

where the quantities y~ on the right-hand side are those of (2'), then the Euler 
differential equations (1) are equivalent to the system of 2n differential equations 

dYi öH 
-d = -ö (x, YI,··· , Yn, pt,··· , Pn), 

X Pi 
dPi öH 
-d = --ö (x, Yb···, Ym PI,···, Pn) 

x Yi 

(4) 

of the first order for the 2n sought functions Yi(X) and pi(X) (i = 1, ... , n). 

The function H defined by (3) is called the Hamilton (or Hamiltonian) function 
and the system (4) is called the system of Hamilton differential ~quations. 
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CONCLUDING REMARK. Categories I to VIII in no case cover the wide field 
of problems of the calculus of variations. We could introduce a lot of furt her 
categories, as for instance the problems with constrained extrema of functionals 
defined on a family of more general curves than those belonging to the dass Tl, 
or the problems with moving ends which are subsets of given smooth manifolds, or 
the problems obtained as certain combinations of problems of the above presented 
categories, and a number of other variation al problems (see references introduced 
at the beginning of this chapter). 
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24.1. Introduction. Theoretical Background. 
Table of Boundary-Value Problems 

Among numerical methods of solution of linear boundary-value problems for or­
dinary differential equations and elliptic partial differential equations, variational 
methods play an important role. Theoretical results for these methods have been 
obtained mostly by means of functional analysis. Thus the reader is recommended 
to have a look at Definitions 22.4.6 and 22.4.7 at first, concerning the concept of the 
Hilbert space, and at Remark 22.4.10 on generalized derivatives and the Sobolev 
space. This space, currently used in variational methods, is mostly denoted by 
Hk(fl) or WJk}(fl). In this chapter, the former symbol is used. If no misunder­
standing can occur we use only the symbol Hk instead of Hk(fl). Further, the 
reader is recommended to notice Theorem 22.6.9 on the minimum of the so-called 
functional of energy, Remark 22.6.10 on the energy space HA and the generalized 
solution to operator equations of the form Au = f, and §§ 18.8 and 18.9 about 
generalized and weak solutions of differential equations. These concepts playa fun­
damental role in variation al methods. 

Let us consider a boundary-value problem for a differential equation in the form 

Au=f, 
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where f is a given element of areal Hilbert spa.ce H, A is a symmetrie positive 
definite operator (Definitions 22.6.3, 22.6.4) defined on the domain D(A) dense 
in H and u the unknown.solution. 

In this formulation, the operator A eorresponds to the given differential oper­
ator (the left-hand side of the given equation) and its domain of definition D(A) 
eorresponds to the order of the differential operator and to the boundary eondi­
tions (again to their left-hand sides). Sinee D(A) is a linear set, this formulation 
deseribes only homogeneous boundary eonditions. Nonhomogeneous boundary eon­
ditions ean be included into the right-hand side f in the following way: We ehoose 
a sufliciently smooth function w satisfying the boundary eonditions. The solution is 
supposed to be ofthe form u = z+w. We then have A(z+w) = f or Az = f -Aw 
with z E D(A). The domain of definition D(A) is then a linear set of those suf­
ficiently smooth functions that satisfy the eorresponding homogeneous boundary 
eondition. 

Variational methods are based on Theorem 22.6.9 whieh aflirms that, roughly 
speaking, the element (function) Uo E D(A) is a solution of the equation Au = f if 
and only if Uo minimizes, on D(A), the funetional of energy 

Fu = (Au, u) - 2(f, u) . 

Here, (.,.) stands for the sealar produet in H, mostly in L2(il). However, even 
in simple eases it ean happen that neither the solution of the given equation, nor 
the minimum of the corresponding functional F need exist. Then, following Re­
mark 22.6.10 (or § 18.8), we introduce a new Hilbert space HA as the eompletion 
(§ 22.2) of D(A) with a new sealar produet (u, V)A = (Au, v). Then the above 
functional of energy, defined originally only for u E D(A), is extended onto the 
whole space HA by 

Fu = (u, U)A - 2(f, u), 

This funetional attains really its minimum on HA for an element Uo E HA, uniquely 
determined by the operator A and the right-hand side f of the given equation 
(cf. the quoted paragraphs). This element is ealled the generalized solution of the 
equation Au = f. The existenee and uniqueness of a (generalized) solution of 
this equation is thus ensured provided A is a symmetrie positive definite operator 
on D(A). If, moreover, Uo belongs to D(A), then it is the solution of equation 
Au = f in the usual sense. In the ease of differential equations, this happens if 
the given data (eoeflicients of the operator A, the function f, etc.) are sufliciently 
smooth. Sueh a solution is then ealled classical. 

Now, by § 18.9, the funetional F attains its minimum at sueh a point Uo at whieh 
its first differential 

F'(uo, v) = 2(uo, V)A - 2(f, v) 
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vanishes. Instead of the problem to find the minimum of the functional F on HA 
we thus can require the fulfilment of the ''variational condition" 

(uQ, V)A = (I, v) for all v E HA. (1) 

The generalized and the weak solution (see § 18.9) of the problem are identical here. 

REMARK 1. If we integrate equation (1) by parts (i.e. use the Green theorem, 
cf. § 18.9) and eliminate the "variation" v we obtain what we started from, i.e. a dif­
ferential equation. But this is just what we are going to avoid because the appli­
cation of the differential operator to the nmction u requires more smoothness of u 
than its use in the "variational condition". The possibility to use less smooth func­
tions as a solution of boundary-value problems is an important feature of variational 
methods. 

On the other hand, it can be shown that the space HA contains (if Ais a differ­
ential operator) the same functionsas a subspace V of a properly chosen Sobolev 
space. The norm in the space HA is then equivalent with the norm of that Sobolev 
space. The scalar product (u, V)A is a bilinear form (i.e. linear both in u and in v) 
on V satisfying the hypotheses of Theorem 18.9.1. And from it the existence of the 
weak solution to the given boundary-value problem follows once again. Moreover, 
Theorem 18.9.1 does not require the symmetry of the bilinear form. 

Consequently, we will consider as a primary problem the problem of the rep­
resentation of the linear functional (I, v) by a bilinear form. More exactly: Let 
a Sobolev space Hk and its subspace H~ (cf. Remark 22.4.11) be given. Let us 
choose a subspace V so that H~ C V C Hk. We denote by lIullv the norm of the 
element u ofthe space V. On the space V, let a bilinear form a( u, v) be given (this 
form is denoted by (( u, v» in § 18.9; here we adopt the notation usual in the finite 
element context). Let a(u, v) be continuous, i.e. 

la(u, v)1 ~ K lIull v IIvliv for all u, v E V, (2) 

and V -elliptic, i.e. 

a(u, u) ~ allull~ for all u E V, a > O. (3) 

Problem 1. We are to find an element UQ E V such that 

a(uQ, v) = (I, v) holds for all functions v E V. (4) 

Existence and uniqueness of such an element is guaranteed by Theorem 18.9.1 
(see § 18.9 for details). Theorem 18.9.1 holds even if a general linear functional 
on the space V stands on the right-hand side. For usual boundary-value problems, 
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the scalar product (f, v) in L 2(n) is always present on the right-hand side of (4). 
But for some types of boundary conditions the right-hand side functional has to 
be modified by adding other terms and the generalized version of Problem 1 is 
then used. Our task in this chapter is to describe effective methods for numerieal 
computation of the element Uo. 

We recall that also here V is a subspace and that the boundary-value problem 
in the formulation (4) includes, for some types of boundary conditions, only their 
homogeneous versions. For nonhomogeneous conditions it is necessary to find, in 
advance, a function w E Hk that satisfies these nonhomogeneous conditions. The 
solution of the given problem is then sought in the form Uo = z + w and we require 

a(z, v) = (/, v) - a(w, v) for all v E V (4') 

instead of (4). Such a function w will be called representing junction. 

The most important boundary-value problems are summarized in Tab. 24.1, 
given at the end of this paragraph. To each problem, the eorresponding bilinear 
form, the right-hand side functional (/, v) or its generalization, the subspace V and 
the representing function ware shown. 

REMARK 2. If a(u, v) is symmetrie, the functional a(u, u) - 2(/, u) attains its 
minimum over V just at the element Uo. 

REMARK 3. In the case of a symmetrie form, a(u, v) may be considered as a new 
scalar product on Vj the conditions (2) and (3) represent then the equivalenee of 
the norm given by the scalar produet (we recall that a(u, v) = (u, V)A) and the 
norm on V. This new scalar product is often called the energy scalar product and 
the corresponding norm is called the energy norm. 

REMARK 4. Nonsymmetrie bilinear forms are obtained in a natural way if the 
differential operator contains lower derivatives of odd order, e.g. if a second-order 
operator eontains first derivatives: 

Example 1. Let us have the equation 

OU 
-ßu+- =/ 

OX 

in a domain n c E 2 with a Lipschitz boundary S (Remark 22.4.10) and with the 
boundary eondition u = 0 on S. 

Multiplying the equation by a function v E HJ and integrating over n, we obtain 

-In ßuvdxdy + In ::VdXdy = In /vdxdy. 
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Integrating by parts and using the given boundary condition we have (for more 
details see e.g. [389], Chaps. 8 and 32; cf. also Example 18.9.1) 

Thus, we set 
r (8U8V 8u8v 8U) 

a(u, v) = Jn 8x8x + 8y8y + 8x v dxdy. 

Changing the role of u and v, we obtain 

r (8V8U 8v8u 8V) 
a( v, u) = J n 8x 8x + 8y 8y + 8x u dxdy 

and finally, integrating the last term by parts with the use of the boundary condi-
tion, r (8V8U 8v8u 8U) 

a(v, u) = Jn 8x8x + 8y8y - 8x v dxdy. 

We see that, in this case, a(u, v) i:- a(v, u) and thus a is not symmetrie. 

TABLE 24.1. 

Most Current Types 0/ Boundary- Value Problems 

Notation: 

DE ... differential equation 

BC ... boundary conditions 

CS condition of solvability 

BF bilinear form 

RS right-hand side functional (f, v) 

FS fundamental space V with elements denoted by v 

RF ... function w apriori satisfying some kinds of boundary conditions 

Use: 

For given DE and BC, it is necessary to verify CS. Then, we find BF, RS, FS, and 
eventually (in the case of nonhomogeneous boundary conditions of some kind) RF 
in the table. In this way, we obtain information necessary for the construction of 
(4) or (4'). 

(A) Ordinary differential equations (one-dimensional case) 

CD DE: -(pu')' + ru = / on a bounded interval I = (a, b), p, r bounded, 

p(x) ~ Po > 0, r(x) ~ 0, / E L 2 (I) 
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Be: u(a) = A, u(b) = B 

es: none 

BF: lb (pu' v' + ruv) dx 

RS: lb 
fvdx 

FS: V=HJ 

RF: w EH1 , w(a) = A, w(b) = B 

® DE: the same as in 0 
Be: u(a) = A, p(b)u'(b) + ßu(b) = B, ß ~ 0 

es: none 

BF: l b 
(pu'v' + ruv) dx + ßu(b)v(b) 

RS: l b 
fvdx+Bv(b) 

FS: V c Hl, v(a) = 0 

RF: w E H 1 , w(a) = A 

CD DE: the same as in 0 
Be: p(a)u'(a) - au(a) = A, p(b)u'(b) + ßu(b) = B, a ~ 0, ß ~ 0, 

lb 
r dx + a + ß > 0 

es: none 

BF: l b 
(pu' v' + ruv) dx + au(a)v(a) + ßu(b)v(b) 

RS: l b 
fvdx + Av(a) + Bv(b) 

FS: V=H1 

RF: none 

24.1 

CD DE: -(pu')' = fon a bounded interval I = (a, b), p bounded, p(x) ~ Po > 0, 

fE L2(I) 

Be: u'(a) = A, u'(b) = B 

es: l b 
f dx - Ap(a) + Bp(b) = 0 
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BF: lb pu' v' dx 

RS: lb fvdx - Ap(a)v(a) + Bp(b)v(b) 

FS: V = H 1 , l b 
V dx = ° 

RF: none 

415 

® DE: (pu")" - (qu')' +ru = f on a bounded interval I = (a, b), p, q, r bounded, 

p(x) ~ Po> 0, q(x) ~ 0, r(x) ~ 0, fE L2 (I) 

Be: u(a) = A, u'(a) = B, u(b) = C, u'(b) = D 

es: none 

BF: lb (pu" v" + qu' v' + ruv) dx 

RS: lb 
fvdx 

FS: V = Hg 

RF: w E H 2 , w(a) = A, w'(a) = B, w(b) = C, w'(b) = D 

CD DE: the same as in ® 
Be: u(a) = A, u"(a) = B, u(b) = C, u"(b) = D 

es: none 

BF: the same as in ® 
RS: lb fvdx - Bp(a)v'(a) + Dp(b)v'(b) 

FS: VCH2 , v(a) = 0, v(b) = ° 
RF: w E H 2 , w(a)=A, w(b) = C 

(2) DE: the same as in ® 
Be: u(a) = A, u'(a) = B, u(b) = C, p(b)u"(b) + au'(b) = D, a ~ ° 
es: none 

BF: lb (pu"v" + qu'v' + ruv) dx + au'(b)v'(b) 

RS: lb fvdx+Dv'(b) 

FS: V C H 2 , v(a) = 0, v'(a) = 0, v(b) = ° 
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RF: w E H 2 , w(a) = A, w'(a) = B, w(b) = C 

® DE: the same as in ® 
Be: u(a) = A, u'(a) = B, p(b)u"(b) = C, [-(pu")' + qu']x=b = D 

es: none 

BF: the same as in ® 
RS: lb 

Ivdx + Dv(b) + Cv'(b) 

FS: V C H 2 , v(a) = 0, v'(a) = 0 

RF: w E H 2 , w(a) = A, w'(a) = B 

k 

24.1 

® DE: 2) _1)i(PiU(i))(i) = 1 on a bounded interval I = (a, b), Pi, i = 0, ... k, 
i=O 

bounded, Pk(X) ~ P > 0, 

Be: u(a) = Ao , u'(a) = Al, 
u(b)=Bo , u'(b)=BI , 

es: none 

pi(X) ~ 0, i = 0, ... , k - 1, 

... , u(k-l)(a) = Ak-l 

... , u(k-l)(b) = B k- l 

b k 

BF: 1 LPiU(i)v(i) dx 
a i=O 

RS: lb 
Ivdx 

FS: V = H~ 

RF: w E Hk, w(a) = Ao, 
w(b)=Bo , 

w'(a) = Al , 
w'(b) = BI , 

(B) Partial differential equations 01 elliptic type 

... , 
... , 

W(k-l)(a) = Ak- l 
w(k-l) (b) = B k- l 

@ DE: - f / (aij :u) + cu = 1 on a bounded domain D c Em with the 
i,j=l x, xJ 

boundary S, aij, i,j = 1, ... , m, c bounded, 
m m 

L aij(X)eiej ~ 0: Lei, 0: > 0, for all real vectors e = (6,···, em) 
i,j=l i=l 

and almost all points x E D; c ~ 0,1 E L2 (D), 
especially - ß u + cu = 1 

Be: u = gon S 

es: none 
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l(f 8u8v ) BF: aij 8x. 8x. + cuv dx, 
n i,j=1 • J 

. 1 (f· 8u 8v ) especlally . Z ß. ß. + cuv dx 
n i=1 x. x. 

RS: !afVdx 

FS: V=HJ 

RF: w EH1, w = gon 8 

DE: the same as in @ 
Be: u = g on 8 1 , mes 8 1 :I ° , 

m 8u L aij~Vi + au = h on 8 2 , 8 1 U 8 2 = 8, 8 1 n 8 2 = 0, 
i,j=1 xJ 

Vi = cos(v, Xi), V is the outward unit normal, a bounded, a(8) ~ 0, 
hE L2 (82 ), 

especially u = g on 8 1 , 
8u 
8v + au = h on 82 

es: none 

BF: r (f aij ::. :v. + cuv) dx + r auvdS, Jn i,j=1 • xJ JS2 

especially r (f 88u. 88v. + cuv) dx + r auv d8 
Jn i=1 x. X. JS2 

RS: r fvdx + r hvd8 
Jn JS2 

FS: V C H 1 , V = ° on 8 1 

RF: w E H 1 , W = g on 8 1 

417 

@ DE: the same as in @ 

Be: f aij :u. Vi+au = h on 8, a bounded, a(8) ~ 0, 1 cdx+ 1 ad8 > 0, 
i,j=1 X J n s 
hE L 2 (82 ), 

Vi = cos(v, Xi), V is the outward uni~ normal 

es: none 
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[ (f: ai; ~u. :v. + CUV) dx + [ auvdS, Jn . ·-1 uX. uX, Js 1.,3-

. l(~auav ) 1 espec1ally L.J ~ ~ + cuv dx + auv dS 
n i=1 uX. uX. s 

In fvdx + fs hvdS 

V=H1 

none 

24.1 

@DE: - f: /. (ai; :u.) = f on a bounded domain il c Em with the 
.. 1 X. X, 

Be: 

es: 

BF: 

I,J= 

boundary S, ai;, i,j = 1, ... , m, bounded, 
m m 

L ai;(X)eie; ~ Cl La, Cl> 0, for all real vectors ~ = (6,···, em) 
i,;=1 i=1 

and almost all points x Eil, f E L2 (il), 
especially -.:1. u = f 
~ ou . 
L.J ai;a.V; = h on S, hE L2(S), Vi = cos(v, Xi), V 1S the outward 

i,;=1 X. 

unit normal, 

especially ~~ = h on S 

In f dx + fs h dS = 0 

1 ~ au av 
L.J ai;a. a: dx , 

n i,;=1 x. x, 

. l~auav especlally L.J ~ a: dx 
n i=1 uX. X. 

RS: In fvdx + fs hvdS 

FS: V=H1 , InVdX=O 
RF: none 

@ DE: .:1.2u = fon a bounded domain il C E 2 with the boundary S, f E L2(il) 

Be: u = gon S, 

es: none 

au 
av = h on S, V is the outward unit normal 
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BF: 1 ({Pu {Pv {Pu (Pv ,Pu /PV) 
--+2----+-- dxdy 

{J {}x2 {}x2 {}x{}y {}x{}y {}y2 {}y2 

RS: LIVdXdY 

FS: V=H~ 

RF: w E H 2 , w = gon S, 
{}w 
{}y = h on S 

@DE: the same as in @ 
Be: u = 9 on S, M u = h on S, 

{}2 U 
where Mu = aßu + (1 - a) {}y2' ais a number, 0 ~ a < 1, hE L2(S) , 

Y is the outward unit normal 

es: none 

BF: 
f [( {}2 u {}2 u ) {}2v {}2 U {j2v 
J {J {}x2 + a {}y2 {}x2 + 2(1 - a) {}x{}y {}x{}y + 

+ (::~ + a ::~ ) ::~ ] dxdy 

RS: L Ivdxdy + fs h :~ ds 

FS: V C H 2 , V = 0 on S 

RF: w E H 2 , W = 9 on S 

@ DE: the same as in @ 
Be: M u = 9 on S, M u the same as in @, 

{} {}3 u 
Nu = h on S, where Nu = - {}y ßu - (1 - a) {}Y{}T2 ' 

o ~ a < 1, g, hE L2(S) , T is the unit tangent, 
Y is the outward unit normal 

es: L I dxdy + fs h ds = 0 

LXI dxdy + fs xhds + fs9Yl ds = 0 

LYldXdY+ fsYhdS+ fs9Y2dS=O 

BF: the same as in @ 

RS: L Ivdxdy + fs (Vh + :~g) ds 
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FS: V = H 2, l vdxdy = 0, l xvdxdy = 0, l yvdxdy = 0 

RF: none 

24.1 

@ DE: - ( A + ~ ) (~:2l + ;:~~) - ~ (~;l + ä;;1 ) = /t , 

@ 

_ (A + ~) ( ä2U1 + ä2U2) _ ~ ( ä2U2 + ä2U2) = h 
2 äxäy äy2 2 äx2 äy2 

on a bounded domain il C E2 with the boundary S, 
A ~ 0, J1. > 0 are constants, /t, h E L2(il)j system 0/ equations 0/ 
plane elasticity. 

If we put 
U = (U1, U2) , X = Xl , Y = X2 , 

1 (äUi äUj) 
Cij(U) = 2 äXj + äXi ' i, j = 1,2 

and 

{ I for i = j , 
Oij = Adiv u.6ij + J1.cij(U), where 6ij = 0 

for i '" j, 
the system can be written as 

_ äOn _ 8(112 - !t 
äXl 8X2 - , 

_ 80 21 _ 8022 = h 
äXl 8X2 

Be: Ul = gl, U2 = g2 on S 

es: none 

BF: 

RS: 

FS: 

RF:. 

DE: 

Be: 

1 {A(äUl + äU2) ( 8Vl + äV2)+ 
[J äx 8y äx äy 

[ äUl 8Vl 1 ( 8Ul 8U2) (äVl äV2 ) äU2 äV2] } d d 
+ J1. 8x 8x + 2 äy + äx äy + äx + äy äy x y 

or l {Adiv udiv v+ 

+ J1. [cll (U)cll (v) + 2c12( U)C12 ( v) + c22( U)c22( v)l} dXldx2 

l (/tVl + h V2) dxdy 

V = HJ x HJ (the space ofpairs (VI, V2), VI E HJ, V2 E HJ) 

wt, W2 E H l , w1 = gl , w2 = g2 on S 

the same as in @ 
Ul = gl, U2 = g2 on 81 , 

[ A (~~ + 88~ ) + JL ~~ ] vI + ~ (~:l + ~~ ) V2 = hl , 
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~ C~8:l + ~~ ) VI + [A (~~ + 88~ ) + JL ~~ ] V2 = h2 on S2 , 

mesSl =I 0, SlUS2 = S, SlnS2 = 0, hl , h2 E L2(S2), Vi = COS(Xi, V), 

V is the outward unit normal, 

es: 

BF: 

RS: 

FS: 

RF: 

DE: 

Be: 

or in the notation from @ 
allvl + a12V2 = hl , 

a2lvl + a22V2 = h2 on 8 2 

none 

the same as in @ 

r (!Ivl + !2v2) dxdy + r (hlVl + h2V2) ds in iS2 

V C H l X H l , VI = 0, V2 = 0 on SI 

Wl, W2 E H l , Wl = 91, w2 = 92 on SI 

the same as in @ 

[A (8Ul + 8U2) + JL 8Ul] VI + !!:. ( 8Ul + 8U2) V2 = hl , 
8x 8y 8x 2 8y 8x 

!!:. ( 8Ul + 8U2) VI + [A ( 8Ul + 8U2) + f.L 8U2] V2 = h2 on S 
2 8y 8x 8x 8y 8y 

h l , h2 E L2(S), Vi = COS(Xi, V), V is the outward unit normal, 
or in the notation from @ 
allVl + a12 v2 = hl , 

a21Vl + a22V2 = h2 on S 

es: l!I dxdy + fs h l ds = 0, L!2 dxdy + fs h2 ds = 0, 

1 (x!2 - Yfd dxdy + fs (xh2 - yhd ds = 0 

BF: the same as in @ 

RS: 1 (!IVI + !2V2) dxdy + fs (hl VI + h2V2) ds 

FS: VCHlxHl , lV1dXdY=0, LV2dXdy=0, L(XV2-yvddXdY=0 

RF: none 
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24.2. Fundamental Approximation Methods 

(a) The Ritz Method 

This method is a fundamental method for finding an approximate solution of 
Problem 24.1.1 in the case of a symmetric bilinear form a(u, v). The problem can 
then be equivalently formulated as a problem to find the minimum of the functional 

F(u) = a(u, u) - 2(1, u) (1) 

on aspace V that is a suitably chosen subspace of a Sobolev space Hk. The choiee 
of V is determined by the type of the boundary conditions of the original differential 
problem. 

The basic idea of the Ritz method consists in restricting the space V to a finite­
-dimensional subspace V N and taking the element y N that minimizes the func­
tional (1) on the subspace VN for the approximation of the weak solution to the 
given problem (the weak solution itself minimizes the functional (1) on V). 

Let us choose a basis <PI, ... , <PN in the subspace VN . The element YN will be 
given by 

N 

YN = L Ck<Pk 
k=l 

and the problem to find Y N is the problem to find its coefficients Cl, ... , CN. 

Substituting (2) into (1), we obtain 

or 
N N N 

L L a(<pk, <pj)CkCj - 2 L ck(l, <Pk). 
k=lj=l k=l 

(2) 

This is a quadratic form in the variables Cl, ... , CN. We apply standard conditions 
for its extremum, i.e., we put the derivatives with respect to Cl, ... , C N equal to 
zero; we thus obtain a system of linear algebraic equations 

N 

La(<pk' <Pj)Ck = (I,<Pj) , j = 1, ... , N. (3) 
k=l 

The matrix A with the entries a( <Pk, <pj) is usually called the Gram matrix of the 
elements <Pt, ... , <PN in the energy scalar product (Remark 24.1.3). This matrix 
is symmetrie (because of a(<pj, <Pk) = a(<pk, <Pj». Moreover, it is positive definite 
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(because of (24.1.3)) and, consequently, nonsingular, so the system (3) has a unique 
solution for an arbitrary right-hand side. In this way, the coefficients Ck of the linear 
combination (2) and the approximate solution YN are uniquely determined. In the 
context of the finite element method (cf. § 24.3), the matrix A is often called the 
stiffness matrix and the right-hand side vector is called the load vector. 

The key quest ion for the quality of the approximation obtained by the Ritz 
method is the choice of the subspace VN and its basis functions. If we choose 
VN so that it contains the true solution we have an excellent approximation, the 
true solution itself. It is, of course, difficult to make such a choice and, moreover, 
a change of the right-hand side pro duces another solution for which the subspace VN 
need not be suitable. We thus require a good approximation of the entire space V 
by the subspace VN. This can be achieved in two ways: 

1. We choose an infinite sequence of linearly independent elements rpi E V, i = 
= 1, 2, ... , and we require that, for an arbitrary element v E V and for an arbitrary 
c > 0, such a finite linear combination of the elements rpi can be found that 

holds. 

N 

V - Lkirpi < C 

i=l 

We introduce a whole sequence of subspaces VN defined as linear hulls of elements 
rpl, ... , rp N, and a question arises how many elements of the basis to use. Further , 
we must take into account that the computation ofthe approximate solution (or at 

N 

least of its values at so me points) consists in the computation of the sum L Cirpi. 
i=l 

2. We use the approach of the finite element method (see § 24.3 for further 
details). 

We have to realize that not only the subspace VN itself, but also the choice of its 
basis is important for the numerical solution. Even though the stiffness matrix is 
positive definite it may be ill-conditioned (cf. § 30.3) with an inappropriate choice of 
the basis and the solution of the system (3) may be influenced or eventual1y entirely 
destroyed by round-off errors. Therefore, choosing the basis according to 1, our aim 
is to make the functions rpi orthogonal, if possible. The system (3) can be solved 
very weH by contemporary computers. With the approach of the finite elements 
method, the matrix has many zero entries (it is sparse) and systems with several 
tens or even hundreds of thousands of unknowns can be solved. 

The error 0/ the approximate solution YN - u fulfils 

a(YN - u, YN - u) = F(YN) - F(u). (4) 
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The exact solution of the given problem, i.e. the function that minimizes the fune­
tional (1) on the spaee V, is denoted by u. From (4), we have immediately the 
following important assertion: 

Theorem 1. The sequence 0/ Ritz approximations converges to the exact solution 
in the subspace V i/ and only i/ it is minimizing, i. e. i/ and only i/ 

lim F(YN) = F(u). 
N-+oo 

The next assertion gives an estimate for the norm of the Ritz approximation. 

Theorem 2. For the Ritz approximation Y N we have 

IIYN - ull v ~ K inf lIu - vllv , 
VEVN 

where the constant K is independent 0/ the subspace VN. 

This simple but important fact is ealled Cea 's lemma. We ean, with a certain 
inaccuracy, express it by saying that the Ritz approximation 0/ the exact solution is 
the best one among all the elements 0/ the subspace VN. Because the form a(u, v) 
is symmetrie we have even a(YN - u, YN - u) = inf a(v - u, v - u). Theorem 2 

VEVN 
applies, however, for the non-symmetrie ease, too, cf. § 24.3. 

Example 1. On the interval 1 = (0, 1) let us eonsider the boundary-value problem 

-u" + u = 1, 

u(O) = u(l) = O. 

From Tab. 24.1, we find out that the weak solution belongs to the space 
V = HJ (1) and fulfils the equality 

11 
(u'v' + uv) dx = 11 

vdx 

for all functions v E V. We ehoose the subspace V N in the first of the two mentioned 
ways and put 

CPk(X) = sin hx. 

This ehoice leads to the system (see (3)) 

L kj7r2 r cos k7rX COS j 7rX dx + r sin k7rX sin j 7rX dx Ck = sin j7rX dx , N (1 1 ) 11 
k=1 Jo Jo 0 
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j = 1, ... , N, for the eoeflieients Ck. The orthogonality of trigonometrie functions 
yields 

~[(j'Jr)2 + 1]c· = ~[1- (-1)j]. 
2 J pr 

The approximate solution is then given by 

where 

N 

YN(X) = L Cj sinj'Jrx, 
j=1 

C; = { ~'1(j'~2 + 11 
for j odd, 

for j even. 

From here we ean obtain the exact solution as the sum of an infinite series 

In this ease, the use of the Ritz method was extremely easy. We have even 
obtained the exact solution as the sum of a trigonometrie series. Let us note that 
here we solved a one-dimensional problem with eonstant eoeflieients and that the 
exact solution eould be easily found immediately: 

eosh (x - 1) 
u=1- 1 2 . 

eosh 2 

So it was not neeessary to look for an approximate solution here. We have made it 
only to illustrate the method. However, in the ease ofthe equation -du+u = 1 on 
a reetangle il, with the boundary eondition u = 0 on S, thus in the ease of a similar 
problem in two dimensions, a simple formula for the exaet solution is not known, 
whereas the Ritz method enables us to find the solution as the sum of a double 
trigonometrie series in a eompletely analogous way as before. 

The situation ehanges substantially in the ease of equations with noneonstant 
eoeflieients: 

Example 2. On the interval 1= (0, 1), let us consider the boundary value problem 

-u" + xu",; 1, 

u(O) = u(1) = O. 
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We find in Tab. 24.1 that the weak solution belongs to V = HJ(I) and fulfils the 
equality 

11 
(u'v' + xuv) dx = 11 

V dx 

for all functions v E V. We choose again 

IPk(X) = sin k1\"x 

for basis functions and obtain 

for the elements akj of the stiffness matrix. 

Due to the second integral, the orthogonality in the energy scalar product does 
not hold any more. We obtain 

1 k2 2 1 
akk = 2" 1\" + 4; 

and, for j # k, 

for k + j even, 

for k + j odd. 

Because the right-hand side is determined in the same manner as in Example 1, 
we have the system 

... =0, 

for the coeflicients Ck, and this system is to be solved. It is obvious, that for this 
purpose an appropriate numerical method of Chap. 30 has to be used. 

Putting, for example, N = 4, we obtain the values 

Cl = 0·12280 , C2 = 0·00058 , C3 = 0·00475, C4 = 0·00002 . 
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REMARK 1. If the coeflicients were more complicated functions, some of the 
methods of § 13.13 for the computation of the integrals in (5) would have to be 
used. It is dear that such an application of the Ritz method is possible only with 
the use of computers. 

(b) The Galerkin Method 

If the form a( u, v) is not symmetrie, Problem 24.1.1 is not equivalent with the 
problem of finding the minimum of the functional (1) and the Ritz method cannot 
be used. Therefore, we make the condition (24.1.4) a basis for another approximate 
method, the so-called Galerkin method. 

We choose a finite-dimensional subspace VN of the space V, look for an approx­
imate solution YN in VN, and require that 

(6) 

be fulfilled for all functions v N E V N. If we choose a basis !PI, ... , !P N in V N and 
assume YN in the form (2), i.e. 

N 

YN = LCk!Pk, 
k=l 

where Ck are unknown coeflicients, we use (6) in such a way that we successively 
take all basis functions for VN. We again obtain the system (3) (with a(!pk, !pj):f. 
:f. a( !Pj, !Pk), in general). Assuming (24.1.2) and (24.1.3), this system has a unique 
solution a:gain. Theorem 2 (Cea's lemma) holds for the corresponding approximate 
solution YN and we can make conclusions about the quality of the approximation, 
or about the convergence of the Galerkin method as before. 

If a( u, v) is asymmetrie bilinear form, the Galerkin method turns into the Ritz 
method. In such a case we often speak ab out the Ritz-Galerkin method. The 
Galerkin method can, however, be applied to a much wider dass of problems, 
especially to problems of the form 

Au=J, 

where A is an arbitrary operator defined on D(A). This operator need not even be 
linear. The approximate solution Y N is supposed to belong to a finite-dimensional 
subspace VN of D(A) and one requires that 

holds for all elements v N E V N. The idea is that the discrepancy between the left 
and right-hand side of the equation, i.e. the residual AYN - J, will be small for 
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a sufficiently "rich" subspace VN because it will be orthogonal to all elements of 
this rich subspace VN. 

If we apply this idea, employed before in the linear case, to nonlinear problems, 
we get the formulation (6) where the form a(u, v) is nonlinear with respect to its 
first argument. Partial answers to questions on convergence in the important case of 
second-order differential equations in two dimensions are contained in [139], [140], 
[160], [165]. 

24.3. The Finite Element Method 

The finite element method (FEM) is, as we just mentioned, the Ritz or Galerkin 
method for Problem 24.1.1 with a special choice of the finite-dimensional space VN 
and its basis. The choice of the basis does not influence the approximate solution Y N 

but it does influence the stiffness matrix A. FEM tries to obtain the stiffness matrix 
with properties favourable from the viewpoint of the numerical solution of the 
corresponding system. We attain this goal making many elements of the matrix A 
vanish. 

In the FEM, the construction of finite-dimensional subspaces Vh (we will now 
use this notation instead of V N) of the space V C Hk has the following features: 

1) the given domain is partitioned into many subdomains, 
2) the elements Vh of the subspace Vh are polynomials (or other functions of 

simple form) on each subdomain of the partition constructed, 
3) in the space Vh, such a basis may be chosen that its elements are func­

tions different from zero only on small domains (that are unions of a few 
subdomains of the partition). 

We can say that the FEM suitably joins properties of variation al and finite­
-difference methods and has the following advantages: 

1) it enables the construction of irregular nets (i.e. the partition into subdo­
mains), 

2) it enables, in an easy way, the construction of methods of order higher than 
second, 

3) it enables the construction of methods for the solution of equations of order 
higher than second. 

(a) Decompositions and Finite Elements 

The decomposition of the given domain il into a finite number of subdomains 
Kl, ... , KN is carried out in such a way that single subdomains of the decompo­
sition are simple geometrie figures so that polynomials can be defined on them in 
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a simple way. The subdomains of the decomposition are called elements. A decom­
position in the FEM has to possess these properties: 

1) each element is a closed subdomain with a nonempty interior, 
2) the union of all elements is equal to the closure of the given domain, i.e. 

3) two different elements K l , K 2 of the decomposition have disjoint interiors 

K?, K~, Le. 
K l =f. K 2 => Kr n K~ = 0, 

4) the boundary of each element is a Lipschitz boundary (cf. Remark 22.4.10). 

An important characteristic of the decomposition is the discretization parame­
ter h that is defined as the maximum diameter of all elements of the decomposition. 
The decomposition is therefore denoted by rh even though for the same h different 
decompositions may be given. This is generally adopted notation and we will use 
it, too. Let us furt her suppose that 

5) in the one-dimensional case, the elements are closed intervals, in several 
dimensions, we will suppose that elements are polygons or polyhedra. Some 
sides or faces may be curved. 

Further, we require that 

6) every side (face) of the element K is either apart of the boundary S or 
a side (face) of another element K l . In Fig. 24.1, the a) admissible and 
b) inadmissible coupling of two elements are shown, 

01 bJ 

Fig. 24.1 a, b. 

7) the interior of every side (face) of an arbitrary element K of the decompo­
sition has no common points with the set ro of the boundary points from S 
in which the type of the boundary condition changes. 



430 SURVEY OF APPLICABLE MATHEMATICS 24.3 

REMARK 1. If we choose an element of a common type described further, it is 
possible that the property 2) cannot be satisfied. We mention in § 24.4 how to treat 
such cases and how to estimate the corresponding error. 

One-dimensional elements are, as we have already said, closed intervals. In the 
multidimensional case the choice may vary significantly. We will use triangles and 
quadrangles for the elements of decomposition in the plane. In three dimensions, 
we will use tetrahedra, hexahedra and prismatic elements. 

Because the two-dimensional problems with triangular elements are most fre­
quent the term triangulation is used instead of the term decomposition also for 
other types of decompositions. The terms partition or net or grid are utilized in 
the same sense, too. 

For our further use, polynomials must be defined on the individual elements of 
decomposition. Therefore, we introduce the finite element as a triplet {K, P, 17}, 
where 

1) K is an element of the decomposition, 
2) Pis aspace of polynomials (or other simple functions) defined on K, 
3) 17 is a finite set of function values or values of derivatives of the polynomial 

from the space P at specific points of K. 

The points, where the function values or the values of derivatives are specified, 
are called nodes and the function values or the values of derivatives at those points 
are called nodal parameters. The set 17 is therefore the set of nodal parameters. The 
number of the elements of the set 17 is also called the number 0/ degrees 0/ freedom 
of the given finite element. The nodal parameter itself is often called a degree 0/ 
freedom. This applies particularly if the nodal parameter is another functional on 
the space P, e.g. IK p(x) dx for pEP. 

REMARK 2. The basis functions for the FEM are usually chosen in such a way 
that exactly one of their nodal parameters equals unity and all others are zero. 
Because the approximate solution is a linear combination of the basis functions, 
its function values or its values of derivatives are exactly the coefficients of this 
linear combination. The coefficients Ck computed from (24.2.3) thus have their own 
meaning as the values or values of the derivatives of the approximate solution. 

It is very important to ensure that the set of the nodal parameters has the 
property of unisolvency. That means that to an arbitrary choice of values of nodal 
parameters, there exists one and only one polynomial from the space P whose nodal 
parameters attain the given values. 

Now, we will give a survey of the most frequently used finite elements, i.e. the 
triplets consisting of the element of the decomposition of the domain, of the space 
of polynomials defined on it and of the set of nodal parameters. The survey will be 
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given separately for one, two and three dimensions. The space of all polynomials 
defined on K of degree not greater than k will he denoted hy Pk = Pk(K). We will 
not consider finite elements for higher dimensions. 

(0.) ÜNE-DIMENSIONAL FINITE ELEMENTS 

The element, i.e. the element of the decomposition, is here an interval [a, b]. We 
accompany individual elements with illustrating figures where nodes, the supports 
of nodal parameters, are displayed. If the function value at the node is specified, we 
mark the node with a hold dot. A hold dot with a circle around it means that the 
function value and the value of the first order derivative are specified, and, finally, 
a hold dot with k circles around represents the function value and the values of 
derivatives from the first to the k-th order. 

Linear element 

P is the space PI. 

Nodal parameters: p(a), p(b) - values at houndary points (Fig. 24.2). 

Quadratic element 

P is the space P2 • 

Nodal parameters: p(a), p (a; b), p(b) 

General Lagrange element 

Pis the space Pn . 

(Fig. 24.3). 

Nodal parameters: p(a), p(a + .60), p(a + 2.60), ... , p(b), whereA = (b - a)/n 
(Fig. 24.4 for n = 4). 

a 

Fig.24.2. 

Cubic Hermite element 

P is the space P3 • 

b a Ca+bJ/2 

Fig.24.3. 

a 

Nodal parameters: p(a), p'(a), p(b), p'(b) (Fig.24.5). 

General Hermite element 

Pis the space P2n-l. 

Fig.24.4. 

Nodal parameters: p(a), p'(a), ... , p(n-l)(a), p(b}, p'(b), ... , p(n-l)(b) 
(Fig. 24.6 for n = 3). 



432 SURVEY OF APPLICABLE MATHEMATICS 

@~----------------~® 
o b 

Fig.24.5. Fig.24.6. 

24.3 

It foHows from the properties of interpolation that all sets of nodal parameters 
for all finite elements shown are unisolvent. 

For the reason of furt her manipulation, it is convenient to define finite elements 
on the reference interval, the interval [0, 1J. There is a one-to-one correspondence 
between the general interval and the reference interval given by 

x = (b - a)e + a = a(l - e) + be, 

where xE [a, bJ, e E [0, 1], or by the inverse transformation 

x-a e=-· b- a 

Because the linear transformation conserves the polynomial character of a function 
and its degree as weH, it is sufficient to define finite elements only on the reference 
interval. In this notation, we have on the reference interval: 

Linear element 

Basis functions: Pl(e) = 1 - e, P2(e) = e (Fig.24.7a). 

Quadratic element 

Basis functions: Pl(e) = 2e - 3e + 1, P2(e) = 4e(1 - e), P3(e) = 2e2 - e 
(Fig. 24.7b). 

aJ bJ 

Fig. 24.7 a, b. 
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General Lagrange element 

Basis functions: Pk(O = lin)(e), k = 1,2, ... , n + 1, where lin)(e) is the el­
ementary Lagrange interpolation polynomial (cf. § 32.6) for 
equidistant partition with n intervals. 

Cubic H ermite element 

Basis functions: poo(e) = 2e - 3e + 1, 

PlO(e) = -2e +3e, 
POl (e) = e - 2e + e, 
Pl1(e) = e - e· 

The value of the j-th derivative of the polynomial Pij at the point i is equal to 
one, all other nodal parameters are zero. 

For a general Hermite element the basis functions are not shown. 

(ß) TWO-DIMENSIONAL FINITE ELEMENTS 

(A) Triangular elements 

We shall systematically use here the reference triangle T with the vertices 
VI = (1, 0), V2 = (0, 1), V3 = (0, 0). The transformation of this triangle onto 
an arbitrary triangle with vertices Al = (Xl, YI), A2 = (X2' Y2), A 3 = (X3, Y3) is 
given by 

X = (Xl - X3)e + (X2 - X3)7] + X3 , 

Y = (YI - Y3)e + (Y2 - Y3)7] + Y3 (e, 7]) E T. 
(1) 

The inverse transformation is given by 

1 e = PI (X, y) = }[(Y2 - Y3)X - (X2 - X3)Y + X2Y3 - X3Y2] , 

1 
7] = P2(X, y) = }[(Y3 - YI)X - (X3 - xJ)y + X3YI - XIY3], 

(2) 

where 

1, Xl, YI 
J = 1, X2, Y2 = X2Y3 - X3Y2 - XIY3 + X3YI + XIY2 - X2YI . 

1, X3, Y3 

The magnitude of J equals double the area of the triangle A IA 2A3. We introduce 
one more polynomial, 

P3(X, y) = 1- PI(X, y) - P2(X, Y), 

l.e. 
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It is easily verified that 

. . {I for i = j, 
t, J = 1, 2, 3, where Oij = . -'- . o for t r J. 

The finite elements on a triangle, i.e. the space of polynomials, nodes, nodal 
parameters, and the corresponding basis functions will be introduced on the refer­
ence triangle in the variables e, 'TJ. To simplify the formulae, we use the notation 
{} = 1 - e - 'TJ. All quantities are transformed onto a general triangle by (2). To 
indicate no des and nodal parameters in figures we use the above introduced sym­
bols. The circles now mean that all derivatives with respect to all variables up to 
the corresponding order are prescribed. If a value of the normal derivative on the 
boundary of the element is prescribed at anode we use an arrow at the node in the 
direction of the normal. The node itself is not marked if the function value is not 
prescribed at it. 

Linear element 

P is the space PI. 

Nodal parameters: the values at the vertices of the triangle (Fig. 24.8). 

Basis functions: PI = e, P2 = 'TJ, P3 = {}. 

Quadratic element 

P is the space P2 . 

Nodal parameters: the values at the vertices and at the midpoints of the sides 
of the triangle (Fig. 24.9). 

2 

3 

Basis functions: PI = e(2e - 1), P2 = 'TJ(2'TJ - 1), P3 = {}(2{) - 1), 
P6 = 4e{}. P4 = 4e'TJ, P5 = 4'TJ{}, 

5 -------------- 4 

1 3 

Fig.24.8. Fig.24.9. 

2 

6 -------- , 5 

1 3 

, , , 
I 
I 

--------+.-------- 4 
:10 : 
I , 
I I 

8 

, 
I 
I 

9 

Fig. 24.10. 

1 
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Cubic Lagrange element 

P is the space P3' 
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Nodal parameters: the values at the vertices, at the points of trisection of the 
sides and at the centre of gravity of the triangle (Fig. 24.10). 

Basis functions: Pt = !~(3~ - 1)(3~ - 2), P2 = !."{3.,, -1)(3." - 2), 

P3 = !t?(3t? - 1)(3'11 - 2), P4 = t~.,,(3~ - 1), 

P5 = t~."(3.,, - 1), P6 = t."t?(3." - 1), 
P7 = t."t?(3t? - 1), Ps = tet?(3t? - 1), 

P9 = t~t?(3~ - 1), PtO = 27 ~."t? 

If we replace the nodal parameter UlO, i.e. the value at the cent re of gravity, by 
the value 

1 3 1 9 

UtO = - - L Ui + - L Ui 

6 i=t 4 i=4 

and if we use the above basis functions we obtain aspace that does not contain 
all polynomials of degree 3. The same result is obtained by omitting the centreO 
of gravity as anode and utilizing the basis functions ri = Pi - ~PtO' i = 1, 2, 3, 
and ri = Pi + ipto, i = 4, 5, ... ,9. By this procedure, called the elimination 0/ 
an interior parameter, we obtain a new element with nine nodal parameters and 
an incomplete space of polynomials of degree 3. The order of approximation by 
such elements will be theoretically equal to the order of approximation by elements 
from the space of all polynomials of degree only 2 but, practically, its error does 
not differ very much from the error attainable with the fuIl space of polynomials of 
degree 3. (Cf. section (c) of this paragraph.) 

General Lagrange element 

Pis the space Pm. 

Nodal parameters: the values at the vertices of all triangles obtained by a parti­
tion of each side in m equal parts and by joining these divi­
sion points by straight lines parallel to the sides of the trian­
gle. We have (m + l)(m + 2)/2 nodal parameters (Fig. 24.11 
for m = 4). 

Basis functions: the basis function for the vertex (1, 0) is 

Pt = e(m~ -1)(;~ -1) ... (m~ 1) -1). 

We do not show the other basis functions. 

Cubic Hermite element 

P is the space P3 • 
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3 

Nodal parameters: the function values and the values of both first derivatives at 
the vertices and the function value at the centre of gravity 
(Fig. 24.12). 

Basis functions: P1 = e(3e - 2e - 7r17:1), P2 = ",(3", - 2",2 - 7e1)), 

, , 
, , , 

-------+------
: 
1 

-- ----+------+-------, , , , 
I I 
I I 
I , 
I , 

Fig. 24.11. 

P3 = 1)(31) - 21)2 - 7e",), P4 = 27 e",1). 
(It is Pi(Ai ) = 1, i = 1, ... , 4.) 

r1 = e[",(1) - 0 + 1)(", - 0], r2 = e",(", - 1)), r3 = e1)(1) - "'). 

( . 8r i(Ai ). ) 
It lS 8x = 1, 2 = 1, 2, 3. 

81 = e",(e - 1)),82 = ",(1)(e - "') + e(1) - "')), 83 = ",1)(1) - o· 
(It is 88~:i) = 1, i = 1, 2, 3.) 

2 2 

5 

°4 

1 3 1 

Fig.24.12. Fig.24.13. 

1 

Quintic H ermite element 

P is the space P5 • 

Nodal parameters: the function values and the values of all derivatives of order 1 
and 2 at the vertices and the values of the normal derivatives 
at the midpoints of the sides of the triangle; together 21 nodal 
parameters (Fig. 24.13). 

Basis functions: 
. 8i +kpV,k) 

We denote by p~J,k) the basis function for which 8ei8~k 
= 1 at the point ~ and all its other nodal parameters are 

zero. We have V4 = (!' !), V5 = (0, !), V6 = (!' 0): 
P10,O) = 6e - 15e4 + lOe + 15e",21), 

p~O,O) = 6",5 - 15",4 + 10",3 + 15e",21), 

p~O,O) = 1)2[61)3 - 151)2 + 101) + 30e",(~ + "')); 
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p~I,O) = -3e + 7e - 4e - ~e1]2t?, 
p~I,O) = ~1]2( -81]2 + 327 ~{) + 5e + 141] - 5), 

p~I,O) = ~{)2( -3e + 6~1] - 81]2 - 2{) + 3); 

p~O,I) = e1]( -8e + 3; 1]{) + 51]2 + 14~ - 5), 

p~O,I) = -31]5 + 71]4 - 41]3 - ~e1]2{), 

p~O,I) = 1]{)2 (-31]2 + 6~1] - 8~2 - 2{) + 3); 

p~2,O) = ~e{1- ~)2 + ie1]2{), 

p~2,O) = e1]2(~1] + !{)), 
p~2,O) = ~e{)2(1 - ~ + 21]); 

pP,I) = e1](4e + 7~1] + 51]2 - 6~ - 71] + 2), 

p~l,l) = ~1]2(5e + 7~1] + 41]2 - 7~ - 61] + 2), 

p~l,l) = ~1](2{)2 _ {)2); 

p~O,2) = e1]2 (~~ + !{)), 
p~O,2) = ~1]3(1 _1])2 + ie1]2{), 

p~O,2) = h 2{)2(1 -1] + 20; 

437 

2 2 0P4 1 OP4 1 
P4 = -4.";2 . ~ 1] {) (here, we have o~ . ";2 + 81] . ";2 = 1 

at the point V4 ), 

pF'O) = 16~1]2{)2, 

p~O,I) = 16e1]{)2. 

This element with 21 nodal parameters is convenient for the solution of fourth­
-order problems. No triangular element shown above can be utilized for the solution 
of fourth-order problems in the sense of § 24.2. This element may be simplified 
similarly as the cubic Hermite element by omitting the three nodal parameters at 
the midpoints of sides. This simplification is, however, not substantial and one must 
take into account that the corresponding stiffness matrix will be of large order with 
many non zero entries. 

(B) Rectangular elements 

We use the square with the vertices (0, 0), (0,1), (1, 1), (1,0) as the reference 
element. The transformation of this square in the ~, 1]-plane onto the rectangle 
ABCD in the x, y-plane with the sides parallel with the coordinate axes is simple, 

(3) 

(where Xo, yo, h l , h2 have an obvious meaning). From the rectangle onto the square 
we transform by 

(4) 
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The space of the polynomials used on rectangular elements are, as a rule, con­
structed as products of polynomials in single variables. 

Bilinear Lagrange element 

P is the space Pbih the subspace of P2 consisting of polynomials of the form 

a + b~ + C7] + d~7] . 
Nodal parameters: the function values at the vertices (Fig. 24.14). 

Basis functions: PI = (1 - ~)(1 - 7]), P2 = ~(1 - 7]), P3 = ~7], P4 = (1 - 07]· 

Biquadratic Lagrange element 

P is the space Pbiq , the subspace of P4 consisting of polynomials of the form 
P2 (Oq2 (7]), where P2 and q2 are arbitrary quadratic polyno­
mials in one variable. 

Nodal parameters: the function values at the vertices, at the midpoints of sides 
and at the centre of gravity (Fig. 24.15). 

Basis functions: PI = (~- 1){2~ - 1)(7] - 1){27] - 1), 
P2 = ~(2~ - 1){7] - 1)(27] - 1), 
P3 = ~(2~ - 1)7](27] - 1), 
P4 = (~- 1){2~ - 1)7](27] - 1), 
P5 = 4~(1 - ~)(7] - 1)(27] - 1), 
P6 = 4~(2~ - 1)7](1 - 7]), 
P7 = 4~(1 - 07](27] - 1), 
Ps = 4(~ - 1)(2~ - 1)7](1 - 7]), 
P9 = 16~(1- ~)7](1 - 7]). 

3 1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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3 

8 ,..------------+.------------- 6 :9 

1 2 1 

Fig. 24.14. 

Rectangular H ermite elements 

, 
I , , , 
I , , , 
I 

5 

Fig. 24.15. 

2 

are constructed in a similar way. They are relatively complicated and we do not 
show them, see [83). 
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(C) Isoparametric elements 

These elements are introduced with the aim to approximate a nonpolygonal do­
main better than only by a polygon. A more exact approximation of the domain 
implies a more exact approximate solution, cf. § 24.4. The construction of these 
elements uses a linear combination of basis functions on the reference element cor­
responding to any above introduced element. We then take the coordinates of the 
nodes of the resulting element for the coefficients of this linear combinat'ion and 
in this manner we obtain the transformation of the reference element onto the 
resulting element which may be a curvilinear triangle or a curvilinear quadrangle. 

Isoparametric triangular quadratic element 

We start from the quadratic Lagrange element and take the coordinates of the 
vertices Al, A 2 , A3 of the curvilinear triangle (i.e. arbitrary three points not ly­
ing on the straight line) and those of the midpoints A s and A6 of the sides A IA3 
and A 2A3, respectively, for the coefficients of basis functions corresponding to the 
values at the vertices and at the midpoints, of the sides (!, 0) and (0, i), respec­
tively. These two sides will be straight. We take the coordinates of an arbitrary 
point A.i lying in the angle A I A3A 2 for the coefficients of the basis function corre­
sponding to the midpoint (i, i). We thus get the transformation: 

x = xle(2e - 1) + x21J(21J - 1) + x3'1?(2'1? - 1) + X44e'l?+ 

Xl + X3 X2 + X3 ( Xl + X2 ) + 2 4e'l? + 2 41J'I? = Xle + X21J + x3'1? + X4 - 2 4e1J, 

Y = Yle(2e - 1) + Y21J(21J - 1) + Y3'1?(2'1? - 1) + Y44e1J+ 

+ YI ; Y3 4e'l? + Y2 ; Y3 41J'I? = Yle + Y21J + Y3'1? + (Y4 _ YI ; Y2 ) 4e1J. 

The points (1, 0), (0, 1), (0, 0), (!, i) in the (e, 1J)-plane are transformed onto the 
points Al = (Xl, YI), A 2 = (X2, Y2), A3 = (X3, Y3) and ~ = (X4, Y4), respectively. 
This transformation will be denoted by Pj we thus have K = P(T). The reference 
triangle is denoted by T and the resulting curvilinear triangle by K. The transfor­
mation F is bilinear and, therefore, it transforms straight lines parallel to the axes 
e and 1J into straight lines (Fig. 24.16). 

A curvilinear element is defined as a triplet {K, PK, E}, where K = F(T), 
PK is the set of functions (not of polynomials!) of the form 

p(X, y) = ß(F-I(x, Y)), (x, y) E K, ß E P2. 

This corresponds to the use of a quadratic polynomial ß on the reference triangle. 
The set E of noda! parameters is the set of function values at the points Ai, i = 
= 1, ... , 6. We have to assume that the inverse transformation p-l exists at every 
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Fig. 24.16. 

f=1 
1=31J,. 

1=1/2 

24.3 

point x E K. This fact depends on the position of A4 • If the point A4 is the 
midpoint of A I A2 , the inverse transformation exists (the triangle is not curved). It 
can be shown (see [242]) that the inverse transformation exists unless the point ~ 
is too elose to A3A I or A3A 2. 

The curved part of boundary of the element K is apart of a parabola (since the 
points Al, A 2, A4 do not lie on a straight-line). From the form of the transforma­
tion F, it is seen that the curved part is determined only by Ab A 2, A4 (and not 
by A3 ). 

Example 1. Let Al = (3, 2), A2 = (2, 3), A3 = (1, 1), A4 = (3, 3). The 
transformation F is 

x = 3~ + 21J + 1) + 2~1J , 
Y = 2~ + 31J + 1) + 2~1J, (~, 1J) E T. 

The inverse transformation exists and is given by 

~ = H2x - 2y - 3 + [4(x - y)2 + 4(x + y) + Ij1/2} , 

1J = H -2x + 2y - 3 + [4(x - y)2 + 4(x + y) + Ij1/2}. 

The triangle K = F(T) is shown in Fig. 24.17. 

Isoparametric quadrangular bilinear element 

The transformation of the reference square onto the quadrangle A I A 2A3A 4, 
Al = (Xl. yt), A2 = (X2, Y2), A3 = (X3, Y3), A4 = (X4, Y4) is 

x = Xl (1 - ~)(1 - 1J) + x2~(1 -1J) + X3~1J + x4(1 - ~)1J, 

y = YI(1- ~)(1 -1J) + Y2~(1-1J) + Y3~1J + Y4(1 - ~)1J. 
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Fig. 24.17. 

An arbitrary quadrangle can result. The space P is the space offunctions p(x, y) = 
=ß(F-1(x, y)), whereß((, 1'/) E Pbil· 

Nodal parameters: function values at the vertices. 

The inverse transformation exists if and only if the resulting quadrangle is convex. 
These elements do not have curved sides. They are introduced for the approxima­
tion of those straight parts of the boundary that are not parallel to the co ordinate 
axes. 

Isoparametric quadrangular biquadratic element 

We use the basis functions P; of the biquadratic Lagrange element for the trans­
formation of the reference square to a curved quadrangle. We put 

9 

x = LP;((, 1'/) x; , 
;=1 

9 

Y = LP;((, TJ)Y;. 
;=1 

The points (x;, y;) are the nodes of the resulting quadrangle. The space P is the 
space of functions p(x, y) = ß(F-1(x, y», where p((, 1'/) E Pbiq. 

It is necessary also here to guarantee the existence of the inverse transformation 
by fixing the points As, ... , As not very far from the midpoints of the sides of 
the quadrangle and the point Ag from its cent re of gravity. The resulting curved 
element is in Fig. 24.18. 

(1) THREE-DIMENSIONAL FINITE ELEMENTS 

We will show here only a few simple elements of a low degree. The way how 
to construct higher elements is obvious from the preceding text but we will not 
present them because one obtains complicated formulae here. The transformations 
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Fig. 24.18. 

from reference figures onto general elements of given type are constructed similarly 
as in the two-dimensional case (cf. (1), (2) and (3), (4)). 

(A) Tetrahedral elements 

Linear tetrahedral element 

The reference element is the tetrahedron with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) 
and (0, 0, 0). 

P is the space Pt. 

Nodal parameters: function values at the vertices (Fig. 24.19). 

Basis functions: Pt = e, P2 = 1], P3 = (, P4 = 1 - e - 1] - (. 

(B) Hexahedral elements 

Trilinear hexahedral element 

The reference element is the cube with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0), 
(0, 1, 0), (0,0, 1), (1,0, 1), (1, 1, 1) and (0, 1, 1). 

Pis the space Ptrib the subspace of P3 consisting of all polynomials of the form 
(ate + bt}(a21] + b2)(a3( + b3). 

Nodal parameters: function values at the vertices (Fig. 24.20). 

Basis functions: Pt = (1 - e)(1 -1])(1 - (), P2 = e(1 -1])(1 - (), 

P3 = e1](1 - (), P4 = (1 - e)1](1 - (), 

Ps = (1 - e)(1 -1])(, P6 = e(1 -1])(, 

P7 = e1](, Ps = (1 - e)1](· 

Onto an arbitrary hexahedron with quadrangular faces, the reference cube is 
usually transformed isoparametrically by 

s 
x = LPj(e, 1], ()Xj, 

j=t 
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8 

Y = LPj(e, 1/, ()Yj, 
j=l 

8 

Z = LPj(e, 1/, ()Zj. 
j=l 

443 

If the resulting hexahedron is convex, this transformation has an inverse and it is 
possible to transform the basis functions, too. 

(C) Prismatic elements 

Prismatic pentahedral element 

The reference element is the tri angular prism with the vertices (0, 0, 0), (1, 0, 0), 
(0, 1,0), (0,0, 1), (1,0, 1) and (0, 1, 1). 

Pis the space of all polynomials of the form (ale + bl"l + ct}(a2( + b2). 

Nodal parameters: function values at the vertices (Fig. 24.21). 

Basis functions: PI = (1 - e -1/)(1 - (), P2 = e(1- (), P3 = (1 - (), 

P4 = (1 - e -1/)(, P5 = ec, P6 = 1/(. 

It is possible to obtain more general pentahedra by an isoparametrie transfor­
mation of the reference prism. 

5 

1 

Fig. 24.19. 
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Fig. 24.20. 

(b) The Finite Element Spaces 
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,.,/'" 

1 

Fig.24.21. 

We will now show how to construct finite-dimensional spaces Vh of functions 
defined on the entire domain with the help of finite elements, i.e. of the triplets: 
element ~ space of polynomials ~ set of nodal parameters. The closure of the domain 
is the union of the elements of the decomposition and we recall that not every 
domain given is of this type but it can be approximated by such domains then. 

At the construction we utilize the basic principle of the FEM, the one-to-one 
correspondence of the set of values of nodal parameters to the polynomial of given 
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type on a single element. Choosing the values of the nodal parameters for all 
elements of a given decomposition of the domain, the corresponding polynomials 
on each element are given. If some node is shared by several finite elements, the 
same values of the nodal parameters at this node for all the corresponding finite 
elements are to be taken. The function Vh defined on the entire domain is set up 
from the polynomials on the individual elements by taking 

n 

vhlK (A) = L ujpj(A) , (5) 
j=1 

where Pj are basis functions on the element K, Uj are the values of the nodal 
parameters and A an arbitrary point of K. 

It is obvious that the set of all the functions of the form (5) (i.e. for all possible 
choices of the values of the nodal parameters Uj) is a linear set of finite dimen­
sion. The question arises, if this linear set is a finite-dimensional subspace Vh of 
the space V that appears in the definition of the weak solution of the basic Prob­
lem 24.1.1. 

The answer is given by 

Theorem 1. Let" h be a decomposition of n into convex elements. Let Vh be the 
subspace of such functions of L2(il) that vhlK is a polynomial for any K E ,. h. 
Then Vh C H 1 (il) if and only ifVh C C(n). 

In other words, a piecewise polynomial function belongs to H1 (n) if and only if 
it is continuous on n. (See [83], [280].) 

REMARK 3. The above theorem can be generalized to the case of decomposi­
tions with nonconvex elements and with functions that are not polynomials. Such 
a generalization is employed when isoparametric elements are used. 

REMARK 4. If a piecewise polynomial function Vh is to belong to the space H 2 (il) 
then all its first derivatives have to belong to H1(n) and, according to Theorem 1, 
they therefore have to be continuous. 

Theorem 1 and Remark 4 thus enable us to reduce the investigation whether 
a piecewise polynomial function belongs to a Sobolev space, or not, to the investi­
gation of continuity. For second order problems, we take Vh E V C H1(il), and for 
fourth order problems Vh E V C H 2 (il). 

A substantial step in the investigation of continuity is to examine the continuity 
across the boundary of neighbouring elements. If we use elements only of one type 
from those shown above to decompose the domain, the corresponding function Vh 

is continuous. 
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If we want to combine elements of different types conserving the continuity, we 
have to fulfil certain conditions. We will show it for Lagrange elements, i.e. for the 
elements where only function values are used as nodal parameters. Only one nodal 
parameter corresponds to each node. 

If we have two neighbouring elements K I and K 2 (let us recall that such elements 
have an entire side (face) in common) we require that the set of no des of KI 
belonging to K 2 coincides with the set of nodes of K 2 lying in K I • 

lt is thus impossible to couple the linear and the quadratic triangular elements 
because the midpoint of the side of the quadratic element is not anode for the 
linear element. The nodes of the linear element are marked in Fig. 24.22 by a cross, 
the nodes of the quadratic element by a bold dot. The node U violates the above 
condition. 

Fig.24.22. Fig. 24.23. 

Let us put 8 = K I nK2 (8 is the common boundary ofthe elements K I and K 2 ) 

and let N s be the set of common nodes on 8. We furt her require that the space 
of the values on 8 of the polynomial defined on K I coincide with the space of the 
values on 8 of the polynomial defined on K 2 • We denote this space of boundary 
values by Ps. Finally, we require that the boundary value pEPs vanishing at all 
the no des of Ns, i.e. satisfying 

be zero identically. 

The last requirement guarantees that the boundary values are uniquely deter­
mined only by the values at the boundary nodes. 

If all the above requirements are fulfilled, the function Vh from (5) is continuous 
on the common boundary 8 of the elements K I and K 2 • 

Example 2. Let the domain be decomposed into a linear triangular element and 
an isoparametric quadrangular bilinear element, see Fig. 24.23. Let us investigate 
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the continuity of the function Vh in this domain. The common boundary S of both 
the elements contains the nodes common for both of them. These nodes are the 
boundary points ofthe common boundary and form the set Ns. We will show that 
for both the elements the boundary value of the corresponding space P depends 
only on the function values at these two points. 

We start from the reference triangle and suppose that the original ST of the 
common boundary has the equation e + 'TJ = 1. The basis function corresponding 
to the nodal parameter at the node (0, 0) lying outside ST is P3 = 1 - e - 'TJ and 
vanishes on ST. For e + 'TJ = 1 we thus have 

where Ut, U2 are the values of the nodal parameters at the nodes of N s. This fact 
holds as weIl after a linear transformation on an arbitrary triangle. 

We start the investigation of the isoparametrie quadrangular bilinear element 
on the reference square assuming that the original Sc of the common boundary is 
'TJ = o. The basis functions corresponding to the nodal parameters outside Sc are 
P3 = e'TJ and P4 = (1 - e)'TJ and vanish for 'TJ = o. We thus have 

The nodal parameter Ut now corresponds to the right-hand boundary point of Sc, 
the parameter U2 to the left-hand one. 

The fact that the boundary value of a function from the space P (such a function 
need not be a polynomial on the entire element) is a linear polynomial uniquely 
determined by the nodal parameters Ul and U2 is preserved by the isoparametrie 
transformation. 

If both the parameters are zero, the boundary value is zero, too. The function 
Vh is, therefore, continuous on the union of both the elements. 

The only one of the two- and three-dimensional elements shown above, that 
yields the continuity of both first derivatives of the function Vh (in addition to the 
continuity of Vh itself), is the quintic Hermite triangular element. (In one dimen­
sion, the cubic Hermite element is sufficient for the continuity of the derivative.) 
The boundary value for the quintic element on one side of the triangle is determined 
by the values at the boundary points of this side and by the first and second order 
derivatives along the boundary (tangent derivatives) at these points. The basis 
functions corresponding to other nodes (including the midpoint of the side) vanish 
at the boundary points of the chosen side as weIl as their first and second order 
derivatives. The boundary value is a polynomial of degree five and ia uniquely deter­
mined by the nodal parameters that are equal for both the neighbouring elements. 
The function Vh is thus continuous. 
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The continuity of the derivatives can be investigated more easily if we change the 
coordinate system and take the derivatives along the boundary (tangent derivatives) 
or perpendicular to the boundary (normal derivatives). Both these derivatives are 
polynomials of degree four (in one variable following the boundary). The tangent 
derivative is obviously continuous. The normal derivative is determined by its values 
at the boundary points of the side, by its tangent derivative at the boundary points 
(we know the values of all derivatives of the second order there) and the value at the 
midpoint. These are five parameters at the nodes on the chosen side and they just 
suffice to determine the fourth degree polynomial uniquely. The normal derivative 
is thus continuous, too. 

(e) Convergenee of the Finite Element Method 

We now state theorems on the convergence and on the error estimates for the 
FEM. These theorems make use of Cea's Lemma, Theorem 24.2.2. For an easy 
application of this theorem, we assurne: 

a) the domain is a polygon (polyhedron), 
b) if it is necessary to use the representing function w (in the case of non­

homogeneous boundary conditions), the computation of the bilinear form 
a( w, v) is performed exactly, 

c) the system (24.2.3) is assembled and solved exactly, i.e. 

Cl) the integrals involved in the computation of the coefficients a(<Pk, <pj) 

and the right-hand side (J, <pj) are computed exactly, 

C2) the system is solved exactlYj we do not consider errors caused by 
numerical solution of the system of linear algebraic equations. 

The problem of the error estimate of the approximate solution is thus redueed to 
the question how to find the distance of the exact solution from the space Vh. 

If we are to investigate the error behaviour for h -+ 0, i.e. for the case when 
the discretization parameter h (the maximal diameter of the elements from the 
decomposition) converges to zero, it is necessary to introduce some definitions. 

Definition 1. The set of decompositions" = {rh} is called the system 0/ decom­
positions if, for every e > 0, such a decomposition rh E ,. exists that h < e. 

Usually we have to impose a more strict requirement: 

Definition 2. The system of decompositions ,. = {rh} is called regular, if there 
exists such a constant M > 0 that for an arbitrary decomposition rh E" and for 
an arbitrary element K E r h, such a ball (or a circle) BK ofradius {! K exists that 
BK C K and 

where hK is the diameter of K. 
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Example 3. Let K be a triangle and BK a circle inscribed to K. This is the 
maximal circle such that BK C K. We then have tg ~ > (! K / h K f; ~ tg ~, where 
hK is the maximal side and a the minimal angle of K. The system of triangular 
decompositions (triangulations) is thus regular if and only if the angles of all tri­
angles in all decompositions are bounded from below. This is the condition 0/ the 
minimal angle. 

Regular systems of triangulations can be obtained e.g. in such a way that we 
divide each triangle of the original decomposition by three lines joining the mid­
points of sides. We obtain four congruent triangles similar to the original one, 
see Fig. 24.24. Another evident way, to refine the triangle by the medians, is not 
suitable because it reduces the angles, see Fig. 24.25. 

Fig.24.24. Fig.24.25. 

However, it is not possible to transfer this idea to three dimensions. We cannot 
decompose a tetrahedron into eight congruent tetrahedra. Nevertheless, it can be 
shown that regular systems of decomposition exist, see [279]-

We can now state the convergence theorem for boundary-value problems for 
second-order differential equations. 

Theorem 2. Let u be the solution 0/ Problem 24.1.1 and let the space COO(il) n V 
be dense in V (in the Hl norm). Let:r = {:rh} be a regular system 0/ decom­
positions and let the approximate solution Uh belong to the space Vh = {v E V, 
HJ c V C H\vIK E P1(K) /or all K E :rh}. (The functions /rom Vh are thus 
continuous and piecewise linear.) Then 

(6) 

If the solution is smoother, i.e. if u E HP for p > 1 and if we use higher elements, 
we can find a quantitative error estimate. 

Theorem 3. Let the solution u 0/ Problem 24.1.1 belong to Hs+l(il), where 8 is 
a positive integer. Let f = {:rh} be a regular system 0/ decompositions into sim­
plexes (i.e. into triangles or tetrahedra) and let the approximate solution Uh belong 
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to the space Vh = {v E V, HJ c V C HljvlK = Ps(K) /or all K E ""h}. Then there 
exist such constants ho and C > 0 that 

holds /or an arbitrary decomposition ,... h E ,. , where 0 < h < ho. 

The symbol lul k n denotes the seminorm in the spaee Hk(D) defined by , 

1 

Ivlk,n = ( L IIDivll~,n) "2, v E Hk(D) . 
lil=k 

The symbol D i is an abbreviated notation for derivative, see Remark 22.4.10. 

(7) 

REMARK 5. Theorem 3 holds also for u E Hl but the estimate (7) is useless. 
Theorem 2 eould be formulated for u E HS, s > 1, too, but the assertion of 
Theorem 3 is stronger beeause the eonvergenee of the sequenee of the approximate 
solutions (6) is a eonsequenee of (7). 

If we are interested only in the error of function values we use the norm of error 
in the space HO = L 2 instead of in H l and we have the following estimate: 

Theorem 4. Let" = {,... h} be a regular system 0/ decompositions into simple­
xes .. Let D be convex and let the solution 0/ Problem 24.1.1 belong to H 2 (D). Let 
the approximate solution Uh belong to the space Vh = {v E V, HJ C V C Hl j 
vi K E Pl (K) /or all K E ,... h}. Then there exist such constants ho and C > 0 that 

/or an arbitrary decomposition ,... h E ,. , where 0 < h < ho. 

REMARK 6. If the solution in Theorem 4 is smoother and if we use higher 
elements (like in Theorem 3) we obtain the power hs+l in the estimate. 

REMARK 7. Theorems 2, 3 and 4 ean be generalized to some other types of 
deeompositions, e.g. reet angular or hexahedral. 

The error of the approximate solution of a fourth order problem obtained with 
the use of the quintic Hermite element is estimated as follows: 

Theorem 5. Let" = {,... h} be a regular system 0/ triangulations. Let the solution 
0/ Problem 24.1.1 belong to H6(D). Let the approximate solution Uh belong to the 
space Vh = {v, E V, H5 c V c H 2 j vi K E P5 (K) for all K E ,... h}. (The functions 
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/rom Vh are thus continuous along with their first derivatives.} Then there erist 
such constants ho and C > 0 that 

for an arbitrary decomposition" h E ,. , where 0 < h < ho. 

24.4. Computational Aspects of the Finite Element Method 

We made several assumptions in order to prove the convergence and the error 
estimates of the approximate solution with the mere use of Theorem 24.2.2. Now, 
we add several remarks to these assumptions. 

If the domain is not polygonal, i.e. if it is not the union of the elements of 
the decomposition, even when isoparametric elements are used, it is necessary to 
approximate it. This can be carried out in different ways, the domain of decom­
position can be inscribed to the given domain, or partially inscribed and partially 
circumscribed, etc. If the boundary of the given domain is smooth it is possible to 
describe the corresponding error. We refer the reader to [139], [140]. 

If it is necessary to use the function w representing the nonhomogeneous bound­
ary conditions in the variational formulation (cf. Tab. 24.1), it is natural in the 
context of the FEM to choose this function so that w E Vh, and this leads to an er­
ror. We choose, in fact, different functions for different triangulations. If we use 
linear elements in two dimensions we have a piecewise linear approximation of the 
boundary condition. The corresponding error is analyzed again in [139], [140]. 

The assembly and the solution of the system (24.2.3) or (24.2.6) is an important 
practical problem. The theory guarantees existence and uniqueness of the solution 
of the system but, because there can be thousands of unknown nodal parameters, 
the assembly of the matrix of the system is a certain organizational task that is to 
be solved during the coding of the problem. The numbering of the nodes and the 
nodal parameters plays an important role here and can infiuence the properties of 
the matrix of the system significantly. 

It is necessary, too, to realize that the entries of the stiffness matrix and of 
the load vector are usually integrals that we are often unable to compute exactly. 
We therefore have to propose suitable methods for an approximate computation of 
these integrals, especially in two or three dimensions, and to find out their infiuence 
on the error of the approximate solution of the given boundary-value problem. 

The Gauss quadrat ure formulae are mostly used in one dimension, see § 13.13. 
The basis for the construction of quadrat ure formulae in several dimensions is the 
following theorem: 
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Theorem 1. Let K be an arbitrary element 0/ the decomposition 0/ a d-dimensio­
nal domain. Let Al, •.. ,Ap be points 0/ K and let Cl, .•. , Cp be real numbers. 
Let 

1 /dx = tci/(Ai ) 
K i=l 

hold /or all polynomials / 0/ degree k or less. Let k + 1 > d and u E Wfk+l) (K) (the 
Sobolev space 0/ functions with all generalized derivatives 0/ order k + 1 integrable 
in K). We then have 

L u dx - t ciu(Ai) ~ Ch~+1 lul k+1,l,K , 

where C is independent 0/ K and 0/ u, hK is the diameter 0/ K and lulk+l,l,K 

denotes the seminorm 0/ the function u in the space Wfk+l)(K) (see [83J, p.1l). 

We show now some simplest quadrat ure formulae used in two or three dimen­
sions. We remark that the corresponding accuracy estimates are not always a direct 
consequence of Theorem l. 

The following quadrature formulae are used for triangles: 

where Ai, i = 1, 2, 3, are the vertices and mesT the area of the triangle. The 
formula is exact for u E Pl(T) and has the order of accuracy h2 j Fig. 24.26. 

Fig.24.26. Fig.24.27. Fig.24.28. 

l udx ~ ~ mesT[u(SJ) + U(S2) + U(S3)J 

where Si, i = 1, 2, 3, are the midpoints of the sides of the triangle. The formula is 
exact for u E P2(T) and has the order of accuracy h3 j Fig. 24.27. 
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where Ai and Si are as above, So is the centre of gravity of the triangle, Cl = 630' 

C2 = 680' C3 = ~~. The formula is exact for u E P3 (T) and has the order of 
accuracy h4 ; Fig. 24.28. 

The formula 

mesK .u(G) 

where G is the cent re of gravity, is used for the simplex (i.e. the triangle in two 
and the tetrahedron in three dimensions). The formula is exact for u E Pl (K) and 
has the order of accuracy h2 • 

The influence of numerical quadrature on the accuracy of the approximate solu­
tion of a two-dimensional problem is described, e.g., by the following theorem: 

Theorem 2. Let n be a polygonal domain and let a regular system of triangu­
lations be given on il. Let u and Uh be the exact and the approximate solution, 
respectively, of a second order elliptic boundary-value problem. Let 

Further, let a*(Cfi, Cfj) be the entries of the stiffness matrix A* computed by 
numerical quadrature and, similarly, (f*, Cfj) be the components of the numerically 

N 

computed load vector f* (see (24.2.3)). Let u'h L CkCfk be the approximate 
k=l 

solution with c* = (ci, ... , c;') T satisfying 

A*c* = f*. 

Let the quadrature formula used be exact for polynomials of degree 2k - 2 or less and 
let the coefficients of the equation, its right-hand side and its solution be sufficiently 
smooth. Then we have 

We conclude this paragraph with an example of the use of the FEM. 

Example 1. We look for the solution of the differential equation 

-D..u = 1 

on the square il with the vertices (0,0), (1, 0), (1, 1), (0, 1) and with the boundary 
condition u = 0 on its boundary. 
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y 

x 

Fig. 24.29. 

We use a triangular net obtained from a square net with the mesh-size h = 1jn 
by dividing each square by the diagonal parallel to the bisector of the first quadrant 
(see Fig. 24.29 with n = 4) and linear triangular elements. 

i-th node 

Fig. 24.30. 

We first compute the matrix AN and the right-hand side bN according to (24.2.3). 
Each basis function corresponds to one nodal parameter, in our case to the func­
tion value at the node in the interior of the domain n. The basis function 'Pi is 
thus different from zero only on the subdomain /4, the union of the six triangles of 
decomposition (see.Fig. 24.30). Consequently, the values a('Pi, 'Pj) can be nonzero 
only if the subscripts i and j correspond to the same node (i = j) or to the neigh­
bouring nodes (i.e. to such ones that are directly connected by a mesh line). The 
domain of integration for equal subscripts is the domain /4, for different subscripts 
the domain Qij composed of two triangles of the decomposition (some of possible 
forms of Qij are shown in Fig. 24.31). 

We have, using Tab. 24.1, 
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j-th node ;-th node 

[2J 
i-th node 

i-th node j-th node LI7 
j-th node 

aJ bJ c} 

Fig. 24.31 a, b, c. 

Triangles constituting Ri are denoted by T j , j = 1, ... , 6. We carry out the 
computation separatelyon the individual triangles Tj, and the function 'Pi is the 
basis function of a linear finite element on each of them. 

The triangle Tk with the vertices (Xi, Yi), (Xi + h, Yi) and (Xi + h, Yi + h) is 
transformed onto the reference triangle Tref by 

X - Xi Y - Yi e =Pl(X, y) = -h- - -h-' 

Y - Yi 
'f/ =P2(X, y) = -h-· 

The i-th node (Xi, Yi) is transformed into the origin. We have 

where P3(e, 'f/) = 1 - e - 'f/, and, consequently, 

Similarly, we find that aa'Pi I = o. Finally, 
Y Tk 

where J is the Jacobian of the transformation inverse to (1). 

(1) 

We proceed on all the triangles from ~ in a similar way. We find the value 1 
for two of them and the value ! for the others. 
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Similarly, 

1 ( {}CPi {}cpj {}CPi {}CPj) d d - 0 l' h f ) - - + - - x Y - lor t e position 0 nodes in Fig. 24.31 a , 
Tk {}x {}x {}Y {}Y 

Together, we have 

for the position of nodes 

in Fig. 24.31 b) or c). 

a(cpi, cPj) = -1 

=0 

for neighbours along axes, 

for diagonal neighbours. 

The computation of the components of the right-hand side vector gives 

for aJl the triangles constituting Ri. Together, we have 

We assemble the matrix AN employing the numbering of nodes from the left to 
the right and the rows from top to bottom. We introduce the square tridiagonal 
matrix of order n - 1 

M. = ~~'.~1: ... 4: ... ~;.' .. :: . [ 

4, ~~' ~1, 0, ... ] 

.... ....... ... , -1, 4 

and denote the identity matrix of the same order by I. The matrix AN of the 
system is block tridiagonal of block order n - 1 and we have 

AN = ~~~ .. ~~: .. ~~' ... :: .. [
Mn, -I, 0, ... j 
......... , -I, Mn 

The order of AN is N = (n _1)2. The right-hand side vector bN has (n _1)2 equal 
components of magnitude h2 • 

The solution of the system 
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n 

where c = (Cl, ... , CN)T, yields the coefficients of the linear combination L Ci 'Pi , 

i=l 
i.e. the approximate solution of our problem. The coefficients Ci are the values of the 
approximate solution at the nodes owing to the properties of the basis functions. 
The system was solved for different n by the Gaussian elimination method (see 
§ 30.1). The approximate values at the points (i, ~) and (~, ~) are as follows: 

n 4 8 16 20 

Uh (i, ~) 0·05469 0·05664 0·05716 0·05722 

Uh (~, ~) 0·07031 0·07278 0·07345 0·07353 

Finishing this paragraph, we recall that the FEM was generalized in many di­
rections. It is used to solving nonlinear problems, in particular problems given 
by variational inequalities, it is used with spaces of finite elements not satisfying 
the condition VN C V (nonconforming elements), etc. The reader can find these 
applications in the bibliography shown at the beginning of this Chapter. A very 
comprehensive software for solving problems by the FEM has also been developed. 
These programs are very often products of professionals and thus of very good 
quality. We recommend the reader to use this software for solving his practical 
problems. 

24.5. Computation of Eigenvalues and 
Eigenfunctions by the Finite Element Method 

Variation al methods, particularly the FEM, can be successfully applied to the 
numerical computation of eigenvalues and eigenfunctions of boundary-value prob­
lems for differential equations. 

Let A be a linear (unbounded) symmetrie positive definite operator with the 
domain of definition D(A) in the space Hand let us look for such a number A and 
such an element u "I 0 that 

Au = AU. 

The existence of A and u is proved, similarly as in the case of boundary-value 
problems, starting from the concept of the weak solution of an eigenvalue problem 
that we are now going to introduce: 

Let a( u, v) be asymmetrie bilinear form defined on aspace V, H~ C V C Hk, 
where Hk is a suitably chosen Sobolev space (§ 24.1). We suppose that the form 
a(u, v) fulfils the conditions (24.1.2) and (24.1.3) and that 

a(u, v) = (Au, v) 
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for all elements u, v E D(A). 

The space V is the space HA from Remark 22.6.10 with an equivalent norm. 
We find in Tab. 24.1 which bilinear form and which space V correspond to the 
differential operator and the given boundary conditions. 

Definition 1. We say that ), is an eigenvalue of the operator A and that u E V, 
U -t 0, is the corresponding eigenelement (eigenvector) if 

a(u, v) = ),(u, v) (1) 

holds for all v E V. 

REMARK 1. Because the space V is a subspace of a Sobolev space we speak in 
what follows about eigenfunctions instead of eigenelements, even though some of 
the furt her results hold for a general Hilbert space. 

Problem 1. We are to find such a number), and such a function u E V, u # 0, 
that (1) holds. 

Theorem 22.6.11 says that this eigen problem has a countable set of positive eigen­
values and that a finite number of linearly independent eigenfunctions correspond 
to each of them. The system of alllinearly independent eigenfunctions is complete 
in the space V. The eigenvalues and eigenfunctions are solutions of a sequence of 
minimization problems for the Rayleigh quotient 

on suitable subspaces of V. 

R( u) = a( u, u), u # 0 , 
(u, u) 

REMARK 2. The assumption of symmetry of the bilinear form is important. It 
guarantees, among others, that the eigenvalues are real. The nonsymmetrie case is 
more difficult and we will not deal with it. 

If we apply the idea of the Ritz method to Problem 1 we obtain a method called 
the Rayleigh-Ritz method. We choose a finite-dimensional subspace VN of V and 
look for pairs (), N, U N) fulfilling 

(2) 

We choose a basis 'PI, ... , 'PN in the space VN. We assurne the eigenfunction UN 
N 

in the form UN = L Ci'Pi and take only basis functions for the functions VN in (2) 
i=1 
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(we know that it is sufficient). In this way, we obtain a generalized algebraie 
eigen problem 

(3) 

for the (nonzero ) eoefficient veetor c = (Cl, ... , C N ) T. The entries of the symmetrie 
positive definite matriees AN and BN are given by 

aN,i,j = a(rpö, rpj), 

bN,ö,j = (rpi, rpj). 
(4) 

Solving the algebraie eigenproblem (3), we obtain N approximations of eigenvalues 

and N eigenveetors, i.e. eoefficient veetors c(k> = (c~k>, ... , c<;»T, k = 1, ... , N, 
and, from them, N approximations of the eigenfunctions 

N 

UN,k = L c~k>rpi. 
i=l 

We have an error estimate for approximate eigenvalue: 

Theorem 1. Let the system of exact eigenfunctions as well as the system of ap­

proximate ones be orthonormal. Then for an arbitrary positive integer land N ~ l, 
there exists such a constant C(l) > 0 that 

If we have a sequence of spaces VN, VN C VN+l, N = 1,2, ... , with the interpola­
tion property, i. e. 

then 

holds. 

lim inf IIUk - vNllv = 0 for k = 1, ... , l, 
N-+OOVNEVN 

lim AN k = Ak , AN,k ~ AN+I,k , N = 1, 2, ... , 
N-+oo ' 

In a similar way it is possible to show that the approximation error of the eigen­
functions 

IIUN,k - ukllv 

is of the order of the interpolation error. 

The most natural way how to ehoose the spaces V N and their basis functions is 
the use of the FEM. For the simplest elements, we have the results: 
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Theorem 2. Let n be a plane polygonal domain, let a regular system of triangu­
lations (Definition 24.3.2) be given on it and let the linear triangular elements are 
chosen for the approximation. Then we have 

for k = 1, ... , dirn Vh and hE (0, C>.:;;1/2), where C > 0 is independent of hand k. 

Theorem 3. Let the assumptions of Theorem 2 be fulfilled and let >'k be a sim­
ple eigenvalue. Let the system of exact eigenfunctions as well as. the system of 
approximate on es be orthonormal. For a sufficiently small h, we then have 

IIUk - uk,hllo ~ C>'~h2, 

lI uk - uk,hlll ~ C>'kh , 

where C > 0 is independent of hand k. 

See [449] for more details. 

Example 1. Consider an equilateral triangle with its side equal to 1. Let an eigen­
value problem 

ßu = >.u, 

u = 0 on the boundary, 

be given on the triangle and let us compute the minimum eigenvalue. 

We use a uniform triangulation with the partition of a side int<> n parts (see 
Fig. 24.32, where n = 4) and linear triangular elements. 

x 

Fig. 24.32. 
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We have to compute the entries of the matrices AN and SN according to (4) 
before solving the algebraic problem (3). The order of the matrices is equal to the 
number of basis functions used and we have N = (n - l)(n - 2)/2. 

Each basis function corresponds to one nodal parameter and, because nodal pa­
rameters are function values at interior nodes of the grid, to one interior node. 
The basis function 'Pi is thus nonzero only on a hexagonal domain Si, the union 
of six triangles of the decomposition (see Fig. 24.33). It is obvious that the values 
a('Pi, 'Pj) as well as ('Pi, 'Pj) can be non zero only if the subscripts i and j corre­
spond to the same node (i = j) or to the adjacent nodes. The domain ofintegration 
reduces to the hexagon Si for equal subscripts and to the intersection of the corre­
sponding hexagons for different subscripts (referring, of course, to adjacent nodes). 
The intersection is a rhomb Rij consisting of two triangles of the decomposition 
(Fig. 24.34). 

We thus have 

Fig.24.33 

vihnOde 
i-th node 

Fig.24.34. 

a('Pi, 'Pi) = !si [( ~i) 2 + (:i rJ dxdy = 

= t, hJ(~')' + (~')}XdY. 
The triangles of the decomposition building up the hexagon Si are denoted by 
Tj, j = 1, ... , 6. The computation is carried out over individual triangles of the 
decomposition where <Pi reduces to the corresponding basis function of the finite 
element. 

The triangle Tk with the vertices (Xi, Yi), (Xi + h, Yi) and (Xi + !h, Yi + 4-h) 
is transformed onto the reference triangle by 

(5) 
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The i-th node (Xi, Yi) is thus transformed into the origin. We have 

where P3(~, 7]) = 1 - ~ - 7], and, consequently, 

. 8'Pi I 1 .. 8'Pj I 1 We obtam - = -- and slmIlarly - = ---. 
~ n h ~ ~ h~ 

We have, therefore, 

The symbol J denotes the Jacobian of the transformation inverse to (5). 

By a similar procedure, we obtain the same value if the triangle Tj is in the 
"reversed" position (with its "peak" pointing below). 

We further find 

for i and j corresponding to adjacent nodes. 

The contributions from all the triangles are equal because the grid is regular and 
we have 

a('Pi, 'Pd = 2 yl3 , 

h2 yl3 
('Pi, 'Pi) = -4-' 

yl3 
a('Pi, 'Pj) = -3' 

h2 yl3 
('Pi, 'Pj) = ---u-. 

Multiplying all the coefficients by yl3 and numbering the nodes rowwise from top 
to bottom, we obtain 
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6 I -1 -11 I 

--~----~-------~----------~-
-11 6 -1 I -1 -1 I 

I I 

-11 -1 6 I -1 -1 I 

--~----~-------~----------~-
I -1 I 6 -1 I -1 -1 I 
I I I I 

I -1 -1 I -1 6 -1 I -1 -1 I 
I I I I··· 

-1 I -1 6 I -1 -1 
I I I I 

--f----l-------~----------T-

6 I 1 1 I 

--~----~-------~----------~-
1 1 6 1 1 1 1 I 

I I 

11 1 6 1 1 11 I 

--~----~-------~----------~-
1 I 6 1 1 1 

I I 

1 1 I 1 6 1 I 
I I 

1 1 I 
I·· . 

1 1 1 6 1 1 1 I I I I 
--f----l-------~----------T-

The partition into blocks corresponding to the rows of nodes is marked in both 
the matrices. The omitted entries are zeros. For the parlicular case of n = 4 with 
three interior points and h = i (see Fig. 24.32), the matrices AN and BN are 

[ 6 -1 -1] .1 " 
3 2 A3 = -1, 6, -1 

-1, -1, 6 

.1 1 [6' 1, 611 ] 32 B3 = 128 1, 6, 
1, 1, 

If the problem (3) is solved e.g. by a modification of the power method of Chap. 30 
for different values of n, we obtain 

n 4 8 12 20 

approximate value of ),1 64 55·395 53·851 53·072 

The exact value is ),1 = 163'lr
2 == 52·638. 
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24.6. Variational Methods for Numerical Solution 
of Parabolic Equations 

463 

We show here a furt her possible applieation of variational methods (see also 
§ 18.10). 

Let a parabolie equation 
ou 
ot +Au = f (1) 

be given, where A is an elliptie operator which is assumed to be symmetrie and time 
independent, for simplieity. Equation (1) is eompleted by eorresponding initial and 
boundary eonditions. 

The function u to be found thus depends, in addition to the space variables, also 
on the time variable t. 

A typieal parabolie problem is to find the solution of the differential equation 

fulfilling the eonditions 

where I = (0, T). 

ou (Pu 
8t - ox2 = f(x, t) in (a, b) X I, 

u(x, 0) = uo(x) in [a, b], 

u(a, t) = 0, u(b, t) = 0 in 1, 

(2) 

(3) 

(4) 

The domain of definition of a parabolie problem is, in general, the Cartesian 
produet of the domain [l with the time interval 1. The eondition (3) is the initial 
condition of the problem, Le. the preseribed value of the solution for t = 0, the 
eonditions (4) are boundary conditions, given on Sxl, where S is the boundary of [l. 
In our ease, the domain is the interval (a, b) and its boundary are its two endpoints. 
As a eonsequenee of the eonditions (3) and (4), we have uo(a) = u(a, 0) = 0 and 
uo(b) = u(b, 0) = O. These requirements on initial and boundary eonditions are 
ealled consistency conditions. The boundary eondition ean be nonhomogeneous, 
too, Le., it ean have a nonzero right-hand side. 

Equations of the type (1) deseribe nonstationary heat conduction problems, dif­
fusion problems, ete. First of all, it is neeessary to give the definition of a weak 
solution of parabolie problems in order that we ean use varlational methods. The 

basic idea is that we move the time derivative ~; to the right-hand side in (1) and, 

then, we proeeed as with an elliptie problem aceording to § 24.1. We, therefore, 
introduee the bilinear form a( u, v) eorresponding to the operator A and the space 
V, HG c V c Hk (§ 24.1), where Hk is a suitable Sobolev spacej the informa­
tion neeessary for most eurrent problems ean be found in Tab. 24.1. The bilinear 
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form a(u, v) is symmetrie for a symmetrie operator. Let us assurne that it satisfies 
(24.1.2) and (24.1.3). 

Definition 1. We say that a function u is a weak solution 0/ the given parabolic 
problem if u(t) E V for almost all t E (0, T) (i.e. for all t E (0, T) with a possible 
exception of a set of measure zero) and, moreover, 

(~;, v) + a(u, v) = (f, v) holds for all v E V and almost all t E (0, T) (5) 

and if, finally, 

u(O) = uo, (6) 

where Uo E V is a given function, the initial condition. 

REMARK 1. The foregoing definition says that the "variation al condition" (5) is 
to be fulfilled for almost all t from the given time interval, namely for each value 

of t separately. It is necessary to guarantee that the derivative ~; exists and that 

it is a linear continuous functional on the space V for each fixed t in order to 
justify the equality (5). The derivative of an abstract function is defined as the 
derivative of a mapping from the interval (0, T) into the space V, according to 
§ 22.8. Moreover, it is usually required that this derivative be an element of the 
space L2([l) for almost all t E (0, T). Under these assumptions, the weak solution 
is well-defined. The details can be found in [390], [463]. 

REMARK 2. In the above formulation, the bilinear form a(u, v) does not depend 
on the time variable t, i.e. its coefficients do not. In a similar way, the weak 
solution for a time dependent bilinear form a( u, v) can be introduced, but it is then 
necessary to impose further requirements on it in order to guarantee the existence 
of the solution. Therefore, we have used the simpler formulation of the problem. 
We consider, also for simplicity, only symmetrie bilinear forms a(u, v). 

The numerieal solution of a parabolic equation requires two kinds of discretiza­
tion, in time and in space. The procedures where only the time discretization or 
only the space discretization is carried out are called semidiscrete methods. Even 
though it is necessary to perform both the discretizations for solving the problem 
on a computer, the semidiscrete methods have their own importance because they 
make the theoretieal investigations easier and, moreover, they enable us to combine 
analytie methods with the discretization. 

We thus have two semidiscrete methods. The time semidiscretization or the 
Rothe method, is discussed in § 18.10; see [390] for more details. The space semidis­
cretization or Galerkin semidiscrete method starts directly from the methods dis­
cussed in the preceding paragraphs of this chapter and consists in the following: 
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We choose a finite-dimensional subspace VN of the space V. Let the functions 
'PI, ... , 'PN form a basis in VN. The approximate solution is assumed in the form 

N 

UN = I>k(t)'Pk. 
k=1 

The coefficients of the linear combination are now functions of time, in contrast 
to the elliptic case. We require the validity of (5) for the approximate solution UN, 

taking successively 'Pj, j = 1, ... , N, for v, 

(7) 

and we require that the initial values of Ck fulfil the equality 

N 

(uo, 'Pj) = LCk(O)('Pk, 'Pj), j = 1, ... , N. (8) 
k=1 

Let us denote, as usual, the stiffness matrix by A, its entries by akj = a( 'Pk, 'Pj) 
and the matrix with the entries bkj = ('Pk, 'Pj) by B. The matrix B is often called 
the mass matrix. Further let c(t) and F(t) be the vectors 

Then (7) yields a system of ordinary differential equations 

Bc'(t) + Ac(t) = F(t) (9) 

for unknown functions Ck (t) with the initial condition 

Bc(O) = UO , (10) 

where UO = (Ur, ... , U.R,-)T and UJ = (uo, 'Pj). 
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As a consequence of the symmetry of a(u, v), both the matrices A and B are 
symmetrie and positive definite. Let ET E be the Choleski factorization (cf. § 30.1) 
of the matrix B. Let d = Ec be the new unknown vector. The equation (9) yields 

d'(t) + Ad(t) = g(t) (11) 

where A = E-T AE-1 , g = E-T F and the initial condition (10) gives 

d(O) = dO, (12) 

where d = E-T UO . 

The system (11) is a system of linear differential equations with constant coeffi­
dents. This is a consequence of the fact that the bilinear form is time-independent. 
We can write the solution of such a system as linear combinations of exponentials 
if we make use of the roots of the characteristic equation, see § 17.18. This can 
be useful for theoretical considerations. If we, however, wish to obtain numerical 
results we have to evaluate these combinations of exponentials. The usual way 
is, therefore, the numerical treatement of the problem (11), (12) by a method of 
Chap. 25. The system (11) is very stiff, see Remark 25.5.2. This is caused by 
the fact that the matrices A and B originate from a parabolic problem. This fact 
must be considered when a method for the numerical solution of the initial-value 
problem (11), (12) is looked for. 

The discretization in space is most frequently carried out by the FEM. For the 
simplest elements, we have the foIlowing error estimate: 

Theorem 1. Let il be a convex polygonal domain, let a regular system of tri­
angulations be given on il (Definition 24.3.2) and let Uh(t) be the approximation 
obtained with the use of linear elements. Let us assume that the exact solution u(t) 
of the problem (5), (6) belongs for almost all tE (0, T) to the space H 2(il). Then 

max lIu(t) - uh(t)lIo n ~ C (1 + IIOg h~ I) h2 max lIu (t)1I2 n . 
tE(O,T)' tE(O,T)' 

If we want to obtain fuIl discretization from the semidiscrete problem (7), (8), 
we partition .the intervaJ [0, Tl into M parts by partition points tk and put Uh,k = 
= Uh(tk), 7k = tk - tk-l, !k = f(tk) for each k = 0, 1, ... , M. 

The approximate solution is obtained by applying, to the solution of the time 
dependent problem, either the implicit Euler method 

( Uh k - Uh k-l ) 
, 7k' ,v +a(uh,k, v) = (Jk, v), v E Vh, k=l, ... , M, 

(Uh,O, v) = (uo, v), v E Vh, 
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or the Crank-Nicolson method 

( Uh'k - Uh,k-l ) + (Uh'k + Uh,k-l ) - ~ [Cf ) + (~ )] 
Tk ' V a 2 ,v - 2 k, V J k-b V , 

v E Vh, k = 1, ... , M, 

(Uh,O, v) = (uo, v), v E Vh • 

The unknown solution has the form 

N 

Uh,k = L Cikl{)i 

i=1 

on the k-th time level and we have to solve a system of linear algebraic equations 
for the unknown coefficients Cik if we proceed from the (k - 1 )-st time level to the 
k-th one. 

REMARK 3. The use of the implicit Euler method for the solution of a semidis­
crete problem (i.e. discretized in space by the FEM) is equivalent with the use of 
the Rothe method of § 18.10 followed by the FEM discretization. The time and 
space discretization may be interchanged. The Crank-Nicolson method cannot be 
derived from the Rothe method. Both methods used here for the time discretization 
correspond to simple A-stable methods for the solution of initial-value problems for 
ordinary differential equations, see Remark 25.5.2. 

Further methods convenient for the adaptive choice of the time-step are in [242]. 
The error estimates can be found also in [242], and, in addition, in [463]. 

REMARK 4. Numerical solution of parabolic equations by the finite-difference 
method is considered in Chap. 27. 

REMARK 5. Methods, similar to those considered in this paragraph, can be 
used in the case of a hyperbolic equation like e.g. the equation of the vibrating 
string or first-order hyperbolic systems. In these problems, the solutions need not 
be smooth. The problems with nonsmooth solutions are frequent (e.g. the shock 
waves) and we ar~ interested just in them. The mere transfer of the ideas stated 
in this paragraph to hyperbolic problems will not be successful for nonsmooth 
solutions. It is necessary to take care of the choice of a suitable approximation for 
nonsmooth solutions. The reader is therefore referred to [242]. 

Example 1. Let the problem (2), (3), (4) be solved by the Galerkin semidiscrete 
method. We take a = 0, b = 1, fex, t) = t in (2). The initial condition will be 
uo(x) = ~ -I ~ - xl· The interval [0, 1] will be divided into 4 equal parts and linear 
elements will be used. We thus have three nodes PI, P2 , P3 with the coordinates 
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Xl = i, X2 = !, X3 = ~, respectively, and three function values at these points as 
the nodal parameters. The basis function 'Pi at the node Pi is 

'Pi(X) = 1 - 41Xi - xl for lXi - xl ~ i, 
'Pi(X) = 0 elsewhere. 

We will construct the system (9). The matrix A has the entries a('Pi, 'Pj) = 
f1 I I d h = Jo 'Pi'Pj x. For i = j we ave 

We furt her have 

a('Pi, 'Pj) = l~j 4.(-4) dx = -4 

for li - jl = 1 and a('Pi, 'Pj) = 0 for li - jl > l. 
Similarly, the entries of Bare ('Pi, 'Pj) = Jo1 'Pi'Pj dx. 

We have 

for i = j and 

for li - jl = 1 and ('Pi, 'Pj) = 0 for li - jl > l. 
Moreover, we have 

The right-hand side vector is UO = (116 , ;8' 116 ). 

We have the system of differential equations 
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with the initial conditions 

from which we determine the coefficient functions Ci(t), i = 1, 2, 3. 

If we want to solve this system analytically we proceed according to § 17.18. As 
concerns numerical solution, the system can be treated either in the present form 
or transformed into the form (11) (solved explicitly with respect to the derivatives). 
We find the Choleski decomposition of the matrix B in a numeric way and obtain 
B = ETE, where 

E = 0, 0·3953, 0·1054 [
0,4082, 0·1021, 0 1 

0, 0, 0·3944 

The new unknown vector d = Ec fulfils the system 

d~ (t) + 47·98d1 (t) - 37·176d2 (t) + 9·934d3 (t) = 0·6123t, 
d~(t) - 37·176d1(t) + 67·209d2 (t) - 43·614d3 (t) = 0·4744t, 
d~(t) + 9·934d1(t) - 43·614d2 (t) + 69·943d3 (t) = 0·5070t 

with the initial conditions 

d1(0) = 0·1531, d2(0) = 0·2240, d3 (0) = 0·0986. 

This system can be solved directly according to § 17.18 or numerically by some of 
the methods of Chap. 25. 

24.7. The Boundary Element Method 

Some of the boundary-value problems for the Laplace equation can be solved 
with the use of integral equations (cf. § 18.4). The method consists in the solution 
of an integral equation for the density of potential of a single layer or of a double 
layer which are then used to express the solution. This can also be a way for the 
numerical solution of the problem, because the solution of integral equations can 
be formulated as the variational problem 24.1.1. The application of the FEM to 
the solution of these integral equations is called the boundary element method or 
the boundary integral equation method. 

This method can sometimes replace or complete the FEM. Its advantage is weIl 
seen on numerical solution of the exterior Dirichlet problem (Definition 18.4.6). 
Let D be a bounded, simply connected (see Remark 22.1.9) domain with a smooth 
boundary. Let us denote the complement of its closure D by D'. 
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We are given the following problem in three dimensions: 

Llu = 0 in n', 
u = Uo on S, 

u(x) --+ 0 for IIxll --+ 00. 

24.7 

(1) 

(2) 

(3) 

This is the exterior Dirichlet problem, the condition (3) is in fact "the boundary 
condition in infinity" and is necessary to guarantee uniqueness of the solution of 
the problem. 

Because the domain n' is unbounded it cannot be decomposed into a finite 
number of triangles. The standard procedure is to substitute a domain nb = n' n 
n K (0, b) for a sufficiently large b for the domain n'. The symbol K ( 0, b) denotes 
the ball with centre at a point 0 E n and radius b. Sometimes, it is necessary 
to choose the radius b very large in order to obtain the required accuracy of the 
approximate solution, and the demands of the FEM for the computer time and 
memory are enormous. 

If we use a variational method to solve integral equations from § 18.4 quoted, we 
obtain the so-called indirect method 0/ boundary elements. In order to describe the 
direct method, we recall some formulae for harmonie functions. We start from the 
formula (14.8.21) or from the analogous formula for the plane problem. We write 
this formula, independently of the dimension, as 

(4) 

where n is a bounded domain, S its boundary, n the unit outward normal to the 
boundary, dX the element of area or volume and dS the element of a curve or 
surface, according to the dimension of the problem. 

Definition 1. The fundamental solution of the Laplace equation is the function 

1 
W3(P, Q) = 41fT' 

where r is the function of two points P(xt, X2, X3) and Q(6, 6, 6), 

in the three-dimensional space and the function 

1 1 
W2(P, Q) = -2 In-

1f T 
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of two points P(Xl, X2) and Q(6, 6), where 

in the plane. (Cf. Definition 18.4.8.) 

The fundamental solution is, for a fixed Q, the solution of the Laplaee equation 
in the whole spaee (or plane) with the exeeption of the point P = Q. 

We furt her have L 6.'ljJ(P, Q)cp(Q)dQ = -cp(P) (5) 

for an arbitrary function cp(P) that is suffieiently smooth and vanishes in the neigh­
bourhood of the boundary S. Beeause of the singularity of 'ljJ(P, Q) at P = Q, the 
integral in (5) is to be understood as the limit of the integrals over the domain 
Q - K(P, c) for E tending to zero. 

The symbol K(P, c) denotes a eircle or ball with the eentre P and radius E. 

Substituting in (4) an arbitrary harmonie function for u and the fundamental 
solution for v we obtain 

u(P) = r 'ljJ(P, Q) &&u(Q) dSQ - r u(Q) &'ljJ~P, Q) dSQ. 
Js nQ Js nQ 

(6) 

The subseript in the notation for the normal and for the element of the bound­
ary denotes the variable with respect to whieh the differentiation or integration is 
earried out. 

The value of a harmonie function at an arbitrary interior point of the domain Q 

is thus expressed as the differenee of two integrals over S eontaining its bound­
ary values and values of its normal derivative. These integrals are the potentials 

of single layer (with the kernel 'ljJ) and of double layer (with the kernel ~~), cf. 

Definition 18.4.10. 

The properties of these potentials imply that the right-hand side of (6) makes 
sense even if the point P lies outside Q. We arrive at 

{ 
u(P) for P E Q, r 'ljJ(P, Q) &u(Q) dSQ _ r u(Q) &'ljJ(P, Q) dSQ = ~u(P) for PES, 

J s &nQ J s &nQ o for P E Q'. 

(7) 

Similar formulae are obtained for a function harmonie in Q' and fulfilling (3). 

We underline that formula (7) is valid only if S is smooth. It ean be modified 
for some kinds of non-smooth boundaries, e.g. for boundaries with corners in E 2 • 

The formula (7) is a basis for derivation of integral equations for the solution 
of boundary-value problems by the direct method of boundary elements. For the 
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solution of the interior Dirichlet problem, we start from (7) with PES and obtain 

an integral equation of the first kind for the unknown function :: on S, 

[ 'Ij;(P, Q) 8u(Q) dSQ = f(P) 
18 8nQ 

(8) 

where the terms containing u(Q) on S (and being thus known) are included in the 
right-hand side. The solution of the interior Neumann problem leads to a Fredholm 
integral equation of the second kind 

~u(P) + [ u(Q) 8'1j;(P, Q) dSQ = f(P) , 
2 18 8nQ 

(9) 

where f(P) is a known term containing 8~(Q) on S. In a similar way, exterior 
unQ 

problems or problems with other types of boundary conditions are transformed 
into integral equations. 

REMARK 1. The method using the formula (7) is called the direct method be­
cause the unknown function is the solution itself or its normal derivative on the 
boundary. We are often interested just in these quantities. This method is, there­
fore, sometimes preferred to the procedure following from § 18.4, where the unknown 
function in the integral equation is the potential density that does not yield directly 
the values of the solution or of its normal derivative on the boundary. 

The value at an arbitrary interior point of Q is obtained again by (7). It is 
necessary to compute both the boundary integrals in order to obtain one value. In 
the indirect method of the boundary elements it is necessary to compute only one 
integral, cf. the paragraph quoted. 

REMARK 2. If we want to obtain the equation of the second kind from (7) also for 
the Dirichlet problem we can differentiate formula (7) with respect to the normal 
at the point P. As the right-hand side term, we obtain an integral whose kernel is 
the derivative of the double layer potential with respect to the normal and is called 
the hypersingular integral. Its evaluation represents some difficulty. 

The method of boundary elements consists in application of the idea of the FEM 
to the numerical solution of (8) and (9) and to similar equations of § 18.4. The 
kerneis of these equations have only a weak singularity and are suitable for this 
method. 

It is obvious that we have to apply quadrat ure formulae to the integrals in (7) 
to compute the values of the approximate solution. 

The Galerkin method is used for both the kinds of the equations but its con­
vergence is analysed for each kind separately. We decompose the boundary Sinto 
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elements in both eases. The elements of the deeomposition are finite ares for plane 
domains or spatially eurved triangles or quadrangles for three-dimensional domains. 
Let h be the deeomposition parameter, i.e. the maximal element diameter. We use 
the space of pieeewise eonstant functions as the space of finite elements. We denote 
this space by Wh. It is Wh C L2 (S) (for L2 (S) see e.g. [389], Chap. 30) and we 
have VIKk= Vk, where Kk is the element of deeomposition and Vk a eonstant, for 
v E Wh' The basis of this space is given by the functions !Pi with !Pi = 1 on Ki' 
!Pi = 0 elsewhere. The spaces of linear and quadratie elements ean be used as weIl, 
see [25], [58]. Here, however, we eonfine ourselves to this simplest ease for whieh 
the theorems on the error estimate for the approximate solution are given below. 

The eorresponding bilinear form for the equation (8) is 

b(u, v) = fs fs 'IjJ(P, Q)u(Q)v(P)dSpdSQ, 

and it is symmetrie and positive definite on the space of boundary values; The 
right-hand side functional is 

F(v) = fs /(P)v(P) dSp. 

It is possible to apply the results of § 24.2 and § 24.3 or their analogies to this 
problem. 

N 

The approximate solution Uh is assumed in the form L Ci!Pi. We assemble lhe 
i=l 

matrix B with the entries 

and the right-hand side vector G with the eomponents 

The eoefficient veetor c = (Cl, ... , CN)T is obtained as the solution of the system 

Bc= G. (10) 

Theorem 1. Let the right-hand side 0/ the equation (8) be a function from H I (S) 
and let dh be the approximation 0/ the normal derivative obtained by the boundary 
element method with piecewise constant elements. Then we have 
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where C is a constant independent 0/ the solution and 0/ the decomposition. 

REMARK 3. The spaces Hl(S) and W = H-!(S), appearing in Theorem 1, 
are Sobolev spaces of functions (or functionals) defined on the boundary S. Such 
spaces are not defined in Remark 22.4.10; we refer, therefore, to [389] Chap. 30 and 
[348], p. 81. 

REMARK 4. The condition number of the corresponding matrix of the system 
is of order O(h-l ) for regular systems of decomposition. The system can thus be 
solved without a significant influence of round-off errors for a reasonable choice of 
the size of h. 

Equations of the second kind, written in the form 

(1 - K)u = g, (11) 

where K is the corresponding integral operator, are solved in a similar way. The 
N 

approximate solution Uh is assumed in the form L CilPi. Applying the Galerkin 
i==l 

method we obtain 

((I -K) t CilPi, 'Pj) = (g, IPj) , j = 1, ... , N. 
t==l 

(12) 

Let D be a diagonal matrix with the entries (lPi, lPi) and B a matrix with the 
entries 

We rewrite (12) in the form 
(D-B)c=G (13) 

where c = (Cl, ... , C N ) T is the unknown coefficient vector and G = ((g, 1Pt), ... 
. .. , (g, 'P N ) ) T the right-hand side vector. 

We have also an error estimate of the approximate solution here: 

Theorem 2. Let u E Hl(S) hold /or the solution 0/ the equation (11). Let Uh be 
the approximation 0/ the solution obtained by the boundary element method with 
piecewise constatnt elements. Then there are such numbers C > 0 and ho > 0 that 

for h < ho and the constant C depends on u but does not depend on the decom­
position of the boundary of the domain. The space W is again the Sobolev space 
H- 4 (S) (see [242]). 
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REMARK 5. The matrix B is not symmetrie here and the condition number of 
the symmetrized matrix (D - B)T(D - B) is bounded independently of h. This 
guarantees good solvability of the system (13) for an arbitrarily fine partition. 

Finishing this paragraph, we can state that an advantageous feature of the 
boundary element method is the dimension reduction of the problem, a two-dimen­
sional problem is reduced to a problem on a one-dimensional boundary, a three­
-dimensional problem to a problem on a two-dimensional boundary. The method 
is suitable for domains whose boundary is geometrically complicated. The method 
can be, or even has to be combined with the FEM (e.g. for the Poisson equation, 
i.e. for a nonhomogeneous equation). 

A drawback of the method is that we need to know the fundamental solution, 
and, through this, we are practically limited to equations with constant coeflicients 
and that for every value at an interior point we must evaluate formula (7). 

Further, less substantial drawbacks are that the computation of the coeflicients 
bij is laborious and that the matrix B is full. This restricts our choice of methods 
for the numerical solution of the corresponding algebraic systems. 

The method for approximate solution of the above integral equations that is 
based on collocation is also sometimes called the boundary element method, see [58], 
[25J. 

In the conclusion, let us show a simple illustrative example. 

Example 1. We solve the Dirichlet problem 

Llu = ° in K(O, R) , 

u = R cos s , s E [0, 2'1\"J 

on the circle K with centre at the origin and radius R. 

The exact solution is u = x or, in polar coordinates, u = {! cos €p. 

We use the above boundary element method with constant elements and with 
the partition of the boundary into N parts. We put h = 2'1\"jN. The value of the 

N 

normal derivative to the boundary is assumed in the form ~u = L di€pi. For the 
n i=l 

entries bij of the matrix B, we obtain 

or with the parametrization of the boundary 

R 2 j j h jih 1 bij = - ln- dspdsQ. 
2'1\" (j-l)h (i-l)h r 
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For the distance r we have (see Fig. 24.35) 

2R . !sp - sQ! 
r = sm 2 

and, consequently, 

R21jh l ih !sp - SQ! R 2 2 R 2 
bij = - -ln(2Rsin ) dspdsQ = --h In2R - -lij, 

27r (j-l)h (i-l)h 2 27r 27r 

where 

I jh lih . !sP - sQ! 
lij = In sm ds pdsQ . 

(j-l)h (i-l)h 2 

The integrals lij depend only on the difference !i - j! and do not depend on R; 

it is, however, necessary to compute them numerically. The computation must be 
carried out with some care because for some combination of the subscripts, e.g. for 
i = j, the integrals are singular. 

Fig. 24.35. 

We have 

Gj = ~ fs Rcossp IPjdsp + fsfs RcossQ {)~Q (2~ ln~) dSQ!pjdsp 

for the components of the right-hand side vector. It is 

-~ (~ln!) = ~ cos(nQ, QP) = __ 1_ ~ P Q S lor , E . 
{)nQ 27r r 27r r 47rR 
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The last equality is again obvious from Fig. 24.35. 

The seeond integral in the expression for G j is thus zero and 

1 2 jjh 2 . h 2j - 1 
Gj = -R eossp ds p = R Slll- eos --ho 

2 (j-l)h 2 2 

We ehoose N = 8. The values of the integrals I ij eomputed numerieally with the 
use of the trapezoidal rule with 32 parts are 

li - jl 0 1 2 3 4 5 6 7 

Iij -1·4859 -0·6651 -0·2303 -0·0583 -0·0080 -0·0583 -0·2303 -0·6651 

Further we put R = 1 and obtain the matrix Band the right-hand side veetor G: 

B= 

0·1684, 0·0378, -0·0314, -0·0588, -0·0668, -0·0588, -0·0314, 0·0378 
0·0378, 0·1684, 0·0378, -0·0314, -0·0588, -0·0668, -0·0588, -0·0314 

-0·0314, 0·0378, 0·1684, 0·0378, -0·0314, -0·0588, -0·0668, -0·0588 
-0·0588, -0·0314, 0·0378, 0·1684, 0·0378, -0·0314, -0·0588, -0·0668 
-0·0668, -0·0588, -0·0314, 0·0378, 0·1684, 0·0378, -0·0314, -0·0588 
-0·0588, -0·0668, -0·0588, -0·0314, 0·0378, 0·1684, 0·0378, -0·0314 
-0·0314, -0·0588, -0·0668, -0·0588, -0·0314, 0·0378, 0·1684, 0·0378 

0·0378, -0·0314, -0·0588, -0·0668, -0·0588, -0·0314, 0·0378, 0·1684 

G = (0.3536, 0.1464, -0.1464, -0.3536, -0.3536, -0.1464, 0.1464, 0.3536)T. 

The solution of (10) yields pieeewise eonstant approximate values of the normal 
derivative of the solution. They are 

d1 = 0·9509, 
d5 = -0·9509, 

d2 = 0·3939, 
d6 = -0·3939, 

d3 = -0·3939, 
d7 = 0·3939, 

d4 = -0·9509, 
da = 0·9509· 

The relative error (the same for all values) with respect to the exact value at 
the midpoint of the eorresponding are is 2·9 %. The approximate solution at an 
arbitrary point of K(O, 1) is then obtained from the diseretized version of (7). 
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In this chapter we describe basic methods for numerical solution of initial value 
problems and boundary value problems for ordinary differential equations. We 
also describe some methods for the approximation of eigenvalues of differential 
operators. Since these problems involve many rather different items we begin with 
an introductory paragraph in which we specify the individual problems that will be 
dealt with in the further text. 

25.1. Introduction 

By the initial value problern for the system of m differential equations of the first 
order 

1 y' = 1 J (X, 1 Y, ... , m Y) , 

(1) 

my' = m J(x, ly, ... , my) 

we mean the problern of finding m functions 1y, ... , my of x which are defined, 
continuous and continuously differentiable in an interval [a, b] , which satisfy (1) 
for any x E [a, b] and for which 

(2) 

holds where TJ = ("71> ..• , Tfm)T is a given rn-dimensional vector and ~ is a point 
from [a, b] . This ~ is usually equal to a and we restriet ourselves to this special case. 
The conditions (2) imposed on the solution of (1) are called the initial conditions. 
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Using the vector notation (cf. § 17.2), the system (1) and the initial conditions (2) 
can be written in the form 

where 

and 

y' = f(x, y), 

y(e)=1J, 

y~ [~:] ~ ('y, ... , -y)T' 

[ 
1 f(x, 1y, .... ' my) l 

f(x, y) = . 
mf(x, 1y, ... , my) 

Since any m-th order differential equation 

y(m) = f(x, y, y', ... , y<m-1)) 

can be written as a system of m first-order equations 

1y' = 2y' 

2y' = 3y' 

m-1y' = my, 

my' = f(x, 1y, ... , my) 

by means of introducing new unknown functions by 

it is clear what is understood by the initial value problern for the equation (3). 

(3) 

(4) 
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By the boundary value problern or, in more detail, by the two-point boundary 
value problern for the system (1), we mean the problern of finding such a solution 
of (1) for which we have 

r(y(a), y(b)) = o. (5) 

Here r is a given rn-dimensional vector function of 2m variables, y(x) is an 
rn-dimensional vector with components 1y(x), ... , my(x) and a and bare two dif­
ferent points from the interval in which the solution is sought. These points are 
usually the end points of this interval. 

If it is possible to write the conditions (5), called the boundary conditions, in the 
form 

ra(y(a)) = o, rb(y(b)) = o, 

where ra and f"b are ma- and mb-dimensional vector functions of m variables ( m = 
= ma + mb), respectively, we speak about the separated boundary conditions. The 
conditions of the form 

Uy(a) + Vy(b) = c, 

where U and V are m x m matrices and c is an rn-dimensional vector, are called 
linear boundary conditions and the conditions 

(6) 

where Va and Vb are ma X m and mb X m matrices and Va and vb are ma- and 
mb-dimensional vectors, respectively, are linear separated boundary conditions. 

Taking into account the transformation ( 4) we again know what is a boundary 
value problern for an equation of order m. 

Note that the same number of boundary conditions as the number of unknown 
functions is not necessary in the definition of a boundary value problern and it is 
also possible to study the conditions of the type (5) combining the values of the 
solution at more than two points of the given interval. 

If we replace Va in (6) by the identity matrix and omit the second equation at 
all we see that the initial value problern is a very special case of the boundary value 
problem. This fact has rather serious consequences: Whilst the existence theorems 
are known for relatively large classes of nonlinear initial value problems ( cf., e.g., 
§ 17.2), the solution of a boundary value problern may not exist or may not be 
determined uniquely even in the case of a very simple linear equation. This fact 
can be most easily comprehended from the following almost trivial example. 

Example 1. Let us solve the differential equation 

y"+y=O. (7) 
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Any solution of this equation can be written in the form 

y(x) =C1sinx+C2cosx, 

where C1 and C2 are arbitrary constants. But from here we immediately see that 
any function of the form C sin x, where Cis any number, is the solution of (7) with 
the boundary conditions 

y(O)=O, y('li")=O. (8) 

Thus, the boundary value problern (7), (8) has infinitely many solutions. If we 
replace the conditions (8) by 

y(O)=O, y('11")=1, 

the solution does not exist. 

On the basis of this example, one can conclude that theoretical questions ( con­
cerning existence and uniqueness of solution, etc.) in boundary value problems are 
substantially more complicated than in the case of initial value problems. Forthat 
reason we will be able to describe numerical methods for solving initial value prob­
lems directly for the general nonlinear problern (1), (2). In the case of boundary 
value problems, we restriet ourselves, on the contrary, very often to linear prob­
lems only. The main reason for this restriction is that nonlinear boundary value 
problems are often solved in such a way that one constructs a sequence of linear 
boundary value problems, the solutions of which converge to the solution of the 
original problem. The realization of such a procedure then depends on our ability 
to solve linear problems efficiently. 

The eigenvalue problern in the case of differential equations is the problern of 
finding such values of a parameter .X for which the system of differential equations 

y' = f(x, y, .X) (9) 

(y is an rn-dimensional vector and f is an rn-dimensional vector function of rn + 2 
variables for which f(x, o, .X) = o), the right-hand term of which depends, besides 
on x and y, also on the parameter .X, with boundary conditions 

r(y(a), y(b), .X) = o {10) 

( r{ o, o, .X) = o) has a nontrivial (i.e. not identically equal to zero) solution. The 
value of the parameter .X satisfying these conditions is called the eigenvalue and the 
corresponding {nontrivial) solution eigenfunction of the problern {9), {10). 
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REMARK 1. The assurnptions f(x, o, >.) = o and r(o, o, >.) o irnply that 

y = o is a solution of{9), (10) for any >.. Thus, the eigenvalue problern consists in 
finding such values of >. for which the problern (9), {10) has, rnoreover, a nontrivial 

solution (see also § 17.17). 

REMARK 2. Ifwe introduce another unknown function m+ly = >. and add a fur­

ther equation m+1 y' = 0 in (9), the eigenvalue problern (9), (10) may be looked 

at as a general boundary value problern (1), (5). The eigenvalue problern (9), (10) 
is thus equivalent with the problern of finding the vector y = (yT, m+1y)T which 
solves the equation 

.Y' = f(x, y) 

with the boundary conditions 

r(y(a), y(b)) = o, 

where 

f(x, y) = [ f(x, y~ m+Iy)] 

and 

r(ut, ... , Um, Um+1> Vt, ... , Vm, Vm+t) = 
= r(Ut, ... , Um, Vt, ... , Vm, Vm+t) · 

This rernark rnay be useful rather frorn the practical point of view since it allows, 
at least forrnally, to transfer the ideas of studying boundary value problerns to 
eigenvalue problerns. 

Frorn the concrete methods for the nurnerical solution of initial value problerns 

we describe in detail Runge-Kutta rnethods and linear k-step (rnultistep) rnethods, 
including the predictor-corrector rnethods. We also describe the Gragg rnethod 
which forrns a starting point for effective using of idea of the Richardson extrapo­

lation and which is rather popular at present. 

For the nurnerical solution of boundary value problems and eigenvalue prob­

lerns we introduce sorne rnethods of transforrning such problerns into initial value 
problerns and the finite difference rnethod. As far as the variational methods are 
concerned, we refer to Chap. 24 which is especially devoted to these rnethods. 



25.2 APPROXIMATE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 483 

A. INITIAL VALUE PROBLEMS 

25.2. Euler's Method. Error Estimates 

Euler's method is the simplest of all the methods for approximate solution of 
initial value problems. The application of Euler's method in practical numerical 
problems is not recommended because its efficiency is very limited. Nevertheless, 
we will study this method in a particular paragraph in considerable detail since it 
very clearly exhibits certain features which are peculiar also for more complicated 
methods. 

Since the existence theorems for initial value problems for systems of equations 
are formally identical with the corresponding ones for one equation, we restriet 
ourselves to a single differential equation 

y' = f(x, y) (1) 

with the initial condition 
y(a)=TJ. (2) 

In Euler's method the values Yn approximating the values of the exact solution 
at the points Xn = a + nh, n = 0, ... , N (h = (b- a)/N, N positive integer, is 
the so-called integration step or steplength), are calculated recursively according to 
the following formulae: 

Yo = TJ, 

Yn+l = Yn + hf(xn, Yn), n = 0, ... , N- 1. 
(3) 

These formulae make possible an obvious geometric interpretation: We consider 
the differential equation y' = f(x, y) as an equation defining a field of directions 
(cf. § 17.2) in the strip a ~ x ~ b of the (x, y)-plane. The problern of solving the 
differential equation is then geometrically equivalent to the problern of determining 
a curve y = y(x) passing through the given initial point (a, TJ) and having its slope 
at each point coinci,dent with the slope prescribed by the direction field. The points 
(xn, Yn) defined by (3) can be considered as vertices of a polygonal graph which 
passes through the given initial point and possesses the property that each its link 
has the direction prescribed by the direction field at its left-hand end point. 

From this interpretation we see that an exact solution, the graph of which is 
a straight-line, is computed by Euler's method exactly. In all the other cases, 
the quantity en = Yn - y(xn), called the total or accumulated discretization or 
truncation error, is generally not equal to zero. Thus, in order to be acceptable, it 
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is necessary for the studied method to be capable of making the total discretization 
error as small as necessary. Since the only parameter in Euler's method is the 
integration step, the discretization error can be controlled only by changes of this 
integration step. 

Thus, to have some opinion on the magnitude of the total discretization error 
we must have some information on the behaviour of the discretization error, as 
a function of h , at our disposal. There are several possible levels of achievement in 
the study of the error. 

If we simply know that 
lim en = 0 
h-+0 
Xn=X 

(4) 

for any x E [a, b] , we speak about the convergence of the method. Underline that 
the approach to the limit in (4) is understood for a fixed x = Xn. The index n has, 
consequently, to grow when h is diminishing. The study of the behaviour of Yn as 
h---+ 0 with n fixed has no practical sense, since one has, obviously, Xn = a+nh ---+ a 

and Yn ---+ Yo = 11 as h ---+ 0 . 

If we find a function cp(h) for which cp(h) ---+ 0 as h ---+ 0 and for which en = 
= O(cp(h)) as h ---+ 0, then this function cp indicates the rate of convergence of the 
given method. Namely, the symbol O(cp(h)) (cf. § 11.4) means that there exists 
a constant M suchthat lenl ~ Mcp(h) for small h's; thus, the discretization error 
converges to zero at least as fast as the known function cp (in practical situations, 
the function cp is almost exclusively of the form hP). 

An information on the behaviour of the discretization error stronger that the 
rate of convergence is the error bound lenl ~ 1/J(h) where 1/J is a known function. 

Finally, if we find a function 11 such that enfx(h) ---+ 1 for h ---+ 0 we call the 
function x the asymptotic estimate of the error. We call it also the main ( or 
principal) part of the total discretization error. 

At the first glance, the most useful information about the behaviour of the 
discretization error is the error bound since it allows to choose the magnitude of the 
integration step a priori in such a way that the total discretization error is smaller 
than a tolerance prescribed in advance. Though this consideration is theoretically 
correct it is practically meaningless. The main reason is that the a priori error 
bound is usually extremely pessimistic so that it gives values many times ( very 
often even several million times) greater than the reality. The consequence of this 
feature is that algorithms constructed on the basis of a priori error bounds are 
practically always very inefficient and they may be even infeasible. For that reason, 
the rate of convergence or the asymptotic estimate of the error are often of the 
same desirability as a priori error bounds. 

On the other band, we must be content with the fact that the method under 
investigation is convergent in situations when we are not able to say more. 
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In the following text we introduce all the mentioned characteristics of conver­
gence of Euler's method. First we introduce a further quantity which also gives 
some information about the total discretization error. It is the so-called local dis­

cretization error which is committed by performing one step of the method on the 
assumption that all values necessary for performing it are accurate. Thus, the local 
discretization error for Euler's method is given by 

l(y(x); h) = y(x + h)- y(x)- hf(x, y(x)), (5) 

where y is the exact solution of the given differential equation. 

It is clear that the necessary condition for the convergence is that the local 

discretization error is small since the total discretization error is the result of the 
accumulation of local errors. 

Theorem 1. Let the right-hand term of the differential equation (1) 

(i) be defined and continuous as a function of two variables m the strip 

R = {(x, y); a ~ x ~ b, - oo < y < oo}; 

(ii) satisfy in R the Lipschitz condition with respect to y with a constant 

independent of x, i.e., let there exist a constant L > 0 suchthat 

if(x, y)- f(x, z)i ~ L IY- zi (6) 

for any x E [a, b] and for any y and z. 

Further, let Yn be the approximate solution of the problern (1), (2) computed by 

Euler's method (3) and let y be the exact solution. Then the total discretization 

error en = Yn - y(xn) satisfies 

eL(xn-a) _ 1 
ienl~w(h) L , n=O, ... ,N, 

where w is the modulus of continuity of the function y', i.e., 

w(h) = sup IY'(x)- y'(x*)i . 
x,x*E[a,b] 
]x-x*]~h 

(7) 

(8) 

REMARK 1. The global assumptions (i) and (ii) from Theorem 1 guarantee the 

existence and uniqueness of the solution of (1), (2) in the whole interval [a, b] 
whilst the usuallocal assumptions (cf., for example, Theorems 17.2.1 and 17.2.2) 
guarantee the existence of the solution only in some neighbourhood of the point 
( a, 7J) . This is, from the practical point of view, very agreeable. On the other hand, 
one must realize that especially the assumption (ii) is rather restrictive and that 
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it may happen very often that it is not satisfied (with the important exception of 
a linear equation). But in the practical situation, we usually solve such equations 
for which some a priori information about the position of the solution is available. 
Thus, we are mostly able to achieve the fulfilment of the assumption (ii) properly 
changing the definition of f in that part of the strip R in which the solution surely 
does not lie. 

It follows from Remark 1 that the function y' is continuous in [a, b] so that 
w(h) -t 0 as h -t 0. Since the function { exp [L(xn- a)] - 1} / L is bounded on 
[a, b] the formula (7) proves the convergence of Euler's method. At the same time, 
the function w( h) indicates its rate of convergence. 

Theorem 2. Let the assumptions (i) and (ii) from Theorem 1 be satisfied and let 
the exact solution of the differential equation (1) with the initial condition (2) have 
two continuous derivatives in [a, b] . Let 

M(x) = -21 max IY"(t)l 
tE[a,x] 

and let Yn be the approximate solution computed by Euler's method. Then 

(9) 

(10) 

Theorem 2 answers two questions concerning the convergence of Euler's method. 
Ifwe know the function M(x) defined by (9) or ifwe are able to bound it, the formula 
(10) represents the error bound. If we know only that M exists without knowing 
its concrete form, the formula (10) expresses the fact that the rate of convergence 
of Euler's method is h in this case. 

REMARK 2. It is not possible to increase the rate of convergence of Euler's 
method by further increasing the regularity of the exact solution. 

REMARK 3. The local discretization error of Euler's method behaves as hw(h) 
on the assumptions of Theorem 1 and as h2 on the assumptions of Theorem 2. 
Thus, the accumulation of local errors results in loosing one power of h . 

REMARK 4. If f has continuous partial derivatives with respect to both variables 
in the set 

R,., = {(x, y); a ~ x ~ b, IYI ~ Y}, (11) 

where 
eL(b-a) _ 1 

y = 1171 eL(b-a) + max lf(x, O)l ' 
xE[a,b] L 

{12) 
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then we have 

1 
M(x) ~ -2 max lf.,(x, y) + /y(x, y)f(x, Y)i , 

(x,y)ER~ 
(13) 

where f., and /y mean the partial derivatives of the function f with respect to x 
and y, respectivelyo 

Theorem 3. Let the assumptions (i) and (ii) from Theorem 1 be satisfied and 
let, moreover, the right-hand term f of the given differential equation have contin­
uous first and second partial derivatives with respect to both variables in Rq defined 
by ( 11) o Then the total discretization error of Euler 's method can be written in the 
form 

(14) 

where e is the solution of the differential equation 

e' = /y(x, y(x))e- h"(x) (15) 

with the initial condition e(a) = 0 o 

Thus, the expression e(xn)h in the right-hand term of {14) represents the assymp­
totic estimate ( or the principal part) of the total discretization erroro Numerical 
experiments show that this estimate usually gives a very good idea of the behaviour 
of the real discretization erroro It is clear at the first glance, that it is very difficult 
to compute e directly since it is the solution of a further differential equation the 
right-hand term of which depends, moreover, on the solution soughto But the fact 
that such a function exists, without knowing its particular form, allows to construct 
the error estimate of the form 

y(x; h)- y(x) = 2 [y(x; h)- y(x; h/2)] + O(h2), {16) 

where y(x; h) denotes the approximate solution at x computed by Euler's method 
with an integration step ho 

lgnoring the higher-order terms, the estimate of the total discretization error 
can be gained by computing the approximate solution twice with two different 
integration steps (h and h/2)0 This approach to estimating the error is often called 
the deferred approach to limito 

Example 1. Let us solve the differential equation y' = -y with the initial condi­
tion y (0) = 1. 

The exact solution is exp( -x) , the Lipschitz constant is equal to unity and 
M(x) = ! 0 Thus, the expression h [exp(xn) -1] /2 represents the error bound in 
the sense of Theorem 20 The differential equation (15) is in this case, obviously, 
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e' = -e- ~ exp(x) so that e(x) = -~x exp( -x). The results for h = 2-6 can be 
found in Tab. 25.1. It illustrates our theoretical considerations very well. Really, 
the error bound given by (10) is very pessimistic. For example, at the point x = 5 it 
gives approximately 5000 times larger value than in reality and this occurs even in 
the trivial case when we know the function M (x) exactly and are thus not obliged 
to estimate it. On the other hand, the estimates obtained according to Theorem 3 
or formula (16) agree with reality very well. 

TABLE 25.1 

Xn 1 2 3 4 5 

Yn 0·364987 0·133235 0·048622 0·017746 0·006477 

en -0·002892 -0·002120 -0·001165 -0·000570 -0·000261 

error bound 
0·013424 0·049914 0·149106 0·418735 1·15666 

according to (10) 

e(xn)h -0·002874 -0·002114 -0·001167 -0·000572 -0·000263 

error estimate 
-0·002902 -0·002123 -0·001165 -0·000560 -0·000260 according to (16) 

REMARK 5. All which was stated for Euler's method is valid not only for one 
differential equation but also for a system of m equations of the first order. The only 
difference is that the scalar quantities y and f must be interpreted as rn-dimensional 
vectors. 

REMARK 6. The solution of the problern (1), (2) may be also approximated by 
the sequence {Yn(x)} constructed by means of the recurrent formula 

Yn+l(x) = TJ + 1x f(t, Yn(t)) dt, n = 0, 1, .... (17) 

These approximations, named Picard 's approximations, are used exclusively for 
theoretical purposes since the algorithms based on them cannot be compared with 
the discrete methods as far as their efficiency is concerned. 

REMARK 7. The restriction to the case of equidistant points Xn is not substan­
tional and the properties of Euler's method in which this assumption is violated are 
practically the same as the properties of Euler's method with the fixed integration 
step. 
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25.3. General One-Step Method 

In Euler's method, the approximate solution Yn+I at the point Xn+I was com­
puted exclusively on the basis of knowing the approximate solution Yn at the 
point Xn . Thus, Euler's method can be considered as a special case of the gen­
eral .one-step methods when the general one-step method means any algorithm for 
solving the problern (25.2.1), (25.2.2) in which the approximation Yn+l at Xn+I is 
computed only from the values Xn, Yn and h. It is useful to write the dependence 
of the approximate solution Yn+I on Xn, Yn and h in the form 

(1) 

where if!t is a function of three variables which depends on the right-hand term of 
the given differential equation (for example, if!t(x, y, h) = f(x, y) in the case of 
Euler's method). 

Before introducing important special cases, we formulate some general properties 
of if! which allow to formulate general convergence theorems. 

The general one-step method is said to be regular if the corresponding func­
tion if!t: 

(i) is defined and continuous in the domain D = {(x, y, h); a ~ x ~ b, 
- oo < y < oo, 0 ~ h ~ ho} (ho isapositive constant), 

(ü) satisfies the Lipschitz condition with respect to the second variable with 
a constant independent of the remaining variables, i.e., there exists a constant L 
suchthat 

iif!t(x, y, h)- if!t(x, z, h)i ~ L IY- zi (2) 

for any two points (x, y, h) and (x, z, h) from D. 

The general one-step method is said to be consistent with the given differential 
equation ( consistent, for short) if it is regular and if 

if!t(x, y, 0) = f(x, y). (3) 

The local error l(y(x); h) ofthe general one-step method is defined by the formula 

l(y(x); h) = y(x + h)- y(x)- if!t(x, y(x), h), (4) 

where y is the exact solution of the problern (25.2.1), (25.2.2). 

The largest positive integer p for which 

l(y(x); h) = O(hP+1) (5) 
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is called the order of the general one-step method. 

The order of the method depends on the smoothness of the solution of the given 
differential equation and is one of important characteristics of the method. 

The basic characteristic properties of a general one-step method are introduced 
in the following theorems: 

Theorem 1. Let Yn be the approximate solution computed by a regular general 
one-step method whose local discretization error can be estimated according to the 
formula 

il(y(xn)i h)i ~ '1/J(h), n = 0, ... , N, (6) 

and let y be the corresponding exact solution. Then the total discretization error 
en = Yn- y(xn) is bounded as follows: 

(7) 

It is seen from Theorem 1 that the behaviour of the total discretization error 
is fully controlled by the local discretization error. Thus, the local discretization 
error really represents an important characteristic of the given method. 

Theorem 2. The local discretization error of a general one-step method which is 
consistent with the given differential equation satisfies the inequality 

il(y(x); h)i ~ h[w(h) + cp(h)], (8) 

where w is the modulus of continuity of the first derivative of the exact solution y( x) 
(i.e., it is defined by (25.2.8)) and cp(h) is defined by 

cp(h) = max i!l't(x, y(x), h)- !l't(x, y(x), O)l . 
zE(a,b) 

Since w(h) and cp(h) tend to zero as h --t 0, Theorems 1 and 2 imply the 
convergence of a consistent general one-step method. Theorem 1 and (5) imply 
that the total discretization error of a general one-step method of order p behaves 
as hP. If we know not only that (5) holds, i.e., that there exists a constant M such 
that 

il(y(x); h)i ~ MhP+l, (9) 

but if we are able, moreover, to estimate M, then the inequality (7) represents 
an error bound. This bound exhibits the same negative properties as that one in 
the case of Euler's method, namely, it is extremaly pessimistic. For that reason 
we present, in addition, a theorem characterizing the asymptotic behaviour of the 
total discretization error. 
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Theorem 3. Consider a regular general one-step method of order p whose local 
error can be written in the form 

l(y(x); h) = cp(x, y(x))hP+ 1 + O(hP+2 ). (10) 

Then we have 
(11) 

where e is the solution of the differential equation 

e' = /y(x, y(x))e- cp(x, y(x)) (12) 

with the initial condition e ( a) = 0 . 

Note that the assumption (10) is satisfied if the solution of (25.2.1), (25.2.2) (or, 
which is, in essence, the same, the right-hand term of (25.2.1)) and the function if!t 
are sufficiently smooth. 

The quantity e(xn)hP is the main (principal) part of the total discretization error 
and gives a very good idea of the behaviour of the real error. Like in the case of 
Euler's method, it is very difficult to compute it directly. The e:xistence of such 
a function can be used indirectly for obtaining the formula 

2P 
y(x; h)- y(x) = 2P _ 1 [y(x; h)- y(x; h/2)] + O(hP+1) (13) 

giving the same information about the error as the asymptotic formula (11). The 
use of (13) to an error estimate is called the deferred approach to the limit. 

In the following text we introduce some special one-step methods. The main 
idea of constructing them is to achieve the highest possible order. 

(a) Taylor's Expansion Methods 

In this special one-step method we put 

1 1 
if!t(x, y, h) = f(x, y) + -2hf(l)(x, y) + · · · + 1hp-1 f(P-1)(x, y), (14) 

p. 

where the functions j<s>(x, y) are defined recurrently by 

j(O)(x, y) = f(x;y), 

{)j(s-1) ( ) ßj(s-1)( ) 
f (s)( ) - X, Y + X, Y j( ) x, y - äx {)y x, y . 

(15) 



492 SURVEY OF APPLICABLE MATHEMATICS 25.3 

The function f(s)(x, y(x)) equals to the (s + 1)-st derivative of the function y(x) 
which is the solution of the differential equation (25.2.1). Consequently, the local 
error of the method (14) is y(P+ 1)(~)hP+1 j(p + 1)! and the method has the order p. 
Thus, we have found a way of constructing a general one-step method, the order of 
which is arbitrarily high. Nevertheless, the Taylor expansion method is used very 
rarely in practice. The main reason is that the evaluation of functions f(s) which 
are necessary for the computation of the values of the function iPt may lead and 
usually also really leads to very complicated expressions. 

{b) Runge-Kutta Methods 

These methods are the most practicable one-step methods and the main disad­
vantage of the Taylor expansion method is avoided here in such a way that the 
function iP f is taken in the form 

(16) 

where 
k1 = f(x, y), 

ki = !(x + bih, y + h ~ Cijkj), i = 2, ... , s. 
J=l 

(17) 

The numbers Wi, bi, Cij in (16) and (17) are chosen in such a way that the function 
iPt given by (16) differs from the right-hand term of (14) starting from the term 
of order hP. Thus, the parameters wi, bi and Cij are taken so that the method 
is of order p. In contrast to the Taylor expansion method, the necessity of the 
computation of derivatives of the right-hand term of the given differential equation 
is replaced by computing the values of f at more than one point. 

Denote by p(s) the maximal attainable order of the Runge-Kutta method which 
uses s values of f (such a method is called the s-stage Runge-Kutta method). This 
function has the property that p(s) ---+ oo as s ---+ oo; moreover, it is p(s) = s for 
s ~ 4, p(5) = 4, p(6) = 5, p(7) = 5, p(B) = 6, ... , and there exist infinitely many 
s-stage methods of order p(s). Consequently, in the dass of Runge-Kutta methods 
we have methods of arbitrarily high orders at our disposal. 

In the following lines we introduce some important particular Runge-Kutta 
methods. 

The second-order method 

{18) 

and the method 

Yn+l = Yn + ~h [f(xn, Yn) + J(xn + h, Yn + hf(xn, Yn))] (19) 
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whose order is also two, are usually connected with the nam.e modified Euler's 
method. It is just the method {18) which was suggested by Runge in the last 
century, giving thus a start of the development of any other method of this type. 

Heun's method 

has the order 3. 

Yn+1 = Yn + ih(k1 + 3ka), 

k1 = f(xn, Yn), 

k2 = f(xn + ~h, Yn + ~hki}, 
ka = f(xn + jh, Yn + jhk2) 

Two well-known fourth-order methods are 

and 

Yn+1 = Yn + ~h(k1 + 2k2 + 2ka + k4), 

k1 = f(xn, Yn), 

k2 = f(xn + th, Yn + thk1), 

ka = f(xn + th, Yn + thk2), 

k4 = f(xn + h, Yn + hka) 

Yn+1 = Yn + kh(k1 + 3k2 + 3ka + k4), 

k1 = f(xn, Yn), 

k2 = f(xn + ~h, Yn + ~hk1), 
ka = f(xn + jh, Yn- ~hk1 + hk2), 

k4 .= f(xn + h, Yn + hk1 - hk2 + hka). 

{20) 

{21) 

(22) 

By far the most used Runge-Kutta method is the method (21); it is even just this 
particular method which is very often understood when speaking about the Runge­
-Kutta method. For that reason, this method will be referred to as the standard 
Runge-Kutta method. 

The methods of order higher than four are used seldom. Thus, we introduce, 
from these methods, only Fehlberg's method 

Yn+1 = Yn + h( la65 k1 + 162~5265 ka + ~~~~~ k4- 59ok5 + 525 k6)' 

k1 = f(xn, Yn), 

k2 = f(xn + ih, Yn + ihki}, 

ka = f(xn + ih, Yn + i2 h(3k1 + 9k2)), {23) 

k4 = f(xn + gh, Yn + 21~7 h{1932k1- 7200k2 + 7296ka)), 

k5 = f(xn + h, Yn + h(~~~ k1 - 8k2 + 35618~ ka- 481~4 k4)), 

k6 = f ( Xn + t h, Yn + h(- 287 k1 + 2k2 - ~~~: ka + !~g~ k4 - !Ö k5)) . 
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This method has the order five and it possesses the property that, combining its 
k's in another way, we obtain another approximation 

* h( 25 k 1408 k 2197 k 1 k ) Yn+l = Yn + 216 1 + 2565 3 + 4104 4 - 5 5 

the order of which is four. The nurober Yn+l- y~+l can be then considered as the 
error estimate of y~+l· 

REMARK 1. Ifthe assumptions (i) and (ü) from Theorem 25.2.1 are satisfied, then 
any Runge-Kutta method is regular; if, moreover, the method under consideration 
is of order at least one, i.e., if w1 + · · · + W 8 = 1, it is also consistent with the 
given differential equation. Then, any Runge-Kutta method is at least convergent 
on these general assumptions. This fact contrasts with the behaviour of general 
Taylor's expansion method which need not be feasible for a differential equation 
satisfying only (i) and (ii) since the corresponding derivatives of f need not exist. 

Example 1. Let us solve the differential equation y' = y with the initial condition 
y (0) = 1 on the interval [0, 5] by the standard Runge-Kutta method. 

The results can be seen for h = 2-3 in Tab. 25.2. The constant M from (9) 
which is needed for using Theorem 1 has been bounded by the formula 

(24) 

where Mo and K are chosen in such a way that 

I
IJi+kJ(x,y)l< K 

if(x, Y)i ;:;; Mo, öxiiJyk = M~+k-1 , i + k ;:;; 4. (25) 

TABLE 25.2 

Xn 1 2 3 4 5 

Yn 2·718277 7·389029 20·08543 54·59775 148·4118 

en -0·000005 -0·000027 -0·00011 -0·00040 -0·0014 

error bound 
according to 0·05 0·40 2·95 21·8 161·33 
Theorem 1 

e(xn)h4 -0·000006 -0·000030 -0·00012 -0·00044 -0·0015 

error estimate 
-0·000005 -0·000027 -0·00011 -0·00039 -0·0013 

according to (13) 
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It is again seen, like in Euler's method, that the a priori error bound gained on 
the basis of Theorem 1 is even more drastically pessimistic whilst the asymptotic 
estimate as well as the estimate according to {13) give fully sufficient information 
about the behaviour of the actual error. 

The bound given by {24) is the well-known Bieberbach estimate of the local 
discretization error of the standard Runge-Kutta method. Similar estimates can be 
constructed also for all other Runge-Kutta methods. Example 1, however, shows 
that such estimates have only limited practical sense. 

REMARK 2. Like in the case of Euler's method, all what was stated about the 
general one-step method is also valid for the system of m equations of the first order. 
It is again sufficient to suppose that the quantities y and P are rn-dimensional 
vectors. But it is necessary to note that the order of some Runge-Kutta methods 
may be smaller if the method is used for solving systems of equations than if it is 
used for solving one equation only. Such situation, however, does not occur in the 
particular methods introduced above. 

25.4. Linear k-Step Method 

In § 25.3 we have seen that the computation of the approximate solution of the 
given differential equation by a one-step method proceeds in such a way that we 
solve, in fact, a new initial value problern with the initial condition specified at 
the point at which the approximate solution has been found in the preceding step. 
This is advantageaus since the logical structure of the computer code is simple, the 
change of the integration step is easy, etc. On the other hand, such methods have 
some significant disadvantages. One of them, namely the fact that the estimation 
of the local discretization error is (at least in the case of Runge-Kutta methods) 
very complicated, was met already in § 25.3 (cf. {25.3.24)). Also the fact that we 
forget the preceding values of the approximate solution at the moment when the 
solution at the present point has been computed does not seem to be prescient. On 
the contrary, it appears to be natural that if one uses not only the value at the 
point x = Xn but also, for example, the value at the point x = Xn-1 to compute 
the approximate solution at the point x = Xn+l one must obtain a more accurate 
result. Thus, it seems that the methods which make use of the information from 
some preceding points for the construction of the approximate solution and which, 
consequently, are multistep in this sense are more efficient (i.e., less laborious and 
more accurate) than one-step methods. 

In the present paragraph we describe some particular methods of this type. We 
first start with investigating their common properties. 
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By a multistep or, in more detail, by a k-step method for the solution of {25.2.I), 

(25.2.2), we mean the method given by the formula 

k k 

L aiYn+i = h L ßd(xn+i, Yn+i), n = 0, I, ... , (1) 
i=O t=O 

where a 0 , .•. , ak, ßo, ... , ßk are constants. We will assume in what follows that 
ak = I and that ao and ßo are not simultaneously equal to zero. 

The equation (I) must be regarded as the equation for determining Yn+k if we 

suppose that Yn, Yn+1, ... , Yn+k-1 arealready known. This procedure is then re­
peated for n = 0, I, ... till we achieve the point at which we are interested in the 
solution. The form of (1) shows that we take into account only such multistep 

methods in which the relation among Yn+i and f(xn+i, Yn+i) (i.e., among the ap­
proximations of the solution and of its derivatives) is linear. One can also imagine 
methods in which this relation is nonlinear. Such methods have so few advantages 
in comparison with the linear methods that they are practically out of use. 

It is clear that the approximation Yn+k is uniquely determined by {I) if ßk = 0. 
This is the case of the so-called explicit method. In a general case, i.e., if ßk # 0 

(such a method is called implicit), (I) represents a generally nonlinear equation for 

the unknown Yn+ k. If the right-hand term of the given differential equation satisfies 
the assumption (ii) from Theorem 25.2.I and if we limit ourselves to integration 
step satisfying 

1 
h < L lßkl' {2) 

then (I) has one and only one solution and, moreover, it can be determined by 
successive approximations 

k-1 k-1 

Y~S:1) = hßkf(xn+k, Y~82k)- LaiYn+i + h Lßd(xn+i' Yn+i), 
i=O i=O {3) 

(O) b•t s = 0, I, ... , Yn+k ar 1 rary. 

Taking into account the necessity to solve a nonlinear equation when using an 

implicit method, we see that implicit methods are more laborious than explicit 

ones. Consequently, it seems that there is no sense in using implicit methods at all. 
However, we will show, in the following text, such convenient properties of implicit 
methods which fully balance this disadvantage. 

To be able to start the computation it is seen from {1), used for n = 0, that 

we must know the approximate solutions Yo, ... , Yk-1 at the points xo, ... , Xk-1. 

This feature is typical for k-step methods and the problern of obtaining the values 
Yo, ... , Yk-l must be always solved before the application of (I). Runge-Kutta 
methods are very often used for this purpose. 



25.4 APPROXIMATE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 497 

By convergence of a k-step method we rnean, like in the case of Euler's rnethod 
or a general one-step rnethod, that 

lirn Yn = y(x) 
h-+0 
Xn=X 

(4) 

is satisfied for any x E [a, b] and for any solution of the initial value problern 
(25.2.1), (25.2.2). Since the approxirnate solution depends not only on the integra­
tion step h and on Yo, but rnoreover on Yl, ... , Yk-l, it is necessary to require the 
fulfilrnent of ( 4) for any approxirnate solution with the initial conditions Ys = Ys(h), 
s = 0, ... , k- 1, satisfying 

lirn Ys(h) = 17, s = 0, ... , k- 1. 
h-+0 

(5) 

Thus, the rnethod is convergent if the exact solution is well approxirnated for 
srnall h's by any approxirnate solution which is deterrnined by this h and by the 
initial conditions which well approxirnate the accurate initial condition. 

The local discretization error is defined by 

k k 

l(y(x); h) = L aiy(x + ih)- h L ßiY'(x + ih) (6) 
i=O i=O 

(cf. (25.3.4)), where y is the exact solution of the initial value problern (25.2.1), 
(25.2.2). If this solution is sufficiently srnooth, then 

l(y(x); h) = Coy(x) + C1y'(x)h + · · · + Cqy(q)(x)hq + ... , 

where 

Co = ao + · · · + ak , 

C1 = a1 + 2a2 + · · · + kak - (ßo + · · · + ßk) , 

Cq = ..!_ (al + 2qa2 + · · · + kqak)- 1 (ßl + 2q-lß2 + · · · + kq-lßk) (7) 
q! (q- 1)! ' 

q = 2, 3, .... 

We say that the linear k-step method has order p if Co = C1 = · · · = Cp = 0, 
Cp+l =/= 0. The constant Cp+l is, in this situation, called the error constant. 

If the rnethod is of order p and if the exact solution is sufficiently srnooth, then 
we have 

(8) 

The rnethod whose order is at least one is said to be consistent. 
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If we introduce tbe first and second characteristic polynomial of the method (I) 
by 

k k 

e (0 = 2: O:i~\ u ( ~) = 2: ßi~i , (9) 
i=O i=O 

the consistency can be expressed as 

e(I) = 0, e' (I)= u(I). (IO) 

In § 25.3 we stated that a general one-step method which is consistent with 
the given differential equation is convergent and that the higher the order of such 
a method is, the higher is the rate of its convergence. In order to obtain analogous 
statements also for a linear k-step method we must confine ourselves to D-stable 
methods. 

We say that a linear k-step method is D-stable if the modulus of no root of its 
first characteristic polynomial e exceeds I and if the roots of modulus I are simple. 

Theorem 1. Let y be the solution of the initial value problem (25.2.I), (25.2.2) 
and let the assumptions (i) and (ii) from Theorem 25.2.I be satisfied. Further, let 
Yn be the approximate solution computed by a D-stable linear k-step method (I) of 
order p ~ I with the initial conditions y8 , s = 0, ... , k - I, for which we have 
IYs- y(xs)l ~ 8 for s = 0, ... , k- I. Finally, let 

l(y(xn); h) ~ 'lf;(h), n = 0, I, .... (11) 

Then, for any h satisfying (2), 

where L is the Lipschitz constant of the right-hand term of the given differential 
equation, 

i=O i=O 

T* = Tj(I- h lßkl L), r = sup llsl 
s=O, 1, ... 

and the numbers /i are defined by 

We see from (I2) that the total discretization error consists of two parts: The 
first part, represented by the term involving the estimate of the local truncation 
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error, corresponds exactly to the discretization error of a one-step method with 
a similar estimate of local error. The second part of the error, represented by the 
term involving the estimate of the error in initial conditions, owes its existence to 
the fact that the approximate solution is determined by k starting values. The user 
of a linear k-step method must have this structure of the total discretization error 
always in mind since improper initial values may totally destroy the approximate 
solution. 

As far as the local discretization error is concerned we have the following theorem: 

Theorem 2. Let the right-hand term of the given differential equation satisfy the 
assumptions (i) and (ii) from Theorem 25.2.1. Then the local discretization error 
of a linear k-step method of order p ~ 1 can be estimated as 

ll(y(xn)i h)l ~ Khw(h), (13) 

where K is a constant depending only on ai 's and ßi 's but independent of h, and 
w is the modulus of continuity of y'. If, moreover, the exact solution has p + 1 
continuous derivatives in [a, b], then 

where G is a constant independent of h and 

Y = max IY(p+l)(x)l. 
xE[a,b) 

{14) 

Combining Theorems 1 and 2, we obtain the assertions concerning the conver­
gence, the rate of convergence and the error estimate of the total discretization 
error of a linear k-step method. 

Example 1. Let us solve the differential equation y' = -y with the initial condi­
tion y(O) = 1 on the interval [0, 1) by the two-step method 

the order of which is ~3. (This formula was constructed in such a way that it has 
maximal possible order and is, at the same time, explicit.) 

The results are presented for h = 0·1 and h = 0·05 in Tab. 25.3. Both necessary 
additional initial conditions were taken from the exact solution. It is seen at the 
first glance that the results have no reasonable sense. In fact, the method used is 
not D-stable (the roots of e are 1 and -5). Thus·, this example drastically shows 
that the D-stability is really a necessary condition for convergence. 
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TABLE 25.3 

h = 0·1 h = 0·05 

X approximate approximate 
solution 

error 
solution 

error 

0·0 1·000000 0 1·000000 0 
0·1 0·904837 0 0·904836 -0·000001 
0·2 0·818715 -0·000015 0·818711 -0·000019 
0·3 0·740872 0·000054 0·740315 -0·000503 
0·4 0·669997 -0·000323 0·656994 -0·013326 
0·5 0·608200 0·001669 0·252935 -0·353596 
0·6 0·539907 -0·008905 -8·833877 -9·382689 
0·7 0·543768 0·047183 -248·4746 -248·9711 
0·8 0·198971 -0·250358 -6606·041 -6606·490 
0·9 1·734617 1·328048 -175303·9 -175304·3 
1·0 -6·677257 -7·045136 -4651727 -4651728 

As far as the assymptotic behaviour of the total discretization error is concerned, 
the corresponding assertion is substantially more complicated than in the case of 
a one-step method. In order to be able to formulate it, it is first necessary to intro­
duce some concepts and notations. Moreover, we will deal only with D-stable linear 
k-step methods of order at least 1 and such that the corresponding polynomials f! 
and a have no common factors. Any individual linear k-step method which will 
be introduced in the following text satisfies these assumptions. As a consequence 
of the D-stability, moduli of all roots of f! are not greater than 1 and the roots of 
modulus 1 are simple. Further, since the method under consideration is of order 
at least 1, the number 1 must be a simple root of f!. Put 6 = 1 and denote by 
6, ... 'em the remaining roots of f! with modulus 1 (naturally, if such roots exist). 
The roots 6, ... , em areallsimple (the method is D-stable) and we will call them 
essential roots. The number 

(15) 

is called the growth parameter corresponding to the essential root es· Put further 

es=exp(icps), s=1, ... ,m, i=.J(-1). {16) 

Moreover, Iet the order of accuracy of the initial conditions which determine the 
approximate solution be hq and, in addition, Iet 

(17) 
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where 'Ys are constants (independent of h). Finally, put 

k-'-1 

Dj = L O.js'Ys ' j = I, ... ' m' 
s=O 

where O.js 's are the coeffi.cients of the polynomial (! (~) / (~- ~j) , i.e., 

(! (~) ~ ~k-1 -- = a ·o + a ·1 + · · · + a · k 1 ~- ~j 3 3 3, - • 

(I8) 

(I9) 

Theorem 3. Let the solution y of the differential equation (25.2.I), the right­
-hand term oj which satisfies the assumptions (i) and (ü) from Theorem 25.2.I, have 
p + 2 continuous derivatives in [a, b]. Further, let Yn be the approximate solution 
computed by means of a D-stable k-step method of order p ~ I with polynomials 
f! and a having no common jactors. Finally, let the initial conditions satisfy (I7). 
Then 

en = Yn- y(xn) = e(xn)hP + O(hP+1 )+ 

+hq f ~({) exp(in<pj)ej(Xn) + O(hq+l), 
j=l (! c"3 

where e is the solution of the differential equation 

(20) 

(2I) 

with the initial condition e(a) = 0, ej, j = I, ... , m, is the solution of the differ­
ential equation 

ej = Aj ~~ (x, y(x))ej 

with the initial condition ej(a) =I, Aj is given by (I5) and Dj by (I8). 

On the basis of Theorem I, we were already able to divide the total discretization 
error into two parts: the genuine discretization error arising from the replacement 
of an infinite-dimensional problern by a finite-dimensional one and the error arising 
from an inaccurate fulfilment of initial conditions. The genuine discretization error 
is represented by the term involving e in Theorem 3. This term corresponds exactly 
to the principal part of the total_ discretization error of a one-step method and it 
is a smooth function of x. The errors due to inaccuracies in initial conditions are 
represented by the terms involving ej's. If m = I, the sum in (20) reduces to its first 
term. The starting error is then proportional to the exact solution (note that >.1 = 
= I) and the result is like when using a one-step method with slightly wrong initial 
values. If m > I, additional terms appea.r in the sum in (20). Theseterms can be 
characterized as oscillations ( owing to the factor exp(in<pj) ). If the initial conditions 
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are relatively inexact (i.e., if q ~ p), this circumstance may negatively influence the 
possibility of using a formula similar to (25.3.13) for the error estimate. Moreover, 
if we approximate a differential equation with an exponentially decreasing solution 
and if, for some j, the corresponding growth parameter is negative, then the function 
ei oscillates with an exponentially growing amplitude. These oscillations may cause 
difficulties even in the case when q > p, i.e., when the initial conditions are relatively 
exact. Such linear k-step methods are referred to as the weakly stable methods and 
the reasons indicated above show that these methods are suspicious. We finish 
the comment to Theorem 3 with the recommendation of highest care when using 
weakly stable methods. 

In the conclusion of this paragraph we introduce some often used linear k-step 
methods: 

(a) Methods of Numerical Integration. 
Adams-Bashforth Method. Adams-Moulton Method 

These methods are based on the extrapolation or interpolation of the right-hand 
term of the given differential equation followed by integration. 

The Adams-Bashforth method is given by 

k-1 

"'"' (k) ( Yn+k- Yn+k-1 = h L.J ßj J Xn+j, Yn+j), 
j=O 

where 

k-1 ( ) 
ßJk) = (-1)k-1-j L k- ~- . "'s' 

s=k-1-j J 
j = 0, ... 'k -1' 

and the constants "'s are defined recurrently by 

s 1 
~ i + 1 "'s-i = 1, S = 0, 1, .... 
t=O 

(22) 

(23) 

(24) 

It is a D-stable explicit method with m = 1 (cf. Theorem 3) and its local error 
satisfies 

(25) 

where e is a suitable point from [x, X+ kh]. The order of the Adams-Bashforth 
method is, consequently, k. The coefficients of the Adams-Bashforth methods are 
presented in Tab. 25.4 for first six values of k. 
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ll 0 1 2 3 4 

ß~}> 1 

2ß~2) -1 3 

12ß~3) 5 -16 23 

24ß~4) -9 37 -59 55 

720ß~5) 251 -1274 2616 -2774 1901 

1440ß~6) -425 2627 -6798 9482 -7673 

The Adams-Moulton method is given by 

where 

k 

Yn+k- Yn+k-1 = h Lß)k) f(xn+i• Yn+j), 
j=O 

and the constants 7; are defined by 

'Yo = 1, 
s 1 L: . + 1 'Y:-i = o, s = 1, 2, .... 

i=O 1 

TABLE 25.4. 

5 

4227 

(26) 

(27) 

(28) 

TABLE 25.5 

ll 0 1 2 3 4 5 

2ß~l) 1 1 

12ß~2) -1 8 5 

24ß~3) 1 -5 19 9 

720ß~4) -19 106 -264 646 251 

1440ß~5) 27 -173 482 -798 1427 475 
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We have again obtained a D-stable, now implicit method with m = 1. Its local 
discretization error satisfies, like in the case of the Adams-Bashforth method, 

(29) 

The Adams-Moulton method is thus of order k + 1. In Tab. 25.5, its coefficients 
are presented for k = 0, ... , 5. 

(b) Methods of Numerical Differentiation. 
Backward Difference Methods 

These methods are based on the interpolation of the values of the function sought 
followed by differentiation. They are given by 

k 

La;r)Yn+j = hßk~rf(xn+k-r, Yn+k-r), r = 0, ... , k. (30) 
j=O 

Here 

j = 0, ... 'k -1' 

,...(k) - 1 
u.k - ' 

ß(r) __ 1_ 
k-r- k 

I; Ors 
s=1 

and the constants Ors are defined by 

1 
Oos = - , s = 1, ... , k, 

s 
Or = Or-1,s - 8r-1,s-1 , s = 1, ... , k, r = 1, ... , k, 

(31) 

(32) 

where we put Oro = 0 for r = 0, ... , k. The method is implicit for r = 0; for other 
values of r it is explicit. The local discretization error of all these methods is given 
by 

(33) 

and thus they are of order k. 

These methods are also called the backward difference methods and those of 
their subset characterized by r = 0 and k ~ 6 are rather often used in practice 
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in connection with the solution of stiff differential systems ( about stiff differential 
systems see Remark 25.5.2). Their coefficients can be found in Tab. 25.6. 

TABLE 25.6 

k ßk a6 a5 a4 a3 a2 a1 ao 

1 1 1 -1 

2 2 1 4 1 
3 -3 3 

3 6 1 18 9 2 
IT -rr IT -rr 

4 12 1 48 36 16 3 
25 -25 25 -25 25 

5 60 1 300 300 200 75 12 
137 -137 137 -137 137 -137 

6 60 1 360 450 400 225 72 10 
147 -147 147 -147 147 -147 147 

TABLE 25.7 

method (34) 
Adams-Bashforth 

method 

n approximate approximate 
solution 

error 
solution 

error 

0 5·000000 0 5·000000 0 
1 4·652200 0 4·652200 0 
2 4·354907 0·003373 4·355881 0·004347 

63 1·159287 -0·048115 1·206536 0·001252 
64 1·246457 0·048115 1·199552 0·001210 
65 1·141986 -0·049670 1·192825 0·001170 

127 0·599828 -0·425689 1·025688 0·000171 
128 1·409513 0·384790 1·024888 0·000166 
129 0·568993 -0·454960 1·024114 0·000161 

191 -1·606091 -2·609506 1·003441 0-000026 
192 1·827522 0·824211 1·003335 0·000025 
193 -1·679211 -2·682419 1·003233 0·000024 

Example 2. Use the two-step method 

(34) 
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of order 2 with two essential roots {cf. Theorem 3) and with growth parameters 
equal to 1 and -1, respectively, for solving the differential equation y' = 1-y2 with 
the initial condition y{O) = 5. For h = 1/64, the results are shown in Tab. 25.7 
which contains also the approximate solution computed by the two-step Adams­
-Bashforth method, for comparison. The initial condition Yt was taken in both cases 
from the exact solution. One can see from the table that the oscillations mentioned 
in the co:rnment to Theorem 3 destroy the approximate solution computed by {34) 
very rapidly. On the other hand, the results obtained by the Adams-Bashforth 
method are fully satisfactory. 

25.5. The Use and Comparison of Runge-Kutta and Linear 
Multistep Methods. Predictor-Corrector Methods 

One of the most difficult problems which has to be solved when using Runge­
-Kutta or linear multistep method in practice is the problern of choosing a suitable 
integration step. This choice cannot be based on a priori error bounds of the total 
discretization error introduced in § 25.3 and § 25.4. Namely, even if we ignore the 
difficulties connected with gaining them, they are almost always so pessimistic that 
they imply needlessly small integration steps. This fact had also been the reason 
why we studied the asymptotic formnla for the total discretization error. However, 
the deferred approach to the limit procedure {cf. {25.3.13) and the comment to 
Theorem 25.3.3) based on asymptotic error estimate is not too much recommend­
able, either. As a matter of fact, we have to repeat the calculations from the very 
beginning twice in this procedure which can be rather inefficient. For that reason 
the commonly accepted approach to the step size control is at present as follows: 
The integration step is chosen in such a way that {i) the local discretization er­
ror is small and {ii) the accumulation of local errors is not dangerous. The latter 
property is achieved if the nurober z = h>., where h is the integration step and ).. is 
the estimate of {) f / 8y, lies in the interval of absolute stability of the method used. 
To define the interval of absolute stability we say that it is formed of such num­
bers z = h>. that any approximate solution Yn of the differential equation y' = >.y, 
computed by the method under consideration used with the integration step h, 
converges to zero as n --+ oo. 

To obtain a realistic estimate of the local discretization error of a Runge-Kutta 
method of order p, one can use the formula 

{1) 

where Yn+l is the approximate solution at the point Xn+l obtained using the inte­
gration step h and y~+l is the approximation at the same point computed by the 
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same method with step 2h. Formula (1) isaparallel to formula (25.3.13) and was 
derived on base of similar considerations. 

The local error of the Runge-Kutta-Fehlberg method may be estimated by the 
procedure described in the text following the formula (25.3.23). 

The theoretical formulae for estimates of local error are in the case of a linear 
multistep method substantially simpler than in the case of Runge-Kutta methods 
(cf., for example, (25.4.8), (25.4.25), {25.4.29)). Namely, for obtaining such an 
estimate it is sufficient to know the error constant and to estimate the (p + 1 )-st 
derivative of the solution. This is the reason why they can be used in some cases. 
More often, however, the Milne formula which will be described later or an analogue 
of ( 1) are used. 

To find out that h{} f I oy lies in the interval of absolute stability of the given 
method we certainly must know this interval and, naturally, we must be able to 
estimate {} f I oy. Thus, the interval of absolute stability is one of the important 
characteristics of the investigated method. For any of the methods introduced till 
now, this interval is of the type (a, 0) where a ~ 0. This fact means that if we 
solve any differential equation y' = >-.y with a positive >-., the error grows for any 
integration step. This is not as serious as it seems at the first glance. N amely, 
the exact solution also grows in this case and the error is proportional to it. Such 
situation is quite acceptable. 

TABLE 25.8 

p a Cp+t 

Runge-Kutta 2 -2 
3 -2·51 
4 -2·78 

Adams-Bashforth 2 -1 5 
12 

3 6 3 
-11 8 

4 3 251 
-10 720 

Adams-Moulton 2 -00 1 
-12 

3 -6 1 
-24 

4 -3 19 
-720 

The values of the above parameter a for some particular methods are presented 
in Tab. 25.8, where p denotes the order of the cörresponding method. In the case 
of Adams methods the error constant as an important characteristic of a multi­
step method (cf. (25.4.8)) is also introduced. The interval of absolute stability 
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of a Runge-Kutta method depends only on its order p and is independent of its 
particular form for p ~ 4. The intervals of absolute stability of Adams-Moulton 
methods are substantially !arger and their error constants are substantially smaller 
than those of Adams-Bashforth methods. Thus, for example, the implicit three-step 
Adams-Moulton method of order four has the interval of absolute stability 10 times 
!arger and the error constant about 13 times smaller than the four-step Adams­
-Bashforth method possessing the same order. These considerations, whose results 
are also typical for more general comparisons between explicit and implicit meth­
ods, so favour implicit methods that explicit linear multistep methods are seldom 
used on their own; they do, however, play an important role in predictor-corrector 
pairs. 

If we intend to use an implicit linear k-step method to solve the given initial value 
problern we must solve for Yn+k the equation {25.4.1) at each step. In general, this 
equation is nonlinear. Nevertheless, we know that the unique solution for Yn+k 

exists and can be approached arbitrarily closely by the iteration (25.4.3) provided 
that the condition {25.4.2) is satisfied. Each step of the iteration (25.4.3) clearly 
involves an evaluation of the value of the function f. Our concern thus is to keep 
to minimum the nurober of the applications of the iteration (25.4.3) - particularly 
so when the evaluation of f at given values of its arguments is time consuming. We 
would therefore like to make the initial guess y~~k as accurate as possible. We do 
this by using a separate explicit method to estimate Yn+k and taking this predicted 

value for the initial guess y~~k· The explicit method is called, in this connection, 
the predictor, and the implicit method (25.4.3) the corrector. 

We can now proceed in one of two different ways. The first consists in continuing 
the iteration (25.4.3) until the iterates have converged (in practice, until some 

criterion such as ~y~s:~> - y~2ki < E:, where E: is a pre-assigned tolerance, say, of 

the order of the local round-off error, is satisfied). We then regard the value y~s_:~> 
so obtained as an acceptable approximation of the exact solution Yn+k of {25.4.1). 
Since each iteration corresponds to one application of the corrector, we call this 
mode of operation of the predictor-corrector method correcting to convergence. In 
this mode, we cannot teil in advance how many iterations will be necessary, that 
is, how many function evaluations will be required at each step. On the other 
hand, the accepted value y~s_:~> being independent of the initial guess y~~k' the 
local discretization error and the interval of absolute stability of the overall method 
are precisely those of the corrector alone; the properties of the predictor are of no 
importance. 

In the alternative approach, which is once again motivated by the desire to 
restriet the nurober of function evaluations per step, we stipulate in advance the 
nurober m of applications of the corrector at each step. It is exactly this manner of 
using predictor-corrector pairs which is often called the predictor-corrector method. 
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Let us describe it in more detail. It turns out to be advantageaus if the predictor 
and the corrector are separately of the same order, and this requirement may well 
make it necessary for the stepnumber of the predictor to be greater than that of 
the corrector. The notationally simplest way to deal with this contingency is to let 
both predictor and corrector have the same stepnumber k, but in the case of the 
corrector, to relax the condition that not both ao and ßo shall vanish. Thus, let 
the linear multistep method used as predictor be the method 

k k-1 

LajYn+i = h Lßjf(xn+i• Yn+;), ak = 1 (2) 
i=O j=O 

and the implicit method used as corrector the method 

k k 

L a;Yn+i = h L ß;f(xn+i• Yn+i), ak = 1. (3) 
j=O j=O 

Further, let m be a fixed positive integer. By predictor-corrector method we call 
the procedure in which, for the approximate solution at the point Xn+k, the number 

y~~~ is taken which is computed from 

or from 

k-1 k-1 
(0) +"" * (m) _ h "ß*J(m-1) 

Yn+k L..J a;Yn+i - L..J i n+i , 
i=O i=O 

f (s) J( (s) ) 
n+k = Xn+k, Yn+k ' 

k-1 k-1 
(s+1) "" . (m) _ hß J(s) h" ß ·J(m-1) 

Yn+k + L..J a,yn+i - k n+k + L..J J n+j ' 
i=O i=O 

s = 0, ... , m-1, 

k-1 k-1 
(0) + " * (m) - h" ß*J(m) Yn+k L..J a;Yn+i - L..J i n+i, 

i=O i=O 

f (s) J( (s) ) 
n+k = Xn+k, Yn+k ' 

k-1 k-1 
(s+l) + "" · (m) - hß f(s) + h"" ß ·J(m) Yn+k L..J a,yn+i - k n+k L..J 1 n+i, 

i=O j=O 
s = 0, ... , m-1, 

f (m) J( (m)) 
n+k = Xn+k• Yn+k · 

(4) 

(5) 

The only difference between these two modes of the predictor-corrector method 
consists in using different values of f at that points at which the approximate 
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solution has already been computed. In (4), we use the values !Sm-1) whilst in (5) 
the values j$m). Thus, the mode given by (5) calls for one more function evaluation 
per step than the mode (4). Let P indicate an application of the predictor, C 
a single application of the corrector and E an evaluation of f in terms of known 
values of its arguments. Then the procedure given by ( 4) with m = 1 is denoted by 
PEC (predict, evaluate, correct), with m = 2 by PECEC = P(EC) 2 , generally 
by P(EC)m. The procedure given by (5) is denoted by PECE, P(EC)2 E, .... 
From this symbolical notation one sees on the first glance how many evaluations of 
the right-hand term of the given differential equation are necessary for one step of 
the method. 

Note that form-+ oo, the results of computing with either of the above modes 
tend to those given by the mode of correcting to convergence. 

If m is finite, then the predictor-corrector method does not belong, in fact, to 
the dass of linear multistep methods. N evertheless, the following theorem holds: 

Theorem 1. Let the predictor-corrector method, where the predictor has the order 
p* and the error constant c;. + 1 and the corrector the order p and the error constant 
CP+ 1 , be used in the mode P(EC)m E or P(EC)m, where p*, p, and m are integers, 
p* ~ 0, p ~ 1, andm ~ 1. Ifp* > p, then the mainpart ofthe local errorl(y(x); h) 
of this algorithm is equal to the main part of the local error of the corrector, i.e., 

(6) 

If p* = p- q, where 0 < q ~ p, and if m ~ q + 1, the main part of the local error 
of the algorithm is again the same as that of the corrector, if m = q it is of the 
same order as that of the corrector but both errors are not identical, and, finally, if 
m ~ q- 1 it is of the form Khp-q+m+ 1 + O(hp-q+m+2 ). 

Thus, for example, if m = 1, that is, if we iterate only once, the order of the 
local discretization error of the combined method is equal to that of the corrector 
even though the order of the predictor is by one less than the order of the corrector. 

We see from Theorem 1 that there is little to be gained by choosing a predictor­
-corrector method for which p* > p; it would normally have an unnecessarily large 
stepnumber and the higher accuracy of the predictor would not be refiected in the 
local truncation error of the overall method. In fact, it seems that it would be 
advantageaus to choose a method for which p* = p- m. However, it turns out 
that when p* = p it is possible to estimate the main part of the local truncation 
error of the predictor-corrector method (which, as follows from Theorem 1, then 
coincides with that of the corr~ctor) without estimating higher derivatives of the 
exact solution y(x ). This technique was originated by W.E.Milne, and we will refer 
to it as Milne 's device. It consists in computing the main part of the local error of 
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the predictor corrector method according to the formula 

C y<P+l)(x )hP+l = Cp+l (y(m) _ y(O) ) 
p+l n C* C n+k n+k · 

p+l- p+l 
(7) 

The interval of absolute stability of the predictor-corrector method is, in gen­
eral, different from that of the corrector and it depends on the mode in which the 
combined method is used. 

Thus, for example, the interval of absolute stability of the combination of four­
-step Adams-Bashforth method of the fourth order as the predictor and the three-
-step fourth order Adams-Moulton method as the corrector is ( -1· 25, 0) in the 
PECE mode and only ( -0·16, 0) for the PEC mode. This feature is general, in 
essence, and the PEC mode has usually substantially worse stability properties 
than the PECE mode. 

At present the most practicable predictor-corrector methods are based on Adams 
methods used in the PECE mode. 

REMARK 1. The application of linear k-step methods and predictor-corrector 
methods to systems of linear differential equations of the first order is not different 
from their use in the case of one differential equation. Again it is sufficient to 
suppose that the corresponding quantities are vectors and not scalars. But the 
problems of the stability arerather different. Namely, the philosophy of controlling 
the stepsize involved the claim that the product z = >..h, where >.. is an estimate 
for 8/ /8y, would lie in the interval of absolute stability of the given method. In 
the case of a system of equations, the derivative {) f / {)y is a matrix and one must 
take its eigenvalue for >... Since this nurober is complex, in general, we must deal 
with the domains of absolute stability instead of intervals. The domain of absolute 
stability is introduced in the same way as the interval of absolute stability was, one 
only starts from the differential equation y' = >..y, where >.. is complex. 

REMARK 2. When solving stiff differential system- a typical example of such 
a differential system is the system y' = Ay such that the eigenvalues >..; of A have 
negative real parts and that the ratio max 1>..;1/ minI>..; I is a large nurober (even 
of order 106 in some practical situations) - the limitations on the stepsize implied 
by the stability may be extremely restrictive. Thus, for solving stiff differential 
systems, such methods that their domain of stability contains the whole left-hand 
half-plane of the complex plane (the so-called A-stable methods) or at least the infi­
nite angle {z; - a < 'II"- arg z < a} (A(a)-stable methods) are mostly convenient. 
All such methods are necessarily implicit. The one-step Adams-Moniton method 
and the methods of numerical differentiation from Tab. 25.6 with k = 1 and k = 2 
may serve as examples of A-stable methods. The remaining methods from this table 
form examples of A(a)-stable methods with a = 88°, 73°, 51°, and 18°. Note also 
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that the method of successive approximations for solving the corresponding equa­
tions is not suitable when solving a stiff-system. The Newton method (cf. § 31.4) 
can rather be recommended. The calculations are then extremely la.borious. 

25.6. Extrapolation Methods. Richardson's Extrapolation, 
Gragg's Method 

Extrapolation methods for the numerical solution of differential equations take 
their origin in the application of the general idea ~f Richardson's extrapolation 
which can be used also in many other branches of numerical analysis. In many 
situations in numerical analysis we wish to evaluate a number cpo but we are not 
able to do it directly (for example, we are to compute the value of the definite 
integral of a function the primitive of which cannot be represented by means of 
elementary functions or we are to compute the value of the solution of a differential 
equation which is not integrable by elementary functions). What we are only able 
to do is to compute an approximation cp( h) of cp0 where h is a positive parameter 
(typically the steplength) and where cp(h) -+ cp0 as h -+ 0. The main idea of 
Richardson's extrapolation consists in the following considerations: Our task is, in 
fact, to evaluate cp at the point h = 0. This is not possible directly so, instead of 
it, we choose a finite number of h's, 

(1) 
~ 

construct a function rp(h) which interpolates cp(h) at the points (1), i.e., for which 

cp( h8 ) = cp( h8 ) , S = 0, ... , M , (2) 

holds and take then the number cp(O) for the new approxima.tion. 

If cp(h) possesses an asymptotic expansion of the form 

(3) 

where the coefficients cpo, cp1, . . . are independent of h, the function cp( h) is the 
usual interpolation polynomial of degree M determined by the conditions (2). In 
this case, cp(O) can be computed recurrently in such a way that we put 

aos = cp(hs)' s = 0, 1, ... ' (4) 

and, successively form= 1, 2, ... , compute the numbers ams from 

hs/hm+s 1 
ams = (hs/hm+s) -1 am-l,s+l- (hs/hm+s) -1 am-l,s' (5) 

s = 0, 1, .... 
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Then we have 
c,O{O) = aMo . {6) 

If the asymptotic expansion for cp(h) has the form 

(7) 

{this is rather frequent situation in practice), we take an even polynomial for c,O(h). 
The computational scheme is similar tothat discussed above, only the recurrence (5) 
has to be replaced by 

(8) 

The computations according to (4), (5) or (4), (8), respectively, can be arranged 
in the form of the so-called T-scheme as indicated in Tab. 25.9. To compute 
any element of this scheme means (see (5) or (8), respectively) to form a linear 
combination of the element lying in the same row and the preceding column and 
the element lying directly above the latter. 

TABLE 25.9 

aoo 
ao1 alO 

ao2 au a2o 

ao3 a12 a21 a3o 

aoM a1,M-1 a2,M-2 a3,M-3 aMo 

For the columns of the T-scheme we have 

(9) 

or 
(10) 

respectively, according to the validity of (3) or (7). Any further column converges 
to the exact value more rapidly than the preceding one and the diagonal again 
more rapidly than any column. The extrapolation based on the expansion (7) is, 
evidently, more effective than that based on (3). 

REMARK 1. Romberg's quadrature formula (cf. § 13.13) took its origin exactly 
in the way just described from the trapezoidal rule used successively for h = h$ = 
= (b- a)/28 • 
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If we want to use the just described extrapolation rnethod for initial value 
problerns we can proceed as follows: For a given fixed nurnerical rnethod (lin­
ear rnultistep, Runge-Kutta etc.), Iet y(x; h) denote the approxirnation at the 
point x, given by the numerical rnethod with steplength h, to the theoretical so­
lution y(x) of the initial value problern (25.2.1), (25.2.2). We intend to use the 
polynomial extrapolation to furnish approxirnations to y( x) at the basic points 
x; = x0 + j H, j = 0, 1, ... , where H is the basic steplength. (For a given 
problern and required accuracy, H will typically be large as cornpared with the 
appropriate steplengths for the previously discussed rnethods.) We first choose 
a steplength h0 = H/No, where No is a positive integer (possibly 1), and apply 
the numerical rnethod No tirnes starting from x = xo to obtain an approxirnation 
y(x1; ho) to the theoretical solution y(xt). A second steplength ht = H/Nt, Nt 
a positive integer greater than No, is chosen, and the rnethod is applied N1 tirnes, 
again starting frorn xo, to yield the approxirnation y(x1; ht). Putting, in general, 
hs = H/Ns for s = 0, ... , M, where Ns is an increasing sequence of positive in­
tegers, and proceeding in this fashion, we obtain the sequence of approxirnations 
y(x1; h8 ), s = 0, ... , M, to y(xt). (In practice, M is typically in the range 4 
to 7.) Provided that there exists, for the given numerical rnethod, an asyrnptotic 
expansion of the form 

(11) 

then we can set aos = y(x1; hs) and apply the process of polynornial extrapola­
tion based on (5). The equation (8), of course, replaces (5) in the case when the 
numerical method possesses an asymptotic expansion of the form 

(12) 

We then take aMo on the diagonal of the T-scheme for our final approximation to 
y(xt)· To obtain a numerical solution at the next basic point x2 = xo + 2H, we 
apply the whole ofthe above procedure to the new initial value problern y' = f(x, y), 
y(xt) = aMo· Further repetitions of this process yield the approxirnate solution at 
all basic points. 

The most often used starting method for the just described extrapolation proce­
dure is Gragg's method (also called the modified mid-point method). Its algorithrn 
is defined as follows: 

hs = H/Ns, Ns even, 

Yo = y(xo), 

Yt = Yo + hsf(xo, Yo), 

Ym+2 = Ym + 2hsf(xm+t. Ym+t), m = 0, ... , Ns - 1, 

Y(Xtj hs) = tyN.+l + hN. + tYN.-1 · 

(13) 
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Two popular choices of the sequence N 8 are {2, 4, 6, 8, 12, 16, 24, ... }, generally 

N 8 = 2N8 _ 2 ( with the exception of the first three terms) and { 2, 4, 8, 16, 32, 64, ... } , 
generally Ns = 2Ns-1· For Gragg's method, the asymptotic formula (12) is valid 
so that the ext~apolation is performed according to (8). 

N umerical experience shows that the extrapolation method based on Gragg's 
method is sufficiently efficient especially in the case that we are interested in the 
solution only at relatively few points. 

B. BOUNDARY VALUE PROBLEMS 

25. 7. Shooting Method 

This method, like the methods which will be described in § 25.8, is based on 
the idea of transforming the boundary value problern into one or several initial 

value problems and to solve this initial value problems by means of the methods of 
Part A. Thus, the solution of initial value problems is supposed to be an elementary 

operation in this connection. 

To describe the shooting method, let us investigate the system (25.1.1) of m 

differential equations with a general boundary condition (25.1.5), i.e., the system 

y' = f(x, y), x E [a, b] , (1) 

with the condition 

r(y(a), y(b)) = o. (2) 

In the algorithm of the shooting method we first choose a vector a = ( a 1 , ... , am)T 

arbitrarily and solve the system (1) with the initial condition 

y(a) = a. (3) 

The solution obtainc;:!d in this way depends, consequently, on the parameter a and 
we denote it, therefore, by y(x; a). Further, solve the (generally nonlinear) system 
of equations 

F(a) = o, (4) 

where the vector function F is defined by 

F(a) = r(a, y(b; a)). (5) 
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If the solution of (5) is denoted by a*, the solution of the given boundary value 
problern is found as the solution of (1) with the initial condition 

y(a) = a*. (6) 

The important part of the shooting method is, thus, the solution of the nonlinear 
system (4). Ifwe use the Newton method (cf. § 31.4) for this purpose we construct 
a sequence of approximations according to the formula 

(7) 

where the symbol DF denotes the (Gateau) differential of F, i.e., the matrix 
{8Fjf8ak}. Hence, to perform one iteration, one must evaluate F at the point 
a = a(i), evaluate the functional matrix DF(a(i)) and solve the system of linear 
algebraic equations 

(8) 

To evaluate F at a(i) means to compute the vector y(b; a(i)), i.e., to solve the 
differential system (1) with the initial condition (3). The functional matrix DF(a) 
is defined by 

DF(a) = Dur(a, y(b; a)) + D.,r(a, y(b; a))Day(b; a), (9) 

where 
D ( ) = ({)rj(u, v)) 

ur u, V {) , 
Uk 

D ( ) _ (8rj{u, v)) 
.,r u, v - {) , 

Vk 

(10) 

and the matrix Day(b; a) = (8yj(b; a)J8ak) is the solution of the matrix differ­
ential equation 

(Day(x; a))' = Dyf(x, y(x; a))Day(x; a) (11) 

with the initial condition 
Day(a; a) =I. (12) 

The prime denotes here the differentiation with respect to x and I is the identity 
matrix of order m. 

The matrix D F ( a) is usually approximated by the matrix 

(13) 
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where the k-th column of ßF(o:) is defined by 

(14) 

Taking into account the definition of F we see that the vector ßk F ( o:) is determined 

by the vectors 
....... , 

i.e., we again compute it by solving initial value problems. 

Hence, to compute one Newton iteration, it is necessary to solve m + 1 initial 

value problems for the original system and a system of m linear algebraic equations. 

In the case of a linear system 

y' = Ay+ f (15) 

with linear boundary conditions 

Uy(a) + Vy(b) = c, (16) 

the function F has the form 

F(o:) = Uo: + Vy(b; o:)- c, (17) 

where y(x; o:) is the solution of (15) satisfying the initial condition (3). But it is 
possible to write this solution as 

y(x; o:) = tl>a(x)o: + y(x; o), (18) 

where tl>a is the fundamental matrix of the systern (15) for the point a, that is, the 
matrix which satisfies 4>~ = Atl> a , 4> a ( a) = I. The solution of the system ( 4) is 

then given by 
o:* = [U + Vtl>a(b)]- 1 [c- Vy(b; o)] (19) 

and the solution y(x; o:*) of the original boundary value problern by 

y(x; o:*) =tl>a(x)o:*+y(x; o). (20) 

Hence, in the linear case, the solution is obtained by solving m + 1 initial value 
problems (for the m columns of the fundamental matrix tl>a and for the vector 
y(x; o)) and by solving a system of linear algebraic equations. 
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REMARK 1. In the case that the boundary conditions are separated we choose 

the parameter a a priori in such a way that, say, the left-hand boundary condition 

is satisfied. The system of linear algebraic equations has then a smaller order. 

Example 1. Solve the system 

1y' = 2y' 

2 y' = 100 1 y 

with the linear separated boundary conditions 1y(O) = 1y(10) = 1. 

The function 1 y is, in this case, given by 

100 1 1 -100 
1 e - -10x - e 10x 
y(x) = 100 -10oe + 100 -1ooe e -e e -e 

(21) 

and the function 2 y is its derivative. The initial conditions for 1y and 2 y at x = 0 

are 

1y(0)=1, 
2 1- e-100 

y(O) = -10 + 20 elOO- e-100. 

It can be seen from here that the value of 2y at the point 0 differs from -10 only 

starting from 43rd decimal place. Thus, if we compute in floating point with, say, 

15 decimal places of mantissa ( the actual computers very rarely compute more 

precisely) we compute the number -10{1 +c), where c is of order 10-15 in the best 

of cases, as the approximation of the exact value 2y(O). Solving the system (21) 
with the initial conditions 1y(O) = 1, 2y(O) = -10(1 + c) we obtain 

If we have, for example, E = 10-16 , we get 

and we should obtain 1. 

This simple example shows that the initial value problems arising in the shooting 

method may be very sensitive to small changes in initial conditions and, at the same 

time, that this phenomenon may be the worse the Ionger the interval, in which the 

solution is sought, is. 

The multishooting method, the principles ofwhich will be described now, removes 

in a high degree most of the above mentioned difficulties connected with the shoot­

ing method. The cost which we must pay for it is a great increase of the number of 
arithmetic operations. In order to describe the niultishooting method, investigate 

the boundary value problern (1), (2), and let x0 , ••• , Xn be such points of [a, b] 
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for which a = x 0 < x 1 < x2 < · · · < Xn-1 < Xn = b. Denote by y(x; Xk, o:k) the 
solution of {1) satisfying the initial condition y(xk) = O:k = (akl, ... , akm)T. If 
we find n + 1 vectors o:k, k = 0, ... , n, suchthat 

(22) 

and 

{23) 

then the function y = y(x) defined by the formula 

is the solution of the given boundary value problem. 

The crucial point of the multishooting method thus is the solution of the system 
{22), {23) of (n+ 1)m (generally nonlinear) equations for (n+ 1)m unknowns. Ifwe 
again use Newton's method and again approximate the corresponding derivatives 
by difference quotients as in the simple shooting method, we must solve { n + 1 )m 
initial value problems for the original differential equation and a linear algebraic 
system of ( n + 1 )m unknowns in order to perform one iteration. The special form 
of the system {22), {23) allows to reduce the linear algebraic system to a system 
of order m. Nevertheless, the multishooting method still remains to be extremely 
laborious. However, it is just only this method which gives a chance to get any 
results at all in some situations. 

25.8. Methods of the Transfer and 
N ormalized Transfer of Boundary Conditions 

In these methods, we again want to transform the original boundary value prob­
lern into a sequence of initial value problems. In contrast to the shooting method, 
these methods work only in the case of linear equations with linear separated bound­
ary conditions. 

Thus, let A be an m x m matrix the entries of which are continuous functions 
and let f be an rn-dimensional vector with continuous components. Investigate the 
differential equation 

y' = Ay + f {1) 

with the boundary conditions 

(2) 
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where Va and Vb are ma x m and mb X m matrices and Va and Vb are ma- and 
mb-dimensional vectors, respectively. 

The method of the transfer of boundary conditions is based on the following 
theorems. 

Theorem 1. Letthema x m and mb x m matrices Ra(x) and Rb(x), respectively, 
satisfy the differential equation 

R~ =-RaA {3) 

with the initial condition 
Ra(a) = Va, (4) 

and the differential equation 
R~ = -RbA (3') 

with the initial condition 
Rb(b) = vb, ( 4') 

respectively. Further, let the ma- and mb-dimensional vectors ra and lb, respectively, 
satisfy the differential equation 

(5) 

with the initial condition 
(6) 

and 
(5') 

with the initial condition 

lb(b) = Vf,. (6') 

Then any vector y, which is the solution of (1) in [a, b] and which, moreover, 
satisfies the first or the second of the boundary conditions (2) fulfils 

Ra(x)y(x) = ra(x), x E [a, b] , (7) 

or 
Rb(x)y(x) = lb(x), x E [a, b] , {7') 

respectively. 

The assertion of Theorem 1 can be expressed by words in such a way that any 
solution of {1) which, moreover, satisfies one linear condition of the type {2) satisfies 
the condition of the same type at any point of the given interval. Thus, using this 
theorem, we can transfer any condition of the type (2) to any point of [a, b]. 
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Theorem 2. Let x 0 be any point from [a, b]. If the boundary value problern (1 ), (2) 
has a solution y, then the vector k = y(x0 ) solves the system of linear algebraic 

equations 

(8) 

where the matrices Ra, Rb and the vectors ra, rb are defined in Theorem 1. Con­

versely, ijthe system (8) has a solution k*, then the solution of (1) with the initial 

condition y(x0 ) = k* is the solution of the original boundary value problem. If the 

boundary value pmblem (1), (2) has a unique solution, then the algebraic system 

(8) also has a unique solution, and conversely. 

Thus, solving the algebraic system (8), we can obtain the initial conditions which 
are satisfied by the solution of the original boundary value problem; its solution 

is then computed by solving an initial value problem. Since the matrices Ra, Rb 
and the vectors ra, rb are also computed by solving initial value problems we have 
transformed the original boundary value problern into a sequence of initial value 
problems. Using this approach in practice, one usually puts x 0 = b or x 0 = a since 

then Rb and rb or Ra and ra need not be constructed. 

Since we have Ra = Va.P; 1 and Rb = Vb.Pb" 1 , where .Pa and .Pb arefundamental 
matrices of (1) for the points a and b, respectively, we solve very similar differential 

equations (cf. (25.7.18)) in the just described method of the transfer of boundary 
condition as in the shooting method. The problems connected with the practical 
realization of the method of the transfer of boundary condition are thus similar to 

those in the case of the shooting method. We will clarify them by a simple example: 

Example 1. Solve the differential equation 

- [(1 + x)y1]
1 + qy = [q + 7C2 (1 + x)] sin 'TCX- 'TC COS'TCX, 

with the boundary conditions y(O) = y(1) = 0. 

This problern is equivalent to the problern of solving the system 

1 I 1 2 
Y =1+x y, 

2 y' = q 1 y - [ q + 7C2 ( 1 + X)] sin 'TC X + 'TC COS 7CX 

with the boundary conditions 

1y(O) = 1y(1) = 0. 

The exact solution is 1y = y = sin7Cx, 2 y = (1 + x)y'. In Tab. 25.10 we find the 
results for q = 100 and q = 500. The necessary initial value problems were solved by 
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the standard Runge-Kutta method with the steplength h = 0·025. It is apparent 

from this table that the results, especially in the case q = 500, are completely 

TABLE 25.10 

q = 100 q = 500 

X approximate approximate 
solution 

error 
solution 

error 

0·0 0·000275 0·000275 163·484 163·484 
0·1 0·309114 0·000097 18·3247 18·0157 
0·2 0·587819 0·000034 2·77973 2·19195 
0·3 0-809028 0·000011 1·09989 0·290869 
0·4 0·951059 0·000003 0·992730 0·041673 
0·5 1·000000 0 1·006387 0·006387 
0·6 0·951056 0 0·952091 0·001034 
0·7 0·809017 0 0·809189 0·000172 
0·8 0·587785 0 0·587813 0·000028 
0·9 0·309017 0 0·309021 0·000003 
1·0 0 0 0 0 

TABLE 25.11 

q = 100 q = 500 

X approximate approximate 
solution 

error 
solution 

error 

0·0 0 0 0 0 
0·1 0·309016 -0·000001 0·309012 -0·000005 
0·2 0·587781 -0·000004 0·587774 -0·000011 
0·3 0·809011 -0·000005 0·809006 -0·000011 
0·4 0·951039 -0·000017 0·950562 -0·000495 
0·5 0·999936 -0·000064 0·997559 -0·002441 
0·6 0·950989 -0·000068 0·953125 0·002068 
0·7 0·808945 -0·000072 0·710938 -0·098080 
0·8 0·587387 -0·000398 0·625000 0·037215 
0·9 0·307861 -0·001156 0 -0·309018 
1·0 -0·000244 -0·000244 -1·000000 -1·000000 

unsatisfactory. To provide a possibility of comparison, the results obtained by 

the simple shooting method are also presented (Tab. 25.11). This method gives 

similarly bad results, too. 
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The method of the normalized transfer of boundary conditions which will be de­
scribed now reduces these problems substantially. In comparison with the ordinary 
transfer of boundary condition, this modified procedure need not be feasible even 
in some of cases when the original problern has a unique solution. 

Before formulating the assertion on which the method is based we introduce the 
following notation. Write the matrix. Va from the boundary condition (2) in the 
form 

(9) 

where vJI> is the ma X ma matrix formed from the first ma columns of Va. 
Similarly, put 

v;b - [ v:(l) v:(2)] 
- b ' b ' 

(10) 

where vp> is the mb X ma matrix formed from the first ma columns of vb. (Note 
that it is not necessary that ma = mb.) Finally, write A and f from (1) in the form 

A = [ AAtb AA12] , f = [ ~21] , 
21, 22 ·~ 

(11) 

where An is the ma x ma matrix formed from the first ma rows and columns of A 
and the types ofthe matrices A12, A21, and A22 are ma X (m-ma), (m-ma) Xma, 
and (m-ma) X (m-ma), respectively; Ii is then thema-dimensional vector formed 
from the first ma components of f. 

Theorem 3. Let y solve the differential equation (1) in [a, b] and let it satisfy the 
first boundary condition (2) in which the matrix vP> is nonsingular. Further, let 
the matrix differential equation 

G' = An G - GA22 - GA21 G + A12 

with the initial condition 
G(a) = -( vJ!>)-1 vp> 

have a solution in the whole interval [a, b]. Then 

Yl (x) = G(x)y2(x) + g(x) 

(12) 

(13) 

(14) 

holds for any x E [a, b], where we put y = (Yt, Y2)T, Yl being thema-dimensional 
vector formed from the first ma components of y, and where 

g' =(An- GA2t)g + Ii- Gfa (15) 

with the initial condition 
(16) 



524 SURVEY OF APPLICABLE MATHEMATICS 25.8 

REMARK 1. The difference between Theorem 1 and Theorem 3 consists in the fact 
that Theorem 3 gives the possibility to transfer the left-hand boundary condition 
in the "normalized" form, i.e., in the form where the identity matrix stands for the 
first ma components of Ra. 

REMARK 2. The assumption on the existence of the solution of the differen­
tial equation (12) in the whole interval [a, b] cannot be removed. Namely, (12) is 
a nonlinear differential equation so that existence of its solution is guaranteed by 
the general existence theorem (cf. § 17.2) only locally. 

Theorem 4. Let the assumptions of Theorem 3 be satisfied and let the boundary 
value problern (1), (2) have a unique solution. Then the system of linear algebraic 
equations 

(17) 

has a unique solution k* and the component Y2 of the solution of the given boundary 
value problern satisfies the differential equation 

(18) 

with the initial condition 

Y2(b) = k*. 

The algorithm of the method of the normalized transfer of boundary condition 
is based on Theorems 3 and 4 and is described as follows: 

(i) We solve the system of differential equations (12) with the initial condi­
tions (13) and the system (15) with the initial conditions (16). 

(ii) The component Y2 of the solution sought is found as the solution of the 
system (18) with the initial conditions at the point b computed from the algebraic 
system (17). 

(iii) The component Yl of the solution (if we are interested in it) is then com­
puted from (14). 

Hence, the method of the normalized transfer of boundary condition consists in 
solving two systems of differential equations, one of them being nonlinear, with the 
initial conditions prescribed at the point a (i.e., we solve these equations from the 
left to the right) and one system of differential equations with the initial conditions 
given at the point b (this system is thus solved from the right to the left). 

REMARK 3. The alternative name of the just described procedure is the invariant 
imbedding method. 
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Example 2. Solve, by the method of the normalized transfer of boundary condi­
tion, the boundary value problern from Example 1. 

The results are summarized in Tab 25.12. Again, the necessary initial value 
problems were solved by the standard Runge-Kutta method with the steplength 
h = 0·025. We really see that they are substantially more reasonable than in the 
case of the method of the ordinary transfer or in the case of the shooting method. 

TABLE 25.12 

q = 100 q = 500 

X approximate approximate 
solution 

error 
solution 

error 

0·0 0 0 0 0 
0·1 0·309012 -0·000005 0·309007 -0·000010 
0·2 0·587778 -0·000007 0·587770 -0·000015 
0·3 0·809009 -0·000008 0·808999 -0·000018 
0·4 0·951048 -0·000009 0·951037 -0·000019 
0·5 0·999989 -0·000011 0·999979 -0·000021 
0·6 0·951045 -0·000012 0·951038 -0·000018 
0·7 0·809009 -0·000008 0·809007 -0·000010 
0·8 0·587784 -0·000001 0·587780 -0·000005 
0·9 0·309018 0·000001 0·309016 -0·000001 
1·0 0 0 0 0 

25.9. Finite Difference Method 

This method is very popular and represents, in principle, a universal method for 
solving boundary value problems not only for ordinary differential equations but 
especially for partial differential equations. For this reason, a separate Chap. 27 
is devoted to this method. Since, in the quoted chapter, the emphasis is rather on 
linear than on one-dimensional problems we describe here, on a simple example, 
the way in which the finite difference method can be used for solving a nonlinear 
boundary value problem. 

Consider the differential equation 

y" = f(x, y, y') {1} 

in [a, b] with simple boundary conditions 

y(a) = 'Yt, y(b) = 'Y2. {2} 
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If we suppose that the right-hand term of (1) satisfies the conditions 

0 <Po ~ /y(x, y, z) ~Po, lfz(x, y, z)l ~ Qo (3) 

(the symbols /y and fz denote the partial derivatives with respect to y or z) in 
a sufficiently large domain of variables x, y and z, then the boundary value prob­
lern (1), (2) has a solution. 

The basic idea of the finite difference method consists in choosing, in the interval 
[a, b] in which the solution is sought, a finite set of points called the mesh (grid) -
most often the mesh is formed by equidistant points 

Xk = a + kh, k = 0, ... , n, (4) 

where h = (b-a)Jn is called the mesh-size and n isapositive integer- and, further, 
in replacing the derivatives occurring in the differential equation and, if necessary, 
those in the boundary conditions by difference quotients at these points. By a dif­
ference quotient we mean here any linear combination of the values of the function 
at different points which approximates the considered derivative. Neglecting the 
errors in the approximation of the derivatives, we obtain a system of equations for 
the unknown values of the solution at the mesh-points. 

If we proceed in the case of the boundary value problern (1), (2) in the indi­
cated way, i.e., if we replace the first and the second derivatives of y at the point 
Xk by the quotients [y(xk+l)- y(xk-d] /(2h) and [y(xk+l)- 2y(xk) + y(xk-1)] jh2 

(which approximate the corresponding derivatives with errors proportional to h2 ), 

respectively, we obtain the system of equations 

Yk-1 - 2yk + Yk+1 _ f ( Yk+l - Yk-1) 
h2 - Xk, Yk, 2h ' k = 1, ... , n -1, 

(5) 
Yo = /1 , Yn = /2 , 

where Yk denotes the approximate solution at the point Xk. The error of the ap­
proximation computed from the system (5) is proportional to h2 similarly as the 
errors in the approximation of derivatives in the original differential equation. 

If we compare this situation with that in the case of initial value problems, 
there is a substantial difference: Here, the system (5) which represents the finite 
dimensional replacement of the original problem, does not form the algorithm for 
solving the original problern yet. It is not so before we indicate the actual algorithm 
for solving that system. One possibility is to use Newton's method which was 
already recommended in the case of the shooting method. Taking into account the 
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special form of the system {5), we can also use the simple iteration scheme 

( i) ( i) 

(1 + ) (i+1) _ ~ ( (i) + (i) ) + (i) _ ~h2f ( (i) Yk+1 - Yk-1) 
w Yk - 2 Yk-1 Yk+1 wyk 2 xk, Yk ' 2h ' 

k = 1, ... , n -1, 

Y(i+1) -'V y(i+1) - "'2 
0 - ,1, n - 1 • 

If the parameter w is chosen in such a way that 

the convergence is guaranteed. 

> 1h2 D 
w = 2 ro' 

{6) 

(7) 

The presented example sufficiently illustrates how to proceed in the case of other 
boundary value problems. In the linear case, the arising system will naturally be 

also linear and, moreover, its matrix will be a band matrix with the bandwidth 
independent of the mesh-size h. The solution of such system by the Gaussian elim­

ination method is then not too time-consuming, namely, the number of operations 
is proportional to the number of equations {cf. § 30.5). 

Example 1. Solve the differential equation 

y"- (1 + 2tan2 x)y = 0 

with the boundary conditions 

y(O) = 1, 
1 

y(1)-
cos 1 

TABLE 25.13 

h = 1/20 h = 1/40 

X approximate approximate 
solution 

error 
solution 

error 

0·10 1·005182 0·000161 1·005613 0·000040 
0·20 1·020651 0·000312 1·020417 0·000079 
0·30 1·047206 0·000454 1·046866 0·000114 
0·40 1·086288 0·000583 1·085851 0·000147 
0·50 1·140190 0·000696 1·139669 0·000175 
0·60 1·212411 0·000783 1·211825 0·000197 
0·70 1·308284 0·000824 1·307666 0·000207 
0·80 1·436106 0·000782 1·435521 0·000197 
0·90 1·609299 0·000573 1·608870 0·000144 
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by the method {5). One can find the results for the mesh-sizes h = 1/20 and 
h = 1/40 in Tab. 25.13. We see from it that using the latter mesh-size, the error 
is approximately a quarter of that in the case of the former mesh-size. Thus, the 
error is really proportional to h2 • 

25.10. The Eigenvalue Problem 

In this paragraph, we mention very briefly the problems connected with the 
computation of eigenvalues and eigenfunctions of differential operators. We restriet 
ourselves to a simple, nevertheless important, problern called the Sturm-Liouville 
problem. This problern consists in finding all such values of the parameter >. ( each 
of them being called eigenvalue) for which the differential equation 

- [p(x)y']' + q(x)y = >.r(x)y, x E [a, b] , 

with homogeneaus boundary conditions 

-alp(a)y'(a) + ß1y(a) = 0, 

a2p(b)y'(b) + ß2y(b) = 0, 

{1) 

{2) 

has a nontrivial (i.e., not identically vanishing) solution. This solution is then called 
the eigenfunction corresponding to the eigenvalue >.. 

Theorem 1. Let the coefficients p, q, and f of the differential equation {1) be 
continuous, p continuously differentiable and let 

p(x) ~Po > 0, q(x) ~ 0, r(x) ~ ro > 0, {3) 

where Po and ro are constants. Further let all the coefficients ai and ßi in the 
boundary conditions be non-negative and let, moreover, ai + ßi > 0 for i = 1, 2. 
Then there exists an infinite sequence 0 ~ >.1 ~ >.2 ~ . . . of non-negative eigenval­
ues of the Sturm-Liouville problern {1), {2). The corresponding eigenfunctions Ui 

can be chosen in such a way that they are orthogonal in [a, b] with the weight r, 
i.e., that 

{4) 

for i #- j. Further, any function u E H 1 which satisfies the boundary conditions {2) 
can be written in the form of a generalized Fourier series 

( ) ~ (u, Ui)r { ) 
UX =L..J UiX 

i=O (ui, Ui)r 
(5) 

converging uniformly in [a, b]. 
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The symbol H 1 denotes here the Sobolev space wJil from § 22.4, which can be 
in the one-dimensional case defined also as the set of absolute continuous functions 

the derivatives of which are square integrable in [a, b]. 

REMARK 1. The assumptions of Theorem 1 concerning the smoothness of p, q, 

and r can be substantially weakened. 

For the approximation of eigenvalues and eigenfunctions of the Sturm-Liouville 

problern (1), (2), we can use more or less obvious modifications of almost all methods 
which were described in§§ 25.7, 25.8, and 25.9. 

Thus, for example, if we write (1) as the system of first-order equations 

with the boundary conditions 

-a1 1y(a) + ß1 2y(a) = 0, 

a/y(b) + ß2 2y(b) = 0 

(we set py' = 1y and y = 2 y here), it follows from Theorem 25.8.1 that 

-p(x)z(x)y'(x) + p(x)z'(x)y(x) = 0 

for any x E [a, b], where z is the solution of the differential equation 

- (p(x)z']' + [q(x)- >.r(x)] z = 0 

with the initial conditions 

z(a) = a1, z'(a) = ßl/p(a). 

(6) 

(7) 

(8) 

(9) 

(10) 

Namely, the matrix Ra is in this case of the form [R~1 ), R~2 )], where R~1 ) and R~2) 
are scalar functions, and R~1 ) = -z(x) and R~2) = p(x)z'(x), where z is the solution 

of (9) with the initial conditions (10), and the function ra obviously vanishes. 

If we substitute x = b in (8), we obtain 

-p(b)z(b)y'(b) + p(b)z'(b)y(b) = 0, (11) 

and this equation has to hold simultaneously with the second boundary condition 
in (2), i.e., with the equation 

a2p(b)y'(b) + ß2y(b) = 0. (12) 
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Thus, the value of >. is determined from the condition that the system of linear 
equations (11), (12) would have a nontrivial solution, i.e., from the condition 

.::1(>.) = 0' (13) 

where 
(14) 

is the determinant of this system. Choosing the value of >. in the differential equa­
tion (1), we are able to compute the values of L1 at different points >.. Hence, for 
solving (13), it is possible to use, for example, the regula falsi method (the method 
of false position, cf. § 31.4). 

The method of the normalized transfer of boundary conditions can be used in 
a completely similar way. 

The finite difference method will be described, for the sake of simplicity, only 
for the special case that we have o:1 = o:2 = 0 in the boundary conditions. If 
we put p(x)y'(x) = z(x) in the differential equation (1) at x = Xk, k = 1, ... 
. . . , n- 1 (xk = a + kh, h = (b- a)fn), and if we approximate the derivative 
[p(x)y'(x)]' = z'(x) by the quotient 

[z(x + h/2)- z(x- h/2)]/h = [p(x + h/2)y'(x + h/2)- p(x- h/2)y'(x- h/2)]/h 

and the derivatives y'(x + h/2) and y'(x- h/2) by the quotients 

[y(x + h)- y(x)]/h and [y(x)- y(x- h)lfh, 

respectively, we obtain the system 

-p(xk- h/2)Yk-1 + [p(xk- h/2) + p(xk + h/2) + h2 q(xk)] Yk-

-p(xk + h/2)Yk+1 = >.h2r(xk)Yk, k = 1, ... , n- 1, (15) 

Yo = Yn = 0 

which can be written in the matrix form 

Ay = >.By. (16) 

Thus, to find an approximation of an eigenvalue of the Sturm-Liouville prob­
lern (1), (2) means to find such >. that the system of linear algebraic equations 
(16) has a nontrivial solution. This problern is called the generalized eigenvalue 
problern and it is, in the case that both matrices A and B are singular, rather 
difficult (cf. § 30.16). In our special situation, it can be simply transformed into 
an ordinary matrix eigenvalue problern by premultiplying (16) by s-1. This is 
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possible since the matrix 8 is obviously nonsingular (it is, in fact, diagonal with 

positive entries on the main diagonal). 

The approximate solution of an eigenvalue problern can be based also on vari­

ational principles which utilize some minimal properties of eigenvalues. We now 
describe some of them. 

Let the Sturm-Liouville problern with the boundary conditions 

y(a) = y(b) = 0 (17) 

be given. If we introduce a functional R defined by 

R(u) = J: {p(x)[u~(x)j2 + q(x)u2(x)} dx = [u, u] 
fa r(x)u2(x)dx (u, u)r 

(18) 

and called the Rayleigh quotient we are able to formulate the following theorem: 

Theorem 2. Let p, q, and r satisfy (3). Then 

and 

)q = min R(u) 
uEH~ 
u#O 

min R(u). 
uEH~,u#O 

(u, ui)r=O, i=1, ... ,j-1 

(19) 

(20) 

The symbol H6 denotes the subspace of those functions of the Sobolev space H 1 

which satisfy the boundary conditions (17). 

Theorem 2 enables us to estimate the least eigenvalue of the Sturm-Liouville 

problern (1), (2) from above in such a way that the minimum in (19) is taken over 
a suitable finite-dimensional subspace of HJ. 

The computation of other eigenvalues according to Theorem 2 is not too conve­
nient since it is necessary to minimize the Rayleigh quotient on the dass of such 
functions which are orthogonal to all the eigenfunctions which correspond to the 

preceding eigenvalues. For this reason, another variational principle known as the 
Courant minimax pr'fnciple is often more useful. This principle will be formulated 
in the following theorem: 

Theorem 3. Let w1 , ... , Wj- 1 be any linearly independent functions from Lz. 

Further, let(w1, ... , Wj-1 beingfixed) V(w1, ... , Wj-1) bethespaceofsuchfunc­

tions u E HJ for which we have ( u,· wi)r = 0 for i .= 1, ... , j - 1. Finally, let 

M(wb ... , Wj-1) = min R(u). 
uEV(w,, ... ,wi-d 

(21) 



532 SURVEY OF APPLICABLE MATHEMATICS 25.10 

Then 
>.j = max M(wb ... , Wj-1). 

Wt, ... ,Wj-1 
{22) 

On the basis of this theorem, the procedure of approximating eigenvalues of the 
given Sturm-Liouville problern can be as follows: 

(i) We choose a finite dimensional subspace DN of HJ. Let IP1, ... , IPN be 
the basis in D N and put 

{23) 

(ü) we find the extremal values of the function R* (of N real variables 
a1, ... , aN)· 

This last problern leads to the eigenvalue problern (16), where A and B are 
N x N matrices with entries aii and bij given by the formulae aij = [~Pi, ~Pj] and 
bij = (~Pi, ~Pj)r, respectively. The matrices A and B are symmetric and positive 
definite so that the eigenvalue problern can be solved without any di:fficulties by 
means of the methods of Chap. 30. As a result, we obtain N real eigenvalues which 
approximate the first N eigenvalues of the Sturm-Liouville problern (1), (17). If 
the eigenvectors corresponding to the eigenvalue >..i, i = 1, ... , N, are denoted by 
a(i) = (aii), ... , a<;})T, then the functions 

N 

ui(x) = L a~i)cpk(x) (24) 
k=l 

are the approximations of the corresponding eigenfunctions. Usually, a finite ele­
ment space (cf. Chap. 24) is chosen for the space DN. Then the matrices A and B 
aresparse matrices and this fact positively influences the e:fficiency of the algorithm. 

REMARK 2. Theorems 2 and 3 hold even in the case of a substantially more 
general problern 

My= >.Ny, 

where M is a differential operator of order 2m defined by 

m 

My= L:( -1)k [Pk(x)y<k>]<k> 
k=O 

and Na 2n-th orderdifferential operator given by 

n 

Ny= L( -1)k [nk(x)y<k>]<k> , 
k=O 
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with the nonseparated boundary conditions of the form 

m-1 

L [o:ikY(k)(a) + ßikY(k)(b)] = 0, j = 1, 0 0., 2m. 
k=O 

N aturally, the definition of the Rayleigh quotient has to be modified properly. See 
§ 17017, where also a simple method can be found giving estimates for the first 
eigenvalue >.1 from belowo 



26. SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 
BY INFINITE SERIES (BY THE FOURIER METHOD) 

By KAREL REKTORYS 

References: [79], [99], (125], (223], (277], (290], (339], (369], (385], [436], (465], [486], (494]. 

In this chapter we show some typical examples of the so-called Fourier method 
for solving boundary-value problems, otherwise known as the method of separation 
of variables or the product method. This method consists - roughly speaking -
in assuming the solution of the given boundary-value problern in the form 

(1) 

where an are constants tobe determined and Un are functions satisfying the given 
differential equation and some of the given boundary conditions. Each of the nmc­
tions Un is assumed to be in the form of a product of functions of one variable only. 
The method will be thoroughly explained in§ 26.1; in the remaining paragraphs of 
this chapter we shall proceed more brießy. 

All functions and constants considered in this chapter are assumed to be real. 

26.1. Equation of a Vibrating String 

A function u(x, t) is to be found, satisfying the differential equation 

82u 82u 
= 

8t2 8x2 
(0 < X < l, t > 0), (2) 

continuous in the closed domain Q (0 ~ x ~ l, t ~ 0) and satisfying the following 
initial and boundary conditions: 

u(x, 0) = soo(x)' 
8u 
ßt (x, 0) = 0, 

u(O, t) = 0, 

u(l, t) = 0. 

(3) 

(4) 

(5) 

(6) 
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The continuity required implies that 

rpo(O)=O, rpo(l)=O. (7) 

The physical meaning of the problern is the following: A string of length l with 
its ends kept fixed (conditions (5), (6)) is put into the (initial) position with the 
amplitude rpo(x) and, after being released at the time t = 0, begins to vibrate. 
(Thus, at this timet= 0, its points have zero velocity; condition (4).) The ampli­
tude u(x, t) at each point x (0 ~ x ~ l) and for all t (t ~ 0) is tobe determined. 
(Other problemsalso lead to the solution of equation (2), for example longitudinal 
vibration of bars, twisting of bars etc.) 

Let us assume the solution of the problern in the form 

00 

u(x, t) = L anun(x, t), (8) 
n=l 

where each of the functions un(x, t) has the following properties: 

a) it is of the form un(x, t) = Xn(x) Tn(t), (9) 
b) satisfies equation (2), 
c) satisfies conditions (4), (5), (6), {10) 
d) is not identically equal to zero. 

Thus, each partial sum ofthe series (8) will satisfy equation (2) and conditions (4), 
(5), (6). By a suitable choice of the coefficients an, weshall satisfy the condition (3). 

Since un(x, t) satisfies equation (2), on putting (9) into (2) and dividing by the 
product XnTn (supposing XnTn =/; 0) we find that 

(11) 

This equation is tobe satisfied for all x, t ofthe region il (0 < x < l, t > 0), since (2) 
is to be satisfied everywhere in il. The left-hand side of (11) is independent oft, 
being a function of X only, but it is also independent of X, since it is equal in {} to 
the right-hand side of (11), and this right-hand side is independent of x. Thus, the 
left-hand and the right-hand sides of (11) are both equal to a (common) constant. 
Let us denote this constant by -An· Then, equation (11) yields 

X~ +AnXn =0, 

r:: + AnTn = 0. 

{12) 

(13) 

A more detailed analysis shows that equations {12), (13) must be satisfied even at 
(isolated) zeros of the function Xn(x), or Tn(t), respectively, so that the assumption 
Xn Tn # 0 is not essential. 
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To equation {12), boundary conditions 

Xn(O) = 0, Xn(l) = 0 {14) 

should be assigned. In fact, the function un(x, t) is tobe determined so as to fulfill 
conditions (5), (6) and tobe of the form un(x, t) = Xn(x)Tn(t). Since Tn(t) must 
not be identically zero (condition d)), the conditions 

un(O, t) = 0, Un(l, t) = 0 

yield the conditions {14). 

It follows from the same condition d) that we have to find such a solution of 
the problern (12), {14) which is not identically zero. It can be easily verified that 
An < 0 or An = 0 in {12) yields only the solution Xn(x) = 0. If;An > 0, then the 
general integral of {12) is 

{15) 

The first of conditions {14) yields Cn = 0, so that 

from the second of them it then follows {since we must have Dn -:f:. 0) that 

n2'IT2 
An = -l2- , n being an integer. {16) 

It is sufficient to consider 

n = 1, 2, 3, ... 

only, since for n = 0 we get the zero solution and for n = -1, -2, -3, ... we do 
not obtain anything new. If we choose Dn = 1, we get 

X ( ) . n'ITx 
n X = Sln-l-. {17) 

Similarly, using {16); we find that non-zero solutions of equation {13), satisfying 
condition (4), are 

Thus each of the functions 

n'ITt 
Tn(t) = COS -l-. 

. n'ITX n'ITt 
un(x, t) = sm-l- cos -l- (n = 1, 2, 3, ... ) {18) 
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(multiplied, eventually, by an arbitrary constant) is a solution of (2), (4), (5) 
and (6). 

Let u(x, t) be of the form (8). Since, for t = 0, cos(n'rrtjl) = 1, we have 

( ) . n'rrx 
Un x, 0 = sm -l-, 

and the condition (3) becomes 

00 

'"' . n'rrx ( ) L...J ansm -l- = cpo x . 
n=l 

(19) 

The series on the left-hand side of (19) is the Fourier sine series of the function 
cpo(x), so that (see § 16.3) 

2 [ 1 • n'rrX 
an= l Jo cpo(x) sm -l- dx (n = 1, 2, 3, ... ) (20) 

( thus the an 's are the Fourier coefficients of the function cpo ( x) with respect to the 
system of the functions sin(n'rrxjl)). 

Thus, if the solution of the given problern can be expressed in the form (8), then 
Un and an are given by (18) and (20), respectively. 

If, i:nstead of ( 4), the condi tion 

ou ot (x, 0) = cpl (x) (21) 

is prescribed, then 

00 
• n'rrx ( n'rrt . n'rrt) 

u(x, t) = ~ sm -l- an cos -l- + bn sm -l- , (22) 

where an are given by (20) and bn by 

2 11 • n'rrx bn = - cp1 ( x) sm -l- dx . 
n'rr o 

(23) 

(If cp1 = 0, we get, of course, the previous result.) 

As mentioned above, if (8) is the solution of the boundary-value problern (2)­
(6), then the Un are given by (18), and the an by (20). In orderthat the series (8) 
( with Un and an determined in this way) may be in fact the solution of the problem, 
it is sufficient that the function cp0 (x) have two continuous derivatives in [0, l] and 
that (7) and cp~(O) = cp~(l) = 0 be fulfilled. If the condition ( 4) is replaced by (21), 
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then, in addition, the function cp1 ( x) is supposed to have a continuous derivative in 

[0, l] and 'Pl (0) = 'Pl (l) = 0. 

In applications, the functions cp0 ( x) and 'Pl ( x) do not always have all the required 

properties. For example cp0 and cp1 are functions such that cpo, 'Pb cp~, cp~ are 
continuous in [0, l] and equal to zero for x = 0 and x = l. In this case the series (22) 

represents the generalized solution of the problern (Definition 18.5.3). That is to 
say, this series is uniformly convergent in the whole domain D (0 ~ x ~ l, t ;?; 0) 
and each of its partial sums satisfies equation (2) in D. But this last assertion may 

not be true for the sum of this series. 

However, from the engineering point of view, this fact is not of particular im­

portance. Indeed, in practice, we take only a finite number of terms in ( 8), say 

k 

vk(x, t) = L anun(x, t). 
n=l 

This function satisfies all the conditions (2)- (6) except condition (3) which is 
satisfied only approximately. In this way, we obtain, in fact, exact solution of 
a rather different problem, with the initial function 

k 

( ) """' . mrx 
Vk x, 0 = ~ ansln - 1-

n=l 

substituted for the given function 

(X) 

( ) """' . mrx 'Po x = ~ansm-1-. 
n=l 

If k is sufficiently large, the function vk(x, 0) differs only "slightly" from the func­

tion cpo(x) and, from the practical point of view, the function vk(x, t) is usually 
an acceptable approximation of the solution u(x, t) of the given problem. 

The same remark holds for all problems treated in this chapter. 

If instead of equation (2) we are considering the equation 

(a > 0) 

then ( using the substitution t = r / a) we obtain the solution 

= . n'Kx ( n'Kat . n'Kat) 
u(x,t)=~sm-l- ancos-l-+bnsm-l- , 
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where the an are given by (20), and the bn by 

2 11 n1rx bn = - <p1 ( x) sin -l- dx . 
n1ra 0 

26.2. Potential Equation and Stationary Heat-Conduction Equation 

Let us find the solution of the equation 

(0 < x < a, 0 < y < b) (1) 

continuous in the reetangle n (0 ;;; x ;;; a, 0 ;;; y ;;; b) and satisfying the boundary 
conditions 

u(x, 0) = f(x) 

u(x, b) = 0, 

u(O, y) = 0, 

u(a, y) = 0. 

(with f(O) = 0, f(a) = 0), (2) 

(3) 

(4) 

(5) 

(This is the problern of finding the stationary temperature field in an infinite right 
prism whose cross-section is a reetangle and whose three faces are kept at zero 
temperature and the fourth one at the temperature f(x); or a similar problern for 
the potential.) 

As in § 26.1, the solution is supposed tobe of the form 

00 

u(x, y) = L anun(x, y), 
n=1 

where each of the functions un(x, y) is of the form Xn(x) Yn(Y), satisfies equa­
tion (1) and the boundary conditions (3), (4), (5), and is not identically zero. 
Putting XnYn for Un into (1), we get 

so that 
X~(x) 
Xn(x) = -kn, 

Y~'(y) 
Yn(Y) = kn, kn > 0. (6) 

The general solution of the first of equations (6) is. 
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conditions (4), (5) yield Xn(O) = 0, Xn(a) = 0; thus C2 = 0 and 

(n=1,2,3, ... ). (7) 

The generalintegral of the second of equations (6) is (using (7)) 

(8) 

It is convenient to choose D1 and D2 in (8) in such a way that for y = 0 weshall 
have Yn = 1. Further, for y = b it follows from (3) that Yn = 0. These two 
conditions are satisfied by the function 

If, in addition, we put 

. hmr(b-y) 
sm 

a 
Yn(Y) = b 

. hn-rr sm-
a 

21a . n-rrx an = - f ( x) sm -- dx , 
a 0 a 

then if, for example, f(x) and f'(x) are continuous functions in [0, a], the required 
solution of the problern (1)- (5) is 

. hn-rr(b-y) 
oo Slll 

( ) '"' . n-rrx a u x, y = L__,ansm-a ----.b­
. hn-rr 

n=l Slll -
a 

(9) 

If the boundary conditions (3), ( 4), (5) arenot homogeneous (i.e. if temperature is 
prescribed also on the remaining three faces of the prism), we obtain the solution 
by superposition of solutions of four problems of this type. 

26.3. Beat Conduction in Reetangular Regions 

If we solve the equation 

(0 < X < l, t > 0) 

with the boundary conditions 

u(O, t) = 0, u(l, t) = 0, u(x, 0) = f(x) 
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by the Fourier method, we get 

00 

L n1rx ( 2 2/!2) u(x t) = a sin -- e-a n "' t 
' n l ' 

n=l 

where 
2 [ 1 • n'ITX 

an= l Jo f(x)sm-1-dx. 

Similarly, the solution of the equation 

ßu = a (ß2u + ß2u) 
ßt ßx2 ßy2 (0 <X< l1, 0 < y < h, t > 0) 

with the boundary conditions 

lS 

where 

u(x, y, 0) = f(x, y), u(x, 0, t) = 0, u(x, l2, t) = 0, 

u(O, y, t) = 0, u(l1, y, t) = 0, 

4 ( 1 [ 12 • m1rx . n1ry 
A1nn = hh Jo Jo f(x, y)sm-h-smz;dxdy. 

541 

(1) 

(2) 

(The convergence of the series (2) is understood in the sense of Remark 16.3.10: 

We say that the series (2) has the sum u(xo, Yo, to) at the point (xo, Yo, to), if 
corresponding to every E > 0, there exists an n0 such that for every pair of numbers 

M, N for which simultaneously M > n0 , N > n0 , the relation 

holds.) 

If f(x) has a continuous derivative in [0, l] and f(O) = f(l) = 0, or if f(x, y) has 
continuous first partial derivatives in the reetangle n (0 ~ x ~ h, 0 ~ y ~ l2) and 

f(x, y) = 0 on the sides of this rectangle, then the series (1), or (2), respectively, 
give in fact the solution of the problern in question. 

Similar results hold for the three-dimensional case. 
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26.4. Beat Conduction in an Infinite Circular Cylinder. 
Application of Bessel Functions 

Let us solve the problern 

ßu = k ( 82 u + ~ ßu) ( < ) 2 O=r<~t>O, ßt ßr r ßr 
u(c, t) = 0, 

u(r, 0) = f(r) 0 

26.4 

(1) 

(2) 

(3) 

(This is the problern of heat conduction in an infinite circular cylinder of radius c, 
the surface of which is kept at zero temperature and the initial temperature of 
which is independent of <po) 

The solution u(r, t) is also supposed to be axially symmetric (ioeo independent 
of <p) and to be expressible as an infinite series, the terms of which are of the form 

R(r) T(t) (4) 

and satisfy equation (1) and the condition (2)0 Putting (4) into (1), we get 

T' = _.!:_ (R" + R') 0 

kT R r 
(5) 

As in § 2601, we see that the left-hand and the right-hand sides of (5) are both 
equal to a ( common) negative constant, say - >. 2 

0 Thus 

lJsing the substitution 

>.r = z 

we get from (6) 

r R" + R' + >. 2 r R = 0 , 

T' + k.X 2T = Oo 

or dR = >. dR, 
dr dz 

d2R dR 
z dz2 + dz + zR = 0' 

(6) 

(7) 

(8) 

which is the Bessel equation of order n = 0 (§ 17015); its solution is the function 

R(z) = Jo(z) 
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(§ 16.4), so that the solution of (6) is (for a fixed .X) 

R(r) = Jo(.Xr). (9) 

Since the functions of the form (4) must satisfy the boundary condition (2) (for 
all t), it is necessary for .X to be such that 

Jo(.Xc) = 0. (10) 

According to Theorem 16.4.8 and Remark 16.4.8, equation (10) has real roots only 
and of these only the positive roots An (n = 1, 2, ... ) need be considered. For 
a fixed An, the function {9) becomes 

while 

according to ( 7). 

Let us introduce the constants an by 

{see Theorem 16.4.9), where J 1 is the Bessel function of index 1. Then if, for 
example, f(r) is continuous and has a piecewise continuous derivative in [0, c], and 
f(c) = 0, the solution of the problern (1), {2), {3) is 

26.5. Deßection of a Reetangular Simply Supported Plate 

Let us solve the equation 

2 _ 84 w 04w 84w qo • 'II"X • '~~"Y 
Ll w = ox4 +28x2oy2 + oy4 = D sm~smb {1) 

in the reetangle il (0 < x < a, 0 < y < b) with the boundary conditions 

w =0, 
82w 
ox2 = 0 for x = 0 , x = a , (2) 

w=O, 
82w 
{}y2 = 0 for y = 0 , y = b. (3) 
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(This is the problern of defiection of a reetangular simply supported plate with 
loading 

. 'li"X . 'li"Y ) 
q = qo sm -;;: sm b . 

Let us assume the solution in the form 

C . 'li"X . 'li"Y 
w= sm-;;smb. (4) 

The boundary conditions (2) and (3) are then satisfied. If we put (4) into (1), we 
get 

hence 

If the loading is 

qo . 'li"X . 'li"Y 
W = 2 Sln-sm-b . 

(1 1) a 
'11"4D -+-a2 b2 

. m'li"X. n'll"y 
q = qosm-a-sm-b-

(m, n being positive integers), we obtain similarly 

Now, let 
00 

/( ) ~ . m'li"X . n'll"y 
q = x, y = L...., Umn Slll -a- sm -b- , 

m,n=1 

where 
4 r [b • m'li"X . n'll"y 

Umn= ab}o Jo f(x,y)sm-a-sm-b-dxdy 

(see Theorem 16.3.5). Then 

00 
_ 1 ~ Umn . m'li"X . n'll"y 

w- 7r4D L:, (m2 n2)2 sm -a- sm -b-. 
m,n-l -+-

a2 b2 

In particular, if q = qo = const., we get 

• m'll"x. n'll"y 
16qo sm -a- sm -b-

w = '11"6D L ( 2 2)2. 
m,n=1,3,5, ... mn : 2 + ~2 

(5) 

(6) 

(7) 
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REMARK 1. In this section, a non-homogeneous equation with homogeneous 
(zero) boundary conditions has been solved. Problems with nonhomogeneous boun­
dary conditions are often encountered in applications. In many such cases it is 
preferable to look for the solution in the form w = w 1 + w2 , where w1 is a func­
tion satisfying the given boundary conditions (but not, in general, the equation in 
questiön), while the function w2 satisfies homogeneous boundary conditions and 
the equation with a non-zero right-hand side. In this simple way, the problern may 
often be modified to a form suitable for application of the Fourier method. 



27. SOLUTION 
OF PARTIAL DIFFERENTIAL EQUATIONS 

BY THE FINITE-DIFFERENCE METHOD 

By EMIL VITASEK 

References: (13], (21], (39], (89], (151], (152], (155], (180], (204], (252], (314], (321], (333], 
(390], (392], (460], (461], (474], (475], (480]. 

The finite-difference method is a very popular method for numerical solution of 
partial differential equations of all types, in essence, which occur in applications 
of mathematics. The finite-element method, which rapidly develops at present, di­
minished a little its significance. Nevertheless, many technical problems formulated 
by means of partial differential equations are up to now solved by this method. 

27.1. Basic ldea of the Finite-DiJference Method 

The basic idea of the finite-difference method is very simple: The domain in 
which the solution of the given differential equation is sought is subdivided by a net 
(grid) with a finite number of mesh points and the derivatives at each mesh point are 
replaced by finite-difference approximations. By such an approximation, we mean 
here a linear combination of the values of the considered function at the given 
point and at some neighbouring points. In fact, the finite-difference approximation 
arises in such a way that the function is replaced, in the neighbourhood of the 
given point, by an interpolation polynomial and the derivatives are computed from 
this polynomial. If, for example, a polynomial of the second degree is constructed 
in such a manner that it coincides with the given function u at the points 0, 1 
and 2 (see Fig. 27.1), then on the assumption that the function u has continuous 

I· h ·I 
2 0 1 3 

Fig. 27.1. 
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derivatives up to the fourth order at least, we have 

where 

Ro _ 2h2 84u(Oh) 
- 4! 8x4 ' -1 < (} < 1, 

and the finite-difference approximation to the second derivative of the function u 
at the point 0 is ( u2 - 2u0 + u1 ) f h2 . If the given function is interpolated from five 
points, one obtains (under similar assumptions concerning the smoothness of the 
function u) 

where 
h4 86u(Oh) 

Rt = 90 {}x6 ' -1 < (} < 1, 

i.e., a formula whose order of accuracy is higher. In both the introduced cases, the 
derivative is expressed in terms of the corresponding finite-difference approximation 
and a remainder which is neglected in further investigations. Similar situation 
occurs in the case of other derivatives. The finite-difference formulae for the most 
frequent partial derivatives of a function of two variables are presented in Tab. 27.1, 
where u(ih, kh) = Uik and the symbol O(hP) denotes that the error is of order hP. 
This means that the error1s smaller in magnitude than MhP, where M is a constant, 
for sufficiently small h. Any formula of Tab. 27.1 is valid if the function u satisfies 
some smoothness assumptions. Thus, for example, for the first formula of this 
table, the boundedness of the second derivative is sufficient, for the second and 
third formula, the boundedness of the third derivative, etc. 

If the derivatives are replaced by finite-difference expressions as indicated, one 
obtains a system of n (in general non-linear) equations for determining the approx­
imate values of the unknown function at n different points of the net. This system 
of equationfii..is then solved by appropriate numerical methods. 

From this description of the basic idea of the finite-difference method one sees 
that this method can l5e applied to the solution of very different types of differential 
equations. Note already at this place that when solving some special types of 
differential equations ( a typical example is a partial differential equation of parabolic 
type) it is often necessary to use special kinds of nets in which the time mesh-size 
depends on the space mesh-size (see, e.g., Tab. 27.3 and Remark 27.7.1). 

In practice, the finite-difference method is now u·sed mainly for linear equations, 
since in this case the corresponding system of finite-difference equations is also lin­
ear, and for systems of linear algebraic equations (which are, moreover, of a special 
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TABLE 27.1 

Deriv-
Scheme Approximate formula 

ative 

au 

t 
OUik = Ui+1,k- Uik + O(h) 

8x • ax h 

D I D 
a;~k = ui+1,k ~ ui-1,k + O(h2) 

m 
OUik -
ax 

-
Ui+1 k+1 - Ui-1 k+1 + Ui+1 k-1 - Ui-1 k-1 == ' ' ' ' + 

4h 

+0(h2) 

82u 

t 
82uik = Ui+1,k - 2uik + Ui-1,k O(h2) -

8x2 D • 8x2 ~ + 

t 
02Uik 1 

D D D D -- = --(-u·+2 k + 16u'+1 k- 30u·k+ 
8x2 12h2 • ' • ' • 

+ 16ui-1,k - Ui-2,k) + O(h4 ) 

m 
a2uik 1 
ßx2 = 3h2 (ui+1,k+1 - 2ui,k+1 + Ui-1,k+1 + 

+ Ui+1,k - 2Uik + Ui-1,k + Ui+1,k-1-

- 2ui,k-1 + Ui-1,k-1) + O(h2) 

82u 

m 02Uik 1 
8x8y axay = 4h2 (ui+1,k+1- Ui+1,k-1- ui-1,k+1 + 

+ Ui-1,k-1) + O(h2) 

84u 04Uik 1 
8x4 t 

-- = -(u·+2 k- 4u·+1 k + 6u·k-
• D • D 8x4 h4 • ' • ' • 

- 4ui-1,k + Ui-2,k) + O(h2) 

84u 

m 
04Uik 1 

8x28y2 ßx2ßy2 = h4 ( Ui+1,k+1 + Ui-1,k+1 + Ui+1,k-1 + 

+ Ui-1,k-1 - 2ui+1,k- 2ui-1,k-

- 2ui,k+1 - 2ui,k-1 + 4uik) + O(h2) 

form, namely, their matrices are sparse) many effi.cient methods of numerical solu­
tion have been established (see Chap. 30). In the non-linear case the finite-difference 
method is also often used but theoretical difficulties then occur connected with the 
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questions of convergence of the approximate solution to the exact solution and 
practical difficulties in solving systems of non-linear equations as well (cf. § 31.5). 

27.2. Principal Types of Nets 

The finite-difference method is mainly applied to two-dimensional cases. We 
therefore introduce the most frequently used types of plane nets. 

(a) Reetangular Nets. Nets ofthistype are now most widely used. They can 
be divided into 

(i) irregular nets, 

(ii) regularreetangular nets, 

(iii) square nets. 

(i) Irregular nets are formed by different rectangles. They are used in order to 
simplify the formulation of boundary conditions (with such nets we ensure that 

Fig. 27.2. Fig. 27.3. 

the mesh points lie on the boundary of the given domain (see Fig. 27.2 and § 27.5)) 
and to refine nets (see Fig. 27.3 and § 27.3). 

(ii) Regular reetangular nets are formed by congruent rectangles. They play an 
important role when solving partial differential equations of parahoHe and hyper­
bolic type. They can be also advantageous in some special situations. If we solve, 
for example, the differential equation 

{}2u {}2u 

k1 ax2 + k2 {}y2 = 0, 

where k1 and k2 are different constants we can use such reetangular net which leads 
to the simplest computation scheme (with equal coefficients). 

(iii) Square nets are formed by equal squares. Nets of this type are the most 
frequently used ones especially in the case of elliptic problems. The main reason is 
that the corresponding difference formulae are simple. 
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Fig. 27.4. Fig. 27.5. 

{b) Hexagonaland Triangular Nets (Fig. 27.4). This type is seldom used. 

(c) Polar Nets (Fig. 27.5). This typeisalso very seldom used. Such nets are 
sometimes convenient in special domains as, for example, in sectors of a circle etc. 
The difference formulae are rather complicated. 

27.3. Refinement of Nets 

As we have seen above, the accuracy of approximation depends on the density 
of the net. But the refinement of net greatly increases the amount of computation. 
For this reason it is convenient to refine the net only in those regions where we are 
interested in higher accuracy. The easiest method of refinement of a net consists in 
using irregular nets (see § 27.2). Moreover, square nets can be refined by means of 
diagonal nets, as is seen from Fig. 27.6. 

27.4. Finite-Difference Formulae 
for the Most Frequently Occurring Operators 

1. Poisson's equation 

see Tab. 27.2. 

2. The heat conduction equation 

see Tab. 27.3 and 27.4, respectively. 
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a 

A 

Fig. 27.6. 

3. The biharmonic P-quation 

see Tab. 27.5. 

4. The wave equation 

see Tab. 27.6. 

In Tab. 27.3- 27.6 the order of accuracy indicates that the error, when applying 
the corresponding finite-difference operator to a sufficiently smooth function, is of 
order hP. The symbol Tq + hP has a similar meaning. 

27 .5. Formulation of Boundary Conditions 

(a) Boundary Conditions which Do Not Contain Derivatives (the values 
of the function to be found are given on the boundary of the domain considered). 
Essentially, two methods are used: 
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TABLE 27 2 

Scheme Difference equation 
Order of 
accuracy 

3 
hz h41~h3 2 ( Ut - Uo + U3 - Uo ) + 1 h 

2 0 4 ht + h3 hl h3 
hl 2 ( uz - uo u4 - uo ) _ 

(hi ~ h) 

'-- -< 1 + h2 + h4 hz + h4 - fo 

m 1 h2 !o 
uo = 4(u1 + u2 + u3 +u4)- - 4- h2 

m 1 h2 !o 
uo = 4(u5 + u6 + u7 + us)- - 2- h2 

1 
h6 

m 
uo = 20 [4(ul + u2 + u3 + u4) + (u5 + u6+ 

)] 3 2 1 4 
4 

+u7 +us - -h fo- -h ß!o-
10 40 

8 - _1_h6 ßßf, - _1_h6 ß4 fo 
1200 ° 600 8x2 ßy2 

11 

1 3 uo = 60 [16(ul + u2 + u3 + u4)- h4 
10 2 0 4 12 

1 - (ug + u1o + uu + u12)] -
12h2 !o 

60 
9 

~ 
1 h2 !o 

uo = 3 ( u1 + u2 + u3) - - 4- h 

* 
1 h4 Uo = 6 ( U1 + U2 + U3 + U4 + U5 + U6)-

1 2 1 4 
- -h !o- -h ß!o 

4 64 
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TABLE 27.3 

Relation 
Order of 

Scheme between Difference equation 
h and T 

accuracy 

Jtt a2h2 T 2T 
T+h2 T-5: -- UA = a2h2 ul + (1- a2h2 )uo+ - 2 A 

X T 
+ a2h2 u2 

m T 2T 
T+h2 arbitrary - a2h2un + (1 + a2h2)uA-

T 
- a2h2uc = uo X 

T T 
T2 + h2 

m 
arbitrary -2a2h2un+(1+ a2h2)uA-

T 
- 2a2h2 uc = 

T T X 

= 2a2h2 ul + (1- a2h2 )uo+ 
T 

+ 2a2h2 u2 

(i) Collatz's method of linear interpolation. Only regular mesh points are used 
and the boundary condition is transferred to the mesh point nearest to the boundary 
by linear interpolation or extrapolation (see Fig. 27.7 below): 

(J 1 
UA = 1 + (J Uß + 1 + (J cp( C), 

where cp( C) is the value of the given function defined on the boundary at the point 
c. 

(ii) The use of irregular nets in such a manner that the mesh points lie on the 
boundary of the given domain (see Example 27.7.1). 

(b) Boundary Conditions Containing Derivatives. This case is treated 
in a similar way. The derivatives in the boundary conditions are usually linearly 
interpolated and replaced by finite-differences. 

Let us demoostrate this procedure in the case where a linear combination of the 
value and the normal derivative of the unknown function is given on the boundary: 

8u 
- = -k(u- cp), an 

where n is the outward normal, cp is the given function, and k is a positive constant. 
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TABLE 27 4 

Relation 
Order of 

Scheme between Difference equation 
h and r 

accuracy 

lt 
r :A 

T 3../ a2h2 
/ // T 

T + h2 T~-- UA = a2h2 (ul + U2 + U3 + U4)+ 
}/'2/ 0_/4 X 

- 4 

~1 4r 
+(1- -)uo 

a2h2 

,t 
: D/ 

4T _/:_// arbitrary (1+ a2h2)uA- T + h2 
_/C/ YE X 

T 
B - a2h2 (uB + Uc +UD+ UE) = Uo 

0 

t 
D T T 

/ V/ arbitrary (1 + a2h2 )uA'- 2a2h2 (uc' + UE') = T2 + h2 

// y T T 
B = (1- a2h2 )uo + 2a2h2 (ul + u3) 

r/2 / // T T 
_/C/ 1/E' (1 + a2h2 )uA- 2a2h2 (uB + uD) = 

r/'2 T T 

/ /3/ = (1- a2h2 )uA' + 2a2h2 (uc' + UE') 

// 0_/ 
1 

Let us express the normal derivative by means of finite-differences in two ways 

(see Fig. 27.8): 
u1- uo ßu 

and substitute in the boundary condition. We obtain two equations 

_u_l _-_u_o = -k(uo- rpo), 
8 

Uo -UA --- = -k(uo- IPo). 
'Tf 

The value UA at the irregular point of the net is computed by linear interpolation 

from the values u 2 and u3: 

(h- c)uz + cu3 
UA = h · 
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Scheme 

11 

6 3 7 

102 0 4 1 

5 1 8 

I!J 

Equation 

2 fPu 82u -
a 8x2 -

8t2 

2 82u 
a ßu = 8t2 

FINITE-DIFFERENCE METHOD 

Difference equation 

1 
uo = 20 [8(u1 + ua + UJ + u4)-

2 
_ 2(us + u6 + u7 + us)-

- (ug + u10 + uu + u12)] + 2
1
0 Joh4 

555 

TABLE 27.5 

Order of 
accuracy 

1 
uo = 12 [3(ul +u2 +uJ +u4 +us +u6)- h2 

- (u7 + Us + Ug + UlO + Ull + U12)] + 6
3
4 foh4 

TABLE 27 6 

Scheme Difference equation 
Order of 
accuracy 

$ UA = U1 + U2 - UJ h2 

7= h/a 

A 

7./ 

1 1./ /2.4( h2 
/4./ V3 UA = 2(u1 + U2 + UJ + U4-

~ 7 
- 2us) 

8 

7 = hj(a.j2) 

Eliminating u0 and uA from the last three equations, we obtain, at the point 1, the 
equation 

- (1- k8)(h- c:) (1- k8)c: k 8 + 'f/ 
u1 - (1 + k'f!)h u2 + (1 + k'f/)h UJ + 1 + k'f/ r,oo. 

The treatment in other cases is similar. Moreover, in some cases special formulae 
which guarantee higher accuracy are used. 
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27.6. Error Estim.ates 

The problern of error estimates when solving partial differential equations by 
the finite-difference method is rather complicated. A rough orientation in the total 
discretization error is given by the local discretization ( truncation) error, i.e., by 

/ 

/ 
V 

c/v h 

rrrc;A B 

I 

I 
I 

Fig. 27.7. 

the error which is performed by replacing differential operators by difference ones. 
The majority of a priori estimates (i.e., the estimates which can be formed before 
the beginning of the computation) which can be found in the Iiterature (see, e.g., 
[21], [152]) are very complicated (they depend, among others, on the possibility 

h 

Fig. 27.8. 

of bounding high derivatives of the unknown solution). Moreover, these estimates 
always have to count with the worst possible case, and for that reason, they are 
very pessimistic, i.e., they are many times greater than the actual error. Thus, the 
value of such estimates is very limited. 
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Practically, it is possible to obtain a realistic assessment of the error by the 

deferred approach to the limit procedure which was already used in Chap. 25 ( cf., 

for example, formulae (25.2.16) and (25.3.13)). The basic idea of this method is as 

follows: 

Let us suppose that the order of the error is p (p is usually the order of accuracy 

to which the derivatives are approximated by the corresponding finite-difference 
formulae, see tables in § 27.4), i.e., let us suppose that there exists a function 

a(x, y (independent of h) suchthat 

ch(x, y) = uh(x, y)- u(x, y) = a(x, y)hP + O(hP+1) 

holds, where u is the exact solution and uh the approximate solution computed 

when using the mesh size h. Then one obtains the simple formula 

for the error sh, where uh/Z derrotes the approximate solution gained in the net 

with the half mesh size h/2. To obtain this estimate one must solve the given 

problern twice and the formula which has been introduced is the typical example 

of an a posteriori estimate. 

27.7. Examples. Laplace's Equation. 
Heat-Conduction Equation. Biharmonic Equation 

Example 1. Let us solve the problern of a stationary temperature field in the 

plane half-circular plate bounded by the straight line y = 0 and by the half of 

the circumference y = (36- x 2 ) 112 if heat is transferred on the linear part of the 

boundary into a medium of known temperature (given by a function f(x)) and on 

the remainder of the boundary, a constant temperature u = 0 is given. 

This problern yields the Laplace differential equation 

82u 82u 
äx2 + äy2 = 0 

in the domain x 2 + y2 < 36, y > 0 and the boundary condition 

äu 
än (x, 0) = -k [u(x, 0) - f(x)], 

where n is the outward normal and k is a positive constant, on the linear part of 

the boundary, and 
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Fig. 27.9. 

on the remairring part of the boundary (see Fig. 27.9). 

Let us cover the domain x 2 + y2 < 36, y > 0 with a net consisting of the system 
of lines x = ±k, y = l, k, l = 0, 1, ... , 6 (in our special case, h = 1). At all points 
denoted by zeros in Fig. 27.9, the condition u = 0 holds. 

At the mesh points 15-49 we use the second formula of Tab. 27.2 and obtain, for 
instance at the point 30, the equation 

UJO = !(u39 + U29 + U22 + U31) 

and similarly at other mesh points of this type. 

At the mesh points 1-14 (i.e. at the mesh points adjacent to irregular points 
of the net) we use the first formula of Tab. 27.2 and obtain, for instance for the 
point 4, 

~8 ~8 
U4 = (h + ~)(8 + ~) U23 + (h + 8)(8 + ~) U16· 

At mesh points 50-60 we formulate the boundary condition by the procedure 
described in§ 27.5 (where we put 8 = r; = 0, ~ = h). The typical equation (written 
for the mesh point 55) is 

u45 + khfss 
Uss = 1 + kh 

Proceeding in this way, we obtain a system of 60 equations for 60 unknowns and 
this system is then solved by some numerical method for special (sparse) systems 
of linear algebraic equations (cf. Chap. 30). 
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Example 2. Let us compute the temperature u(x, t) of a rod of length L, if its 
temperature at t = 0 is u(x, 0) = p(x), where p(x) is a given function, and if 
the temperature at its ends is zero: u(O, t) = u(L, t) = 0. Assuming that heat 
is conducted in the direction of the x-axis only, the problern is described by the 
equation 

82u 2 8u 
8x2 = a 8t 

in the domain 0 < x < L, t > 0 ( a2 being a constant characterizing the heat 
properties of the rod) with the initial condition 

u(x, 0) = p(x) 

and boundary conditions 

u(O, t) = u(L, t) = 0. 

Let a positive integer M be chosen and let h = L/M. Furtherlet T = ßa2h2, 
where ß is an arbitrary number for which 0 < ß ~ 1/2, and let us construct, in the 
domain concerned, a reetangular net formed by a system of parallel lines x = lh, 
l = 0, ... , M, t = kr, k = 0, 1, .... Let our differential equation be replaced by a 

t 

1---' 

_t 
UA 

~ u1 Uo u2 

0 X 

Fig. 27.10. 

finite-difference equation according to the first formula of Tab. 27.3 (see Fig. 27.10): 

The values in the zero time row (i.e. for t = 0) are known from the initial 
condition. From the above formula, the values ~f the unknown function at inner 
mesh points of the first time row are computed; at the boundary mesh points 
the values are known from the boundary conditions (they are zeros). Similarly 
we obtain the approximation to the unknown function for any required time row. 
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Since the values of the function sought are explicitely given in terms of its already 

computed values, the described computational scheme is called the explicit scheme. 

REMARK 1. The restricting condition ß = T /( a 2 h2) ;;:;; 1/2 is essential. It can be 

easily shown that the values of the approximate solution in the k-th time row are 

linear combinations of terms of the form 

( )
k 

• 2 l'ITh l'ITX 
1- 4ßsm - sin-

2L L' 
l = 1, ... ,M -1. 

If ß > 1/2, then the expression 

I 2l'IThl 1- 4ß sin 2L 

is greater than unity for those values of l for which sin( l1rhj2L) differs sufficiently 
little from unity so that the above terms tend to infinity with increasing k (i.e., if 

the net is refined). Thus, the values of the computed function also tend to infinity 

which contradicts the physical nature of the problem. 

REMARK 2. The second and third scheme of Tab. 27.3 are called the implicit 

schemes and they are, at the first glance, not practicable since we must solve a 

system of linear algebraic equations to obtain the solution in any time row, suppos­

ing that the solution in the preceding row has already been computed. However, 

this system has a tridiagonal matrix so that the number of operations, which we 

need to solve it, is proportional to the number of equations, i.e., to the number 1/ h 

(see Chap. 30). Thus, the number of operations necessary to apply both the im­

plicit methods mentioned above is proportional to the number 1/(Th). The number 

of operations of the second method of Tab. 27.3 does not increase, consequently, 

faster than in the case of the explicit method when the net is refined. Even more 

convenient is the situation in the case of the third formula from the mentioned 

table called the Crank-Nicolson formula. Namely, the local error of this method 

is T 2 + h2 so that it is reasonable to put in it T = O(h) and not T = O(h2) as in 

the case of methods with local errors of order T + h2 • Both the mentioned implicit 

methods are at least as efficient as the explicit method and, moreover, T can be 

chosen completely independent of h. 

REMARK 3. The numbers of operations necessary for the practical realization of 

methods from Tab. 27.4 which are used for solving the heat-conduction equation in 

two space variables are, in their turn, proportional to the expressions 1/h\ 1/(Th4 ), 

and 1/ ( T h 2 ), su pposing that all the systems of linear alge braic equations, if they 

occur, are solved by the Gaussian elimination method. An apparently advantageaus 

number of operations of the third method known und er the name of the alternating 

directions method follows from the fact that we proceed, in the computation, in half 
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time steps and solve, in each of these halfsteps, 1/ h linear systems with tridiagonal 
matrices for 1/h unknowns. 

Example 3. Let us determine the defl.ection of a square plate of the side 2a loaded 
by a uniform loading and clamped on the boundary. 

This problern yields the differential equation 

where P is the load on the unit area and N is a constant depending on the elastic 
properties of the plate; the boundary conditions are 

u=O for x= ±a, y= ±a, 

8u = 0 
8x 

for x= ±a, 

8u = 0 
8y 

for y = ±a. 

In order to write the finite-difference equations at a mesh point ( x, y) in the form 
given in Tab. 27.5, the values at the mesh points (x + h, y), (x- h, y), (x, y + h), 
(x, y- h), (x + h, y + h), (x- h, y + h), (x + h, y- h), (x- h, y- h), (x + 2h, y), 
(x- 2h, y), (x, y +2h) and (x, y- 2h) are necessary. At boundary mesh points, the 
solution is known (it is zero). But it is necessary to know the values of the function 

a 

a 

!--

h =a/4 
-

Fig. 27.11. 

u at thc mesh points, adjacent to the boundary mesh points, denoted in Fig. 27.11 
by small circles. These values can be obtained, generally, by linear interpolation 
from the known boundary values of 8u/ 8x and 8u/ 8y. In the actual case, they are 
also equal to zero. 
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27.8. General Scheme of the Finite-Difference Method 

In this paragraph, we formulate the finite-difference method abstractly and in­
troduce basic convergence theorems for a generallinear boundary value problem. 

Let a domain [2 C EN with boundary S be given and Iet us investigate the 
differential equation 

Lu= f in Jl (1) 

with boundary conditions 

Here u is the function sought, f a given function, L a linear differential operator, 
Si some parts of the boundary S, 'Pi functions defined on Si and li linear operators 
mapping the function u defined on [2 onto the functions defined on Si. Note, that 
it is not necessary for Si 's to be disjoint for different i as weil as it is not necessary 
that the union "of Si is the whole boundary S of the given domain. 

Example 1. Let us consider the wave equation in one space variable, 

in the domain Jl = { (x, t); 0 < x < 1, 0 < t < T} with the initial conditions 

u(x, 0) = p(x), au(x, 0) = q(x) 
at 

(p, q are given functions) and the boundary conditions 

u(O, t) = u(1, t) = 0. 

In this case, we have s 4, sl = Sz = {(x,t); 0 ~X~ 1, t = o}, s3 = 
= { (x, t); X = 0, 0 < t < T}, s4 = { (x, t); X = 1, 0 < t < T}, lt u = u(x, 0), 

au 
lzu = ßt(.'E, 0), hu = u(O, t), l4 u = u(1, t). 

Further, Iet a finite set of points from the closed set Jl (the bar denotes the 
closure) be given for any h > 0. This set is called the net (grid, mesh) and will be 
denoted by Jl(h). Let Lh bc a linear operator mapping the function u(h) defined 
on the net Jl(h) on a fullction Lhu(h) defined on a proper subset [2(h) of Jl(h). Th~ 
elements of the set Jl(h) are called the inner or interior mesh points of the net Jl(h). 

Fillally, Iet l~h) (i = 1, ... , s) be a linear operator mapping the function u(h) defilled 
Oll dh) Oll a fullctioll z(h)u(h) defined Oll s(h) c Jl(h) s(h) n [2(h) = 0 and A(h) an 

t 1. ' t t 

operator which maps the fullction 'Pi restricted Oll S~7), S~7) beillg the finite Subset 
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of Si, Oll a function A~h} l.f'i defined Oll s;h}. The elements of u s;h} are called the 
boundary mesh points and we suppose that i 

s 

U s;h> u n<h> = .a<h>. 
i=l 

To solve the problern (1), (2) by the finite-difference method means to solve the 
equation 

(3) 

called the difference equation, with right-hand term being defined on .Q(h} and equal 
there to the values of the right-hand term of (1), with the boundary conditions 

(4) 

Any of equations ( 4) represents a finite number of equations for the mesh points 
from the sets s;h} and (3) a finite number of equations for the mesh points from 
,n(h}. Thus, (3) and ( 4) form a system of linear algebraic equations for determining 

the values of u(h} at the mesh points from .n(h}. . 

REMARK 1. The operators A~h} in (4) represent the way of transforming the 

boundary conditions at the mesh points of dh}. The right-hand term of the original 
equation can be transformed to the mesh in a similarly general manner. Wehave 
restricted ourselves to the above special case (namely, when the given function f 
is mapped on the function defined on .Q(h} by its function values) since it is most 
often used in practice. 

Example 2. When formulating the Dirrieblet boundary conditions by means of 
linear interpolation, we have s = 1, the set s~h} is the set of mesh points of the 

type A from Fig. 27.7, the set sa~> is the set of points of the type C from the same 
figure, and 

(see § 27.5). 

(l~h)u(h}) (A) = u(h}(A)- 1: a u(h}(B), 

(A(h>r.p) (A) = - 1-r.p(C) 
1+a 

Let U be a normed space (§ 22.4) of functions defined on il and suchthat the ex­
pressions Lu, and liu are defined for any u E U. Further, letFand Pi, i = 1, ... , s, 
respectively, be normed spaces of functions defined on il and on Si, respectively, and 
suchthat Lu E F and liu E Pi, i = 1, ... , s, respectively, for any u E U. Let U(h} 

be a normed space of functions defined on .Q(h}, p(h} a normed space of functions 
defined Oll g(h) and P~h}, i = 1, ... , S, normed spaces of functions defined Oll s;h}, 
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and let for u(h) E U(h) and cp· E t/J· Lhu(h) E p(h) l~h)u(h) E t/J~h) A~h)cp· E tJJ~h) 
' t ~, ' 't '& ' '& ' t. . 

Let us suppose that any functions u E U and f E F, respectively, are as functions 
restricted on il(h) and .(](h), respectively, elements of the spaces U(h) and p(h), re­

spectively, so that the expressions Lhu and l~h)u have sense. Let us finally suppose 
that the norms defined in the spaces just introduced satisfy 

for h ~ 0. 

llullu<h) ~ llullu, IIJIIF<h) ~ II!IIF, 
IIA~h)cpill~~h) ~ llcpill~. 

(5) 

Definition 1. We say that the difference equation (3) with the boundary conditions 

( 4) approximates the differential equation ( 1) with the boundary conditions ( 2) if, 
for any u E U and for h ~ 0, 

IILu- LhuliF(h) ~ 0, 

IIA~h)(liu) -l~h)ull~~h) ~ 0. 
(6) 

Definition 2. We say that the approximation of the differential equation (1) with 

the boundary conditions (2) by the difference equation (3) with the boundary condi­

tions (4) is of order p, if there exist, for any function u E U, constants M and Mi 

suchthat 
IILu- LhullF(h) ~ MhP, 

IIA~h)(liu) -l~h)ull~lh) ~ MihP 

for any suffi.ciently small h. 

(7) 

Definition 3. We say that the difference equation (3) with the boundary conditions 

( 4) is well-posed ( or stable with respect to input data) if it has, for any suffi.cicntly 
small h and for any right-hand termsfand cpi, the unique solution and if, moreover, 
there exist such constants N and Ni that 

8 

llu(h)llu<hJ ~ NIILhu(h)IIF<hJ + LNilll~h)u(h)ll~<hJ 
i=l ' 

(8) 

for any u(h) E U(h) and any suffi.ciently small h. 

REMARK 2. The fact that the problern (3), (4) is well-posed means that its 
solution depends continuously on the input data, i.e., on the right-hand terms of 
(3) and (4). 

Definition 4. We say that the difference equation (3) is stable with respect to the 

right-hand term if the equation (3) with the homogeneous boundary conditions 

z~h)u(h) = 0, i = 1, ... 's, (9) 
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has, for suffi.ciently small h, exactly one solution and if 

(10} 

We say that (3} is stable with respect to boundary conditions if the homogeneous 
equation 

(11} 

with the boundary conditions ( 4} has the unique solution for any suffi.ciently small 
h and if 

s 

llu(h) II U(h} ~ L Niljl~h)u(h) II!P(h} · 
i=l ' 

(12} 

The stability with respect only to some of boundary conditions is defined in an 
obvious way. 

Theorem 1. Let u E U be the solution of the differential equation (1) with the 
boundary conditions ( 2}. Let the difference equation ( 3} with the boundary condi­
tions (4} approximate the equation (1} with the boundary conditions (2}. Further, 
let the problern (3}, (4} be well-posed. Then 

lim llu(h) - ullu<hl = 0. 
h-+0 

(13} 

If, moreover, the approximation is of order p then 

s 

llu(h) -ullu<hl ~ hP(MN+ LMiNi)· (14} 
i=l 

REMARK 3. The assumptions of this theorem can be, in special situations, weak­
ened. For example, if some boundary condition is formulated exactly, i.e., if 
S (h) S l(h) l d A(h) r . d . . . 

i C i, i = i, an i 'Pi = 'Pi 10r some m ex z, It 1s not necessary to 
require the continuous dependence on this condition. 

REMARK 4. To assert that the finite dimensional problern (3}, (4} approximates 
the original problern (1}, (2} is usually simple and it is very often suffi.cient to 
use the Taylor formula in a trivial way. The investigation of well-posedness is, in 
contrast, substantially more diffi.cult. Some general properties of the solution like 
the maximum principle, the monotonicity of the corresponding matrices, etc. may 
be very useful here. 

Theorem 2. Let the assumptions of Theorem 1 be satisfied and let there exist 
functions '1/J and '1/Ji independent of h and such that, for the given solution of the 
differential equation (1} with the boundary conditions (2}, 

lim lih-P(Lu- Lhu)- '1/JIIF<h> = 0, 
h-+0 

lim llh-P[A~h)(liu) -l~h)u]- A~h)'l/Jill = 0 
h-+0 • • • !P~h) 

(15} 
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hold. Let, further, in some class V on which the difference equation (3) with the 
boundary conditions ( 4) approximates the differential equation (1) with the boundary 

conditions (2), there exists a solution of the boundary value problern 

Lw = '1/J, liw = '1/Ji, i = 1, ... , s. (16) 

Then 
(17) 

RE MARK 5. Theorem 2 forms the theoretical basis for using the deferred ap­

proach to limit procedure (cf. § 27.6). 

REMARK 6. All considerations in this paragraph have been performed for the 

case of a net the geometry of which is characterized by a single parameter h. It 

is more or less clear that this is not substantial and that the introduced theorems 
hold also in the case of irregular nets. 

RE MARK 7. A similar abstract scheme of the finite-difference method can be 

constructed, without any substantial difficulties, also for non-linear problems. The 

verification of general assumptions for actual cases is here, however, extremely 
complicated, as a rule. 



28. INTEGRAL TRANSFORMS 

(OPERATIONAL CALCULUS) 

By JINDRICH NECAS 

References: [7], [12], [28], [33], [68], [77], [110], [116], [118], [119], [134], [148], [238], [319], 
[325], [326], [374], [398], [435], [455] [467], [478]. 

For solving certain types of ordinary differential equations, particularly those 
with constant coefficients, and certain types of partial differential equations ( e.g. 
equation of heat conduction, of string and diaphragm vibrations, etc.) in special 
domains, transform methods may be advantageously used. From among them, the 
Laplace-Carson transform is formally identical with the operational calculus, and 
the finite Fourier transform leads to the expansion of a function in a Fourier series. 

28.1. One-Dimensional Infinite Transforms 
( the Laplace, Fourier, Mellin, Hankel Transforms) 

By each ofintegral transforms, given in Tab. 28.1 below (the transforms (1)-(8)), 
to every function f ( t) ( the so-called origina~ from some dass of functions, there 
is assigned a certain function F(p) (the so-called image of the function f(t)). For 
example, the so-called Laplace image (i.e. the image by the Laplace transform (1)) 
of the function f ( t) = e3t is 

F(p) = {oo e3t e-pt dt = {oo e(3-p)t dt = [-1- e(3-p)t] oo 

lo lo. 3- P o 

1 
(Rep > 3). 

p-3 
(9) 

(The Laplace image of a function f(t) is frequently denoted by ':! {J(t) }. Thus, in 
our example we have F(p) = ':! {e3t} = 1/(p- 3).) 

In the transforms (5), (6), (8), we have t E [0, +oo), p ~ 0; in the transform (4), 
t E ( -oo, +oo) and p is real; in the transforms (1), (2), (7), and (3), t E [0, +oo ), 
and t E ( -oo, +oo ), respectively, p being a complex nurober (not an arbitrary one; 
its choice depends on the function f(t)). 
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TABLE 28.1 

Transform Image Inversion formula 

Laplace F(p) = 100 f(t) e-pt dt (1) 
1 l:r:+ioo 

f(t) = -. F(p) ePt dp 
271"1 z-ioo 

(1 ') 

Laplace- F(p) = p 100 f(t) e-pt dt (2) f(t) = ~ 1x+ioo F(p) ePt dp (2') 
Carson 211"1 z-ioo P 

Bilateral- F(p) = /_: f(t) e-pt dt 
1 l"'+ioo 

(3) f(t) = -. F(p) ePt dp (3') 
Laplace 211"1 z-ioo 

F(p) = /_: f(t) e-ipt dt 1 100 Fourier (4) f(t) = - F(p) eipt dp (4') 
271" -oo 

Fourier-
F(p) = J(~) 100 

f(t)cosptdt (5) f(t) = J(~) 100 
F(p)cosptdp (5') 

Cosine 

Fourier-
F(p) = J(~) 100 

/(t)sinptdt (6) f(t) = J(~) 100 
F(p)sinptdp (6') 

Sine 

Mellin F(p) = 100 /(t)tP- 1dt (7) 1 l"'+ioo 
f(t) = -. F(p)CPdp 

211"1 x-ioo 
(7') 

Hanke! F(p) = 100 J" (2 v'( pt)) /(t)dt (8) /(t) = 100 
J" (2 v'( pt)) F(p)dp (8') 

(J" is the Bessel function of the first kind, v > -1) 

The improper integrals are understood in the usual sense, for example, 

r= f(t) e-pt dt = lim rb f(t) e-pt dt, 
h b-+=lo 

etc. In order to guarantee the convergence of these integrals, the functions f ( t) 
and the numbers p must have certain properties. For example, integral (9) {see 
the preceding page) is convergent for those complex numbers p which satisfy the 
inequality Re p > 3. Thus, the Laplace image of the function e3 t is a function of a 
complex variable p, defined in the half-plane Re p > 3 of the Gaussian plane (i.e. in 
the half-plane x > 3, if we set p = x + iy; for Rep ~ 3 the function 1/(p- 3) is not 
the Laplace image of the function e3t). If, in addition, the function f(t) has certain 
special properties, then also the corresponding image F(p) has certain particular 
properties {see § 28.3). 

In the integral transforms of Tab. 28.1, the following conditions are imposed on 
the function f(t): f(t) is absolutely integrable 

(i) in every finite interval 0 ~ a ~ t ~ b < +oo in case of transforms (1) and (2), 

(ii) in every finite interval -oo < a ~ t ~ b < +oo in case {3), 

(iii) in the interval (-oo, +oo) in case {4), 
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(iv) in the interval [0, +oo) in cases (5) and (6), 

(v) in every finite interval 0 < a ~ t ~ b < +oo in case (7). 

In the case of the transform (8) we assume the function f(t)t"l 2 tobe absolutely 
integrable in every finite interval 0 ~ a ~ t ~ b < +oo. 

By an absolutely integrable function g(t) in an interval (a, b) (or [a, b]) we un­
derstand a function for which both the integrals J: g(t) dt and J:ig(t) I dt are con­
vergent. Furthermore, we assume that the functions f(t) aresuchthat 

(i) in the case of transforms (I) and (2) a constant a ~ -oo exists suchthat the 
integral (I) is convergent for Rep > a (in the case (9) we had a = 3; not every 
function possesses the property just mentioned; for example, for f(t) = et2

, 

the integral {I) is divergent for every p); 

{ii) in cases {3) and {7) numbers a1 ~ -oo, a2 ~ +oo exist such that for a 1 < 
< Rep < a 2 the integral {3) or {7) is convergent, respectively. 

The inversion formulae {I') to {8') assign the original to the image provided 
certain assumptions are satisfied (§ 28.3). The integral {I') means 

I 1x+wi 
lim -. F(p) ePt dp 

w-++oo 2'Kl x-wi 

and may also be written in the form 

- F(x + iy) e(x+•y)t dy, I 100 
• 

2'K -00 

and similarly in the other cases. 

By the Hankel transform, the transform 

F(v) = 100 uJu(vu)cp(u)du 

(which follows from (8) by the substitution y'(2p) = v, J(2t) = u, cp(u) = f(!u2 )) 

is sometimes understood. 

Instead of the Laplace and Fourier transform, one often speaks of the Laplace 
and Fourier integral, respectively. 

When solving differential equations, we use transforms for reducing the number 
of independent variables in the differential equation und er consideration. If an ordi­
nary differential equation is solved by means of an integral transform, an algebraic 
equation is obtained; using transforms for solving partial differential equations, the 
number of independent variables is reduced by one. The type of transform used 
depends on the equation under consideration and on the corresponding domain of 
definition. {A thorough treatment of these problems may be found, e.g. in [435], 
[467]). 
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The Laplace transform is the most frequently employed owing to the simple 

relationship which exists between the Laplace image of a function f(t) and of its 

derivative J' ( t), i.e. 

fooo J'(t) e-pt dt = pF(p)- f(O). (10) 

This relationship follows from the theorem on integration by parts provided certain 

obvious assumptions are satisfied. If we assume that f(O) = 0, then to the oper­

ation of differentiation of the original there corresponds the algebraic operation of 

multiplying the image F(p) by p. Upon this fact the Heaviside operational calculus 

may be theoretically based. To the Operation of multiplying by p there corresponds 

the differentiation of the original, to the operation 1/p the integration of the origi­

nal; hence, p is the inverse operator of 1/ p. This idea has led J. Mikusiriski to the 

definition of the differentiation operator independently of the integral transform 

methods; this has been well developed and adapted for applications in [325]. 

Similarly, using the Fourier transform and assuming absolute integrability of the 

functions f(t), f'(t), f"(t), etc., in the interval (-oo, +oo) (this assumption yields 

f(t)--+ 0 fort--+ ±oo, etc.), we obtain 

r: J'(t) e-ipt dt = [J(t) e-ipt['oo + ip r: f(t) e-ipt dt = ipF(p), (11) 

r: J"(t) e-ipt dt = [J'(t) e-ipt] :'oo +ip r: J'(t) e-ipt dt = (ip) 2 F(p) = -p2 F(p), 

(12) 

etc. 

28.2. Applications of the Laplace and Fourier Transforms 
to the Solution of Differential Equations. Examples 

Example 1. Let us find the current i(t) in a circuit consisting of an inductance 

L and resistance R, provided i(t) = 0 for t = 0 and an electromotive force E is 

applied at the time t = 0. 

Thc circuit is governed by the differential equation 

L di R. E 
dt + z = . (1) 

We multiply equation (1) by the factor e-pt and integrate between the Iimits 0 

and +oo. Assuming thc function i(t) bounded and Rep > 0, and writing J(p) for 
f0

00 i(t) e-pt dt, we have 

L e-pt __:dt = L [ie-ptJ: + Lp ie-pt dt = LpJ(p), 100 d. 100 
0 dt 0 
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because i(O) = 0 and lim i e-pt = 0. (Formulae (28.1.10) could also be applied 
t-++oo 

directly, of course.) Further, J0
00 Ee-pt dt = Elp. Thus, for the image J(p) we get 

from (I) an algebraic equation, 

Hence, 

E 
Lp J(p) + R J(p) = -. 

p 

U sing tables of transform pairs ( e.g. the first and sixth pairs in Tab. 28.2 below) 

we find that 1 I p is the image of the function f ( t) = 1, and 1 I (p + Rl L) is the image 
of the function e-(R/ L)t; consequently, for the desired solution we get 

i(t)- E (1- e-(R/L)t) -R . 

Example 2. Let us find the temperature distribution u(t, x) in a semi-infinite rod 

with insulated surface, the end of which is kept in a basin with constant tempera­

ture, i.e. u(t, 0) = U0 = const. Let the initial temperature be zero, i.e. u(O, x) = 0, 

and assume that lim u(x, t) = 0. 
X--+00 

The function u satisfies the differential equation 

82u = k ou 
8x2 ot ' 

(2) 

wherc k is a positive constant determined by conductivity, specific heat and specific 

mass of the rod. We multiply equation (2) by the factor e-pt with Re p > 0 and 

integrate it between the limits 0 and +oo. We thus obtain 

r= ou r= Jo ot (t, x) e-pt dt = [u(t, x) e-pt]:' + p Jo u(t, x) e-pt dt = p U(p, x), 

where U(p, x) = J0
00 u(t, x) e-pt dt is the image of u(t, x). Further assuming that 

differentiation undcr the integral sign is permitted (Theorem 13.9.9; see also [77], 

p. 167), we obtain r= 82u d2U 
Jo 8x2 (t, x) e-pt dt = dx2 (p, x). 

Thus, for the image U(p, x) we get from (2) the ordinary differential equation 

d 2U 
dx2 (p, x)- kpU(p, x) = 0, (3) 
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with boundary conditions 

U(p, 0) = U0 e-pt dt = ~' 100 [], 

0 p 
lim U(p, x) = 0. 

x-++oo 

For the general solution of the differential equation (3) we have 

U(p, x) = A(p) ev'(kp)x +B(p) e-v'(kp)x. 

The boundary conditions yield 

U(p, x) = Uo e-v'(kp)x. 
p 

28.2 

In tables of transforms we find that the function e-v'(kp)x jp is the image of the 
function erfc(xJ(k)/(2J(t))) so that for the desired solution we get 

[ ~ l xJk 2 00 u2 2 2vft 2 

u(t, x) = U0 erfc 2Jt = j'IT Uo hvk e- du= U0 1- y"1r 1 e-u du . 
2yt 

Example 3. We have to find the steady temperature distribution u(x, y) in the 
upper half-plane n of the xy plane, i.e. in 

n = { (x, y); y > 0 }, 

SUpposed the function U assumes the known values g(x) Oll the boundary 8 of Jl 
( on the x-axis), 

u(x, 0) = g(x). (4) 

Let us assume that the function g( x) is absolutely integrable in the interval 
( -oo, +oo) and that so are the (unknown) functions 

u, 

for every y > 0 fixed. 

öu 
öx' 

The function u satisfies the differential equation 

in n. (5) 

Let us use the Fourier transform in the variable x ( thus keeping y fixed). Denoting 

/_: u(x, y) e-ipx dx = U(p, y), (6) 
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we have (cf. (28.1.12)). 

100 82 
U -ipx _ 2 -8 2 (x, y) e dx- -p U(p, y). 

-oo X 

Further, differentiating (6) two times with respect to y, we get, under obvious 
assumptions, 

100 82u . d2 U 
ßi(x, y) e-'P"' dx = d2(p, y). 

-00 y y 

The Fourier transform, applied to equation (5) and to the condition (4) thus yields 

d2U 2 
dy2 - p u = 0, y > 0, 

U(p, 0) = G(p), 

where 

G(p) = i: g(x) e-ipx dx 

is the Fourier transform of the function g(x). 

The generalintegral of (7) is 

(7) 

(8) 

(9) 

(10) 

However, eiPIY cannot be a Fourier transform of any absolutely integrable function 
u(x) (for any fixed y > 0). In fact, if J~00 ju(x)j dx = a, then 

Ii: u(x)e-ipx dxl;;;; i:ju(x)jdx = a = const. 

(because je-iP"'I = 1 for every x and every real p), while eiPIY--+ +oo for IPI --+ +oo 
if y > 0. So the first term on the right-hand side of (10) should be dropperl out. 
From (8) we then obtain 

U(p, y) = G(p) e-IPIY. (11) 

To find the original u(x, y) to the image (11), let us apply the Convolution 
Theorem 28.3.7, setting there F(p) = e-lviY. Using tables, or applying directly 
(28.1.4'), we get, first, 

f(x) =- F(p) e'P"' dp =- e'P"' e-IPIY dp =- ' 1 100 
. 1 100 

. 1 y 
211" -oo 211" -oo 11" x2 + y2 

y > 0. (12) 
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(In details: 

1oo eipx e-lplx dp = {oo eipx e-py dp + 10 eipx ePY dp = 
-oo k -oo 

= 1oo eipx e-py dp + 1oo e-ipx e-py dp = 

= 2 e-PYcospxdp = y , y > 0; 100 2 
o x2 + y2 

we have used the substitution p = -q in f~oo and denoted then again the variable 
by p; further, the Euler formula eiz + e-iz = 2 cos z has been applied, and finally 
formula (9) in § 13.10.) Thus, by the Convolution Theorem 28.3.7, we obtain the 
general formula for the solution to the problern (5), (4) in the form 

1100 y u(x, y) =- ( )2 2 g(v)dv. 
71" _ 00 X- V + y 

28.3. Some Results of Fundamental lmportance. Tables 

From the point of view of applications of transform methods in practice and 
even from the theoretical point of view the following two problems are of basic 
importance: 

1. to decide whether or not a given function F(p) is the image of some function 
f(t) (under the transform considered); 

2. to find the original for a given image. 

Let us present, first, some typical properties of images: 

Laplace transform: F(p) is a holomorphic function in the half-plane Rep > a. 
(We use the notation from § 28.1; if a = -oo, F(p) is holomorphic in the entire 
plane.) 

The same is true for the Laplace-Carson transform. 

In the case of the bilateral Laplace transform the image F(p) is holomorphic in 
the strip a1 < Rep < a2. 

In the case of the Fourier transform the image F(p) is defined only for real p, 
and F(p) is a continuous function. (In the case of the cosine and sine transforms p 
is restricted to have only non-negative values.) 

The images of Mellin transforms have the same properties as those given above 
for the bilateral Laplace transform. 
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In the case of the Hankel transform the image F(p) is defined only for non­
-negative p. 

The problems 1 and 2 just stated were unsolved until recently. Let us start with 
some results for the Laplace transform. 

Theorem 1. The condition 

is necessary and sufficient for a function F (p), holomorphic in the half-plane Re p > 
> 1, to be the Laplace image of a function f(t) satisfying the inequality 

~o= if(t)i2 e-2"{t dt < oo. 

Theorem 2. If F(p) is the Laplace image of an original f(t), then 

d 1 1'Y+iw ePt 
f(t) = -d lim -2 . F(p)-dp. 

t w-++oo 1H "{-iw p 
(1) 

(More accurately, equation (1) holds for almost every t in the interval [0, oo ), i.e. 
with the possible exception of points which constitute a set of measure zero.) The 
integration is performed along a straight line Rep = 1 with 1 > 0, which lies in the 
domain of definition of the function F(p). (Thus, it suffices to take 1 sufficiently 
large.) 

In (1) the differentiation may sometimes be performed under the integral sign. 
Sufficient conditions: 

Theorem 3. Let Jtif(t)i e-at dt < oo for a ~ I· Let f(t) be a function of 
bounded variation in a neighbourhood of a point t (t ~ 0). Then we have 

! f(t + 0) + f(t- 0) 
1 a+iw 2 

w~m -.1 ePt F(p)dp = /(+0) 
+oo2m a-~ 2 

0 

fort> 0, 

fort= 0, 

fort< 0. 

Here, f(t ± 0) denotes the limit from the right and the lejt, respectively, of the 
function f(t) at the point t. If f(t) is continuous at the point t, then 

1 1a+iw 
lim -2 . ePt F(p) dp = f(t). 

w-++oo 1H a-iw 

In practice the originals are calculated by Theorem 3 from the integral 

1 1a+iw 
-2 . ePt F(p)dp. 

'ltl a-iw 



576 SURVEY OF APPLICABLE MATHEMATICS 28.3 

A formal application of the inverse transform may lead to wrong results ( see e.g. 
[118], p. 193). 

For calculation of the original from a given image the Residue Theorem (Theorem 
20.5.1) is often used: 

Theorem 4. Let F(p) be the Laplace image of a function f(t) and let 

1 1'"Y+iw 
f(t) = lim -. ePt F(p) dp. 

w-++oo 2'11"1 '")'-iw 

Let the function F (p) be holomorphic in the complex plane except for poles Pl, P2, 
... (e.g., let F(p) be a rational function) interior to the half-plane Rep < 'Y· Let 
a sequence of arcs Cn ( which do not pass through the poles) be such that each Cn 
meets the straight line Re p = 'Y at two points 'Y + ißn and 'Y - ißn and lies in the 
half-plane Re p ~ 'Y while each arc Cn tagether with the line segment with end points 
'Y - ißn and 'Y + ißn form the boundary of a region iln which contains exactly the 
poles Pl, P2, ... , Pn (see Fig. 28.1). Further, let ßn-+ +oo as n-+ oo and 

Then 

lim { F(p) ePt dp = 0. 
n--too Jen 

00 

f(t) = L res [F(p) ePt] , 
p=pn 

n=l 
(2) 

where resP=Pn [F(p) ePtj denotes the residue of the function F(p) ePt at the pole 

P=Pn· 

Fig. 28.1. 
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With the aid of this and similar theorems the originals corresponding to various 
images can be established. In particular, the calculation of the original of every 
rational function can be reduced to the application of formula (2) (with a finite 
number of terms on its right-hand side). 

Exam.ple 1. Let us find the original of the function wf(p2 + w2 ). 

Using (2) and formulae for the calculation of residues, we get 

[ 
w ePt ] [ w ePt ] eiwt e-iwt 

f(t) = re.s 2 2 + re~ 2 2 = -2. - - 2. = sinwt, 
p=1w p +w p=-Iw p +w 1 1 

in accordance with Tab. 28.2. 

Extensive tables of transform pairs are given, e.g., in [118]. In such tables the 
image F(p) is always given first (see Tab. 28.2). 

To tables there is usually attached the so-called grammar, which summarizes the 
basic rules governing relationship between originals and images. In Tab. 28.3 below 
a sample of a grammar for Laplace transform is given. 

TABLE 28.3 

Image Original 

~F(!!_) 
0! 0! 

f(at) 

pF(p) - /(0) f'(t) 

p2 F(p)- pf(O)- /'(0) f"(t) 

F(p) 
Iot j(T) dT 

p 

100 

F(r) dr 
f(t) 

t 

F(p- Po) ePot f(t) 

F(p)G(p) Iot j(T)g(t-T)dT 

Sufficient conditions for validity of the inversion formula for the Fourier transform 
are stated in the following assertion: 

Theorem 5. Let f(t) be the original of a Fourierimage F(p). If f(t) has bounded 
variation in a neighbourhood of a point t, then we have 

f(t + 0) + f(t - 0) _ 1. 2_ Jw F( ) ipt d - 1m p e p. 
2 w-++oo 2'11" -w 
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TABLE 28.2 

F(p) = 1= j(t) e-pt dt Original f(t) 

1 
1 -

p 

1 
- t 
p2 

1 tn 
-- - n a nonnegative integer 
pn+l n!' 

1 1 

y'p y'( 1\"t) 

1 tv 
-- V> -1; pv+l r(v+1)' 

for the r function see § 13.11 

1 e-at --
p+a 

1 te-at 
(p + a)2 

w 
p2 +w2 

sinwt 

p 
coswt 

p2 + w2 

a 
sinh at p2 _ a2 

p 
cosh at p2 _ a2 

If, in addition, f ( t) is continuous at the point t, then 

1 1w . lim -2 F(p) e1pt dp = f(t). 
w->+co 1\" -w 

If f ( t) is the original for the bilateral Laplace transform with image denoted by F (p) 

and if 

for some Po = xo + iyo, then the function f(t) e-xot is the original for the Fourier 

transform whose Fourierimage is F(x0 + iy). 
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p 

a 
e p 

p 

e p 

p 

cos 1. 
__ P 

y'p 

sin 1. 
__ P 

y'p 

ln p+ a 
p 

TABLE 28.2 (continued) 

Original f ( t) 

{ 0 fort< a 
1 for t ~ a, a ~ 0 

fort< a 

fort~ a, a ~ 0 

Jo(2y'( at)) 

for Bessel functions see § 16.4 

1 
y'( 'Rt) cos (2 y'( at)) 

a a 
erfc -- = 1 - erf -- = 

2 y't 2 Jt 

2 1oo u2 d 
= V'R a/(2,jt) e- u = 

2 1a/(2,jt) -u2 
-1-- e du a ~ 0 
- y''R 0 ' 

cos J(2t) cosh y'(2t) 

y'( 'Rt) 

sin J(2t) sinh y'(2t) 

y'( 'Rt) 

1- e-at 

t 

If f(t) is an original for the Mellin transform with the corresponding image de­

noted by F(p) and if further 

for some Po = xo + iyo, then f ( e-u) e-xou is the original for the Fourier transform 

with the Fourierimage F(x0 + iy). (The substitution t = e-u has been used.) 

We will add some elementary properties of the Fourier transform (integrability 

of the functions in question is always assumed): 
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Theorem 6. If 

/_:lf(x)l dx < oo, 
then for 

F(p) = i: f(t) e-ipt dt 

the "Riemann-Lebesgue lemma" 

is valid. 

lim F(p) = 0 
IPI--t<Xl 

Theorem 7 (Fourier Transform to the Convolution). Let 

Then the function 

h(t) = i: f(t - u) g(u) du= i: f(t) g(t- u) du 

is absolutely integrable as well, i.e. 

and 

H(p) = F(p)G(p). 

Theorem 8. Let 

Then i: J'(t) e-ipt dt = ip i: f(t) e-ipt dt = ipF(p). 

(Cf. (28.1.11).) 

Theorem 9. If 

/_:lf(t)l dt < oo, i: IF(p)l dp < oo, 

28.3 
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then we have (for almost all t) 

f(t) = - F(p) eipt dp. 1 != 
211" -= 

Theorem 10. If 

/_:1/(t)l dt < oo and if(t)l ~ M 

(! is bounded for ( almost) all t), then 

581 

We shall finish with a short table of Fourier cosine and Fourier sine transforms, 
see Tab. 28.4 and Tab. 28.5 below. In practice, we meet these tables much more 
often than those for the Fourier transform, obviously because of the following facts: 

Owing to the well-known Euler relation e-iz = cos z - i sin z, we get, for an even 
function (thus satisfying /( -t) = f(t) for (almost) all t) 

!= f(t)e-ipt dt = 2 r= f(t)cosptdt 
-= lo 

and for an odd function (/( -t) = - f(t)) 

!= f(t) e-ipt dt = -2i r= f(t) sinpt dt. 
-= lo 

Moreover, every f(t) may be (uniquely) decomposed into an even and an odd 
function: 

f(t) = ~ [f(t) + !( -t)] + ~ [f(t)- !( -t)]. 

28.4. Two-Dimensional and Multidimensional Transforms 

Definition 1. The two-dimensional Laplace transform assigns to an original 
f(x, y), which is absolutely integrable in every reetangle 0 ~ t 1 ~ a < oo, 0 ~ 
~ t2 ~ b < oo, the image 

where u, v are complex numbers. 



582 SURVEY OF APPLICABLE MATHEMATICS 28.4 

TABLE 28.4 

Original f(t) 

f(at), a>O 

{~ for 0 < t ~ a 
fort> a 

sinat 
t1-v' 

1 
.jt 

1 
0<v<1 tV' 

e-at, a > 0 

a > 0, v > 0 

sinat 
-t-, 

a > 0, 

a>O 

a>O 

-1 <V< 1 

F(p) = ~o= f(t) cospt dt 

~F (~) 
sinap 

p 

sin ~; r(1- v)pv-1 ; 

for the function r see § 13.11 

a 

~ 

{! for p < a 

"4 for p = a 

0 for p > a 

~ ~V -1 

4 [cos 2 r(1-v)). 

. [(p + a)-v- sign(p- a)IP- ai-v] 

e-btsinat, a>O, b>O a;p[b2 +(a+p)2]-1 + a;p[b2 +(a-p)2]-1 

e-btcosat, a>O, b>O ~{[b2 +(a-p)2)-1 +[b2 +(a+p)2J-1 } 

ln (1 + ~:) 
sinhat 0 b 
coshbt' < a < 

~ sin 1rba 

2b cos 1rba + cosh T 
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1 

Original f ( t) 

f(at), a > 0 

{ 0
1 for 0 < t ~ a 

fort> a 

1 

vt 
1 
-
t 

tV l 
0<v<2 v:f:1 

{ 
0 for 0 < t ~ a 

(t2 _ a2)-v-1/2 

for t > a, - t < v < t 
1 

a>O 

(a+itt-(a-itt, a>O, v<O 

e-at, a > 0 

a>O 

a > 0, v>O 

cosat 
a>O --

' t 

cosat 
a > 0, -1 <V< 1, v:f:O 

t1-v ' 

{ ~rcsin t for 0 < t ~ 1 

fort> 1 

TABLE 28.5 

F(p) = 1= f(t) sinpt dt 

~F (~) 
1- cosap 

p 

J(~) Jp 

2 

'll"i [r( -v)] -1 p-v-1 e-ap 

p 

'II" 

{ 
~ for p > a 

"4 for p = a 

0 for p < a 

r(v) . '!I"V [ 1 sign(p- a)] 
--sm- + 

2 2 (p + a)v IP- aiv 

~ [Jo(P)- cosp] 
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A more detailed treatment of two-dimensional Laplace transform may be found 

in [478]. 

Definition 2. The n-dimensional Fourier transform assigns to an original 
f(tl, t2, ... , tn) satisfying 

n-tuple 

the image 

100 100 100 -i(pltl +···+Pn tn) F(p1, · .. , Pn) = -oo -oo· .. -oo f(tb ... , tn) e dt1 ... dtn, 

n-tuple 

where p1 , ... , Pn are arbitrary real numbers. 

28.5. One-Dimensional Finite Transforms 

A one-dimensional finite transform of a function f(t) in one variable assigns the 
Fourier coeffi.cients of f ( t) to this function. The application of a one-dimensional 
finite transform leads to the expansion of a function in Fourier series, the application 
in partial differential equations to the Fourier method. More about these transforms 
may be found in [467]. 



29. APPROXIMATE SOLUTION OF 
FREDHOLM'S INTEGRAL EQUATIONS 

By KAREL REKTORYS 

References: [22], [109], [252], [276], [323], [387], [415], [434], [460]. 

Equations with degenerate kernels are solved according to § 19.2. For the bound­
ary element method see § 24.7. Further methods can be found e.g. in Baker, C.T.H.: 
The Numerical 'Ifeatment of Integral Equations. Oxford, Glarendon Press 1976. 

For the theory of integral equations see Chap. 19. 

29.1. Successive Approximations (Iterations) 

Suppose we have a Fredholm equation (see § 19.1) 

f(x)- Alb K(x, s)f(s) ds = g(x). 

Let g E L2(a, b), K E L2(Q), where Q = (a, b) X (a, b). Denote 

lb lbiK(x, s)i 2 dxds = B 2 (B > 0), 

lb lg(xW dx = D 2 (D > 0). 

Let us construct the sequence of functions 

fo(x) = g(x), 

h(x) = g(x) +Alb K(x, s)fo(s)ds, 

h(x) = g(x) +Alb K(x, s)ft(s) ds, 

fn+l (x) = g(x) +Alb K(x, s)fn(s) ds, 

(1) 

(2) 
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Theorem 1. 11 

(3) 

where the constant Cis the same lor all x E [a, b], and 1>.1 < 1/ B, then the sequence 
lo(x), fi(x), h(x), ... converges unilormly in [a, b] to the (unique) solution l(x) 
ol equation (1). (In particular, il the functions g(x) and K(x, s) are continuous 
in [a, b] and Q = [a, b] x [a, b], respectively, then l(x) is continuous in [a, b].) The 
absolute value ol the difference between ln(x) and l(x) does not exceed 

Example 1 ([323]). 

l(x)- 0·11
1 

K(x, s)l(s) ds = 1, 

We easily find 
1 

B= yl6' 

{ x for 
K(x, s) = 8 for 

D= 1, >. = 0·1. 

0 ~X~ s, 
s~x~l. 

(4) 

(5) 

By (3), the successive approximations are convergent. If we take n = 2, then by ( 4) 
the error attains at most the value 

1 1 ~. o-13 . 
1 . v (3) · 1- (1/ v(6) >. o-1 = o-ooo1. (6) 

Wehave (by (2)) 

I ( ) 1 I ( ) 1 + 1 1 2 I ( ) - 1 + 31 1 2 1 3 + 1 4 J 0 X = ' 1 X = 10 X - 20 X ' 2 X - 300 X - 20 X - 600 X 2400 X • 

If we take l(x) ~ h(x), then by (6) the error in the whole interval [0, 1] does not 
exceed 0·0001. 

REMARK 1. For the resolvent of an integral equation see § 19.4. Cf. also Exam­
ple 19.4.2. 

29.2. Approximate Solution of Integral Equations 
Making U se of Quadrature Formulae 

Using numerical integration (§ 13.14), we replace an integral by a sum: 

b n 1 h(x) dx ~ (b- a) L Ckh(xk)· 
a k=1 
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Here, Xk and Ck are points and constants, respectively, defined by the given quadra­
ture formula. For example, if we apply to the evaluation of the integral 

11 
h(x) dx 

the trapezoidal rule for three points (n = 3), then 

Xt = 0, 

C - 1 
1 - 4• 

In the given integral equation 

X - 1 
2- 2• 

C -1 
2- 2' 

X3 = 1, 

C -1 
3- 4• 

f(x) -1b K(x, s)f(s) ds = g(x) 

(1) 

(2) 

let us replace the integral by a sum, choosing a certain quadrature formula with 
dividing points s1, s2, ... , Sn· Let the same partition be chosen in the interval [a, b] 
for the variable x. Denote the corresponding dividing points by Xt, x2, ... , Xn· Let 
us write down equation (2), for each Xk, replacing the integral by the corresponding 
sum. We obtain 

n 

f(xt) ~ g(xt) + (b- a) L CkK(x~, sk)f(sk), 
k=l 

n 
(3) 

f(xn) ~ g(xn) + (b- a) L CkK(xn, Sk)f(sk)· 
k=l 

The partition of the interval [a, b] being the same for s as for x, we have f(xt) = 
= f(st), etc. If we write in (3) the equality sign instead of ~, we obtain a system 
of n equations for n unknowns f(xt), j(x2), ... , f(xn) (see Example 1 below). 

REMARK 1. Since the sign ~ in the system (3) has been replaced by the 
equality sign, the resulting values f(xt), f(xz), ... , f(xn) are not the exact val­
ues of the unknown function f(x) at the points Xt, x2, ... , Xn· Thus let us denote 
them by fn(xt), fn(x2), ... , fn(xn) (specifying thus their dependence on the nuro­
ber n of dividing points of the chosen quadrature) and construct the function 

n 

fn(x) = g(x) + (b- a) L CkK(x, sk)fn(sk) 
k=l 

which represents an approximation of the required solution f(x) in the interval 
[a, b]. In particular, this function attains, for x = x1, x = Xz, ... , x = Xn, the 
values fn(Xt), fn(xz), ... , fn(xn), respectively, obtained by solution of the system 
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(3) (with = written instead of ~). Now, it can be shown that the sequence of 
functions tn(x) tends, with increasing n, to the exact solution t(x) of the given 
equation ( 2) (und er certain assumptions on the smoothness of the kernel and of the 
function g), provided there exists exactly one solution of this equation. For details 
see e.g. [252], where an estimate of the error may also be found. 

Example 1. Let us consider the equation 

t(x) -1\x- s)t(s) ds = x2 • (4) 

Theorem 29.1.1 implies that equation (4) is (uniquely) solvable, since the kernel 
is bounded and 

.X= 1, B2 = 1
1

1
1 
(x- s)2 dxds < 1, hence .X< 1/B. 

Let us choose the above-mentioned numerical quadrature (1). For x1 = 0, x2 = ~' 
X3 = 1 we write down approximate equations which arise from equation (4) if we 
replace the integral by a sum: 

t(0)-1\-s)t(s)ds=O, tU}-11 (~-s}t(s)ds=l, 

t(1) -1\1- s)t(s) ds = 1. 

Hence, for the values of the approximate solution at the points 0, ~' 1, the relations 

t(O) -[t.O.t(O)+~-(-~)-t(~)+t-(-1) .t(1)]=0, 

t(~)- [t. ~. t(o) + ~. o . tG) + t. (-~). t(1)] =!, (5) 

t(1) -[t.1.t(O)+~- ~ .t(~)+i- 0 .t(1)]=1. 

hold. This is the system (3). After simplification we obtain 

t(o) + it(~) + it(1) = o, -~t(o) +tU)+ it(1) = i, 
-it(o)- itU) + t(1) = L 

The solution is 

t(o) = -~~' tU)= }2 , t(1) = ~~-

(6) 

(7) 

This example isanillustrative one only, for equation (4) may obviously be solved 
as an equation with a degenerate kernel (§ 19.2). The exact solution is t(x) = 
= x2 + 133 x- ~~- The values at the points x = 0, x = ~' x = 1 are 

t (.!.) - .!.!.:Q. 
2 - 78 ' t(1) = ~~- (8) 



29.4 APPROXIMATE SOLUTION OF INTEGRAL EQUATIONS 589 

The difference between (7) and (8) is rather high, for we have made use of a very 
rough quadrature. The result may be considerably improved by choosing a more 
precise formula for numerical integration (see § 13.13) and a finer partition of the 
given interval. 

The above method may also be applied to the approximate evaluation of eigen­
values. 

29.3. Replacement of the Kernel by a Degenerate Kernel 

We replace the given kerne! K(x, 8) by a "close" degenerate kerne! k(x, 8) and 
solve the equation with this kerne!. For example, the relation 

x3 83 x5 85 
sin X8 = X8 - - 1- + - 1- - ••• 

3. 5. 

holds. Hence we replace the equation 

11r/2 

f(x)- 0 sinx8 /(8) d8 = g(x) 

by the following equation with degenerate kerne!: 

11r/2 ( x3 83 x5 85) 
rp(x)-

0 
x8- 3! + 5! cp(8) d8 = g(x). 

If the given equation is uniquely solvable and if k(x, 8) is sufficiently close to 
K(x, 8), then the corresponding equation with the degenerate kerne! k(x, 8) is also 
uniquely solvable and the solution rp(x) of the new equation is sufficiently close to 
the solution f(x) of the original equation. For an exact theorem and an estimate 
of error see, for example [252]. 

29.4. The Galerkin Method (Method of Moments) 
and the Ritz Method 

Let IPt(x), rp2(x), ... constitute a complete (not necessarily orthogonal) system 
of (linearly independent) functions in L2(a, b) (see Remarks 16.2.14, 16.2.15). Let 
us look for the approximate solution of the equation 

f(x) -1b K(x, 8)/(8) d8 = g(x) (1) 
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in the form 
n 

fn(x) = g(x) + L Ci'Pi(x), (2) 
i=l 

where the coeffi.cients ci are defined by the conditions 

J.' [t.(x)- J.' K(x, *•(s) ds- g(x)] \O.(x)ds = 0. 

(3) 

The expression in square brackets is thus orthogonal to the functions 'Pl (x), 
cp2 (x), ... , 'Pn(x). System (3) is a system of n linear equations for n unknowns 
c1 , c2 , ... , Cn- Solving this system, we obtain an approximate solution. If the sys-
tem offunctions cp1 (x), cp2 (x), ... is orthonormal (Definition 16.2.4), then it can be 
proved (see [252]) that fn(x) coincides with the approximate solution obtained by 
the method of § 29.3, the kernel K(x, s) being replaced by the kernel 

n 

Kn(x, s) = L ui(s)cpi(x), where ui(s) = 1b K(t, s)cpi(t) dt. 
i=l 

According to § 29.3 this fact may be used to prove convergence. In particular, if 
equation (1) is uniquely solvable and if Kn(x, s) tends uniformly in the square 
a ~ x ~ b, a ~ s ~ b to K(x, s), the sequence of functions fn(x) tends uniformly 
in [a, b] to f(x). 

System (3) is obtained also if the Ritz method is applied to the approximate 
solution ofintegral equations with symmetric kernels. Let K(x, s) = K(s, x) in (1) 
(we suppose that the kernel is real) and let the approximate solution be assumed 
in the form (2) again, where, now, the constants Ci aresuch that, n being fixed, the 
function (2) gives minimal value to the functional 

b rb b lb 
I(cp) = 1 cp2 (x)dx- Ja 1 K(x, s)cp(x)cp(s)dxds- 2 a cp(x)g(x)dx 

(for the function minimizing the functional I(cp) is the solution ofthe given integral 
equation). If we substitute fn(x) for cp(x) (and fn(s) for cp(s)), then the functional 
I becomes a function of c1, c2 , .•• , Cn. If we set the derivatives 

f)J ()J f)J 

OC1 ' OC2 ' .•• ' OCn 

equal to zero (the condition for a minimum), we obtain equations for the unknown 
constants c1 , c2 , ... , Cn. These equations are identical with the equations given by 
the system (3). For more details and for examples see [252]. 
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29.5. Application of the Ritz Method to Approxim.ate 
Determination of the First Characteristic Value of an Equation 

with a Symmetrie Kernel 

Let K(x, s) be a real symmetric kernel. Then, in accordance with Theorem 
19.3.3, the relation 

I_!_ 1- max 1b 1b K(x, s)cp(x)cp(s) dx ds 
Al - <pEL2(a,b) 

{1) 

holds, where 

(2) 

Let 7/Jl (x), 7/J2(x), ... be a complete sequence of functions in L2(a, b). Let us put, 
in (1 ), 

n 

cp = L:Ui7/Ji(x). (3) 
i=l 

If we denote 

1b 7/Ji(x)'lj;k(x) dx = (7/Ji, 7/Jk), 

1b 1b K(x, s)7/Ji(x)7/Jk(s) dxds = Aik (Aik = Aki), 

then the problern of finding an approximate value of J1/ A1jleads to the problern of 
finding the maximum of the expression 

I t Aikaiaki 
i,k=l 

(4) 

under the condition 
n 

L aiak(7/Ji, 7/Jk) = 1. (5) 
i,k=l 

This problern can then be conveniently solved by the method of Lagrange's multi­
pliers. (Cf. Theorem 12.12.3. For details see for example [323].) 

If we determine a1, a2, ... , an and substitute them into (4), we obtain the ap­
proximate value of J1/Alj; the process converges as n -t oo to the exact value 
J1 /All· If, moreover, there exists only one characteristic function corresponding to 
A1 (up to a multiplicative constant), then {3), with the above-mentioned constants 
ab a2, ... , an, is an approximation to this function. For details see [323]. 
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We frequently meet the following cases: 

1. The functions '1/Jk ( x) constitute an orthonormal system. Then the condition ( 5) 

reads 
n 

I>~=l. 
k=l 

2. The quadratic form 

n 

L Aikaiak (Aik = Aki) (6) 
i,k=l 

is positive definite, hence (6) is everywhere positive (with the exception of the case 

a1 = a2 = ... = an = 0) so that the sign of the absolute value in ( 4) can be 

omitted. It can be shown that in this case the maximum of the form (4) is given 

by the greatest of the roots of the equation 

An- a, 
A21, 

... ' 
A22- a, ... , 

Anl, An2, ... , Ann- a 

= 0. (7) 

The form (6) is always (i.e. for each n) positive definite if the kernel K(x, s) is 

positive, i.e. if for each function cp( x) -:j:. 0 the integral 

1b 1b K(x, s)cp(x)cp(s)dxds 

is positive. Then all the characteristic functions are positive as well and the evalu­

ated maximum gives directly an approximate value for 1/A.l. 

Example 1. Suppose we have the equation 

f(x)- .X 11 
K(x, s)f(s) ds = 0 

with the kernel 

{ .!x(2- s) 
K(x, s) = ts(2- x) 

(x ~ s), 
(x ~ s). 

For the sequence 'l/lk ( x) we choose the orthonormal sequence 

'1/Jk(x) = J(2) sin hx , k = 1, 2, .... 

If we take n = 2, we obtain 

2 
An= Z' 

'1l 

(8) 
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so that the problern (4), (5) is transforrned into the problern offinding the rnaxirnurn 
of the function ( of two variables) 

(9) 

under the condition 

(We need not write the sign of the absolute value in (9), since the expression (9) is 
always positive, except for a1 = 0 and a2 = 0 sirnultaneously. The kernel (8) can 
be shown to be positive.) 

Equation (7) becornes 
2 1 

=0. 
--a 
'11"2 ' 2'11"2 

1 1 
-- --a 

2'11"2' 2'11"2 

The greater of the roots has the value a = 0·218. Hence 

.>.1 ~ - 1- = 4·59. 
0·218 

In (323] a rnore precise value .>.1 = 4·115 has been deterrnined in a slightly rnore 
cornplicated way. In the same book sorne other rnethods of approxirnate evaluation 
of characteristic values are discussed. 

For the approxirnate solution of integral equations of the first kind see e.g. (415]. 
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[410], [433], [446], (451], [452], [459], [460], [461], [475], [496], [497], [498]. 

A. SOLUTION OF SYSTEMS OF 
LINEAR ALGEBRAIC EQUATIONS 

The concepts of system of m linear equations for n unknowns, matrix of the 
system, right-hand side vector, solution vector and augmented matrix were intro­
duced in § 1.18. In this chapter we will be concerned with the numerical solution 
of systems with real coefficients and real right-hand sides. Most methods, however, 
can be applied to systems with complex coefficients and right-hand sides as well. 

The statements on existence and uniqueness of solutions of linear algebraic sys­
tems are also presented in § 1.18. In what follows - except for § 30.4 - we will 
solve nonsingular systems for which m = n, i.e. systems with a nonsingular square 
matrix of ordern. Such a matrix has nonzero determinant and these systems have 
one and only one solution (Theorem 1.18.7). 

Numerical methods for solving systems can be divided into two large groups, 
namely the direct and the iterative methods. Direct methods yield - if all compu­
tations were carried out without roundoff - the true solution of the system after 
a finite number of arithmetic operations that is known in advance. They are dis­
cussed in§ 30.1 and § 30.5. Iterative methods start with some initial approximation 
to the solution and construct a sequence of approximations that converges to the 
true solution. Methods of this kind are presented in § 30.3, § 30.6 and § 30.7. We 
are concerned with the practical choice of a method suitable for solving a given 
system in § 30.9. We also refer to the software for solving systems there, since we 
do not expect the reader to solve systems of more than three equations "by hand" 
or with the help of pocket calculator. All examples in Part A of Chap. 30 are of 
illustrative nature, and are calculated for systems of at most three equations and 
without roundoff. 
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30.1. Gaussian Elimination and LU Factorization 

The system of n linear algebraic equations for n unknowns to be solved is written 
in the form 

n 

L ai;x; = bi, i = 1, 2, ... , n, 
j=l 

or in the matrixform (cf. Remark 1.25.3) 

Ax=b, 

where 

[au, a12, ... ' 

"'•] a21, a22, ... ' a2n 
A= . 

anl, an2, ... ' ann 

is a nonsingular square matrix of order n and 

are the column vector of unknowns and the column right-hand side vector. 

(1) 

(2) 

(3) 

REMARK 1. According to Theorem 1.18.7, the solution of the system can be 
expressed by the explicit formula ( Cramer's rule) 

D· 
X - J ;-75, j = 1, 2, ... , n, (4) 

where D = det A is the determinant of the matrix (3) and D; is the determinant 
of the matrix that results from (3) after replacing its j-th column by the right­
-hand side column b. Determinant is the sum of n! terms, each of which is the 
product of certain n matrix entries (Definition 1.17.1 ). Therefore, the computation 
of the solution of the system (1) from the formula (4) requires, for n > 3, so many 
arithmetic operations that it is impracticable. 

Before describing the Gaussian elimination, let us introduce two important con­
cepts (cf. Definition 1.26.3). 
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Definition 1. The square matrix 

[

an, 
0, 

0, 

... ' 

... ' 

0, ... ' 

having zeros below the main (principal) diagonal is called an upper triangular ma­
trix. The square matrix 

... ' 

Il ... ' 

... ' 

having zeros above the diagonal is called a lower triangular matrix. 

The essence of the Gaussian elimination consists in transforming the system (1) 
into an equivalent system (possessing the same solution) whose matrix is upper 
triangular. This system can be easily solved. The elimination procedure is the 
same as in § 1.18. Operations, thaL we use and that lead to equivalent systems, 
are multiplying an equation by a nonzero number and adding an equation multi­
plied by a number to another equation of the system. The same operations with 
the rows of the augmented matrix correspond to these operations with equations 
(Theorem 1.18.6). 

We start with the first row of the augmented matrix. Assuming a11 =/:- 0, we 
multiply this row by the number a2t/ au and subtract it from the second row. After 
this modification, the entry in the second row and first column is zero. In turn, 
we further multiply the first row (for i = 3, ... , n) by the number aitfa11 and 
subtract it from the i-th row. This step being carried out, the first column of the 
augmented matrix is zero below the diagonal, i.e. zero except for the entry a11 • In 
the resulting system ( the first derived system), the first equation did not change 
while the other equations now are 

n 

L:a~;)xj = b~1 ), i = 2, ... , n. 
j=2 

The unknown x 1 is eliminated from these equations. 

Further steps similarly use the k-th row to transform ·the augmented matrix 
successively into the form where the k-th column is zero below the diagonal (k = 
= 2, 3, ... , n-1). The unknowns x 2 , x3 , ... , Xn-l are thus eliminated step by step 
and we obtain the second, third, and finally the ( n -1) -st derived system. The result 
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is the equivalent system 

a1nXn = 
a(1)x -

2n n-

(n-2) (n-2) _ b(n-2) 
an-1,n-1Xn-1 + an-1,nXn- n-1 ' 

(n-1) _ b(n-1) 
ann Xn- n 

597 

(5) 

with an upper triangular matrix that has the same solution as the system (1). 
This solution is now calculated by the backsubstitution procedure: We compute Xn 

from the last equation of (5), substitute its value in the last but one equation 
and compute Xn-1 from it, etc. Finally, we substitute the values of the unknowns 
Xn, Xn-1, ... , x2 having already been found in the first equation and compute x1 

from it. 

To solve the system requires of order n3 arithmetic operations. 

REMARK 2. Obviously, the algorithm fails if some of the entries au, aW, ... 
. . . , a~~-;_~~- 1 appearing in the denominator is zero. If ak~- 1 ) = 0 it is sufficient to 
find such a row between the (k + 1)-st and the n-th row of the augmented matrix 
of the (k -1)-st derived system, which has a nonzero entry in the k-th column, and 
then interchange this row and the k-th row. Such a row has to exist provided that 
the original matrix A is nonsingular. 

In practical computation, we must take into account also the infiuence of roundoff 
that will be discussed later in § 30.3. A detailed analysis shows that, when dividing 
by the number ak~-1 ) in the k-th row, it is advantageaus that this number be as 
!arge as possible. Now we can employ the possibility to interchange equations of 
the system (rows of the augmented matrix) and take for ak~-1 ) such an entry in 
the "rest" of the k-th column which has maximal magnitude. This entry is called 
a pivot. In the k-th step of the elimination we thus first find an index p such that 

I (k-1) I _ I (k-1) I 
apk - . max aik . 

t=k, ... ,n 

The entry a~~- 1 ) is the pivot and we interchange the p-th and the k-th row. Then 
we continue with eliminating the unknown Xk· The algorithm modified in this way 
is called the Gaussian elimination with (partiaQ pivoting. Notice that the algorithm 
cannot fail for a nonsingular matrix A ( cf. Remark 2) since a nonzero pivot can be 
found in each step. 
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REMARK 3. Complete pivoting is carried out in the k-th step in such a way that 
we find indices p and q for which 

la(k-1) I = max la~~-1) I· 
pq i,j=k, ... ,n •J 

The entry a~~-1 ) is now the pivot and we interchange not only the p-th and the 
k-th row but also the q-th and the k-th column. The complete pivoting requires 
more operations than the partial pivoting. The interchange of columns of the matrix 
of the system represents also the interchange (renumbering) of the corresponding 
unknowns and this must be taken into account in the elimination procedure ( cf. 
Remark 1.18.1). Therefore, the complete pivoting is used rather rarely. 

Definition 2. A real symmetric matrix A is called positive definite ( cf. Re­
mark 1.29.3) if xT Ax > 0 for any nonzero column vector x. (xT is the transpose 
of x, i.e. the row vector xT = (x1, ... , xn), cf. Definition 1.16.3. The notation x' 
is also used.) 

REMARK 4. Pivoting is not necessary for suppressing the roundoff error in the 
Gaussian elimination if the matrix of the system is positive definite. For such 
a matrix, the algorithm is even feasible without pivoting (cf. Remark 2). 

Example 1. Solve the system 

9x1 + 3x2 = 15 , 
-3x1- 3x2 + 6x3 = 3, 

6x1 + 8x2 + 3x3 = 7 
(6) 

with a nonsingular matrix by the Gaussian elimination with partial pivoting. Since 
the coefficient 9 of the first equation has maximal magnitude of a1l the coefficients 
in the first column, it is the pivot and we need not interchange rows. After the first 
elimination step, we obtain the first derived system 

9x1 + 3x2 = 15 , 
- 2x2 + 6x3 = 8 , 

6x2 + 3x3 = -3 . 

In the second step, we look for the pivot in the second column and the second 
and third row. The coefficient of maximal magnitude is in the position (2, 3) and 
the pivot is thus equal to 6. We interchange the second and the third equation, 
obtaining the second derived system 

9x1 + 3x2 = 15 , 
6x2 + 3x3 = -3, 

7x3 = 7 
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with an upper triangular matrix after the second step. By backsubstitution we 
successively compute 

X3 = 7/7 = 1, 

X2 = ( -3- 3. 1)/6 = -1, 

X1 = (15 + 3. 1)/9 = 2. 

REMARK 5. The Gaussian elimination can be used to solve several systems of 
equations having the same matrix and different right-hand sides. The operations 
we carried out with the single right-hand side are now performed with all the right­
-hand sides (the augmented matrix is augmented with all the right-hand sides) and 
the backsubstitution is performed with each right-hand side individually. A certain 
disadvantage consists in the fact that all the right-hand sides have to be known 
before the computation starts. 

The LU factorization is a method algorithmically equivalent to the Gaussian 
elimination. It is based on the factorization of the matrix A of the system (2) into 
the product of two factors, 

A= LU, (7) 

where L is a lower triangular matrix. with 1 's on the diagonal and U is an upper 
triangular matrix. The name of the method is derived from the first letters of words 
"lower" and "upper". The factorization (7) is unique and can be calculated e.g. 
from the formulae 

uu = au' 

li1 = ai1/uu, i = 2, ... , n, 

i-1 

Uir = air - L lijUjr ' i = 2, ... ' r ' 
j=l 

lir = -1- (air - I: lijUjr) , i = r + 1, ... , n, 
Urr i=l 

for r = 2, ... , n . 

(8) 

The computed entries of L and U are stored in place of those entries of A that are no 
Ionger needed for the computation. Pivoting, which minimizes the accumulation of 
roundoff errors, is also advisable in the LU factorization (cf. Remark 2). Like in the 
Gaussian elimination, no actual interchange of rows ( or columns) in the computer 
storage is performed in the LU factorization. It is sufficient to store the indices 
corresponding to the interchange. 
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It can be easily shown that the entries lii of L are (for i > j) the coefficients 

aH-1) ja;~-1 ) used for multiplying the j-th row tobe subtracted from the i-th row 
in the j-th step of elimination. U is the upper triangular matrix of the system (5) 
resulting from the elimination. 

If we know the factors (7) we solve the system (2) in two steps. We rewrite the 
system in the form 

Ax=LUx=b. (9) 

The process of solving the system 

Ly = b (10) 

with an auxiliary unknown vector y is called the forward substitution, the process 
of solving the system 

Ux=y (11) 

is the backsubstitution we know from the Gaussian elimination. Substituting (10) 
and (11) in (9), we can prove that the vector x solves the original system. Discussing 
the Gaussian elimination, we saw that the backsubstitution (11) was very simple. 
The forward substitution (10) is quite analogaus but we start solving the system 
with the first equation. 

Example 2. Using the formulae (8), we find that the LU factorization (7) of the 
matrix A of the system (6) from Example 1 has the form 

[ 
9, 3, 0] [ 1, 
6, 8, 3 = j, 

-3 -3 6 _! 
' ' 3' 

o, 0] [9, 3, 
1, 0 0, 6, 

-k, 1 0, 0, 
~] . 

Notice that the second and the third row of the matrix A on the left-hand side are 
interchanged. This corresponds to the interchange of these rows during elimination 
caused by the partial pivoting in Example 1. 

REMARK 6. The advantage of the LU factorization is apparent especially in case 
of solving several systems with the same matrix and different right-hand sides if 
not all of them are known before the computation starts, but arise e.g. during some 
iterative process. The factorization (7) is then computed only once, and the systems 
(10) and (11) are solved for each right-hand side individually. The factorization can 
be carried out even without knowing the right-hand side and requires of order n3 

operations. The solution of the systems (10) and (11) needs only of order n 2 

operations for each right-hand side. 

REMARK 7. If A is symmetric, we can construct the factorization ( Choleski 
factorization) 

(12) 
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instead of (7). The entries of L are real if Ais positive definite. This factorization 
saves arithmetic operations as well as computer storage since it is sufficient to 
calculate the entries of L, and LT is its transpose (cf. Definition 1.16.3). The 
diagonal of L need not now consist of only 1 's. The factorization 

A = LDLT, (13) 

where L is again a lower triangular matrix with 1 's on the diagonal and D is 
a diagonal matrix, is even more advantageous for a symmetric matrix. In addition 
to the two systems (10) and (11) we then also solve a system with the diagonal 
matrix D, which is a very easy task. 

30.2. Computation of the Determinant and the Inverse Matrix 

We stated in § 30.1 that the computer calculation of the determinant of a nonsin­
gular matrix A of ordern with the help of Definition 1.17.1 is practically infeasible 
even for small n since it requires an enormous amount of arithmetic operations. 
This calculation, however, can be performed with advantage if the LU factorization 
of A is used. The determinant of a product of matrices equals the product of the 
determinants of these matrices (Theorem 1.25.4). If we thus find the LU factoriza­
tion 

A= LU (1) 

in accord with § 30.1, we have 

det A = det L . det U = det U , (2) 

since the determinant of a triangular matrix equals the product of its diagonal 
entries (Theorem 1.26.5) and L has 1's on its diagonal. The value of det U can be 
calculated with the help of the same theorem. 

If we used pivoting when computing the LU factorization, i. e., if we interchanged 
some rows of the matrix of the system, each such interchange causes a change of the 
sign of the determinant (Theorem 1.17.4). During the LU factorization, we thus 
have to keep track of such interchanges and change the sign of det U in (2) if the 
total number of interchanges is odd. 

Example 1. By the formula (2), calculate the determinant of the matrix 

[ 
9, 

A= -3, 
6, 

3, 0] 
-3, 6 

8, 3 



602 SURVEY OF APPLICABLE MATHEMATICS 

of the system from Example 30.1.1. Since 

9, 3, 0 
det U = 0, 6, 3 = 378 

0, 0, 7 

30.2 

according to Example 30.1.2 and since we once interchanged rows during the LU fac­
torization, we have det A = -378. 

The LU factorization can also be employed to compute the inverse A-1 of a non­
singular square matrix A. 

Definition 1. A square matrix A-1 of ordern is called the inverse of a nonsingular 
square matrix A of the same order if AA-1 = A-1 A = I where 

[I, 0, ... ' 

Il 0, 1, 
I= . 

0, 0, ... ' 

is the identity matrix ( cf. Definition 1.25.5). 

The formula AA-1 = I from the definition of A-1 means that if zk is the k-th 
column of A-1, then 

(3) 

where ek is the k-th column of the identity matrix I (whose all components are 
equal to 0 except for the k-th one which equals 1). Therefore, the procedure for the 
computation of A-1 consists in solving the system (3) successively for k = 1, ... , n. 
Finally we form the inverse A-1 from the column vectors Zk calculated. The LU fac­
torization with partial pivoting is advantageous for solving these systems since we 
once compute the factors Land U, and carry out only the forward substitution and 
backsubstitution for each system (3) (Remark 30.1.6). The Gaussian elimination 
with n right-hand parts 6}, ... , en (which are all known beforehand) yields the 
same result (Remark 30.1.5). 

REMARK 1. According to Remark 1.25.3, we can calculate the solution of the 
linear algebraic system 

Ax=b (4) 

by the formula 
X= A-1b. (5) 

The computation of the inverse A-1, however, requires the same number of arith­
metic operations as the solution of n linear algebraic systems (with the same ma­
trix). Moreover, we need of order n 2 additional operations to substitute in the 
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formula ( 5). Therefore, it usually does not pay to solve a nonsingular system ( 4) 
by this procedure. 

Further methods for the computation of the inverse matrix are based on parti­
tioning the matrix A followed by the computation of inverses to several matrices 
of lower orders (see, e.g., [378]). In particular cases, also the Sherman-Morrison 
or the Woodbury formula [376] can be applied with advantage. Provided that we 
know A-1 , these formulae express how the inverse changes if we change A in a def­
inite way. 

30.3. Roundoff Error. Iterative lmprovement of the Solution 

No matter what method is used, the numerical solution of a linear algebraic sys­
tem is, in general, influenced by roundoff errors that may accumulate in the course 
of the computation. The backward analysis [496] is used to study the error caused 
by roundoff in algebraic problems. It means for our problern that we represent the 
computation with roundoff as a true computation ( without roundoff) of the solution 
of a perturbed system, i.e. a system with a perturbed matrix as well as right-hand 
side. These perturbations of the matrix of the system and the right-hand side can 
be estimated and are, as a rule, relatively small. But even a small change of the 
matrix or right-hand side can cause a large change of the solution. This depends 
on certain properties of the matrix of the system we will try to characterize briefly. 

Example 1. The solution of the system 

2x + 4y = 6, 
4x + 8·00001y = 12·00001 

is x = 1, y = 1. If this system is perturbed only a little, e.g. 

2x + 4·00001y = 5·99998, 
4x + 8·00003y = 11·99994, 

its solution is x = 7, y = -2. 

We will introduce the concepts of norm of a vector and a matrix that enable 
us to "measure the magnitude" of vectors and matrices in a certain sense. (We 
present only some of the possible ways of introducing the norm, cf. Example 22.4.3, 
Remark 22.5.5, and Remarks 1 and 2.) 

Definition 1. We denote the norm of a vector x = (xb ... , xn)T by llxll and put 
( Euclidean norm) 



604 SURVEY OF APPLICABLE MATHEMATICS 30.3 

We denote the norm of an m by n matrix A = (aij) by II AII and put (spectral norm) 

where e( B) is the spectral radius of a square matrix B of order n, 

e(B) = . max 1>-il, 
t==l, ... ,n 

and Ai are eigenvalues of B ( cf. Definition 1.28.3). 

Some bounds for the spectral radius are given in § 30.10. 

REMARK 1. Vectors can be viewed as elementsofalinear normed space, matrices 
as linear operators defined on this space and mapping it again onto a linear normed 
space of vectors. The norm of elements of a linear normed space, the norm of 
operators, and their properties are discussed from a general point of view in § 22.4 
and § 22.5. 

In linear algebra, norms of vectors and matrices different from those introduced 
in Definition 1 are often used, too. For example, 

n 

llxll = L lxil 
i=l 

is called the sum norm of a vector x = (x1, ... , Xn)T and 

llxll = max lxil 
• 

is called the uniform or maximum norm of a vector x (see [145]). The following 
norms of an m by n matrix A = ( aij) correspond to these norms of vectors: 

m 

II AII = mfC L laikl, 
i=l 

n 

respectively. 

REMARK 2. We use the norms introduced in Definition 1 in this chapter, until 
otherwise stated. It can, however, be proved by functional analytic tools that all 
norms of vectors and matrices (possessing the properties presented in § 22.4) are 
equivalent. This means that if llxll1 and llxll2 are two norms of a vector x then 
there are positive constants c and C such that cllxlh ~ llxll2 ~ Cllxll1 holds for 
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any vector x. Similarly, if JIAih and IIAII2 are two norms of a matrix A, then there 

are positive constants d and D such that dJJAih ~ !lAib ~ DIIAII1 holds for any 

matrix A. The equivalence of norms makes possible to generalize many statements 

of this chapter. 

Definition 2. The number ~(A) = jjA-1jjJIAII is called the (spectral) condition 

number of a nonsingular matrix A. 

If the condition number ~(A) is large, then a small perturbation of a matrix entry 

or a right-hand side component causes a large change of the solution of the system. 

On the contrary, if the condition number is small (but it is always ~(A) ~ 1), 

then only small changes of the solution correspond to small perturbations of the 

matrix or the right-hand side. The matrix of the system is called ill-conditioned in 

the former case and well-conditioned in the latter one. It is hard to quantify the 

concepts of "large condition number" or "ill-conditioned matrix". The practical 

importance of these concepts consists rather in the fact that we can decide which 

of two given matrices is "worse" or "better" conditioned. 

Example 2. The condition numbers of matrices of the systems in Example 1 

can be calculated with help of Definitions 2 and 1, the required eigenvalues being 

found as roots of characteristic polynomials (§ 30.10). The result isthat both the 

condition numbers are approximately equal to 5·106 , i.e., both the matrices are 

ill-conditioned. In this connection, notice that the matrix 

[2, 4] 
4, 8 

is singular. 

Already in § 30.1, we tried to avoid an unnecessary loss of accuracy of the result 

due to roundoff and we employed pivoting to this end. The use of more accurate 

arithmetic ( e.g. double precision) also helps to reduce the infl.uence of roundoff 

errors. 

If we have computed the solution of a system by the LU factorization, we can 

improve the accuracy for this solution, expending a relatively small number of 

additional operations ( of order n 2 ). Denote by x0 the computed numerical solution 

of the system 
Ax= b. (1) 

Further let ro = b - Axo be the residual. If we could solve the system 

Ay = r0 (2) 

exactly, then the vector x0 + y would be the true solution of the system (1) since 

A(xo + y) = Axo + Ay = Ax0 + r0 = b. Let us solve the system (2) numerically. As 
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we know the LU factorization of the matrix A, it suffices to carry out the forward 
substitution and backsubstitution (cf. § 30.1). Denote by y0 the computed solution 
of the system (2). If A is not very ill-conditioned, the vector x1 = Xo + Yo is an 
improved, more accurate solution. We can continue this procedure as lang as the 
norm of the residual decreases. 

In general, we start with the initial approximation Xo and compute successively 

Xk = Xk-1 + Yk-1 ' 

where Yk-I is the numerically computed solution of the system Ay = rk-I and 

(3) 

is the numerically computed residual. Since we expect components of the resid­
ual rk-I tobe small and since they are computed as difference of the corresponding 
components of the vectors band Axk-1 of almost the same magnitude, it is impor­
tant to compute the residual (3) in double precision. If Ais not very ill-conditioned, 
then 2 or 3 just described iteration steps are enough to get an improved solution. 
The procedure is inefficient for very ill-conditioned matrices. In agreement with 
Definition 2, the difference of the true and computed solution of the system with 
such a matrix may be large even if the corresponding residual is small. 

30.4. Singular Value Decomposition. Solution of 
Systems with Singular and Reetangular Matrices 

We first present a statement known in linear algebra (cf. [145]). 

Theorem 1. Let A be a real m by n matrix, m ~ n. Then there exist an m by n 
matrix U = (uij), a diagonal matrix W = diag(wi) of ordern with nonnegative 
diagonal entries wi, and a square matrix V = ( Vij) of ordern such that 

A= uwvT. 

The columns of U are mutually orthonormal vectors (i.e. 

m 

L UikUiz = 8kz, k = 1, ... , n, l = 1, ... , n, 
i=l 

where {jkl is the Kronecker delta, 

{
1 ifl=k, 

{jkl = 0 ifl=f;k, 

cf. Remark 8.1.3) and V is an orthogonal matrix (cf. Theorem 1.25.12). 

(1) 
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REMARK 1. The formula (1) is called the singular value decomposition of the 
matrix A. The matrix W is determined uniquely except for permutations of its 
diagonal entries. 

Diagonal entries Wi of W are called singular values of the matrix A. 

Theorem 1 plays a very important role in numerical practice since there is a so­
phisticated and numerically stable algorithm for the computation of singular value 
decomposition by G. H. Golub and C. Reinsch [460] (see also [376], [446], [498]). 
Squares of singular values of the matrix A are eigenvalues of the square matrix AT A 
of order n. The algorithm is, in principle, based on methods for the computation 
of eigenvalues and eigenvectors from Part B of this chapter. Several important 
applications of Theorem 1 are presented later in this paragraph. 

Example 1. We can easily verify that 

[ 2v'3, -4 ../2, 

-~ ]-A- - .j6, -2, 
- J6, 2, ../2 -

2 ../3, 4../2, 2 

[*' 0, -t>l [ 4v'6' [ I 
-~, 

I l 0, 0 2• 2V"3 0, 1 

~] t - "j2, 
0 0, 2 ../6, 1 * =UWVT, - 0, 1 V'J• 

-;fi• 
1 0, 0, 0, _:/1._ 

1 0, 2 -;fi• "j2 

where the matrices U, W and V possess the properties from Theorem 1. The 
singular values of A are 4 ../6 , 2 ../6 and 0; they are square roots of the eigenvalues 
96, 24 and 0 of the square matrix AT A of order 3. 

REMARK 2. Computing the singular value decomposition (1) numerically, we 
do not obtain, due to roundoff errors, exact zero singular values where zero val­
ues should be if we carried out the computation without roundoff. Therefore, if 
a numerically computed singular value is negligible as compared with the maximal 
singular value (e.g. if their ratio is less than about 10-6 in single precision), we 
consider this small singular value to be zero. 

Theorem 2. The rank of an m by n matrix A, m ~ n, is equal to the number of 
its nonzero singular values. 

RE MARK 3. Theorem 2 can also be used to determine the rank of an m by n 
matrix A when m < n. In this case, we construct the singular value decomposition 
of AT since the matrices A and AT have the samerank by Theorem 1.16.2. 

If we have computed singular values numerically, we always have to decide 
whether they are zero or not in accordance with Remark 2. The determination 
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of rank by Remark 1.16.2 {transformation of a matrix into triangular form) per­
formed with roundoff can give a completely false result. 

Example 2. The rank of the matrix A from Example 1 equals 2 as A has two 
nonzero singular values. 

We will show the application of singular value decomposition in detail for square 
matrices. Recall that all singular values of a nonsingular matrix are positive ac­
cording to Theorem 2. 

Theorem 3. Let A be a nonsingular square matrix of order n. The condition 
number of A {Definition 30.3.2) is then 

~~:(A) = Wmax' 
Wmin 

where Wmax and Wmin are the maximal and minimal singular value of A. 

Theorem 4. Let A be a nonsingular square matrix of ordern. Then U in the 
singular value decomposition {1) of A is a square orthogonal matrix of ordern and 

{2) 

where w-l = diag(1/wi) is the inverse of w. 

The formula (2) is a simple consequence of Theorem 1.25. 7 and Definition 1.25. 7 
of orthogonal matrix. Therefore, if we know the singular value decomposition of A, 
we can solve the linear algebraic system 

Ax=b (3) 

in such a way that we calculate 

x = A-1b = vw-tuTb. (4) 

In case of a nonsingular matrix A, this procedure requires more arithmetic Opera­
tions than the application of methods of § 30.1 (cf. also Remark 30.2.1) but it can 
give a satisfactory result even when A is ill-conditioned. 

If A is singular, Frohenins Theorem 1.18.1 states that there are two possible 
cases when the system (3) is to be solved: 

1. The rank h of A equals the rank of the augmented matrix of the system {3). 
Then the system (3) has infinitely many solutions and all its solutions can be 
expressed (by Theorem 1.18.5) as the sum of a solution of the system (3) and 
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an arbitrary linear combination of all independent solutions of the homogeneous 
system 

Ax=O. (5) 

The system (5) has n- h linearly independent solutions (Theorem 1.18.4). 

2. The rank h of A is less than the rank of the augmented matrix. Then the 
system (3) has no solution. 

If A is singular, then at least one of its singular values is zero, the matrix W 
is singular, and w-1 does not exist. In this case, we cannot use ( 4) to compute 
the solution. We will show how to generalize the concept of inverse matrix in such 
a case. 

Definition 1. Let A be a square matrix with the singular value decomposition (1). 
Put 

where 
Pi= 1/wi for Wi "# 0, 

Pi= 0 for Wi = 0. 
(6) 

The matrix A+ = VW1UT is called the pseudoinverse (the Moore-Penrose gener­
alized inverse) of A. 

Wehave thus obtained a certain analogue of the formula (2). If Ais nonsingular, 
then A-1 = A+ since w-1 = W 1. If Ais singular, we use also the second line of (6) 
when constructing the matrix W 1. If this construction is carried out numerically, 
then we must decide whether a singular value Wi is zero or not in virtue of Remark 2, 
i.e. we put Pi = 0 if, for example, Wi/Wmax < 10-6 in single precision. 

If Ais singular, we rewrite (4) in the form 

(7) 

Practical application of this formula is shown in the following two theorems. 

Theorem 5. Jf the rank of A equals the rank of the augmented matrix of the 
system (3), then the solution x computed by (7) possesses the property that llxll ~ 
~ IIYII holds for any solution y of (3). Any solution of the homogeneaus system (5) 
is equal to a linear combination of those columns of V from the singular value 
decomposition of A that correspond to zero singular values of A. 

Theorem 6. If the rank of A is less than the rank of the augmented matrix of (3), 
then the vector x computed by (7) possesses the property that llb- Axll ~ llb- Ayll 
holds for any vector y. 
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The formula (7) thus gives answer in both the cases occurring when we solve the 
system with a square singular matrix. Moreover, we even need not examine which of 
the two cases takes place. In the former case, the formula expresses that of infinitely 
many solutions which has minimal norm. All solutions of (3) can also be obtained 
by the singular value decomposition since the columns of V corresponding to zero 
singular values are linearly independent solutions of the homogeneous system (5). 
In the latter case, no solution of (3) exists but the formula (7) yields a "solution" 
that satisfies the equations of the system as weil as possible in the sense of minimal 
norm of the residual, i.e. in the Ieast-square sense. 

Example 3. We will make use of the following singular value decomposition of 
a singular square matrix A of rank 1: 

A = [-1, 
1, 

t] [2, 0] [-t, 
7i 0, 0 V2' 

~] = uwvT. 
7i 

(8) 

The matrix A has singular values 2 and 0, and they are square roots of eigenvalues 
4 and 0 of AT A. The matrix W 1 is now of the form 

Solve first the system 
-XI+ X2 = -1, 

XI - X2 = 1 
(9) 

with the matrix A. The augmented matrix has rank 1, too, and we thus have the 
first case. Substitutingin (7), we obtain the solution X= VW1UTb = (~, -~)T 
with minimal norm. The homogeneous system has the solution (*, *)T, which 

is found as the second column of V (the second row of VT in (8)) since the second 
diagonal entry of W is zero. The general solution of (9) is then x = (~, -~)T + 
+ o:( J2 , J2 )T, where o: is an arbitrary number. 

Further solve the system 
-XI+ X2 = 0, 

XI - X2 = 4 

with the same matrix A. The augmented matrix has rank 2, i.e. the full rank, and 
we thus have the second case. There exists no solution of the system. Substituting 
in (7), we obtain the "solution" X= VW1UTb = (1, -1)T which minimizes norm 
of the residual. In fact, r = b- Ax = (2, 2)T. 

REMARK 4. There are a lot of other methods for both the cases of the system 
with a singular square matrix but they are often numerically unstable. We therefore 
recommend the use of the singular value decomposition and the formula {7). We, 
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however, emphasize once more that small singular values have tobe considered zero 
in numerical computation (Remark 2). Otherwise the application of (7) loses any 
sense. 

The situation is similar when we solve systems with reetangular matrices, both 
in case m < n ( underdetermined system) and m > n ( overdetermined system), 
see [376]. Since we presented Theorem 1 on the singular value decomposition only 
for m ~ n we add n-m zero rows to A before the computation of the singular value 
decomposition if m < n. We then use (7) in both the above mentioned cases and 
obtain the solution possessing the properties stated in Theorems 5 and 6. Remark 4 
holds for systems with reetangular matrices, too. 

30.5. Sparse Systems. Cyclic Reduction 

In solving a great number of problems of numerical analysis, we meet linear al­
gebraic systems whose matrices possess certain special properties (see, e.g., [145]). 
The matrices can have, for example, their nonzero entries ordered in some regular 
way (diagonal matrices, triangular matrices, see Definition 30.1.1, etc.) or the val­
ues of their nonzero entries show a certain sort of symmetry ( e.g. Vandermonde, 
Toeplitz, or Hilbert matrices). Systems with sparse matrices, i.e. matrices having 
only a very small number of nonzero entries ( e.g. three or five nonzero entries in each 
row), also occur very often. Thesesystems arise, for example, from the discretiza­
tion of boundary value problems for ordinary and partial differential equations by 
the finite difference and finite element methods (see Chapters 24, 25 and 27). Pro­
vided that the matrix of such a system has order n, it is considered sparse if the 
total number of its nonzero entries is proportional to n. (The order n of the system 
depends on 1/ h, i.e. on the reciprocal of the discretization parameter h.) 

Special properties of the matrix of the system can often be employed to construct 
special algorithms that solve the system given very effi.ciently from the viewpoint of 
both the number of arithmetic operations and the storage required (see, e.g., [376]). 

This paragraph is mainly concerned with sparse matrices. The application of it­
erative methods is often typical for solving sparse systems (§ 30.6 and § 30.7). There 
exist, however, direct methods very effi.cient for some classes of sparse matrices. 

Definition 1. A square matrix of order n and of the form 

an, al2, o, 0, 0 0.' 0 
a21, a22, a23, 0, 0 0.' 0 
0, a32, a33, a34, 0 •• ' 

0 
A= (1) 

0, 
0 •• ' 

0, an-1,n-2, an-1,n-1, an-1,n 

0, ... ' 0, 0, an,n-1, ann 
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having at most three nonzero entries in each row ( that are located on the main 

diagonal and its two "neighbouring" diagonals) is called tridiagonal. 

'Iridiagonal systems occur very often in problems of numerical analysis. Applying 
the LU factorization method from § 30.1 to the solution of the system 

Ax = b (2) 

with the tridiagonal matrix (1), we arrive at simple formulae for the factorization 

and forward substitution 

b1 
fh=-, 

au 
ai,i+1 

ai = - , i = 2, ... , n - 1 , 
ai,i-1Cl!i-1 + aii 

ß . _ bi- ai,i-1ßi-1 
, - , i = 2, ... , n, 

ai,i-1ai-1 + aii 

and for the backsubstitution 

Xn = ßn' 

Xi = Cl!iXi+1 + ßi, i = n- 1, ... , 1. 

(3) 

(4) 

REMARK 1. We did not perform pivoting in the formulae (3) and (4) since 
interchanges of rows of A would destroy its tridiagonal structure. It may thus 

happen that division by zero occurs in the course of the computation even when 

A is nonsingular or that the result of the computation is unfavourably in:fiuenced by 
roundoff. The conditions for feasibility of the algorithm, which are usually satisfied 
for matrices arising from practical problems, are presented e.g. in [410]. An example 

of such condition is the positive definiteness of A ( cf. Remark 30.1.4). 

REMARK 2. The number of arithmetic operations needed to carry out the factor­

ization algorithm for a tridiagonal matrix is of order n. The number of operations is 
thus proportional to the number of unknowns here while this number is of order n 3 

for a general matrix (cf. Remark 30.1.6). Alsostorage requirements of the method 

are minimal: instead of n 2 entries of A, we store only its three diagonals as three 
vectors and, in addition, two auxiliary vectors a and ß. 

Definition 2. A method for solving the system (2) of n equations is called fast if 

it needs of order at most n log n arithmetic operations to yield the solution. 

REMARK 3. The logarithmic factor in the definition of the fast method in:fiuences 

the number of arithmetic operations weakly if n is large. It is also admitted in the 
definition of fast methods in other branches of numerical analysis ( e.g. the fast 

Fourier transform). 
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RE MARK 4. The factorization method ( 3) and ( 4) for a tridiagonal system is thus 
fast in the sense of Definition 2. The method can be generalized even to systems 
whose matrices have nonzero entries located on more than three diagonals (see, 
e.g., [410]). 

Another important type of sparse matrices are bandmatrices. 

Definition 3. A square matrix A is called a bandmatrix of bandwidth 2m + 1 if 

aij = 0 for /i- j/ > m. (5) 

Example 1. The matrix 

6, 0, -1, 0, 0, 0 
-1, 6, 0, -1, 0, 0 
-1, -1, 6, 0, -1, 0 

0, 0, -1, 6, 0, -1 
0, 0, 0, -1, 6, 0 
0, 0, 0, -1, -1, 6 

of order 6 is a bandmatrix of bandwidth 5 (i.e., m = 2 in the formula (5)). 

Example 2. Diagonal matrix is a bandmatrix of bandwidth 1 ( m = 0), tridiagonal 
matrix is a bandmatrix of bandwidth 3 (m = 1). 

RE MARK 5. If A is a bandmatrix of order n, then the triangular matrices L 
and U computed by the LU factorization (§ 30.1) are also bandmatrices with the 
same m (i.e., lij = 0 for i - j > m and Uij = 0 for j - i > m). This property 
is used to construct special LU factorization algorithms that require of order m 2n 
arithmetic operations and storage of the size (2m+ 1)n when the system (2) is 
solved. 

lmplementation of the LU factorization method for sparse matrices, whose non­
zero entries are placed in no regular pattern, is somewhat more diffi.cult. In the 
course of the factorization, nonzero entries may appear in the matrices L and U 
in places where the corresponding entry of A is zero. Therefore, methods which 
perform suitable permutations of rows (and possibly also columns) of A and are 
capable of minimizing (to some extent) this fill-in are applied before the factoriza­
tion step (see, e.g., [145], [373], [459]). As a consequence, the number of required 
operations is minimized, too. Moreover, it is necessary to arrange in a proper way 
that only nonzero entries of A, L and U are stored (see, e.g., [373], [460]). 

Tridiagonal matrices and bandmatrices are a simple example where sparsity can 
be exploited. A further standard type are e.g. profile matrices [145] and many 
others [376]. 
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REMARK 6. Methods that are fast in the sense of Definition 2 are undoubtedly 
very advantageous in numerical practice. We have so far met only one fast direct 
method, the LU factorization of a tridiagonal matrix ( and its generalization in 
Remark 4). In practical problems with bandmatrices, however, the number m 
(determining the bandwidth) usually depends on the number n of equations and 
then the resulting LU factorization is not fast. For example, the discretization 
of a two-dimensional boundary value problern for an elliptic differential equation 
typically leads to m = .jn and the total number of arithmetic Operations is then 
of order n 2 (Remark 5). 

A fast direct method, called the cyclic reduction, can be constructed if we can 
exploit, in addition to sparsity of the matrix, certain special properties of the values 
of nonzero entries of this matrix.. 

Let the matrix A ofthe system (2) beblock tridiagonal (cf. Definition 1.26.1 and 
Definition 1) and let the system be of the form 

(6) 

where W is a square matrix of order M, I is the identity matrix of order M, 
and Xt, ••• , XN and ~ •... , bN are M-component vectors. The system thus has 
n =MN equations. Let N = 2"'+1 - 1, where 8 isapositive integer. Let us apply 
the block Gaussian elimination to the solution of the system (6) and carry it out 
systematically in such a way that the number of block equations is roughly halved 
in each step (see, e.g., [446] for detailed discussion). We arrive at the following 
algorithm: 

Put 
2' 

Wi =!! ( W- 2cos (2r; 1 )'~~" I) , i = 0, ... , 8, (7) 

and, successively for i = 1, ... , 8, compute the vectors 

b (i) - b(i-1) + W.· b(i-1) + b(i-1) . - 1 2"+i-1 1 
j - 2j-1 •-1 2j 2j+1 ' J - ' ... ' - ' (8) 

where 
b!O) = b; , j = 1, ... , 2"+1 - 1 . 

Subscripts of matrices and superscripts of vectors denote the step of the method. 

The backsubstitution starts with solving the system of M equations 

.,., x(a) _ b(a) 
rr" 1 - 1 . (9) 
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Further put, for i = s- 1, s- 2, ... , 0, 

(i) _ (i+l) · _ 1 2s-i 1 
x 2 j - xj , J - , ... , - , 

x<D - x<D - 0 
0 - 2•+i-1 -

and successively solve systems of M equations 

j = 0, ... , 2s-i - 1 . (10) 

The resulting vectors xi0), ... , x~?L_ 1 form the solution of the system (6). 

The feature substantial for devising this algorithm is that the diagonal blocks 

of the matrix A are mutually identical and the nonzero off-diagonal blocks a.s weil. 
The algorithm is fa.st if W satisfies a proper additional a.ssumption. For example, if 
w is tridiagonal, if we multiply by wi in (8) with the help of the factorization (7), 

and if we also solve the systems (9) and (10) using this factorization (in the way 
similar to {30.1.9)), we obtain an algorithm requiring of order M Nlog N arithmetic 
operations. It is thus fa.st by Definition 2. 

RE MARK 7. The above presented version of the cyclic reduction algorithm is 
numerically unstable. A stable modification is derived, e.g., in [451]. 

REMARK 8. The cyclic reduction method can be modified in such a way that it 
can also be applied to systems somewhat more general than (6) (see, e.g., [452]). 

A combination of the cyclic reduction and the discrete Fourier transform (imple­
mented by the fa.st Fourier transform) is called the FACR method and the number 
of arithmetic operations required is of the same order a.s with the cyclic reduction. 

The constant at the term MN log N in the formula for the number of operations 

is, however, less for the FACR method (see, e.g., [451]). 

30.6. Iterative Methods. One-Point Iteration, 
the Jacobi and Gauss-Seidel Methods, Successive 

Overrelaxation. Conjugate Gradient Method 

Iterative methods for solving linear algebraic systems have become a cla.ssi­
cal part of numerical analysis and are treated in va.st Iiterature (see, e.g., [145], 
[378], [475]). We will present only some ba.sic methods and show later in§ 30.7 how 
a proper combination of iterative and direct methods, the preconditioning, may 

Iead to the acceleration of convergence of iterative methods. 

One-point matrix iterative methods for solving the system of n equations 

Ax=b (1) 
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consist in the following procedure: We choose an arbitrary initial approximation x0 

and compute further approximations by the formula 

where Bk and Ck are square matrices of order n constructed in an appropriate way 
from A. A new approximation xk+l is thus computed only from the last preceding 
approximation Xk· If the method converges, then 

lim Xk = Xt, 
k-+oo 

(2) 

where Xt is the true solution of (1) and the limit (2) is to be understood in virtue 
of certain metric (see Definition 22.2.2), e.g. 

lim llxk- Xtll = 0 
k-+oo 

(see Remark 22.4.3 and Definition 30.3.1). 

If we use an iterative method, we must always be interested in the conditions for 
convergence and verify them for a particular given matrix. Moreover, any practical 
computation can involve only a finite number of arithmetic operations. It would 
thus be suitable to stop the iterative process in the k-th step if llxk - Xt II < € for 
some tolerance € chosen in advance. We, however, do not know the true solution Xt 

and thus choose termination criteria mostly in the form 

or 

where rk+l = b- Axk+l is the residual, or 

where pT q = p1q1 + · · · + Pnqn is the inner product of two column vectors p and q. 

Definition 1. The iterative procedure 

Xk+l = Bxk + Cb, k = 0, 1, ... , (3) 

where x0 is an arbitrary initial approximation, and 8 and C are square matrices of 
ordern (independent of k), is called a stationary one-point matrixiterative method 
for solving the system (1). We say that this method is consistent with the system (1) 
if 

CA+ 8 =I. (4) 
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B is called the iteration matrix. 

Consistency of the method ensures that the convergent sequence of approxima­
tions Xk tends to the true solution Xt· Really, the iteration formula (3) is trans­
formed into an identity after substituting Xt both for Xk and Xk+l· 

Example 1. Let us derive a one-point iteration. We begin with the system (1) 
given and add x to both its sides. We gradually obtain 

x+Ax=x+b, 

x=(I-A)x+b. 
(5) 

Put now xk+1 instead of x on the left-hand side of (5) and Xk instead of x on the 
right-hand side. We arrive at 

Xk+l =(I- A)xk + b, (6) 

i.e. B =I- A and C =I. The method (6) is consistent since Band C obviously 
satisfy the condition ( 4). 

Theorem 1. The sequence of approximations Xk produced by the consistent sta­
·tionary one-point matrix iterative method (3) converges to the true solution of (1) 
for an arbitrary initial approximation xo if and only if e( B) < 1, where e( B) is the 
spectral radius of the iteration matrix B (Definition 30.3.1). 

REMARK 1. The rate of convergence increases with decreasing e(B). 

Theorem 2. Let IIBII be any norm of the matrix B (see Definition 30.3.1 and 
Remark 30.3.1). lf IIBII < 1, then e(B) < 1. 

Theorems 1 and 2 thus provide a condition sufficient for the convergence of a con­
sistent stationary one-point matrix iterative method: It is sufficient that an arbi­
trary norm of the iteration matrix be less than 1. 

We will present several particular examples of stationary methods. Let us rewrite 
the matrix A of the system (1) in the form 

A=D-E-F, 

where D is a diagonal matrix, E is a lower triangular matrix with zero diagonal, 
and F is an upper triangular matrix with zero diagonal. If all diagonal entries of A 
are nonzero we can substitute for A in (1), obtaining 

Dx = ( E + F)x + b, 
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from where the consistency follows, and further 

x = o-1(E + F)x + o-1b. 

Finally we have the iteration formula 

known as the Jacobi method. For individual components we obtain (the components 

of Xk are denoted by Xlk) and similarly for Xk+d 

X.~k+l) = _ __!__Ln a,·J·x(_k) + }2_' . 1 z = , ... , n, 
a·· 3 a·· .. j=l •• 

(7) 

j:f.i 

which means that the i-th component of Xk+l is calculated from the i-th equa­

tion of (1), in which we have substituted the components of Xk for all the other 
components of x. 

REMARK 2. By Theorem 1, the Jacobi method converges for an arbitrary initial 
approximation if and only if e(D-1(E + F)) < 1. A sufficient condition that can 

be more easily verified for a given matrix A follows from Theorem 2. 

If we again calculate the i-th component of xk+1 from the i-th equation like in (7) 

but use now the components x~k+l), j < i, of the new approximation that have just 

been computed, we obtain the Gauss-Seidel method 

i = 1, ... , n, (8) 

or, in matrix notation, 

An analogue of Remark 2 holds here, too, but with the iteration matrix ( D- E)-1 F 
of the Gauss-Seidel method. In practice, the following conditions for convergence 
are verified more easily (see, e.g., [475] for further criteria). 

Theorem 3. Let A be a positive definite matrix (Definition 30.1.2). Then the 

Gauss-Seidel method converges for an arbitrary initial approximation. 
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Definition 2. We say that a square matrix A = ( ai;} of order n is diagonally 
dominant if there are positive numbers z1, •.• , Zn such that 

n 

iaiilzi > L lai;lz;, i = 1, ... , n. 
j=l 
#i 

(9} 

Theorem 4. lf AT is diagonally dominant, then A is diagonally dominant as well. 

The condition from Definition 2 can thus be verified either for A or for its trans­
pose AT, whichever is easier. 

Theorem 5. lf A is diagonally dominant, then both the Jacobi and the Gauss­
-Seidel methods converge for an arbitrary initial approximation. 

The successive overrelaxation {SOR} method is a generalization of the Gauss­
-Seidel method. It includes, in addition, a real parameter w. For some classes of 
matrices, the SOR method converges for a certain range of values of wand it is (at 
least theoretically) possible to find an optimal value w0 that minimizes the spectral 
radius of the iteration matrix {and maximizes the rate of convergence}, see, e.g., 
[145], [475]. 

Exam.ple 2. Solve the system 

[ 
4, -1, 

-1, 4, 
0, -1, 

{10} 

by the Gauss-Seidel iterative method. We can easily verify that the matrix A of {10} 
satisfies the inequalities {9} of Definition 2 if we put z1 = z2 = ZJ = 1. A is thus 
diagonally dominant and, by Theorem 5, the Gauss-Seidel method converges to 
the true solution Xt of {10} for any initial approximation. {The matrix given is 
symmetric and it can be proved (145] tobe positive definite. The convergence then 
follows from Theorem 3 as well.) 

The iteration formula {8} for the system {10} is 

Putting Xo = {0, 0, o)T' we obtain by successive Substitutions that 
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Convergence of the approximate solution to the exact solution Xt = ( -1, 0, 1)T is 
very fast in case of the system {10). 

Conjugate direction methods represent a very broad dass of nonstationary itera­
tive methods. From this dass, we will present the conjugate gradient method, which 
is very often used. See, e.g., [104) for further methods. 

Let us solve the system (1) with a positive definite matrix A (Definition 30.1.2). 
We introduce the functional F by 

(11) 

for all real n-component vectors. Then it can be shown that this functional assumes 
its (unique) minimum for x = Xt, where Xt is the true solution of (1). The conjugate 
gradient method belongs to procedures based on minimizing the functional (11). It 
is devised in such a way that the minimum of F is reached (if we computed without 
roundoff) after at most n steps. It can thus be considered as a direct method 
as well. 

The iteration formulae are as follows: We choose an initial approximation x0 , 

put ro = b- Axo and Po = ro, and successively compute (for k = 0, 1, ... ) 

T rk rk 
ak = TA ' 

Pk Pk 
Xk+l = Xk + O!kPk , 

rk+l = rk - akAPk, 
T 

rk+l rk+l 
ßk = T 

rk rk 

Pk+l = rk+l + ßkPk . 

The process cannot be continued if rk = 0 occurs for k < n. Since rk = b - Axk 
is the residual, the zeroresidual means that Xk is the true solution, though. 

REMARK 3. In the formulae of the conjugate gradient method, the matrix A 
of the system (1) solved occurs only in the product Apk and, when evaluating the 
initial residual, in the product Axo. The method is thus advantageous for large 
sparse matrices A. It is sufficient to code a subprogram for the evaluation of the 
product Ay, where y is a given vector, and A even need not be stored. 

Some other iterative methods possess this property, too. For example, in the 
iteration formula (3), the vector Xk is multiplied by the iteration matrix B. If the 
matrix A of (1) is sparse, then 8 may be sparse as well. 

REMARK 4. The application of the conjugate gradient method is advantageous 
if we obtain a sufficiently accurate approximation to the solution already after 
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a small number of steps (far less than the order n of the matrix of the system). 
The rate of convergence of the method depends on the condition number K(A) 
(Definition 30.3.2) and increases with decreasing K(A). The best efficiency of the 
method is thus reached for large well-conditioned matrices. 

REMARK 5. In iterative methods, the accuracy of the result is also influenced 
by roundoff error. For example, the conjugate gradient method does not give, in 
general, the true solution after n steps if roundoff is involved. The loss of accuracy 
may be large for ill-conditioned matrices. 

30.7. Preconditioned Iterative Methods. Incomplete Factorization 

In § 30.6 we discussed the convergence of iterative methods. We will show in 
this paragraph how to increase the rate of convergence ( to precondition an iterative 
method) at the cost of solving an auxiliary system of n linear algebraic equations 
in each step of the iterative method. 

Let us again solve the system of n equations 

Ax=b. (1) 

Choose a nonsingular matrix P of order n with the following two properties: 

Pl. The system 

Px=c (2) 

can be solved by a fast direct method (Definition 30.5.2). 

P2. Pis in some senseclose to the matrix A of the system (1) solved. 

REMARK 1. Put 

E=P-A, (3) 

then "closeness" can mean that IIEII issmall orthat the product p-tA is "close" 
to the identity matrix, i.e., that II I - p-l All is small. 

Let us first consider stationary iterative methods. We will proceed like in 
Example 30.6.1 but add the vector Px to both sides of (1). We obtain 

Px = (P- A)x + b 

and, finally, the iteration formula 

(4) 
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The formula ( 4) is a system of equations with the matrix P and a known right­
-hand side. The new approximation Xk+I is obtained as the solution of this system. 
According to Property P1, the system (4) can be solved by a fast direct method. 

To analyse the convergence of the method, we rewrite (4) in the form (30.6.3), 
1.e. 

We thus have B = 1- p-1A and, by Theorem 30.6.1, the method (4) converges if 
e(/ - p-1 A) < 1. The rate of convergence increases with decreasing e( I - p-1 A) 
(Property P2, cf. Remark 30.6.1). The iterative method represented by (4) is called 
a preconditioned iterative method, the matrix P is called a preconditioner. 

Example 1. If only a small change of A (Property P2) leads to P which satisfies 
the assumptions for the cyclic reduction method (§ 30.5), we can use this matrix P 
for preconditioning. Theoretical bound for lll- p-1 All is usually not available. We 
will show another, very often used, choice of P in the conclusion of this paragraph. 

RE MARK 2. The choice ideal from the viewpoint of Property P 1 would be P = I. 
This, however, is no preconditioning since (4) transforms into (30.6.6). From the 
viewpoint of Property P2, the ideal choice is P = A. But P has to possess also 
Property P1, i.e., we must be able to solve (4) "fast", and there is no reason to 
solve a system with the matrix A by an iterative method if a fast direct method 
can be applied. 

We can precondition e.g. the conjugate gradient method in a similar way, too. 
Let P be a positive definite matrix (it is thus symmetric, too, see Definition 30.1.2) 
and let it possess Properties P1 and P2. Then there exists a unique positive definite 
matrix p-1/ 2 such that p-112 p-1/ 2 = p-l. Let us apply the conjugate gradient 
method to the system 

(5) 

obtained from (1). Using simple substitutions, we can achieve that the result of the 
iterative process is the solution x sought. 

We thus choose an arbitrary xo, put ro = b- AXo and Po= p-1 ro, and succes­
sively compute (for k = 0, 1, ... ) 

r'[ p-1rk 
ak = TA ' 

Pk Pk 

Xk+1 = Xk + akpk , 

rk+1 = rk - akAPk , 
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As compared with the original method, we have to find the vector y = p-1 rk+l 

in each step of the preconditioned method. We compute it as the solution of an 
auxiliary system Py = rk+1 (cf. Property P1). By the conjugate gradient method, 
we solve the system (5) with the matrix p-112AP-112 = 1- p-112Ep-112 = /- E 
instead of (1) with the matrix A. By definitions 30.3.2 and 30.3.1, the condition 
number of a nonsingular matrix equals 

K-(p-1/2 Ap-1/2) = Amax(/- ~). 
Amin(/- E) 

It is thus close to 1 if Amax ( E) is small (Property P2), since Amin ( /-E) = 1-Amax ( E) 
(Theorem 30.12.2). 

We will present a further often used fast direct method which can be used to 
precondition iterative methods, the incomplete factorization, in its simplest form. 

In § 30.5 we showed that the LU factorization is fast for tridiagonal matrices 
(Remark 30.5.4). We further stated that the LU factorization is not fast for a band­
matrix whose bandwidth depends on the number n of equations (Remark 30.5.6). 
We will now show a certain LU factorization which is fast but at the cost of not 
being the exact (complete) factorization of the matrix of the system. 

Fig. 30.1. LU factorization of a sparse matrix A. Nonzero entries of A lie on the shown 
five diagonals only, nonzero entries of L and U in the indicated strips. The other entries 
of the matrices are zero. 

Example 2. Let the matrix A of (1) be of ordern and have the band structure 
schematically shown in Fig. 30.1, i.e., let it be sparse with nonzero entries placed on 
its five diagonals. Such a matrix arises, e.g., from the finite difference discretization 
of a two-dimensional boundary value problern for the Poisson equation on a reet­
angular grid (Chap. 27). Considering A as a bandmatrix of bandwidth 2m+ 1 
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(where m depends on n), we obtain, by the factorization from § 30.1, the triangular 
matrices L and U (Remark 30.5.5) which are filled-in. (They are also shown in 
Fig. 30.1.) In general, all entries in their bands may be nonzero. 

Fig. 30.2. Incomplete factorization. Nonzero entries of the factors i. and Ü lie on the 
shown diagonals but the product Ä = i.Ü differs from the original matrix A. 

Conversely, we will now start with the desired form of the factors (Fig.30.2). Let 
nonzero entries of these factors ( denoted by i. and Ü) be located only in places 
where there are nonzero entries of A (and only in the lower or upper triangle of the 
respective factor). Multiplying i. and Ü, we obtain a matrix Ä different from A. 
In our case, nonzero entries of Ä are placed on its seven diagonals. The product 
Ä = i.ü is called the incomplete factorization of A. 

The factors i. and {j are determined from A by the standard algorithm from § 30.1 
but we compute only their entries having been declared nonzero in advance. The 
other entries of i. and Ü involved in {30.1.8) are not computed but put equal to 
zero. 

REMARK 3. The computation of the incomplete factorization in Example 2 re­
quires of order n arithmetic operations, the solution of the systems i.y = c and 
Üx = y also of ordern operations. Putting P = Ä = i.ü, we have the "complete" 
factorization of P and we can solve (4) by a fast direct method. The matrix P thus 
possesses Property P1 required for preconditioning. 

REMARK 4. We usually know very little about the matrix E = Ä - A = P - A 
(where Ais the matrix from Example 2) from the theoretical point of view {Prop­
erty P2). Anyway, the preconditioning based on the incomplete factorization is 
used very often and its effect is, as a rule, very good. We may admit even more 
nonzero entries in i. and U than in Example 2 to make the norm of E smaller. 
Similarly to Example 2, we can also factorize generalsparse matrices incompletely. 
lf A is symmetric, it is possible to construct an incomplete Choleski factorization 
analogous to {30.1.12) or {30.1.13). 
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30.8. Algebraic Multigrid Method 

The multigrid method is a very general and efficient way of solving boundary 
value problems for partial differential equations and some other problems. It has 
recently been developed as a special procedure of the multilevel adaptive technique, 
which can be characterized as a combination of the process of problern discretization 
and the process of discrete problern solution, the latter usually representing the 
solution of a linear algebraic system where each component of the solution vector 
corresponds to a single grid point. We will only briefiy mention the principle of the 
multigrid method. A systematic discussion can be found, e.g., in [56], [199]. 

Typical feature of the multigrid method is the discretization (by the finite dif­
ference or finite element method, see Chapters 24 and 27) on several regular grids 
(Ievels) with different grid spacings. The method has three basic components: 1. re­
laxation steps on the individual Ievels (iteration steps of classical iterative methods 
of § 30.6, e.g., the Gauss-Seidel method); 2. interpolation (prolongation) of values 
from coarse grid to a finer one; 3. restriction of values from fine grid to a coarser 
one. 

There are a Iot of particular strategies that combine the three components of 
the method. The most frequent procedure is called cycling. We start with the 
discretization of the problern and with an initial approximation to the solution on 
the finest grid. Several relaxation steps (that are applied to make the residual 
smaller, but arenot used to solve the system as accurately as possible) are carried 
out on this grid and the residual (called the defect) is restricted to a coarser grid. 
The problern is discretized on this coarser grid, too, and a correction to the solution 
is computed here from the restricted defect. This correction is interpolated back to 
the finer grid and added to the approximate solution, and several relaxation steps 
again follow. 

The system for the correction on the coarser grid is of the same kind as the 
original system for the solution on the finest grid. It is thus solved in such way that 
we pass to a further, even coarser grid. This gives rise to a recurrent procedure 
that passes from the finest grid to coarser and coarser grids and then again returns 
back to the finest grid. In this way, the core of the computation is transferred to 
coarser grids with small number of grid points, which is one of the reasons for the 
high efficiency of the multigrid method. The system of equations is actually solved 
only on the coarsest grid and this is usually done by a direct method (§ 30.1). 
Considered as a method for solving the system on the finest grid, the multigrid 
metbad is a fast method. 

The multigrid method is thus related to a boundary value problern for a differ­
ential equation and solves the linear algebraic system obtained from discretization. 
The converse procedure is also possible. We can start with a (sparse) linear alge­
braic system, consider it as a discretization of a continuous boundary value problem, 
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and apply the multigrid method to its solution. In the computational procedure 

obtained, the sequence of discretization levels (grids) need not explicitly appear. 

The aim of the procedure is to solve a linear algebraic system and it is thus called 
the algebraic multigrid method. There are a great number of strategies here, too 

(see, e.g., [405]). 

30.9. Choice of the Method. Basic Software 

Matrices of the systems, that are most often met in practical problems, fall info 

one of two large dasses: 

1. Full matrices of moderate order (say, n < 30). 

2. Sparse matrices of high and very high order ( n equal to several hundreds or 

several thousands is no exception). 

Matrices from the firstdass are mostly treated by direct methods of § 30.1. It is 
advantageaus to employ a possible symmetry of the matrix. Suspecting the matrix 
to be ill-conditioned, we perform, in addition, about two steps of the iterative 

improvement from § 30.3. If we find out that the full matrix of the system is 
special in virtue of § 30.5, we apply the corresponding special method. 

Our recommendation for sparse matrices from the second dass is not so unam­
biguous. It is hard, for example, to store a matrix of order 1000 (induding its 

zero entries) in the main memory, and thus the use of both direct and iterative 
methods is usually accompanied with certain programming tricks. If some fast 

direct method (§ 30.5) is applicable then it certainly pays. Efficient employment 

of the LU factorization to sparse matrices with nonzero entries placed at random 
(§ 30.5) has to consist of three steps: minimization of the fill-in (it is carried out 
once for a particular structure of zeros and nonzeros), factorization of the matrix 
(it is performed once for particular numerical values of entries), and solution of the 
system (it is carried out for every right-hand side), and it is relatively expensive. 
It is advantageous if the result of minimizing the fill-in can be exploited for more 

matrices of the same zero-nonzero structure or if we solve several systems that differ 
only in right-hand sides. 

All iterative methods bring the risk of terminating the process too early and 
getting thus s solution which is not accurate enough. This may be, in some cases, 

an asset. If we are interested in a less accurate solution ( e.g. in its two significant 
digits), we need not expend unnecessary labour on solving the system accurately 
by a direct method. We must be very cautious if we use iterative methods in which 

a parameter or parameterstobe chosen occur. Taking a wrong value of parameter 
(substantially different from the optimal value), we may decelerate the convergence 
of the method. 
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Classical iterative methods from § 30.6 should never be used without precondi­
tioning (§ 30. 7). The incomplete factorization preconditioner can practically always 
be constructed and it requires few arithmetic operations on the whole. There are 
a lot of iterative methods for large sparse systems obtained from the discretization 
of boundary value problems for differential equations. These methods are derived 
with regard to the original continuous problern and are not discussed here ( except 
for the multigrid method); see, e.g., [104]. Their special features make them, as 
a rule, very efficient. The multigrid method (§ 30.8) can be recommended without 
doubt. 

To solve singular systems and systems with reetangular matrices, the application 
of the singular value decomposition from § 30.4 is advantageous. Numerical stability 
is the most important of its merits. 

Any computer is equipped with some standard numerical software, which usually 
includes also programs or subprograms for solving linear algebraic systems. We are 
going to mention some more specialized program libraries and packages, most of 
which are writt{m in FORTRAN. 

Very good universal libraries available on the commercial basis are IMSL Li-. 
brary [231] and NAG Library [344] for mainframes, and personal computer pro­
grams from Numerical Recipes, the book [376] which contains allsource programs 
in FORTRAN as well as Pascal (C is also available). High quality is the feature 
of specialized packages LINPACK [121] and SPARSPAR [173] (focused on sparse 
matrices) available directly from the authors. A great number of program im­
plementations of various strategies in the multigrid method is the contents of the 
MUGTAPE84 collection (The Weizmann Institute of Science, Rehovot, Israel). The 
FISHPACK package [452] is the implementation of some versions of the cyclic re­
duction method. If the linear algebraic system solved results from the discretization 
of a boundary value problern for a differential equation, we can often use software 
for solving the boundary value problern (which includes the discretization and the 
solution of the system) and we thus need not be concerned with solving the system 
in particular. 

New methods have recently been developed to be used on parallel computers 
(see, e.g., [461]). 

In general, we can say that this part of Chap. 30 is to serve as a guide for the 
choice of a method when a particular problern is solved. It definitely pays to look 
for a suitable program in the software available. In rather exceptional cases, it is 
necessary to code one's own program. 
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B. COMPUTATION OF EIGENVALDES 
AND EIGENVECTORS OF MATRICES 

30.10 

The concepts of eigenvalue (characteristic value) and characteristic polynomial 
of a matrix were introduced in § 1.28. In this part of Chap. 30, we will be concerned 
with the computation of eigenvalues and eigenvectors (see § 30.10 for the definition) 
of a real square matrix. Notice that the eigenvalues may be complex even if the 
matrix itself is real. 

Numerical methods for the computation of eigenvalues and eigenvectors are it­
erative in their nature. Most methods are based on the transformation (reduction) 
of the matrix given (§ 30.12, § 30.14) into a similar matrix (defined in§ 1.28) whose 
eigenvalues can be calculated more easily. The reduction is usually performed as 
a sequence of certain elementary transformations. Some methods finally yielding 
the eigenvalues are presented in § 30.12 and § 30.13. Eigenvectors are computed 
either simultaneously with eigenvalues, or a posteriori, e.g. by the inverse iteration 
method (§ 30.15). Certain properties of the matrix given are often important for 
the choice of the method. For example, the fact that the matrix is symmetric ( or 
Hermitian if it is complex), tridiagonal, etc. can be exploited. 

Moreover, it is substantial what is the required result: We may compute, e.g., one 
or more eigenvalues (maximal, minimal, or lying in some interval), all eigenvalues, 
all eigenvalues as well as all eigenvectors, etc. The choice of a suitable method is 
the subject of § 30.17 where we also refer to software for computing eigenvalues and 
eigenvectors. Like in Part A of this chapter, we do not expect the reader to carry 
out the calculation for a matrix of order higher that 3 "by hand". 

The topics of the bounds for eigenvalues (§ 30.10), the power method (§ 30.11), 
and the solution of a generalized eigenproblern (§ 30.16) are covered in this part of 
Chap. 30, too. All examples are of illustrative nature and are calculated without 
roundoff. 

30.10. Bounds for Eigenvalues 

The eigenproblern is defined as follows (cf. § 1.28): 

Definition 1. Let A be a (complex, in general) square matrix of ordern. If there 
exist a complex nurober >. and a vector x =/:- 0 (with complex components) such 
that 

Ax = >.x, (1) 

then >. is called an eigenvalue of A and x is an eigenvector of A belonging to this 
eigenvalue. The set of all eigenvalues of A is called the spectrum of A. 
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REMARK 1. The equation (1) is equivalent to 

(A- Al)x = 0, 

where I is the identity matrix of ordern (Definition 30.2.1). This is a homogeneous 
linear algebraic system having a nonzero solution x if and only if the matrix A- >.I 
of the system is singular, i.e. if and only if det(A- >.I) = 0 (§ 1.16, § 1.17, § 1.18). 
This determinant is a polynomial p( >..) of degree n in variable >... 

Definition 2. The polynomial p(>..) = det(A - >.I) is called the characteristic 
polynomial of A ( cf. Definition 1.28.3). 

REMARK 2. Each root of the characteristic polynomial is an eigenvalue of A. The 
matrix A thus has exactly n eigenvalues (which need not be distinct). A multiple 
root is a multiple eigenvalue. A real matrix can also have imaginary eigenvalues. 
The computation of roots of the characteristic polynomial by methods of Chap. 31 
can thus also serve to finding eigenvalues. This procedure is used only when the 
computation of the coefficients of this polynomial is not required to this end since 
this computation generally needs a great nurober of arithmetic operations (see, 
e.g., [378]). 

The location of eigenvalues, i.e. the description of a domain in the complex plane 
where the eigenvalues lie, is often a useful information if we compute the roots of 
the characteristic polynomial or in some other situations. 

Theorem 1 ( Gershgorin). Let A = ( aij) be a ( complex, in general) square matrix 
of ordern. For i = 1, ... , n, denote by Ci the disk with center at the point aii of 
the complex plane and with radius 

n 

ri=l:iaiil· 
j=l 
#i 

Then all eigenvalues of A lie in the domain D that is the union of the Gershgorin 
disks Ci, i = 1, ... , n. 

Example 1. Two Gershgorin disks are associated with the matrix 

A=[ 1, 2] 
-1, 1 

from Example 1.28.1. One of them has center at the point 1 and radius 2, the other 
has center also at the point 1 but radius 1. Their union D is thus the larger of 
the two disks. We can easily verify that both the eigenvalues >..1 = 1 + i /2 and 
>..2 = 1 - i /2 lie in this disk. 
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REMARK 3. Theorem 1 also implies the bound for the spectral radius of the 
matrix, 

Note that I.Ail ~ e(A) holds for all eigenvalues Ai of A by Definition 30.3.1. 

Example 2. For the spectral radius of the matrix A from Example 1, we have 
the bound e(A) ~ max(3, 2) = 3. (Notice that e(A) = I-A1I = J3 follows from 
Example 1.) 

Theorem 2. Let A be a square matrix. Then 

< IIAxll 
e(A) = r;;;; Txf, 

where IIAxli is norm of the vector Ax. 

Theorem 3. Let A be arealpositive definite matrix (Definition 30.1.2). Then 

xTAx 
e(A) = max-T-, 

XoF0 X X 

1 . xTAx 
e(A-1) = ~J~ xTx . 

30.11. Power Method 

In this paragraph, we will present a method for computing the eigenvalue largest 
in magnitude. First we are going to recall some general concepts (needed also 
in the following paragraphs) and to present some properties of eigenvalues and 
eigenvectors. 

REMARK 1. Two complex square matrices A and B of the same order are called 
similar if there e:xists a nonsingular matrix P such that B = PAP-1 (Defini­
tion 1.28.1). Similar matrices possess the same eigenvalues (Theorem 1.28.5). If 
x is an eigenvector of A belonging to the eigenvalue .A, then Px is an eigenvector 
of B belonging to the same eigenvalue. 

Every complex square matrix A of ordern is similar to a Jordan matrix J of 
ordern (Theorem 1.28.8, Examples 1.28.2 to 1.28.4), where 

(1) 
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is a blockdiagonal matrix and each its diagonal block Ji (called the Jordan block, 
Definition 1.28.4) is an upper triangular matrix 

having the eigenvalue Ai on the diagonal and 1 's above the diagonal, while the other 
entries of the Jordan block Ji are zero. An eigenvalue can appear in more Jordan 
blocks. 

REMARK 2. While the nurober of eigenvalues of a matrix A of order n equals n 
(some of them may, however, coincide, i.e., be multiple) by Remark 30.10.2, the 
nurober of linearly independent eigenvectors of this matrix equals the nurober s 
from (1), s ~ n. It iss= n if and only if all the Jordanblocksare of order 1 and the 
corresponding matrix J is thus diagonal. Such a matrix A is called nondefective. 
In this case, all the eigenvectors form a basis of an n-dimensional vector space 
(a complete system of eigenvectors). This is true, for example, forareal symmetric 
matrix. 

Definition 1. Let I.X1I ~ I.X2I ~ · · · ~ 1>-nl hold for the eigenvalues >.i of a matrix A 
of ordern. If l>-11 > l>-21, then >.1 is called the dominant eigenvalue. 

We will now present the power method. Let >.1 be the dominant eigenvalue of A. 
Choose a vector vo and put 

1 
Vm+l = --Avm, 

Cm+l 
(2) 

where the nurober Cm+l equals that component of the vector Avm which is maximal 
in magnitude. Fora proper choice of vo (see, e.g., [497]), we have 

lim Cm = >.1 
m-+oo 

(3) 

and the sequence of vectors Vm converges to the eigenvector x1. 

The vector Vm is equal - apart from a nurober factor - to the product of the 
m-th power of A and vo by (2). The name of the method comes from this fact. 

REMARK 3. The normalization factor 1/cm+l in (2) is necessary since the com­
putation may otherwise end with overßow in several steps. Some other choices 
of cm+l preserving the convergence of ( 3) as well as some other modifications of the 
formula (2) are also possible (see, e.g., [378}). In practice, the rather complicated 
conditions for convergence are, as a rule, not being verified but the behaviour of 
the iterative process itself indicates whether the method converges or not. 
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REMARK 4. We can see from (2) that the power method (as weil as its other 
versions) exploits the matrix A given only for multiplying a vector by it. The 
method is thus both suitable and effi.cient for sparse matrices (§ 30.5) since it saves 
arithmetic operations as weil as computer storage. 

REMARK 5. The power method can be used to calculate a further (subdominant) 
eigenvalue and an eigenvector belonging to it if, reducing the matrix A given, we 
construct a matrix W possessing the same eigenvalues as A except for >.1, which 
is replaced by zero. Various constructions of W are given, e.g., in [378]. The 
procedure can be repeated recurrently to calculate further and further eigenvalues 
of A. 

30.12. Jacobi Method 

The Jacobi method is an iterative procedure for the calculation of all eigenvalues 
and eigenvectors of a real symmetric matrix. We will first present certain properties 
of real symmetric matrices. 

Theorem 1. Let A be a real symmetric matrix. Then its eigenvalues are also real 
and r eigenvectors belang to an eigenvalue of multiplicity r (cf. Theorem 1.28.10). 

Theorem 2. Let A be a real symmetric matrix. Then there exist an orthogonal 
matrix Q (Definition 1.25. 7) and a diagonal matrix D such that A = QDQT. 
D is the Jordan matrix of A, its diagonal entries di are the eigenvalues of A, 
and the i-th column of Q is the eigenvector Xi belanging to the eigenvalue di (cf. 
Theorem 1.28.12). 

REMARK 1. Since QT = Q-1 by definition ofthe orthogonal matrix, the matrices 
A and D are similar (Remark 30.11.1). 

Eigenvalues and eigenvectors of a real symmetric matrix A can be found as 
foilows: We construct a sequence of orthogonal matrices Rk such that the sequence 

T0 = A, Tk = R'[ ARk , k = 1, 2, ... , (I) 

converges to a diagonal matrix D. The eigenvalues of A are then on the diagonal 
of D and matrices Rk converge to an orthogonal matrix whose columns are the 
eigenvectors of A (Theorem 2). 

We will construct the matrix Rk successively as the product of orthogonal ma­
trices 

(2) 
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1.e., 

because a product of orthogonal matrices is again an orthogonal matrix. 

Since our goal is to reduce A to diagonal form, we choose Sk in the k-th step 
in such a way that some nonzero off-diagonal entry of Tk-1 is transformed into 
a zero entry of Tk. All matrices Tk are similar to A by (1) (Remark 1) and their 
eigenvalues thus coincide. 

Put Tk-1 = (t~t 1 )) and Tk = (t~;>). Wishing to replace the entry t~~- 1 ) by 
zero, we put 

and determine the angle e in such a way that 

sinB = AsgnJ.L. 
2v cos e (4) 

The angle e itself need not be calculated as only its sine and cosine appear in the 
following formulae. 

The entries of the orthogonal matrix Sk = (s~;>) are given by 

s(k) = s(k) = cos e 
PP qq ' 

s(k) = -s(k) = sin e 
pq qp ' 

s~;> = 1 for i =f:. p and i :f:. q, 
(5) 

s~7) = 0 for other i and j. 

sk is called the plane rotation matrix. It differs from the identity matrix only in 
the p-th and q-th rows and columns, 

1 

1 
cose sinB 

1 

(6) 
1 

- sinB cose 
1 

1 



634 SURVEY OF APPLICABLE MATHEMATICS 30.12 

(where p < q). A Straightforward calculation of the product S'f sk really shows 

that Sk is orthogonal. Simultaneously with t~!-1 >, the entry t~-1 ) is also replaced 
by zero in the transformation. 

We can readily obtain formulae [378] that directly express the entries of 

(7} 

by means of the indices p and q chosen (p =F q), the quantity 0, and the entries 
of Tk_ 1 . In this transformation, only the p-th and q-th rows and columns change 
while 

(k) (k-1) e · ..J. • ..J. • ..J. d · ..J. 
tij = tij 10r z r p, z r q, J r p an J r q. (8} 

Since both Tk_1 and Tk are symmetric matrices, it suffices to calculate only the 
entries of one triangle of Tk. If we are also interested in eigenvectors, we have to 
compute the entries of Rk (by means of p and q, (}, and the entries of Rk-1), too. 
Allthese formulae can easily be derived; they are given, e.g., in [378] and a special 
version minimizing the influence of roundoff is presented in [376]. 

We have thus shown how to perform a single step of the Jacobi method. An im­
portant task is now to find a strategy that guarantees the convergence of matri­
ces Tk to the diagonal matrix D. A quite natural strategy is to take the largest in 
magnitude off-diagonal entry of Tk_1 for the entry t~!- 1 ) to be annihilated. But 
the entries replaced by zero in the previous steps may again become nonzero in 
a current step. The process is thus infinite and requires a new search for a suitable 
entry in every step. 

The threshold ( cyclic) J acobi method is more efficient from the point of view of 
arithmetic operations. It consists in fixing a positive number (threshold}, system­
atically and repeatedly searching through all off-diagonal entries, and successively 
annihilating those which are greater that the threshold chosen. This strategy is 
discussed in detail e.g. in [376]. 

Example 1. Carry out a step of the Jacobi method with the symmetric matrix 

[ 
16, 1, 

T0 = A = 1, 9, 
-24, 0, 

-24] 0 . 
2 

The largest in magnitude off-diagonal entry of T0 is t~~) = t~~) = -24. We thus put 
p = 1, q = 3 and construct an orthogonal matrix 51 to annihilate the corresponding 
entry of the matrix T1 calculated by (7). 
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According to (3) and (4), we obtain .X = 24, J.L = 7, v = 25, cosO = 0·8 and 
sin 0 = 0·6. Finally, 

s1 = [ ~:~: ~:~: ~:~] 
-0·6, 0·0, 0·8 

by (5). Multiplying the matrices in (7), we have 

[
34·0, 0·8, 

T1 = S{ ToS1 = 0·8, 9·0, 
0·0, 0·6, 

0·0] 0·6 . 
-16·0 

Really, the entries tW and tW are zero. We can easily verify (8), which states 

in our case that tW = t~~) = 9. The entries of the first and third rows and columns 

have changed and the zero entries t~~) = t~~) have been replaced by nonzero entries 

t~~) = t~~) = 0·6. The sum of squares of the diagonal entries has increased. Since 
the order of Ais very low (n = 3) we obtained numbers very close to the eigenvalues 
of A on the diagonal of T1 already after the first step of the Jacobi method. (The 
eigenvalues of Aare (rounded) 34·03, 8·99 and -16·01.) 

30.13. LR and QR Methods 

In this paragraph, we will discuss two iterative methods for calculating eigen­
values and eigenvectors of a general square matrix and show classes of matrices for 
which these methods are effi.cient. The reduction of a matrix to the form suitable 
for the application of the LR or QR methods is studied in the next paragraph. 

We begin with the LR method. Putting A1 = A, we construct a sequence of 
matrices Ak in such a way that we find the LU factorization of A in accord with 
§ 30.1, i.e. 

(1) 

and put 
(2) 

No pivoting can be carried o~t in the LU factorization now and the existence 
of the factorization (1) is thus not guaranteed for a general matrix A (cf. Re­
marks 30.1.2 and 30.1.4). If the factorization does exist, then Ak and Ak+l are 
similar since LJ;1AkLk = LJ;1 LkUkLk = Ak+1 by virtue of (1) and (2). If the se­
quence of matrices Ak can be constructed, if I.X1l > I.X2l > · · · > I.Xnl holds, and if 
some further conditions are fulfilled (see, e.g., [497]), then the matrices Ak tend to 
an upper triangular matrix U having the eigenvalues of A on its diagonal. (The 
matrices Uk converge to the same matrix U and Lk converge to the identity matrix.) 
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The term LR factorization is traditionally used instead of LU factorization when 
the calculation of eigenvalues is involved. The letters L and R stand for the left 
and right (i.e. lower and upper) triangular matrices and appear also in the name of 
the method just discussed. 

REMARK 1. The LR method converges for a very large dass of matrices contain­
ing e.g. positive definite matrices (Definition 30.1.2). The method can be modified 
for these matrices in such a way that the LU factorization is replaced by the Choleski 
factorization (Remark 30.1.7). 

Example 1. We will show a single step of the LR method on a simple example. 
Wehave 

[ 
9, 

A1 = A = 6, 
-3, 

3, 0] [ ;. 
8, 3 = J' 

-3, 6 -~, 

0, 0] 
1, 0 

-~, 1 

[
9, 
0, 
0, 

by Example 30.1.2. According to (2), we compute 

[
9, 3, 0] [ 1, 

UlLl = 0, 6, 3 I' 
0, 0, 7 -3, 

0, 0] [ 11, 
1, 0 = 3, 

_l 1 _1 
3' 3' 

3, 0] 
6, 3 = L1U1 
0, 7 

3, 0] 
5, 3 = A2. 

_1 7 
3' 

It would be premature in this case to draw conclusions on convergence from 
a single step ofthe iterative method. We, however, can check up that our calculation 
was correct. The matrices A1 and A2 have the same characteristic polynomial 
p(.A) = -_A3 + 23.A2 - 165-A + 378. 

We will discuss the efficiency of the LR method later. Now we will present 
another procedure, the QR method, which is based on a different factorization of 
the matrix A given. 

Theorem 1. To any real square matrix A, there exist an orthogonal matrix Q 

(Definition 1.25. 7) and an upper triangular matrix U ( both of the same order as A) 
suchthat 

A=QU. (3) 

The principal idea of the QR method is analogous to the previous method. We 
put A1 = A and construct a sequence of matrices Ak in such a way that we find 
the factorization (3) of Ak, i.e. 

(4) 

with an orthogonal matrix Qk and an upper triangular matrix Uk. Further we put 

(5) 
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Thematrices Ak and Ak+l are similar since Qi;1AkQk = Qi;1 QkUkQk = Ak+l 
by (4) and (5). 

The QR method converges for classes of matrices analogous to those for which 
the LR method does (see, e.g., [497]). The matrices Ak converge to an upper 
triangular matrix U having the eigenvalues of A on its diagonal. (The matrices Uk 
tend to the same matrix U.) 

The formula (4) is called the QR factorization where the letter R stands for the 
right (i.e. upper) triangular matrix. Analogously to Theorem 1, there also exists the 
factorization A = QL, where Q is an orthogonal and La left (i.e. lower) triangular 
matrix. The QL method can thus be derived, too. 

We will further show a suitable algorithm for constructing the QR factoriza­
tion (3). It is basedOll the same idea as the construction of orthogonal matrices sk 
in the Jacobi method (§ 30.12). 

We rewrite (3) in the form U = QT A and construct the orthogonal matrix QT 

as the product 

QT = Mn-lMn-2 ... M1, 

Mz = Sl,l+l ... Szn, l = 1, ... , n- 1, 

(6) 

(7) 

where Spq = ( s~fq)) is an orthogonal matrix and n is the order of A. Denote by 

W = SpqV (8) 

the transformation of a matrix V performed by Spq and annihilating the entry Vqp· 

Put 
V 

tan () = _!!!!. for vPP -:j:. 0 , 
Vpp 

'rr () = 2 for Vpp = 0 , 

s(pq) = s(pq) = cos () 
PP qq ' 

s(pq) = -s(pq) = sin () 
pq qp ' 

s~fq) = 1 for i #- p and i #- q, 

s~fq) = 0 for other i and j . 

(9) 

(10) 

The matrix Spq is of the form (30.12.6) and only the p-th and q-th rows of V are 
changed by the multiplication in (8). No entry that has been replaced by zero can 
become nonzero in the further course of the computation. 
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Example 2. Let the matrix 

[
9·6, -12·0, -3·4] 

A = 7·2, 1·0, 6·2 
0·0, 6·0, -1·0 

be given. Compute its QR factorization (3). According to (6) and (7), we put 
QT = 523 512 as a 31 = 0. For 512 , the quantity ()in (10) is determined by (9), i.e. 
tanB = a2Ifau = 7·2/9·6 = 0·75. From this, we obtain an intermediate result, the 
product 

0·6, 
0·8, 
0·0, 

0·0] [12, 
0·0 A = 0, 
1·0 0, 

-9, 
8, 
6, 

Similarly we get tan () = a32/an = 6/8 = 0· 75 for 523 and 

[
1·0 

523 = o-o: 
0·0, 

0·0, 
0·8, 

-0·6, 

0·0] 
0·6 0 

0·8 

~] = .4. 
-1 

Finally we compute the products U = 523512A = 523A and Q = 5~5'iJ and arrive 
at 

[
0·80 

A = 0·60: 
0·00, 

-0·48, 
0·64, 
0·60, 

0·36] [12, 
-0·48 0, 

0·80 0, 

-9, 
10, 
0, 

~] = QU' 
-5 

(11) 

i.e. the factorization of the matrix A given into an orthogonal matrix Q and an up­
per triangular matrix U. 

Definition 1. The square matrix 

au, a12, a13, ... ' a1,n-2, a1,n-l, a1n 
a21, an, a23, . 0 0' a2,n-2, a2,n-1, a2n 
0, a32, a33, 0. 0' a3,n-2, a3,n-1, a3n 
0, 0, a43, 0 •• ' a4,n-2, a4,n-1, a4n 

0, 0, 0, . 0 0' an-1,n-2, an-1,n-1, an-1,n 
0, 0, 0, 0 0 0' 0, an,n-1, ann 

(which differs from an upper triangular matrix in one, in general nonzero, diagonal 
below the main diagonal) is said to be in upper Hessenberg form. The concept of 
matrix in lower Hessenberg form is introduced analogously. 

REMARK 2. Both the LR and the QR methods require of order n 3 arithmetic Op­

erations in each step if A is a full square matrix of order n. When A is a bandmatrix 
(e.g. a tridiagonal matrix, see Definitions 30.5.3 and 30.5.1), then all matrices Ak 
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are bandmatrices ( or tridiagonal matrices) as well. Also, if A is in upper Hessen­
berg form, then all matrices Ak are in this form. Consequently, both the LR and 
the QR methods require now, in each step, a nurober of operations which is of order 
less than n3 • Some procedures for reducing a general matrix to a similar tridiag­
onal matrix or a similar matrix in Hessenberg form in a finite nurober of steps 
will be presented in § 30.14. Special modifications of the LR and QR methods for 
tridiagonal matrices are given e.g. in [378]. 

REMARK 3. The matrix A = A1 from Example 1 is in lower Hessenberg form. 
After one step of the LR method, the matrix A2 is in the same form. 

Example 3. We will show a single step of the QR method for the matrix A = A1 
from Example 2. We can exploit the QR factorization (11) of A. Denoting the 
factors by Ql and U1, i.e. A1 = Ql U1, we compute by (5) 

[12, -9, j] [0·80, -0·48, 0·36] 
U1Q1 = 0, 10, 0·60, 0·64, -0·48 = 

0, 0, 0·00, 0·60, 0·80 

[ 4·20 -10·92, 9·44] = 6·00: 9·40, -0·80 =A2. 
0·00, -3·00, -4·00 

Note that the matrix A = A1 is in upper Hessenberg form. This form is preserved 
by the transformation and A 2 is in the same form. 

REMARK 4. The simultaneous computation of eigenvectors together with eigen­
values can be carried out ( at the cost of additional operations whose nurober is 
again of order n3 ) in both the LR and QR methods in the way which follows from 
Remark 30.11.1. 

Theorem 2. Let the matrix A have an eigenvalue >. and let k be an arbitrary 
( complex) number. Then the matrix A- kl has the eigenvalue >.- k. 

RE MARK 5. Theorem 2 can be used to aceeierate the convergence of both LR 
and QR methods if we choose a proper nurober k and factorize the matrix A- kl 
instead of A. This procedure is called the spectrum shijting. 

30.14. Reducing Matrices to Simpler Forms. The Givens and 
Householder Methods. The Lanczos and Wilkinson Methods 

We presented the Jacobi method, tha.t reduces a given symmetric matrix to 
a similar diagonal matrix, in § 30.12. Its disadvantage consists in the fact that it is 
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an iterative method. We will now show some procedures that reduce a given matrix 
to a similar matrix in simpler form in a finite number of steps. These procedures 
are important, first of all, as a preparatory phase of the computation of eigenvalues 
and eigenvectors, which is followed by the application of the LR or QR methods 
from § 30.13. 

The Givens method is based on the same idea as the Jacobi method. Let A be 
a real symmetric matrix, To = A. Like in (30.12.1) and (30.12.2), we construct the 
sequence of matrices 

(1) 

where Sk is an orthogonal matrix. In § 30.12, we chose Sk in the form (30.12.6) 
and (} in such a way that the entry t~~-l) of Tk-1 = (t~7-l)) was annihilated. The 
matrices Tk and Tk-1 differed only in the p-th and q-th rows and columns. 

Choosing (} in (30.12.6) such that 

cos (} = at<k-l) sin (} = -at<k-l) 
rp ' rq ' (2) 

where 

r#p, r # q, (3) 

t~~-l) is replaced by zero in the transformation (1) (and 4~-l) as well due to 
symmetry). The matrices Tk and Tk-1 differ only in the p-th and q-th rows and 
columns. 

The orthogonal matrix Sk of the form (30.12.6) defined by (2) and (3) is thus 
determined by three indices p, q and r. Let us denote it by Spqr· If the trans­
formations (1) employing matrices Spqr are performed for a suitable choice of the 
indices p, q and r andin proper order, all the annihilated entries of A remain zero 
(in contrast to the Jacobi method). We arrive at a symmetric tridiagonal ma­
trix T N (but not a diagonal matrix) similar to A after a finite number N of the 
transformations ( 1). 

Put thus r = p- 1, choose successively p = 2, ... , n- 1, and, for each p, carry 
out the transformation (1) successively for q = p + 1, ... , n. In this way, we finally 
obtain a symmetric tridiagonal matrix to which the methods of § 30.13 can e:ffi­
ciently be applied. Wishing to calculate also eigenvectors, we have to determine the 
product of all the transformation matrices Spqr (cf. Remark 30.11.1) simultaneously 
with the reduction of A. 

Exam.ple I. Use the Givens method to reduce a given symmetric full matrix 
A = T0 of order 4 to tridiagonal form. In the first step, the formula (1) deter­
mines the matrix T1 = SJ:31 ToS231 with zero entries tW and tg>. The matrix 
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T2 = 5:i41 T1 5241 from the second step has, in addition, zero entries ti~) and t~!) o 
Let us have, eogo, 

[
6, 

T2 = 2, 
0, 
0, 

The last step of the reduction, 

2, 
-5, 

4, 
3, 

~: ~] 
5, 1 ° 

1, 8 

(4) 

remains to be performedo Its result will be ti~) = t~!) = Oo We thus have p = 3, 

q = 4 and r = 2, and find o:-1 = ((t~;>) 2 + (t~~) 2f12 = (42 + 32 ) 112 = 5, cos(}= 

= at~;> = 0°8, and sin (} = -o:t~!) = -0°6 from (2) and (3)0 The formula (30o12o6) 
now implies 

[ 
1°0, 0°0, 
0°0 1°0 

5342 = ooo' ooo' 
' ' 0°0, OoO, 

and the result of multiplication in ( 4) is 

[
6°00 

T = 2ooo: 
3 OoOO 

' OoOO, 

The matrix T3 is tridiagonaL 

2°00, 
-5o00, 

5o00, 
OoOO, 

0°0, 
0°0, 
0°8, 
0°6, 

0°00, 
5°00, 
7°04, 
1°72, 

0°0] OoO 
-Oo6 

Oo8 

OoOO] OoOO 
1°72 ° 
5o96 

The Householder method is used to treat the same problem, i.eo, to reduce a real 
symmetric matrix A to a similar tridiagonal matrixo We put At = A and construct 
the sequence of matrices 

(5) 

where 
(6) 

is a symmetric orthogonal matrix of order n determined with the help of a suitable 
vector vk suchthat vJ vk = 1. The choice of Pk, which is called the reflection matrix, 
can be donein such a way that all the entries of Ak in rows 1, 0 0 0, k -1 except for 
their "tridiagonal" entries are zeroo The same holds for the entries of Ak in columns 
1, 0 0 0, k -1 by symmetryo Putting Ak_1 = (a~;-1 )), vk = (vfk>, 0 0 0, v~k))T, and 

~ ( (k-1)) 2 
S = ~ ak-l,j ' (7) 

j=k 



642 

we have 

and choose 

(k-1) 
au 

(k-1) 
a21 

0 
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(k-1) 
al2 

(k-1) 
a22 

(k-1) 
a23 

(k-1) (k-1) 
ak-2,k-2 ak-2,k-1 

(k-1) (k-1) 
ak-1,k-2 ak-l,k-1 

(k)- 0 . - 1 k 1 vi - , J - , .•. , - , 

( (k))2 _! (1 ± a~~-;~k) 
vk - 2 .;s , 

(k-1) 
(k) - ± ak-l,j . k 1 

vi - 2vik) ..jS , J = + , ... , n, 

0 

(k-1) 
ak-2,n 

(k-1) 
ak-1,n 

(k-1) 
ann 

30.14 

(8) 

(9) 

where the sign in (9) is chosen to maximize lvik)l· By (6), Pk can be written in the 
form 

(10) 

where I is the identity matrix of order k -1 and N is a symmetric (full, in general) 
square matrix of order n - k + 1. Since the position of zero entries of Ak is known 
it is sufficient to calculate only the nonzero ones when substituting into (5). 

If we wish to compute also eigenvectors of A we have to determine the product 
of all the transformation matrices Pk simultaneously with the reduction of A, too 
(cf. Remark 30.11.1). 

Example 2. Use the Householder method to reduce a given symmetric full matrix 
A = A1 of order 4 to tridiagonal form. By (5), A2 = (a~~)) is given by the formula 

A2 = Pz A1 Pz, and has the form ( 8) with k = 3 and zero entries ai;>, a~;>, ai!) and 

ai;>. Like in Example 1, let 

[

6, 

Az = 2' 0, 
0, 

2, 0, 0] 
-5, 4, 3 

4, 5, 1 . 
3, 1, 8 

It remains to carry out the last step of the transformation 

(11) 
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lt. . (3) (3) 0 
resu mg m a 24 = a42 = · 

From (9), we find the components of v3 = (vi3>, v~3>, v~3>, vi3))T, which deter­

mines P3 by means of (6). Substituting into (7), we first get S = (a~~) 2 + ( a~~) 2 = 
= 25 and further vP> = v~3) = 0, v~3) = J0·9 and vi3> = i y'0·9. Finally we 
compute by (6) 

[
1·0, 0·0, 

p3 = 0·0, 1·0, 
0·0, 0·0, 
0·0, 0·0, 

0·0, 
0·0, 

-0·8, 
-0·6, 

0·0] 0·0 
-0·6 ' 

0·8 

which is a symmetric matrix of the form (10). The result of multiplication in (11) 
is 

[6·00 2·00, 0·00, 0·00] A _ 2·00: -5·00, -5·00, 0·00 
3 - 0·00 -5·00, 7·04, -1·72 , 

0·00, 0·00, -1·72, 5·96 

Example 3. In Examples 1 and 2, we reduced the matrices T2 and A2, where 
T2 = A2, to tridiagonal form. The resulting matri.x T3 is similar to T2, the resulting 
matrix A3 is similar to A2. Multiplying A3 by the symmetric orthogonal matrix 

[
1, 0, 

K= 0, 1, 
0, 0, 
0, 0, 

o, 0] 0, 0 
-1, 0 

0, 1 

from the left as well as from the right, we can verify that T3 and A3 are similar, 
i.e., that KA3K = T3. 

REMARK 1. The nurober of arithmetic operations needed to apply both the 
Givens and the Householder method is of order n3 , the nurober of operations for 
the Householder method, however, is about one half as compared with the Givens 
method. 

Up to now we have been concerned with reducing real symmetric matrices. We 
will conclude this paragraph with a brief survey of methods for the reduction of 
nonsymmetric matrices. 

The Lanczos method, consisting in the construction of two finite sequences of 
vectors (see, e.g., [378]), reduces a general nonsymmetric matrix to a similar tridi­
agonal matrix. 

REMARK 2. If a matrix is tridiagonal, three-term recurrent formulae can be 
derived (see [378]) to yield the value of the characteristic polynomial p(>.) at any 
argument >. and also the value of the derivative p'(>.) of this polynomial. Since 
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similar matrices possess the same characteristic polynomial (Theorem 1.28.5) we 
can, after reduction to tridiagonal form, Iook for the eigenvalues of a matrix with 
the help of some method for finding roots of a polynomial from Chap. 31 without 
computing coefficients of the characteristic polynomial (cf. Remark 30.10.2). 

The fact, that each transformation in both the Givens and the Hauseholder 
methods always annihilates two entries symmetric about the diagonal, is a mere 
consequence of the symmetry of the matrix A given. Applying any of the two 
methods to a nonsymmetric matrix, we obtain a matrix in Hessenberg form (Def­
inition 30.13.1) as a result. This form is suitable for using the methods of § 30.13 
as well. 

The Wilkinson method (see [378]), based on the Gaussian elimination (§ 30.1), is 
often employed to reduce a nonsymmetric matrix to upper Hessenberg form. The 
matrices of derived systems, that appear in the elimination process, however, are 
not similar to the given matrix. We have to perform the elimination steps not 
only with rows, but also with columns, to obtain a similar matrix. Pivoting can 
be applied. The Wilkinson method is finite and requires of order n 3 arithmetic 
operations. 

REMARK 3. Roundoff errors may accumulate considerably and destroy the result 
if the matrix being reduced is nonsymmetric. The infiuence of roundoff is diminished 
by balancing, i.e. the procedure which transforms the matrix given into a similar 
matrix whose i-th row and i-th column have approximately the same norm (see, 
e.g., [376], [498]). 

30.15. Inverse Iteration Method 

Theinverseiteration method can be used to compute one or, successively, several 
eigenvectors if they belong to eigenvalues which are already known with sufficient 
accuracy. At the same time, the method can improve accuracy of the eigenvalue 
itself (see [376]). 

Let .A * be an approximation to the eigenvalue .A of A and let an eigenvector x 
belongs to .A, i.e. Ax = .Ax. We can readily verify that x is then an eigenvector of 
(A- .A*/)-1, belonging to the eigenvalue 1/(.A- .A*). The vector x is computed by 
the power method (§ 30.11) applied to (A- .A*/)-1 since, for .A* sufficiently close 
to .A, its eigenvalue 1/(.A- .A*) is solarge that it is dominant .. 

We thus choose a vector vo suchthat v;[ vo = 1 and compute by (30.11.2) 

(1) 
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where the number Cm+l is a normalization factor chosen in such a way that 

vJ:+l Vm+l = 1 and vJ:+l Vm > 0. 

If conditions for the convergence of the power method are fulfilled, then the 
sequence of vectors Vm tends to the eigenvector x. The rate of convergence of the 
method is high if the difference 1>.- X" I is small. In practice, 2 or 3 iteration steps 
suflice. 

REMARK 1. Every step of the inverse iteration involves the solution of the linear 
algebraic system {1) for the unknown vector Vm+l· The matrix of {1) is very ill­
-conditioned and it is even singular for .).* = >. (Remark 30.10.1). This fact, however, 
does not infl.uence the accuracy of the evaluation of components of the eigenvector 
in the iterative process {1). 

REMARK 2. If the matrix of the system {1) is full and if the LU factorization 
is applied to the solution of the system, every step of the inverse iteration method 
requires of order n 2 operations and the factorization (performed only once) needs 
of order n 3 additional operations (Remark 30.1.6). Forthis reason, the method is 
mostly applied to matrices having been reduced to tridiagonal or Hessenberg form 
where the number of operations required is of lower order. 

30.16. Generalized Eigenproblem 

In many applications, a problern more general, than that formulated in Defini­
tion 30.10.1, arises. 

Definition 1. Let A and B be ( complex, in general) square matrices of order n. 
If there exist a complex number >. and a vector x -::f:. 0 (with complex components) 
suchthat 

Ax = >.Bx (1) 

then we say that >. is an eigenvalue of the problern (1) and x is its eigenvector 
belonging to this eigenvalue. 

REMARK 1. If at least one of the matrices A and B is nonsingular, then the 
generalized eigenproblern can be transformed to a standard eigenproblern from Def­
inition 30.10.1. If A is nonsingular, the equation (1) is equivalent to 

(A- 1 B)x = J.LX (2) 

and >. = 1/ J.L. If B is nonsingular, then (1) is equivalent to 

{3) 
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and x = s-1 y. The eigenproblems (2) and (3) can be solved by the methods shown 
in the preceding paragraphs. 

If both the matrices A and B are singular, we can solve the generalized eigen­
problern e.g. by the QZ method (see [446], [461]) which is a certain analogue of the 
QR method. 

30.17. Choice of the Method. Basic Software 

It is rather difficult to give unique recommendations for the choice of a proper 
method for the computation of eigenvalues since this choice depends on a lot of 
circumstances. Properties of the matrix given and quantities to be calculated are 
the principal factors we already mentioned in the introduction to Part B of this 
chapter. 

Most methods we presented fail if a real matrix has a pair of complex conjugate 
eigenvalues, some fail for multiple eigenvalues. These cases can be detected since our 
methods then do not converge if applied in the form given here. In literature ( e.g. 
[497], [498]), modifications of these methods, taking into account special situations 
mentioned, are shown. 

For a full symmetric matrix, we can recommend the reduction to tridiagonal 
form by the Householder method (§ 30.14), which requires less operations than 
the Givens method, followed by the computation of eigenvalues (and possibly also 
eigenvectors) by the QR (or QL) method (§ 30.13) with shifts, if needed. The 
QR method is, in general, numerically more stable than the LR method as it is 
based on orthogonal transformations. The LR method modified for symmetric 
matrices can be a good tool if the matrix given is positive definite. The calculation 
of eigenvectors demands a great number of arithmetic operations. If we need only 
several eigenvectors, we can, after reduction to tridiagonal form, find roots of the 
characteristic polynomial by methods of Chap. 31 and compute the corresponding 
eigenvectors by the inverse iteration (§ 30.15). 

The procedure is similar for a full nonsymmetric matrix, but the first step should 
be balancing the matrix (§ 30.14) and the result of reduction is in Hessenberg form. 

The power method (§ 30.11) is advantageous for calculating the dominant eigen­
value (and the eigenvector belonging to it). In this method as well as in various its 
modifications, the sparsity of the matrix given can be exploited. 

We have not been concerned with the computation of eigenvalues and eigen­
vectors of complex matrices. Proper methods are presented, e.g., in [433], [498], 
together with much more detailed recommendations for the choice of the method 
for solving a particular real as well as complex eigenproblem. 
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The computation of eigenvalues and eigenvectors of matrices is a branch of nu­
merical analysis, where efficient methods are known for most kinds of principal 
problems. The book [498] has become the foundation of methods and algorithms. 
It contains programs in Algol 60 that were translated into FORTRAN and thor­
oughly tested. The result of this work is the EISPACK package [433] that should 
be satisfactory for solving all current eigenproblems. 

Standard numerical software of any computer usually includes also programs or 
subprograms for computing eigenvalues and eigenvectors of matrices. Very good 
universallibraries (in FORTRAN) available on the commercial basis are IMSL Li­
brary [231] and NAG Library [344] for mainframes, and personal computer pro­
grams from Numerical Recipes, the book [376] which contains all source programs 
in FORTRAN as well as in Pascal (Cis also available). 

In general, we can say that this part of Chap. 30 is to serve as a guide for the 
choice of a method, when we calculate eigenvalues and eigenvectors of a particular 
matrix. Next step should be to employ a suitable program found in the software 
available, preferably in the EISPACK package. In rather exceptional cases, it is 
necessary to code one's own program to implement a method which is not part of 
EISPACK 



31. NUMERICAL SOLUTION OF ALGEBRAIC 

AND TRANSGENDENTAL EQUATIONS 

By MIROSLAV FIEDLER 

References: [62], [209], [215], [224], [311], [360], [361], [378], [386], [468], [482]. 

31.1. Basic Properties of Algebraic Equations 

An algebraic equation of degree n, 

(1) 

with real or complex coefficients ao, ... , an, has exactly n roots (in general complex) 
if each root is considered with its appropriate multiplicity (cf. § 1.14). 

In the following text we consider only the case where all the coefficients in (1) 
are real. If some coefficients are not real, then we construct the polynomial 

where the ai denote the complex conjugate numbers to ai; this polynomial has 
only real coefficients; the equation g(x) = 0 contains all the roots of the equation 
f(x) = 0. 

REMARK 1. In some considerations, it is required that all the roots of equa­
tion (1) should be simple. Theoretically it is not difficult to find an equation with 
the same roots as those of (1) but all simple. If d(x) is the greatest common divisor 
of f(x) and its derivative f'(x) (this can be found by using the Euclidean algorithm, 
cf. Theorem 1.14.7), then the quotient g(x) = f(x)jd(x) is a polynomial with the 
above-mentioned property. 

Theorem 1. Let a1, a2, ... , an be the roots of (1). Then, 

(a) 1/a1 , 1/a2 , •.. , 1/an are the roots of the equation g(x) = xn !(1/x) = anxn+ 
+ an-1Xn-1 + ... + ao = 0 {for an :j:. 0); 

(b) atfc,· a2/c, ... , anfc are the roots of the equation g(x) = f(cx) = a0 cnxn + 
+ a1cn-1xn-1 + ... +an= 0 (for c :f. 0); 
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(c) -a1, -a2, ... , -an are the roots of the equation g(x) = (-l)nf(-x) = 
- n n-1 + n-2 + + ( 1)n - o· = aox - a1x a2x . . . - an- , 

( d) a 1 - a, a 2 - a, ... , an - a are the roots of the equation 

x x 2 xn 
g(x) = f(x + a) = f(a) +I f'(a) + 1 J"(a) + ... + - 1 f(n)(a) = 0. 

1. 2. n. 

In ( d), the coefficients f ( a), f' ( a), ~ !" ( a) etc. can be found, for example, by 
2. 

using Horner's scheme (cf. Remark 1.14.1). 

31.2. Estimates for the Roots of Algebraic Equations 

Theorem 1. Let in the equation 

(1) 

ao be positive. Then every real root a of (1) satisfies the following inequalities: 

(a) a<1+~ 
ao 

(Maclaurin), 

where ai is the negative coefficient in ( 1) with greatest modulus ( if none o f the 

coefficients are negative then a ~ 0); 

(b) ( Lagrange), 

where ai is dcfined as in (a) and ar is the firstnegative coefficient in (1); 

(c) ( Tillot), 

where ai and r are the same as in (a) and (b) and a5 is the greatest of the first r 
positive coefficients in ( 1). 

Theorem 2. Ever11 real or complex root a of equation {1) ( with real or complex 

coefficients) satisfies the inequality 

where ai is the coefficient of {1) with the greatest modulus. 
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REMARK 1. Similar estimates ofthe real roots of (1) from below can be obtained 
by the application of Theorem 1 to (c) of Theorem 31.1.1; an analogous estimate 
for the moduli of complex roots of (1) from below can be obtained by application 
of Theorem 2 to (a) of Theorem 31.1.1. 

Example 1. Theorem 1 yields the following estimates for the real roots ak of the 
equation x 3 + 4x2 + x- 6 = 0 (here, i = 3, r = 3, s = 1): 

(a) ak < 7, 

(b) ak < 1 + 6I/J ='= 2·8171, 

(c) ak < 1 + (~) 112 ='= 2·2247. 

According to Theorem 2, all roots (real or complex) satisfy the inequality lakl < 7; 
if we apply Theorem 2 to the equation 6x3 - x2 - 4x - 1 = 0 with roots 1/ak, 
we obtain 11/ ak I < 1 + I~ I = ~ so that I ak I > ~. (The roots of the equation 
x3 +4x2 +x- 6 = 0 are 1,-2 and -3.) 

Theorem 3. Let XI be a ( complex) number for which f' ( xi) -:f:. 0. Then the circle 
lx - el ~ p, where 

In f(xt) I 
p = 2 f'(xt) ' 

contains at least one root of the equation (1). 

Example 2. Let us apply this Theorem to the equation x3 + 4x2 + x - 6 = 0 from 
Example 1. Choose XI = 0·9, then f(xt) = -1·141, f'(xt) = 10·63. It follows that 
in the circle with centre e = 0·9- ~. ( -1·141)/10·63 = 1·061 and radins p = 0·161 
there lies at least one root of the equation. 

Theorem 4. (Descartes' Theorem). The number of positive roots of equation (1) 
is either equal to the number of changes of sign in the sequence 

or it is smaller by an even number. 

REMARK 2. The number of changes of sign is obtained by ignoring all the zero 
entries and by determining the number of pairs of consecutive numbers with differ­
ent signs in the sequence. 

Example 3. The corresponding sequence to the equation 

(2) 

is 

1, 0, 3,0, -1 
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with a single change of sign (3, -1). It follows that equation (2) possesses exactly 
one positive root a (since the nurober of its roots cannot be smaller than one by 
an even number). According to the estimate (a) in Theorem 1, a < 2, according to 
{b) we also have a < 2, according to (c) a < 1 + v'~ ::::: 1·58. 

Theorem 5. (Budan-Fourier Theorem). Let f(x) be a real polynomial, ao > 0. 
Let a < ß, f(a). f(ß) "1- 0 and let w(x) denote the number of changes of sign in 
the sequence 

f(x), f'(x), f"(x), ... , f(n)(x). 

Then, the number of real roots of (1) in the interval [a, ß] is either equal to 
w(a) - w(ß), or it is smaller by an even number. 

REMARK 3. In Theorems 4 and 5 each root is considered with its corresponding 
multiplicity. 

Theorem 6. (Sturm Theorem). Let all the roots of (1) be simple (cf. Remark 
31.1.1). lf neither of the real numbers a and ß (a < ß) is a root of (1), then there 
are exactly V(a)- V(ß) real roots of (1) in the interval [a, ß]. Here, V(x) denotes 
the number of changes of sign in the so-called Sturm sequence 

f(x), ft(x), h(x), ... , fm(x). 

For this sequence the following special sequence can be chosen: 

f(x), f'(x), r1(x), ... , r8 (x), 

where -r1(x) is the remainder obtained after the division f(x)/f'(x), -r2 (x) the 
remainder after the division J'(x)jr1(x) etc., and -r8 (x) is the remainder after the 
division rs-2(x)/rs-l(x), where r8 (x) is a non-zero constant. 

Example 4. Let us apply the Sturmtheorem to the problem offinding the nurober 
of roots of the equation x 3 + 4x2 + x- 6 = 0 in the interval [0, 2]. Here, f(x) = 
x 3 + 4x2 + x- 6 = 0, ft (x) = f'(x) = 3x2 + 8x + 1, h(x) = ~(13x + 29) (-h(x) 
is the remainder after the divisio~ f(x)/ft(x)), !J(x) = ~~~· Hence f(O) = -6, 
ft (0) = 1, h (0) = 598 , h(O) = ~~~,so that V(O) = 1; further, !(2) = 20, ft (2) = 29, 
!2(2) = 1 ~0 , 13(2) = ~~~ so that V(2) = 0. Since V(O)- V(2) = 1, there is exactly 
one root of the given equation in the interval [0, 2]. 
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31.3. Connection of Roots with Eigenvalues of Matrices 

It is easily seen that if a0 = 1, equation (31.2.1) can be written (with >. instead 
of x) in the following determinant form: 

>., -1, 
0, >., 

0, 0, 

0, 
-1, 

... ' 0, 
0, ... ' 

0 

0 

0, ... ' >., -1 
=0. 

However, this is the characteristic equation of the matrix 

A= I.~: .... ~: ....... ~: .... ::.:.: ... ~: .... ~ 
0, 0, 0, ... ' 0, 1 

-an, -an-1, -an-2, ... , -a2, -al 

(1) 

(2) 

Hence estimates for eigenvalues of matrices yield immediate estimates for the 
roots of equation (31.2.1). This is ofparticular use in numerical solution of algebraic 
equations. 

A well-known estimate for eigenvalues of square matrices has been given by 
Gershgorin: 

Theorem 1. Let A = (aij) be a square matrix of ordern. Then all eigenvalues 
of A are contained in the union of the following n circles in the complex plane: 

laii - zl ~ L laijl, 
#i 

i = 1, ... , n. 

Moreover, if lakk- aul > l:#k lakjl + l::#1la1jl for k = 2, ... , n, the first 
circle contains exactly one eigenvalue of A. 

31.4. Some Methods for Solving 
Algebraic and Transeendental Equations 

Algebraic equations (with one unknown) of degree four at most, binomial equa­
tions and some other special types of equations can be solved directly (see §§ 1.20, 
1.21, 1.22). To solve algebraic equations of higher degree or transeendental equa­
tions, numerical methods are mostly used. Some of these methods will now be 
described. 
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(a) Method of Bernoulli and Whittaker. The given algebraic equation of degree 
n is written in the form 

(1) 

Choose u 0 = 1, u-1 = u_2 = ... = u-(n-1) = 0 and compute the numbers 
u 1 , u2 , • • • according to the recurrence formula ( m = 1, 2, ... ) 

Let a 1 , a 2 , ... , an be the roots (in general complex and not necessarily distinct) 
of equation (1), suchthat 

(where thus exactly k roots have the greatest modulus). Then, for integral r suffi­
ciently large, a 1, a2, ... , ak are approximately equal to the roots of the equation 

xk k-1 1 
' X ' ... ' 

Ur+k 1 Ur+k-1, . 0 0' Ur 

Ur+k+1, Ur+k> . 0.' Ur+1 = 0. (2) 

In general, the larger the value of r is, the more accurate is the approximation 
to the roots. When all the coefficients of (1) are real, the most frequent cases are 
k = 1 ( for a 1 real), and k = 2 ( for a1, a2 com plex conjugate). 

A convenient procedure for practical computation is the following: Compute the 
first, say, 20 ( or more, according to the required accuracy and the magnitude of n) 
numbers u1, ... , u2o and then the ratios u16 I u15, U17 I u16, ... , u2o I u19. If none of 
these ratios differs in sign or by more than 5 - 10% in magnitude, u2olu19 can be 
considered as an approximation to the root a 1 of equation (1), i.e. the case k = 1 
in (2) has occurred. If the computed ratios differ by more than 10% ( or even in 
sign), the determinants Är = u; - ur_1 Ur+1 for r = 15, ... , 19 and their ratios 
Qr = Ärl Är-1 for r = 16, ... , 19 should be computed. If these ratios Qr are 
approximately equal and of the same sign, then the roots a1 and a 2 of equation 
( 1) are approximately equal to the roots of equation ( 2) for k = 2 and r = 17. If 
neither the first, nor the second case occurs, then the first three or more roots of 
(1) have almost equal moduli. It is then possible to proceed in a similar way for 
k = 3 or to solve another equation in y which has been obtained from the given 
equation by the substitution x = y + u. Here, u can be chosen for example as an 
approximation to v'l an I· 
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(b) The Graeffe Method and its Modifications. We have to solve the equation 

Let us compute the numbers 

(1) 2 
ao = ao, 

ai1) = -a~ + 2aoa2, 

a~1 ) = a~ - 2a1a3 + 2aoa4, 

a~~1 = ( -1)n-1 a~-1 + ( -1)n. 2an-2an, 

a~1 ) = ( -1ta; 

and repeat the computation to obtain 

(2) - ( (1))2 
ao-ao' 

(2) - ( (1))2 + 2 (1) (1) 
a1 - - a1 ao a2 ' 

(3) 

(4) 

etc., 

and a~3) = {a~2)) 2 etc., up to a~m), aim), ... , a~m), where m isachoseninteger (say 
m = 10). 

The polynomial 
a~m)xn + aS~>1xn-1 + · ... + a~m) 

has for its roots the 2m-th powers of the roots of equation (3). If m is sufficiently 
large (say m = 10), some of the coefficients (in any case a~m) and a~m)) satisfy the 
appro:ximate equalities 

(m) "" ( 1)k { (m-1)} 2 ak "" - ak 

and, moreover, the remaining summands on the right-hand sides of (4) are, for 
these coefficients, su:ffi.ciently small. Suppose that these "well-behaved" coefficients 
are 

where n > k1 > k2 > ... > k" > 0. 

Then, the roots of equations 

= a<m>xn-kl + a(m) xn-kl-1 + + a(m) - 0 
- n n-1 · • • k 1 - ' 

= a(m)xkl-k2 + a(m) xkl-k2-1 + + a(m)- 0 
- kl kl -1 • • • k2 - ' 

L"+l(x) = a~':')xk• + a~':'~ 1xk·-1 + ... + a~m) = 0 

(5) 

are appro:ximately equal to the 2m-th powers of the roots of equation (3) in such 
asensethat one of equations (5) corresponds to a group of roots of (3) with (ap­
pro:ximately) equal moduli: the first with moduli r1. the second with r2, etc., the 
last with r s+l· Here, r1 > r2 > ... > r &+1· 
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In this manner, we obtain the moduli of the roots of equation (3) since for 
i = 1, ... , s + 1 (if we put ko = n, ks+1 = 0) 

k;-1 -k; rv 2v a~:") 
ri rv (m) 

ak;-1 

(6) 

To compute the roots themselves, it is necessary to determine which of the 2m-th 
roots of the corresponding root of equation (5) satisfies (3). This can easily be 
done when all the coefficients of (3) are real (we shall assume this from now on) 
and when the corresponding equation (5) is of degree one. Then, the corresponding 
root of (3) is real and it is sufficient to find out by substitution into (3) which of 
the two real 2m-th roots 

and 

of the root 7 of (5) satisfies equation (3). 

If all the equations (5) are linear, we obtain in this manner all roots. If one of 
equations (5) is quadratic, all the remaining being linear, we can compute the roots 
which correspond to the linear equations, then use relations for the sum of all roots 
(equal to -an-dan) and for the product of all roots (equal to ( -1)naofan), to 
compute, if ao =f. 0, the sum and product of the remaining two roots. Other cases 
lead to complications which can be avoided by the following modified Lehmer's 
process: 

b "d h (k) (k) (k) k h We compute, es1 es t e sequence an , an_1, •.. , a0 , = 1, ... , m, anot er 
f b(k) b(k) b(k) k .r ll set o sequences n , n-1, ... , 0 , = 0, ... , m, as 10 ows: 

b(O) - a b(O) - 2a b(o) - 3a b(O) - na b(O) - 0 
n - n-1, n-1 - n-2, n-2- n-3, · · ·' 1 - o, 0 -

(where a~o) = ai, i = 0, ... , n) and 

b(k+1) - (k)b(k)(- 0) o -ao o - ' 
b(k+1) - (k)b(k) (k)b(k) + (k)b(k) 
1 - ao 2 - a1 1 a2 o ' 

b(k+1) - (k)b(k) (k)b(k) + (k)b(k) - (k)b(k) + (k)b(k) 
2 - ao 4 - a1 3 a2 2 a3 1 a4 o ' (7) 

for k = 0, ... , m- 1. If we denote the following polynomials (with k, defined as in 
(5)) by Mi(x), i = 1, ... , s + 1, where 

M·(x) = b(m) xk;-1-k; + b(m) xk;_ 1-k;-1 + ... + b(m) 
• ki-1 k;-1-1 k; ' 
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the~ the following assertion holds: 

If ß isasimple root of Li(x) = 0, then the corresponding root a of equation (3) 
satisfies the approximate equality 

Mi(ß) 
a ~- ßL~(ß). (8) 

If all the polynomials Lj(x) = 0 in (5) are of degree at most 2, it is sufficient 
to use the fact that the sum of those roots of (3) which correspond to the roots of 
Lj(x) = 0 is approximately equal to 

(9) 

If the degree of Lj(x) = 0 is equal to one, the number (9) is approximately 
equal to the corresponding root of (3). If the degree is two, the number (9) is an 
approximation of the sum, and the right-hand side of (6) an approximation of the 
product of the two roots of (3). A slight complication can occur in the case where 
the number (9) is very close to zero. Then two cases are possible: either both 
roots of (3) arereal and approximately equal to Tj and -rj, or they are complex 
conjugates and approximately equal to rß and -rji. Substitution of ri into (3) 
determines the roots. 

Example 1. Let us use the Graeffe method to solve the equation 

4·08x4 - 6·03x3 + 6·99x2 - 9·81x + 9· 72 = 0. 

The numbers aik), a~k), a~k), a~k), a~k) computed according to formula (4) for k = 
1, ... , 10 (m = 10) are listed in Tab. 31.1. 

TABLE 311 

k (k) 
a4 

(k) 
a3 

(k) 
a2 

(k) 
a1 

(k) 
ao 

- 4·08 -6·03 6·99 -9·81 9·72 
1 1·665 0 101 2·068 0 101 9·867 3·965 0 101 9·448 0 101 

2 2·772 0 102 -9·909 0 101 1·604 0 103 2·923 0 102 8·926 0 103 

3 7·684 0 104 8·794 0 105 7·579 0 106 2·855 0 107 7·967 0 107 

4 5·904 0 109 3·914 0 1011 1·947 0 1013 3·925 0 1014 6·347 0 1015 

5 3·486 0 1019 7·671 0 1022 1·468 0 1026 9·310 0 1028 4·028 0 1031 

6 1·215 0 1039 4·350 0 1045 1·008 0 1052 3·159 0 1057 1·622 0 1063 

7 1·476 0 1078 5·572 0 1090 7·806 0 10103 2·272 0 10115 2·631 0 10126 

8 2·179 0 10156 1·994 0 10182 5·848 0 10207 -1·054 0 10230 6·922 0 10252 

9 4·748 0 10312 -1·427 0 10364 3·424 0 10415 6·985 0 10460 4·791 0 10505 

10 2·254 0 10625 1·215 0 10728 1·172 0 10831 -1·598 0 10921 2·295 0 101011 
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We see that the coefficients a4 , a2 and a0 behave regularly. Thus s = 1, ko = 4, 

k1 = 2, k 2 = 0 and (5) consists of two equations of degree 2. We thus compute the 
. (k) (k) (k) (k) (k) . ( 

coeffic1ents b4 , b3 , b2 , b1 , b0 for k = 0, 1, ... , 10 usmg formula (7) see Tab. 
31.2). 

TABLE 31.2 

k b(k) 
4 

b(k) 
3 

b(k) 
2 

b(k) 
1 

b(k) 
0 

0 -6·03 1·398. 101 -2·943. 101 3·888. 101 0 

1 -2·460. 101 -7·792. 101 1·073. 102 9·535. 101 0 

2 -4·096. 102 3·155. 103 -1·478. 102 6·357. 103 0 

3 -1·135. 105 -3·853. 105 -4·185. 106 -3·177.106 0 

4 -8·721. 109 -8·430 . 1011 -2·697. 1013 - 2·427 . 1014 0 

5 -5·149. 1019 9·214. 1020 -1·546. 1026 -7·592 . 1028 0 

6 -1·795. 1039 -1·302. 1046 -1·903. 1052 8·409. 1056 0 

7 -2·181. 1078 1·542. 1091 -1·573. 10104 -3·352. 10115 0 

8 -3·219. 10156 -4·883 . 10182 -1·245. 10208 3·477. 10230 0 

9 -7·014 . 10312 5·141. 10364 -7·293. 10415 -4·953 . 10460 0 

10 -3·330 . 10625 1·472. 10728 -2·497. 10831 -3·441 . 10919 0 

According to (6) and (9), two roots a 1 and a 2 ofthe given equation have modulus 
r1, where 

and the sum 

r2 ~ 1024/1·172. 10831 = 1·588 
1 V 2·254. 10625 

-2·497. 10831 
a + a ~ ----=-=--

1 2 ~ 1·172 .10831 
-3·330. 10625 . 
2·254. 10625 = -0·653. 

The remaining two roots a 3 and a 4 have modulus r2 , where 

and the sum 

r 2 ~ 
2~ 

1024/2·295. 101011 = 1·500 *) 

V 1-n2. 1o831 , 

2·497. 10831 . 
Ü!3 + Ü!4 ~ 1·172. 10831 = 2·131. 

It follows that the given equation has two pairs of complex conjugate roots sat­
isfying the quadratic equations 

x 2 + 0·653x + 1·588 = 0, 

x 2 - 2·131x + 1·500 = 0. 
(10) 

•) The absolute values of r1 and r2 are very close one to another, which is not convenient 
for computation. The Bernoulli-Whittaker method- without using the transformation 
x = y + u - would fail in this case. 
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a1,2 = -0·327 ± 1·217i, 

a3,4 = 1·065 ± 0·605i. 

31.4 

REMARK 1. As seen from the preceding example, we meet with very large num­
bers (in absolute value), as usual, if we apply the Graeffe method. Thus necessary 
provosions aretobe made when realizing this method on a computer. 

(c) Newton's Method. This is a method of obtaining the roots of the equation 
f(x) = 0 where f(x) is a polynomial or, more generally, a function of one variable 
which has a firstderivative in the whole interval (or the whole complex region) con­
taining the roots to be determined. Choose xo as an approximation to a particular 
root and construct a sequence x1, x2, ... according to the formula 

Ifthe approximation Xo is close enough to the value e of a simple root of j(x) = 0 
the sequence Xk converges quadratically to e. This means that for large k 

for some positive constant C. The numbers Xk can of course be complex (if f(x) is 
a real function, no real sequence can converge to a non-real root of f(x) = 0). 

In the real case, Newton's method has a simple geometric meaning: Xk+l is the 
abscissa of the point at which the tangent to the curve y = f(x), at the point 

Fig. 31.1. 

(xk, f(xk)), intersects the x-axis (Fig. 31.1). If in the whole interval [a, b] the two 
derivatives f'(x) and f"(x) have unchanged signs and f(a)f(b) < 0, then Newton's 
process converges to some root of f(x) = 0 in [a, b] if we choose x0 = a or x0 = b 
according to whether f(a) or f(b) has the same sign as f"(x). 

( d) The Regula Falsi Method. This method enables us to solve the equation 
f(x) = 0 (f(x) being a real continuous function in an interval I), if two numbers xo 
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and x1 in the interval I are known such that f(xo) and f(xi) have opposite signs, 
i.e. f(x0)f(x1) < 0. In this case we construct a sequence XI, x2, ... in the following 
manner: 

We put 
xof(xi)- xd(xo) 

x2 = f(x!) - f(xo) · (11) 

If j(x2) = 0, we have found a root. If j(x2) =1- 0, then either f(xo)f(x2) < 0 or 
f ( x1) f ( x2) < 0. In the first case xo and x2, or in the second case x1 and x2, satisfy 

Fig. 31.2 

the preceding condition and we compute x3 from (11). Then, from x3 and either 
x2 or one of the previously chosen x0 or x1 we compute the number x4 , and repeat 
the computation to obtain x5, Xß, ... , Xk. The sequence {xk} converges, but the 
convergence is usually slow. 

The geometric meaning of this method is based upon the fact that x2 in (11) is 
the abscissa of the point where the straight line connecting points (x0, f(x0)) and 
( x1, f ( xi)) of the curve y = f ( x) meets the x-axis. 

A similar process can be obtained if, under the same assumptions, the formula 

1 
x2 = 2 (xo +x!) 

is used instead of formula (11). 

(e) Bairstow's method. This iterative method is used for computing a factor of 
the given polynomial, mostly a real quadratic factor of a real polynomial. An initial 
approximation of the quadratic factor can be obtained by the Bernoulli-Whittaker 
method. 

The idea is to perform the division of the given polynomial by the approximate 
factor and use the remainder to obtain a better approximation of the factor by 
solving a linearized system of equations. We describe the algorithm for a quadratic 
factor. 



660 SURVEY OF APPLICABLE MATHEMATICS 

Let 
f(x) = aoxn + a1xn-l + ... +an, 

be the given polynomial, let 

<po(x) = x2 - uox- vo 

n ~ 3, 

be an approximate quadratic factor of f(x). Define recursively 

bo = ao, 

b1 = a1 + uobo, 

and further 
co = bo, 

c1 = b1 + uoco, 

Ck = bk + UoCk-1 + VoCk-2, 

If c~_2 - Cn-lCn-3 -:j:. 0, set 

and define the new quadratic factor 

k = 2, ... , n, 

k = 2, ... , n -1. 

31.4 

(12) 

(13) 

If for the repeated process both the sequences u0 , u 1 , u2, . . . and v0 , v1 , v2 , ... 

converge, say uk -T U, Vk -T V, then the limit polynomial 

cp( x) = x2 - U x - V 

is a quadratic factor of f(x), from which the roots of the polynomial can easily be 
computed. 

Example 2. The polynomial on the left-hand side ofthe equation from Example 1, 

4·08x4 - 6·03x3 + 6·99x2 - 9·81x + 9·72 = 0, (14) 
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has an approximate quadratic factor x2 + 0·6x + 1·6 (cf. {10)). Thus 

uo = -0·6, vo = -1·6. 

Individual steps of the algorithm are given in Tab. 31.3. 

TABLE 31.3 

k ak bk Ck 

0 4·08 4·08 4·08 
1 -6·03 -8·478 -10·926 

2 6·99 5·549 5·377 

3 -9·81 0·425 14·560 

4 9·72 0·587 -

Thus, by (12), (13) 
U1 = -0·646, V1 = -1·585. 

Continuing the procedure, we obtain 

U2 = -0·647, V2 = -1·588. 

The polynomial 

<p2(x) = x2 + 0·647x + 1·588 

is already a quadratic factor of the given polynomial ( correct to three decimals, as 
can be shown). Thus two of the roots of equation (14) are 

0:1,2 ~ -0·324 ± 1·218i. 

(f) The General Iterative Method. Let us write the given equation in an equiv­
alent form 

fi(x) = h(x); (15) 

here, we choose the function fi ( x) so that the equation fi ( x) = c can easily be 
solved (for example fi(x) linear, of the form xm, etc.). Then we take an initial 
approximation xo and construct the recurrent sequence x0 , x1, x2, . . . in such a 
manner that Xk+l is computed from the equation 

{16) 

lf the sequence xo, XI, x2, . . . tends to a limit z and if the two functions !I ( x) 
and h(x) are continuous at the point z, then z is a root of the given equation. 
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If the two function ft(x) and h(x) have firstderivatives in some neigbourhood 
of the root z for which 

IJHx)l > 1/~(x)l, 

then the sequence x0, x1, x2 , ••• is convergent whenever xo is close enough to z. 

Example 3. We wish to determine by the iterative method that root of the trau­
seendental equation x2 - x tan x + 1 = 0 which is near to the nurober 1. Write the 
given equation in the form tanx = x + 1/x and compute the first four terms of 
the sequence xk, where xo = 1 and tanxk+l = Xk + 1/xk. We obtain x1 = 1·1071, 
x2 = 1·1092, x3 = 1·1093, x4 = XJ so that the required root is equal to 1·1093 with 
error less than 10-4 . 

31.5. Numerical Solution of (Nonlinear) Systems 

We shall consider only the most important case of n equations for n unknowns 
Xt,X2, ... ,Xn (n~2): 

ft(xt,X2, ... ,xn) = 0, 

f2(xt,X2,··· ,xn) = 0, 
(1) 

Here we assume that all the functions Ii have continuous first partial derivatives 
with respect to x1, ... , Xn in some region containing the roots to be found and 
that the determinant of the Jacobi-matrix 

oft oft öft 

OXl ' OX2 ' ... ' 
OXn 

oh öf2 öf2 
J(x1, x2, ... , Xn) = OXt ' OX2 ' ... ' 

ÖXn (2) 
....................... 
ofn ofn Öfn 
OXt ' Öx2 ' ... ' 

OXn 

(which weshall briefiy denote by J(x)) is not identically zero in this region. 

The solutionwill be obtained by the (generalized) iterative method. It is a local 
method, i.e. it yields a solution as a Iimit of a convergent sequence of n-tuples 
(kx1, kx2, ... , kxn), k = 0, 1, 2, ... , under the assumption that the initial n-tuple 
(k = 0) is already close enough to the solution and that for this solution the 
determinant of the matrix (2) is non-zero. Usually, the initial n-tuple is chosen 
either from a knowledge of the problern (physical, technical etc.) from which (1) 
has arisen, by trial, or, for small n, graphically. 
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To solve {1) by the iterative method, write the system {1) in some equivalent 
form 

91(x1, ... , Xn) = h1(x1, .. ·, Xn), 

92(x1, ... , Xn) = h2(x1, ... , Xn), 
{3) 

9n(XJ, ... , Xn) = hn(Xl, ... , Xn) 

satisfying two conditions: (a) the functions 9i should also have continuous first 
partial derivatives in the region mentioned, {b) the system 

9i(XJ, · · ·, Xn) =Ci {i = 1, 2, ... , n) 

should be easily solvable for any choice of Ci {for example, the 9i arelinear functions 
or linear in xr, etc.). We choose an initial approximation °x = (0x1, 0x2, ... ' 0xn) 

and construct a sequence 1x, 2x, ... of n-tuples from the recurrence formula 

{4) 

If the sequence converges (i.e. if all coordinates converge separately), the Iimit 
z = (zt, ... , Zn) is a solution of the system {1). 

The following theorem holds: Let a solution z = (z1, ..• , Zn) of {3) have the 
following properties: {i) det J(z) =j:. 0 and {ii) all (real or complex) roots >. of the 
equation 

det [ >. ;;: {z) - ::: (z)] = 0 

are smaller then 1 in modulus. Then there exists an n-dimensional region il such 
that whenever Xischosen in il, the sequence X converges to Z. 

A special case of this method is Newton's method; here, equations {4) are of the 
form 

where 

[
ft(x)l 
h(x) 

f(x) = . 

fn(x) 

and J(x) is the matrix in (2). This method converges rapidly in the neighbourhood 
of the solution. 

Example 1. We have to find the minimum of the function 

f(x, y) = 3x3 + 2y2 + xy2 -10x- 5y -1 = 0 
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which lies near the point {1, 1). According to Theorem 12.12.1, this means solving 
the system {) f I 8x = 0, {) f I f)y = 0, i.e. the system 

4y + 2xy- 5 = 0 

near the point {1, 1). Let us write this last system in the form 

x = ~J(10- y2 ), 
3 
1 

y = - ( 5 - 2xy). 
4 

Let us choose xo = 1, Yo = 1 and find the sequence of pairs (xk, Yk) for which 
xk+1 = l J(10- YD, Yk+1 = -! {5- 2XkYk) (see Tab. 31.3). 

TABLE 31 4 

k Xk Yk 10- Y't 2XkYk 

0 1·0000 1·0000 9·00000 2·0000 

1 1·0000 0·7500 9·43750 1·5000 

2 1·0240 0·8750 9·23437 1·7920 

3 1·0129 0·8020 9·35680 1·6355 

4 1·0196 0·8411 9·29251 1·7152 

5 1·0161 0·8212 9·32563 1·6688 

6 1·0179 0·8328 9·30644 1·6954 

7 1·0169 0·8261 9·31748 1·6801 

8 1·0171 0·8300 9·31110 1·6884 

9 1·0171 0·8279 9·31458 1·6841 

10 1·0173 0·8290 9·31276 1·6867 

11 1·0172 0·8283 9·31387 1·6852 

12 1·0173 0·8287 9·31324 1·6861 

1·0173 0·8285 

We see that the solution of the system is x = 1·0173, y = 0·8285. Since 

this is a local minimum. The corresponding value of the given function is -10·086. 



32. APPROXIMATION. INTERPOLATION, SPLINES 

By EMIL VITASEK 

References: [5], [38], [50], [52], [55], [104], [147], [150], [196], [215], [234], [292], [295], [359], 
[378], [412], [443]. 

The problern of approximating a given or a sought function by a function which 
is in some sense simpler is very frequent in numerical analysis. Usually, the ap­
proximating function is a linear combination of a finite number of functions which 
are given in advance. Thus, if in this case gk, k = 0, ... , n, is a finite sequence of 
given functions, then under the approximation of a function f we understand a lin­
ear combination c0g0 + · · · + cngn, where c0 , ... , Cn are constants which are to be 
determined according to some criterion. The choice of this criterion is, hence, the 
central point of the problern of approximation. In this chapter, we will investigate 
two possibilities: 

(i) The approximated function f as well as the functions go, ... , gn are supposed 
to be elements of a linear normed space (about normed spaces see § 22.4). Then 
the coefficients are chosen in such a way that the error has minimal norm. 

(ii) We choose in advance a finite set of points in the domain of definition of f 
and demand that the values of the approximation, and possibly also of some of its 
derivatives, agree with the corresponding values of f, or of its derivatives, at those 
points. In this case, we speak about the interpolation approximation or, briefl.y, 
interpolation. 

A further important possibility is the least squares approximation. In such an ap­
proximation, the coefficients are chosen from the condition that the sum of squares 
of the differences between f and its approximation taken over a fixed finite set 
of points be minimal. This approach is important especially for fitting curves to 
empirical data which are infl.uenced by random errors. For this reason this case is 
investigated separately in Chap. 35. 
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32.1. The Best Approximation in a Linear Normed Space 

Let X be a linear normed space (not necessarily complete) over the field of 

real or complex numbers, f any element of X and let 9o, ... , 9n be n + 1 linearly 

independent elements of X. The linear span of 9o, ... , 9n (i.e., the space of all 
linear combinations of 90 , .•. , 9n) is an (n + 1)-dimensional subspace of X; denote 

it by K. 

Definition 1. An element 9* E K is called the best approximation of f E X in 

the subspace K if 

II/- 9*11 = inf II/- 911· 
gEK 

(1) 

Theorem 1. The best approximation in a linear normed space always exists. 

Example 1. Let X be the space C([-1, 1)) offunctions of one real variable which 

are continuous on [-1, 1] andin which the norm is defined by II/II = max lf(x)l 
xE[-1, 1] 

( cf. § 22.4). Approximate the function f(x) = x3 , x E [ -1, 1], by an element 
of the linear subspace spanned by the functions 9o = 1 and 91 = x 2 • Thus, the 

approximating function has the form c0 + c1 x 2 • 

First, we assert that 

(2) 

Really, if (2) did not hold it would be 

(3) 

for any x E (-1, 1]. If we substitutein (3) -1 and +1 for x, we obtain 

-1 < -1 - (Co + Cl) < 1 , 

-1 < 1 - (Co + c1) < 1 
(4) 

and these inequalities have to be satisfied simultaneously. However, from the first 

inequality in ( 4), co + c1 < 0 follows while the second one implies c0 + c1 > 0, and 
this is a contradiction proving the validity of (2). The error of the approximation of 
the function x3 by a function of the form c0 + c1 x 2 thus cannot be smaller than 1. 

Further, let E be any real number satisfying lc I ~ 1. For this c and for x E [ -1, 1], 
we have 

lx3 - c(1- x2 )1 ~ lx3 1 + lcl(1- x 2 ) ~ x 2 + lcl(1- x 2 ) = 
= 1- (1- x 2 ) + icl(1- x 2 ) = 

= 1- (1- x2)(1 -Iei) ~ 1, 
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since the number (1- x2 )(1 -Iei) is non-negative. Thus, 

holds for any Iei ~ 1. This inequality and the inequality (2) imply that 

The last equation indicates that the function of the form e(1- x 2 ), where Iei ~ 1, 
is the best approximation of x 3 in the space of functions of the form co + c1 x2• 

This simple example thus shows that the element of best approximation need 
not be determined uniquely. 

Definition 2. A linear normed space is called sharply normed if the equality sign 
in the triangle inequality 

1111 + 1211 ~ 111111 + 111211 (5) 

occurs if and only if 12 = al1, where a ~ 0 or 11 = 0. 

REMARK 1. Any normed space in which the norm is defined by inner (scalar) 
product (see § 22.4) is sharply normed. Alsoall Banach spaces Lp of functions the 
p-th power of which is integrable are sharply normed for 1 < p < oo. On the other 
hand, the space C((-1, 1]) is an example of a space which is not sharply normed. 

Theorem 2. In a linear normed space which is sharply normed the best approxi­
mation is determined uniquely. 

32.2. The Best Approximation in a Hilbert Space 

Since any Hilbert space is a sharply normed linear space, existence and unique­
ness of the element of the best approximation follows from Theorems 32.1.1 and 
32.1.2. The next theorem describes another important property of this element. 

Theorem 1. Let K be a finite-dimensional subspace of a Hilbert space H and let 
f E H. An element g* E K is the element of the best approximation of f if and 
only if 

(! - g*, g) = 0 for any g E K. (1) 

REMARK 1. The geometrical meaning of Theorem 1 is that the error of the 
best approximation is orthogonal to the subspace K. The element of the best 
approximation is thus the orthogonal projection of the approximated element into 
the subspace K. 
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REMARK 2. The uniquely determined element ofthebest approximation exists 
and is characterized by {1) even in the case that K is any {not necessarily finite­
-dimensional) closed subspace of H. 

If Yo' ... ' Yn is the basis in K and if we take g* = cogo + ... + CnYn for the 
best approximation of f, then the coeflicients satisfy the system of linear algebraic 
equations 

n 

L)Yi, Yi)Cj = U, Yi), i = 0, ... , n, 
j=O 

{2) 

the matrix of which is called the Gram matrix and is Hermitian (i.e. (gj, Yi) = 
= (gi, gj) ) and positive definite {see § 1.29). 

REMARK 3. The element ofthebest approximation can be expressed in a sub­
stantially simpler form if the basis go, ... , Yn is orthonormal, i.e., if it satisfies 
(gi, Yi) = 1 for i = j and (gi, Yi) = 0 for i "I= j. In this case, the Grammatrix is 
the identity matrix and the element of best approximation is given by 

n 

g* =LU, Yi)Yi · {3) 
i=O 

Let us now investigate the problern of convergence, i.e., the problern of the 
behaviour of elements of the best approximation in the case when the dimension of 
subspaces in which the approximation is sought tends to infinity. 

Thus, let go, ... , Yn, ... be a sequence of normed and pairwise orthonormal 
elements of H. Denote by Hn the space spanned by go, ... , Yn· Hence, the element 
ofthebest approximation is given by {3). 

Theorem 2. Let f be any element of H. Then the series 

00 

LU, Yi)Yi {4) 
i=O 

converges {in the sense of convergence in the space H). 

Theseries {4) is called the generalized Fourier series (cf. §§ 22.4 and 16.2). 

00 

Theorem 3. The equality f = I.:{!, Yi)Yi holds if and only if the sequence gi, 
i=O 

i = 0, 1, ... , is complete in H. 

For the definition of completeness of a sequence, see Definition 22.4.11. The crite­
ria of completeness are described in the following theorem ( cf. also Theorems 22.4. 7 
and 22.4.8). 
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Theorem 4. The conditions 

(i) the sequence gi, i = 0, 1, ... , is complete in H; 
(ii) the only element which is orthogonal to all gi 's is the zero element; 

(iii) for any f EH we have 

00 

11111 2 = L:: 1u, gi)l2 

i=O 

are equivalent. 

The identity (5) is called Parceval's equality. 

32.3. The Best Approximation of 
Continuous Fu.nctions by Polynomials 

669 

(5) 

Let C be the space of real continuous functions defined on [a, b] with the usual 
norm II/II = max 1/(x)l. Since the polynomials of degree at most n obviously 

xE[-1, 1] 

form a finite-dimensional subspace of C, there exists, for any f E C, a polynomial 
Q~ of degree at most n such that 

En{f) = II/- Q~ll = inf II/- Qnll, (1) 

where inf is taken over all polynomials Qn of degree n or less (see § 32.1). This 
polynomial is called the polynomial of the best uniform approximation or the polyno­
mial of the Chebyshev approximation. It is also called the minimax approximation 
of f since its maximal error is minimal in [a, b]. 

Theorem 1 (Valle-Poussin). Let Qn be a polynomial of degree at most n. Let 
there exist n + 2 points xo < x1 < · · · < Xn+1 from [a, b] suchthat 

sign{( -1)i[f(xi)- Qn(xi)]} = const. for i = 0, ... , n + 1 (2) 

(thus, the function f- Qn changes its sign when passing from any of the points Xi 
to the following one). Then 

(3) 

Theorem 2 ( Chebyshev). A polynomial Qn is the polynomial of best uniform 
approximation if and only if there exist at least n + 2 points xo < x1 < . . . < Xm 
(m;?: n + 1) in [a, b] suchthat 

(4) 

and the number a, common for all i 's, is equal to 1 or -1. 
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REMARK 1. The property expressed in Theorem 2 means that the function 
f - Qn attains alternately its absolute maximum and minimum over the interval 
[a, b] at the points xo, xl> ... , Xm. This property is called the Chebyshev alter­
nating property and the corresponding set the Chebyshev alternating set. Hence, 
Theorem 2 says that the Chebyshev alternating property completely characterizes 
the polynomial of best uniform approximation. 

Theorem 3. The polynomial of best uniform approximation is uniquely deter­
mined. 

REMARK 2. Since the space Cis not sharply normed, Theorem 3 implies that 
the condition on the space to be sharply normed is not necessary for uniqueness. 

REMARK 3. Theorems 1 to 3 can be generalized to the case when given contin­
uous function is approximated by a "generalized" polynomial, i.e., by a function of 
the form c0 g0 (x)+· · · +cngn(x) where go, ... , 9n are linearly independent functions 
which satisfy the Haar condition. By the Haar condition, we mean here the fact 
that any generalized polynomial cogo(x) + · · · + Cn9n(x), which has more than n 
different zeros in [a, b], is identically equal to zero. 

REMARK 4. Theorems similar to Theorems 1 to 3 can be formulated also for the 
case when the approximating function is a rational function. 

Example 1. We have to determine a polynomial of the n-th degree with the 
coefficient at xn equal to 1 whose deviation from zero (in the sense of the norm 
in C) is minimal on the interval [ -1, 1]. 

This problern can obviously be reformulated as a problern of finding a polyno­
mial of degree at most n- 1 which is, in [-1, 1], the polynomial of best uniform 
approximation of the function xn. Thus, the polynomial sought (Iet us denote it 
by Tn) is completely characterized by the property that the nurober of consecutive 
points from [-1, 1] at which its value is, with alternating signs, equal to IITnll, is 
not less than n + 1 (this fact immediately follows from Theorem 2). 

We assert that the polynomial Tn can be written in the form 

1 
Tn(x) = 2n-l cos(narccosx). (5) 

Really, from formulae 2.5.4 it immediately follows that Tn is a polynomial. Further, 
we have IITnll = 1/2n-t as follows from (5) at the first glance. Finally, if we put 

k1r (n- k)1t 
Xk = - cos- = cos , k = 0, ... , n, 

n n 

then 
-1 = Xo < Xt < · · · < Xn = 1 
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and, 
1 (n- k)1i (-1)n-k n-k 

Tn(xk) = 2n-l cos n = 2n-l = ( -1) IITnll· 

The polynomial which we have constructed in Example 1 is called the Chebyshev 
polynomial. 

32.4. Jackson's Theorems 

In this paragraph, we introduce some important theorems concerning the be­
haviour of the quantity En(f) defined by (32.3.1). 

Definition 1. We say that f satisfies the Hölder condition in [a, b] if there exist 
constants K > 0 and a, 0 < a ~ 1, such that 

lf(x)- f(y)l ~ Klx- Yla, x, Y E [a, b]. (1) 

REMARK 1. For a = 1, we apparently obtain the well-known Lipschitz condition. 

Definition 2. We say that the function I belongs to the class cn, a Oll [a, b] ( n ~ 0 
an integer, 0 < a ~ 1), if its n-th derivative exists and satisfies the Hölder condition 
with exponent a in [a, b]. 

Definition 3. Let f be a positive function defined on [a, b]. The function wt(t) 
defined for positive t's by the formula 

wt(t) = sup 1/(x) - f(y)l, 
:z:,yE(a,b) 
):z:-y)~t 

(2) 

where also oo is admitted as a function value, is called the modulus of continuity 
(or, in more detail, the uniform modulus of continuity) of f. 

Theorem 1. A function f is uniformly continuous on [a, b] if and only if 

lim wt(t) = 0. 
t-+0+ 

(3) 

A function f is an element of C0• a if and only if 

(4} 
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REMARK 2. The modulus of continuity of a continuous function measures the 
rate of convergence of f(x) to f(y) for x -t y, where y is any point from [a, b]. In 
addition, there exists, to any sequence of numbers converging to zero, a continuous 
function whose modulus of continuity converges to zero more slowly than the given 
sequence. 

Theorem 2 (Ist Jackson's Theorem). lf En(/) is the error of bestuniform ap­
proximation of a function f E C by a polynomial, then 

(5) 

Theorem 3 (2nd Jackson's Theorem). lf f has p continuous derivatives in [a, b] 
and if we denote the modulus of continuity of f(P) by wp(t), then we have, for n > p, 
that 

E (!) :::;; Cp(b- a)P w ( b- a ) 
n - nP P 2(n- p) ' (6) 

where Cp is a constant depending only on p. 

Corollary 1. Let the assumption of Theorem 2 be satisfied and let, moreover, 
f(P) E C0 • a. Then 

E (J) :::;; (p + 1) a C M ( b - a )P+a 
n - 2 p nP+a ' 

where M is the constant from ( 4). 

Corollary 2. lf lf(P+l)(x)l ~ Mp+l for x E [a, b], then 

E (f) < p + 1 C M (b- a)P+l 
n = 2 p p+l nP+l 

Corollary 3. lf f has derivatives of all orders, then 

lim (nPEn(!)) = 0 
n-+oo 

holds for any p. 

32.5. The Remes Algorithm 

(7) 

(8) 

(9) 

In those situations, when we have to ~pproximate a function by a polynomial 
at a point about which we know a priori only that it lies in an interval but we 
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do not know exactly its position, the best uniform approximation can be useful 
since it minimizes the maximal error in the considered interval. In what follows, 
we therefore present an iterative procedure for its computation. It is based on the 
Valle-Poussin Theorem 32.3.1 and consists in improving the Chebyshev alternating 
set. 

Assurne that we have found the k-th approximation of the Chebyshev alternating 
set, i.e., we have at our disposal the points 

(k) (k) < 
a ~ Xo < · · · < Xn+l = b. (1) 

First, solve the system of n + 2 linear algebraic equations 

n 

L a;k)(x~k))j + ( -1)iE(k) = f(x~k)), i = 0, ... , n + 1, (2) 
j=O 

for n + 2 unknowns a~k), ... , a~k) and E(k). This is possible since the determinant 
of (2) is always different from zero. Put 

n 

Q(k)(x) = L a;k)xj. (3) 
j=O 

Further, determine the number y(k+l) in [a, b] in such a way that the function 

(4) 

attains its absolute extreme at y(k+l). 

The next, (k + 1)-st approximation of the alternating set is then defined as a set 
containing always y(k+l) and, further, some suitable points from the preceding 
approximation. 

If E(k) = 0, then the (k+1)-st approximation is the set containing y(k+l) and any 
n + 1 points from the k-th approximation. The new approximation thus arises in 
such a way that an arbitrary point of the k-th approximation is replaced by y(k+l) 

and the resulting set is then ordered according to the magnitude of its elements. 

If E(k) "# 0, the following three cases take place: 

(i) y(k+l) E [a, x~k)], 
(ii) y(k+l) E [x~k2 1 , b], 

(iü) there exists an index io, 0 ~ io ~ n, such that y(k+l) E [x~:), x~:t1 J. 

In case (i) we set x~k+l) = y(k+l) and, for i = 1, ... , n + 1, we set x~k+l) = x~k) 
if R(k)(x~k))R(k)(y(k+l)) > 0, or x~k+l) = x~~1 if R(k)(x~k))R(k)(y(k+l)) < 0. 

Thus, the point x~k) or x~k_2 1 is omitted from the k-th approximation. 
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In case (ii) we set x~~1 ) = y<k+1) and, for i = 0, .. ~, n, we set x~k+I) = x~k) 
if R(kl(x(k) )R(k)(y<k+1)) > 0 or x(k+1) = x~k) if R(kl(x(k) )R(kl(y(k+1l) < 0 n+1 ' • •+1 n+1 · 
Hence, here the point x~k21 or x~k) is omitted. 

In case (iii) we set x~:+ 1 ) = y(k+1) and x~k+ 1 ) = x~k) for i = 0, ... , n, i =I io, if 
R(k)(x~:))R(k)(y(k+l)) > 0, or x~::;> = y(k+1) and x~k+ 1 ) = x~k) for i = 0, ... , n, 

i :j; i 0 + 1, if R(kl(x~:))R(k)(y<k+ 1 )) < 0. Thus, the point x~:) or x~:~ 1 is omitted 
from the preceding approximation. 

If f is sufficiently smooth, the polynomials Q(k) converge to the polynomial 
of best uniform approximation for an arbitrary initial approximation. The con­
vergence, however, is the faster the closer the starting set is to the Chebyshev 
alternating set. Thus, if we succeed in finding a polynomial R of degree n hav­
ing the property that the difference f - R attains its local extrema, the signs of 
which alternate at n + 2 successive points, then such set will be a suitable starting 
approximation for the described algorithm. 

We now show two relatively simple ways to construct such polynomial approxi­
mations of the given function that their error has the above property. 

(a) Chebyshev's Expansions 

Chebyshev's polynomials (32.3.5) are orthogonal in [-1, 1] with weight 
1/(1- x2 ) 112 (see also § 16.6) and a function f possessing suitable properties can 
be expanded in the generalized Fourier series 

1 00 

f(x) = 2co + L CjTj(x), 
j=1 

(5) 

where 
. 1 

. _ 221 - 1 J f(x)Tj(x) 
cJ- ( 2)1/2 dx. '11 1-x 

(6) 
-1 

If we truncate the series in (5) after n + 1 terms, we obtain a polynomial which 
is usually a very good initial approximation for Remes' algorithm. 

(b) Economized Power Series 

The approximation of a given ( sufficiently smooth) function f by the polynomial 
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where Tn+l is the Chebyshev polynomial of degree n+ 1, has very similar properties 
on the interval [ -a, a] as the approximation gained from the truncated Chebyshev 
expansion. At the same time, the construction of Cn is substantially easier. Note 
that Cn is really a polynomial of degree n since the terms with xn+l cancel. 

32.6. Polynomial Interpolation. Lagrange's Interpolation 
Formula. Hermite's Interpolation Formula 

Let a function I of a real variable, n + 1 mutually different points ao, ... , an and 
n + 1 positive integers r 0 , ••• , rn be given. The basic problern of the polynomial 
interpolation is the problern of finding the polynomial P of least possible degree 
satisfying, for i = 0, ... , n, the conditions 

(1) 

Definition 1. The polynomial P of above properties is called the interpolation 
polynomial and the points a0 , ••• , an at which we ask for the agreement of the 
values of I and, possibly, also of the values of its derivatives up to some definite 
order with the corresponding values of P, or of its derivatives, are called the nodes 
of intrepolation or tabular points. 

Theorem 1. There exists exactly one polynomial of degree at most m- 1, where 

m = ro + rl + ... + r n ' (2) 

which satisfies (1). 

Theorem 2. Let I have m continuous derivatives in an interval [a, b] which con­
tains the nodes ao, ... , an. Further, let x be any point from [a, b]. Then there exists 
e E [a, b) suchthat 

l(x)- P(x) = ~n(x)J<m>(e), 
n. 

(3) 

where 

REMARK 1. The formula (3) gives the error which is made when replacing I 
by its interpolation polynomial. It is not possible to compute the error directly 
from it since the number e depends on X in a manner Which is not known, in 
general. Its importance consists mainly in the fact that it allows to bound the error 
of interpolation if we are able to bound the m-th derivative of the interpolated 
function. 
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REMARK 2. The error of an interpolation formula is also called its Temainder. 

The equations (1) form a system of linear algebraic equations for determining 
coefficients of a general interpolation polynomial. In special cases, when Ti = 1 and 
Ti = 2 for i = 0, ... , n, we speak about Lagrange's and Hermite's interpolation, 
respectively. In those situations the interpolation polynomials can be expressed by 
simple formulae. 

Theorem 3. Let 
w(x) = (x- ao) ... (x-an) (4) 

and 
l·(x)- w(x) 
' - (x- ai)w'(ai) ' i = O, · · ·' n · (5) 

Then the polynomial Ln ( x) defined by 

n 

Ln(x) = L f(ai)li(x) (6) 
i=O 

has the degTee at most n and satisfies 

(7) 

foT i = 0, ... , n. 

Definition 2. The polynomial Ln given by ( 6) is called Lagrange 's interpolation 
polynomial and the polynomials li are called elementary polynomials of Lagrange 's 
interpolation. 

REMARK 3. The elementary polynomial li(x) of Lagrange's interpolation is 
a polynomial of degree n which attains the value 1 at ai and the values 0 at the 
other tabular points. Alternately, it is possible to write 

li(x) = (x- ao) ... (x- ai-l)(x- ai+1) ... (x-an) 
(ai- ao) ... (ai- ai-l)(ai- ai+l) ... (ai-an) 

(8) 

REMARK 4. Supposing that the function f has m = n + 1 continuous deriva­
tives, the error of the Lagrangeinterpolation polynomial is given by (3), where the 
function n is replaced by w defined in ( 4). 

Theorem 4. The polynomial H2n+l, defined by 

n 

H2n+l(x) = L[f(ai)hi(x) + f'(ai)hi(x)], (9) 
i=O 
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hi(x) = [1- 2{x- ai)l~(ai)]l~(x), 

hi(x) = (x- ai)l~(x) 

677 

(10) 

and li are elementary polynomials of the Lagrange interpolation, is of degree at most 
2n + 1 and satisfies 

H2n+l(ai) = f(ai) 

H~n+l (ai) = J'(ai), i = 0, ... , n. 
{11) 

Definition 3. The polynomial {9) is called the Hermite interpolation polynomial. 

REMARK 5. The error of the Hermite interpolation polynomial is given again 
by {3). Now we must put m = 2n + 1 and il = w2 in it. 

REMARK 6. The general interpolation polynomial from Definition 1 is often 
called the Hermite interpolation polynomial, too. 

The Lagrangeinterpolation polynomial can alternatively be written in the New­
ton form using the concept of a divided difference. 

Definition 4. Let n + 1 mutually different points Xi, i = 0, ... , n, be given. The 
first divided difference f[xo, x1] is defined by 

f[ 1 _ f(xl) - f(xo) 
Xo, X1 - · 

X1- Xo 
(12) 

Generally, the n-th divided difference is defined recurrently by 

f[ 1 f[xb ... , Xn] - f[xo,. ·. , Xn-1] 
XQ, .•• , Xn = · 

Xn -xo 
(13) 

Theorem 5. The n-th divided difference f[xo, ... , Xn] can be expressed in the 
form 

(14) 

Theorem 6. The Lagrange interpolation polynomial from formula ( 6) can be writ­
ten in the form 

Ln(x) = f(ao) + (x- ao)f[ao, a1] + (x- ao)(x- al)f[ao, ab a2] + ... 
· · · + (x- ao)(x- al) ... (x- an-l)f[ao, ab ... , an] 

(15) 
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and its remainder in the form 

f(x)- Ln(x) = (x- ao) ... (x- an)f[x, ao, ... , an]· 

Definition 5. The polynomial on the right-hand side of (15) is called the general 
Newton interpolation polynomial. 

REMARK 7. Notice that it was not necessary to assume that the points ao, ... , an 
are ordered according to their magnitude. 

32.7. Differences. Interpolation Polynomial 
for Equidistant Arguments 

If the tabular points are equidistant, i.e., if 

ak = ao + kh, k an integer, 

then the Lagrange polynomial can be written in terms of differences. 

(1) 

Definition 1. The k-th forward difference (k isanon-negative integer) of a func­
tion f at the point x is the number !::!J..k f(x) defined by the recurrence 

!::!1..0 f(x) = f(x), 

!:l.k f(x) = !::!J..k-1 f(x + h)- .!::!J..k-1 f(x). 
(2) 

Similarly, the k-th backward difference of a function f at the point x is the number 
vk f(x) defined by 

V 0 f(x) = f(x), 

vk f(x) = vk-1 f(x)- vk-1 f(x- h). 
(3) 

Theorem 1. The k-th forward difference of a function f can be expressed as 
a linear combination of the values of f in the form 

(4) 

and the k-th backward difference in the form 

vk f(x) = t,< -1)i (~) f(x- ih). (5) 
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Theorem 2. For any non-negative integer k we have 

(6) 

and 
ak l(x) = vk l(x + kh). (7) 

Theorem 3. The value ol a function I at the point x + kh and x - kh (k is 
a non-negative integer) can be expressed as a linear combination ol the 0-th up to 
the k-th lorward and backward differences ol I at x, respectively, according to the 
lormulae 

(8) 

and 

(9) 

respectively. 

Theorem 4. Let a point x, equidistant points ao, ... , an or ao, ... , a_n and 
a function I defined on the interval I spanned by the points ao, ... , an, x or 
ao, ... , a_n, x, respectively, be given. Further, let I have n + 1 continuous deriva­
tives on I. Then there exist points 6, 6 E I such that 

{10) 

or 

l(x) = ~( -1)i ( ~s) vi l(ao) + ( -1)n+l (n--: 1) hn+l l(n+l)(6)' {11) 

respectively, where 

and 

x- a0 
s=--

h 

( m) = m(m-1) ... (m-i+1). . ., 
2 2. 

{12) 

{13) 

REMARK 1. The formula (13) must be used exactly in the form indicated and 
not in the form m!/[i!(m- i)!] which holds only for an integer m ~ i. 
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REMARK 2. Taking into account the definition of s in {12) we see that the sums 
in the right-hand terms of {10) and {11) are really polynomials in x of degree at 
most n. 

Definition 2. The formula {10), or {11) is called Newton's forward, or Newton's 
backward interpolation formula, respectively. 

REMARK 3. The polynomials in {10) and {11) are polynomials of degree at 
most n attaining the same values as the given function f at points ao, ... , an, or 
a0 , ••. , a-n· They are, naturally, equal to the Lagrangeinterpolation polynomial 
for the same tabular points. To be able to construct such a polynomial it is not 
necessary to assume that f has derivatives up to the order n + 1. This smoothness 
enables us only to write the interpolation polynomials with remainders. 

Definition 3. The k-th central difference of a function f at the point x is the 
number ok f ( x) defined recurrently by the formulae 

of(x) = f(x + h/2)- f(x- h/2), 

ok f(x) = ok-1 f(x + h/2)- ok-1 f(x- h/2) 0 

{14) 

Theorem 5. For any positive integer k, we have 

{15) 

Theorem 6. Let a point x, equidistant nodes a_n, ... , ao, ... , an and a function f 
defined on the interval I spanned by a_n, ... , an and x be given. Further, let f have 
2n + 1 continuous derivatives in I. Then there exist points 6, 6 E I such that 

and 

f(x) = f(a0 ) + ~ [ (s~~~ 1)o2i-1f (ao- ~) + (s~i)o2if(ao)] + 

+ (;n++n1)h2n+1J(2n+1)(6), {17) 

where s is defined by {12) again. 
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REMARK 4. The odd central differences at the point ao + h/2 or a0 - h/2, respec­
tively, are given by the values of f at tabular points. Thus, the values of f only at 
tabular points occur in the right-hand terms of (16) or (17). 

Definition 4. The formula {16) is called the Gauss forward interpolation formula 
and the formula (17) the Gauss backward interpolation formula. 

REMARK 5. The sum in the right-hand term of (16) or {17) is a polynomial 
of degree at most 2n which attains the same values as f at the tabular points 
a_n, ... , an. Thus, each of these polynomials is again the Lagrangeinterpolation 
polynomial expressed only in a different form, naturally for an odd number of 
equidistant tabular points. 

REMARK 6. Omitting the term containing the n-th central difference in the sum 
on the right-hand side of {16), or (17), we obtain the interpolation polynomial for 
an even number of tabular points a-(n-1), ... , an, or a_n, ... , an-1· 

REMARK 7. There exist many other special interpolation formulae written by 
means of differences. Many of them have special names. Thus, for example, if we 
add the Gauss interpolation formula {16) to the Gauss interpolation formula {17) 
and divide by two, we obtain the Stirling interpolation formula; the Bessel interpo­
lation formula is the arithmetic mean of the Gauss forward interpolation formula 
for tabular points a-(n-1), ... , an and the Gauss backward interpolation formula 
written for the same points. 

REMARK 8 (Fraser's Diagram). Ifwe orderforward differences and the binomical 
coeflicients in a scheme shown in Tab.32.1, we obtain the Fraser diagram. With the 
help of it we can generate most of the interesting interpolation formulae written by 
means of differences. To generate such an interpolation formula, we procceed as 
follows: 

(i) Start at an entry in the first {fmi.ctional value) column and proceed along any 
path in the Fraser diagram (i.e., if a segment terminates on a difference, the path 
may be continued along any of the other three paths leading from the difference). 
End the path at any difference. 

(ü) Then construct the interpolation formula by 

(1) writing down the functional value at which the path started and then 

(2a) for every left to right segment in the path add a term consisting of the 
difference on which the segment terminates multiplied by the binomial coeflicient 
directly below this difference, if the slope of the segment is positive (i.e., if the 
segment goes upward and to the right), and directly above, if the slope of the 
segment is negative, and 

(2b) for every right to left segment subtract a term consisting of the difference 
at which the segment originates multiplied by the binomial coeflicient directly below 
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this difference, if the slope of the segment is positive (i.e., if the segment goes 
downward and to the left), and directly above, if the slope is negative. 

Any interpolation polynomial constructed in the way indicated which terminates 
with the n-th difference, no matter by which path it reaches that difference, is equal 
to the Lagrange interpolation polynomial using the same tabular points which are 
included in the difference with which we have terminated. 

Thus, for example, starting at f(ao), proceeding along lines sloping downward 
to the right and terminating with the n-th difference, we get the Newton forward 
interpolation polynomial. If we proceed in a zigzag way, downward and to the 
right, then upward and to the right, then downward and to the right, etc., if we 
stop at the n-th difference and replace the forward differences by central differences 
according to Theorem 5, we obtain the Gauss forward interpolation polynomial, 
etc. 

32.8. Trigonometrie Interpolation 

The basic problern of trigonometric interpolation is similar to that of polynomial 
interpolation. Again, we look for a polynomial Qn. now a trigonometric one, i.e., 
a function of the form 

Qn(x) = ~Ao + t(Ai cosjx +Bi sinjx), 
i=O 

(1) 

which attains the same values ( eventually, has the same derivatives up to some 
order) as a given function at given tabular points. 

Since the trigonometric polynomial (1) is 21r-periodic, we will assume that the 
interpolated function is also 21r-periodic and restriet ourselves to the interpolation 
of Lagrange type with equidistant tabular points. 

Theorem 1. Let the number of equidistant tabular points be odd, i.e., let they be 
given by the formula 

21rk 
ak = 2n + 1 , k = 0, ... , 2n. (2) 

Then the coefficients of the trigonometric polynomial Qn which satisfies the condi­
tions Qn(ak) = f(ak), k = 0, ... , 2n, are given by the formulae 

2 2n 

Aj=-2--L:J(ak)cosjak, j=O, ... ,n, 
n+1k=O 

2 2n 

Bj = -2 1 Lf(ak)sinjak, j = 1, ... , n. 
n+ k=O 

(3) 
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Theorem 2. The polynomial Qn, having the properlies described in Theorem 1, 
can be written in the form 

Qn(x) = _1_ ~ sin[(~ + 1/2)(ak- x)] f(ak). 
2n + 1 2o sm[(ak- x)/2] 

(4) 

REMARK 1. The formula ( 4) is an analogue of the Lagrange interpolation for­
mula; the role of the ele!fientary polynomials lk is played here by the functions 

() 1 sin[(n+1/2)(ak-x)] 
tk x = 2n + 1 sin[(ak- x)/2] · 

(5) 

Theorem 3. Let the number of equidistant tabular points be even, i.e., let they be 
given by the formula 

21'ik 
ak = - , k = 0, ... , 2n - 1. 

2n 
(6) 

Then the trigonometric polynomial Rn-1 satisfying Rn-1(ak) = f(ak), k = 0, ... 
. . . , 2n - 1, is given by 

n-1 

Rn-1(x) = ~Ao + L(Ajcosjx + Bjsinjx) + ~Ancosnx (7) 
i=1 

with the coefficients Aj and Bj given by 

2n-1 

Ai=.!. L f(ak)cosjak, j = 0, ... , n, 
n 

k=O 
2n-1 

Bj =.!. L f(ak)sinjak, j = 1, ... , n -1. 
n 

k=O 

(8) 

REMARK 2. The computation involved in determining Aj and Bj, can be ad­
vantageously pedormed using the fast Fourier transform (cf. Remark 16.3.13). 

32.9. Interpolation by Splines 

The basic idea underlying the interpolation of this type is similar to that of the 
Lagrange or Hermite interpolation. The only difference consists in the circumstance 
that, instead of a polynomial, we take, for interpolating the given function, a spline, 
i.e., a piecewise polynomial function. 
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(a) Interpolation of the Lagrange Type 

Definition 1. The classical spline of degree k for the nodes ao < a1 < · · · < an 
is a function which is a polynomial of degree at most k in any interval [ai, ai+t], 
i = 0, ... , n - 1 (generally different in different intervals) and which has, in the 
whole interval [a0 , an], continuous derivatives up to the order k- 1. 

Definition 2. By the interpolation of a given function I by a classical spline of 
degree k for nodes ao < a1 < · · · < an we understand the spline j,. of degree k 
which satisfies the conditions l,.(ai) = f(ai) for i = 0, ... , n. 

Among classical splines, the most popular one is the spline of degree 3 called the 
cubic spline. The reason is that the interpolation by the cubic spline has, among all 
functions which interpolate the given function and which are sufficiently smooth, 
the least flexion. 

Theorem 1. Let I be a function continuous in [a, b], let a = ao < a1 < ... 
. . . < an = b be any partition of this interval and let ao and O"n be arbitrary real 
numbers. Then there exists one and only one fs which satisfies l;'(a) = ao, J;'(b) = 
O"n and which is the interpolation of I by the classical cubic spline. Moreover, if we 
put l,.(x) = si(x) lor x E [ai, ai+tJ, we have 

where 

si(x) = Wi(x)f(ai+t) + Wi(x)f(ai)+ 

+ih~[(wt(x)- Wi(x))ai+l + (wt(x)- Wi(x))ai], 

x- ai 
wi(x) = -h--, 

• 

(1) 

(2) 

and the numbers ai, i = 1, ... , n- 1, are obtained as the solution of the system of 
n - 1 linear equations 

where 

(4) 

REMARK 1. The numbers O"i are the values of the second derivatives of ls at 
a/s. 

REMARK 2. If we want to construct the interpolation of a function by the clas­
sical cubic spline, we must solve the system of linear algebraic equations (3). The 
matrix of this system is tridiagonal and diagonally dominant so that the Gaussian 
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elimination method can be used without pivoting (see § 30.1). Moreover, since 
the matrix is also well-conditioned for any reasonable choice of nodes, the solution 
of (3) is not accompanied with any computational problems. 

REMARK 3. If the nodes of interpolation are equidistant, then the matrix of (3) 
is symmetric. 

REMARK 4. The classical cubic spline which interpolates a given function de­
pends on two parameters ao and an. Their choice, i.e., the choice of f~'(ao) and 
f~'(an), guarantees uniqueness. If we put a0 =an= 0, the corresponding spline fs 
satisfies f~'(ao) =!~'(an)= 0. Such a spline is called the natural spline. 

REMARK 5. Alternatively, the function Si from Theorem 1 can be written in the 
form 

{5) 
+ f(ai+1)[2(ai+1- x) + hi](x- ai) 2 ~~ - mi+1(ai+1- x)(x- ai) 2 ~2 , 

• t 

where mo and mn are any numbers and the numbers m 1 , ... , mn_1 satisfy the 
system 

himi-1 + 2{hi-1 + hi)mi + hi-1mi+1 = 

= 3 hhi~ 1 [f(ai+1) - f(ai)] + 3 hhi [f(ai) - f(ai-1)]. 
• ·-1 

{6) 

The constants mk are now the values of the first derivatives of fs at ak 's. Thus, 
the choice of f~(ao) and J;(an) leads also to uniqueness. 

The most practicable error bound for the interpolation by the classical cubic 
spline is obtained supposing that f belongs to a convenient Sobolev space Hk = 
= w;(a, b) {see § 22.4). 

Theorem 2. Let f EHr, where r = 2, or 3, or 4 and let fs besuch an interpola­
tion of f by the classical cubic spline for the nodes a = a0 < a 1 < · · · < an = b that 
J;(a) = J'(a) and f~(b) = f'(b). Then there exists an absolute constant M such 
that 

(7) 

where 

h = . max (ai+1 - ai). 
t=O, ... ,n-1 

(8) 
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RE MARK 6. If the functions of one variable are concerned, the elements of the 
Sobolev space Hk are exactly those functions which have, in the given interval, 
absolutely continuous derivatives up to the order k - 1 and the k-th derivative of 
which is square integrable. 

(b) Interpolation of the Hermite Type 

Definition 3. The Hermite spline of degree 2k- 1 (k ~ 1 integer) for the nodes 
a = ao < a1 < · · · < an = b is a function which is a polynomial of degree at 
most 2k - 1 in any interval [ai, ai+l], i = 0, ... , n - 1, and which has continuous 
derivatives up to the order k- 1 in [a, b]. 

Theorem 3. Let f be a function having k - 1 continuous derivatives in [a, b] 
and let a = ao < a1 < · · · < an = b be an arbitrary partition of [a, b]. Then 
there exists one and only one Hermite spline fs of degree 2k - 1 which satisfies 
f (j)(a·)- j(1)(a·) ; - 0 n J.- 0 k- 1 s '1.- t,(l-, ... ,' -, ... , . 

Definition 4. The function fs from Theorem 3 is called the interpolation of a given 
function f by the Hermite spline of degree 2k- 1 for the nodes a = a0 < a1 < ... 
. . . <an= b. 

Theorem 4. Let f E Hr, where r is any number from the set { k, k + 1, ... , 2k} 
and let !s be the interpolation of f by the Hermite spline of degree 2k - 1 for the 
partition a = ao < a1 < · · · < an = b. Then there exists an absolute constant M 
suchthat 

IIJ- fsiiHP ~ Mhr-pllfllw, P = 0, ... , min(r- 1, k). 
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References: [31], [43], [81], [82], [101], [137], [141], [194], [202], [205], [243], [244], [245], 
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33.1. Random Event and Probability 

Rand o m Experiment. Probability theory is concerned with mathema­
tical models of random experiments. They are such experiments the outcomes of 
which - in contrast to deterministic experiments - are not uniquely determined 
by the prescribed conditions of the experiment and can be, moreover, repeated 
many times (in principle without limitation) under these conditions. The term 
"random experiment" is used not only in classical examples of throwing a die or 
tossing a coin but also in such situations when one draws items from a lot to control 
quality in mass production, observes the time to failure of technical devices in tests 
of reliability or considers the sex of new-born children in demography, etc. 

R an d o m E v e n t . A random event is such a statement concerning the out­
come of a random experiment that after performing the experiment one ca~ uni­
quely conclude whether this statement is valid or not. 

Operations similar to those used in logic (§ 1.1) can be applied to random events. 
The complementary event to an event A is such an event denoted by Ä that occurs 
if and only if the event A does not. The union of events A and B is the event 
denoted by A U B that occurs if and only if at least one of the events A and B 
occurs. The intersection of events A and B is the event denoted by A n B that 
occurs if and only if both events A and B occur simultaneously. In a quite natural 
way one can generalize the operations of union and intersection to an arbitrary 
family of events. The difference of events A and B is the event denoted by A '- B 
that occurs if and only if the event A occurs and the event B does not. An event A 
implies an event B (in this case one writes A C B) if the event B occurs whenever 
the event A does. The events A and B are equivalent if and only if the implications 
A C B and B C A hold simultaneously. The certain event denoted by n occurs 
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in each possible realization of the random experiment while the impossible event 
denoted by 0 does not occur in any of its realizations. The events A and B are 
disjoint if AnB = 0. More generally, if a family of events is considered, these events 
are called disjoint if any two different events of this family are disjoint. The total 
system of events is a family of events that are disjoint and whose union is equal to 
the certain event. The elementary event is the event that cannot be expressed as a 
union of two events distinct from the event considered. 

REMARK 1. Elementary events coincide with individual outcomes of the experi­
ment that can no Ionger be decomposed so that the random events can be identified 
with subsets of the set il of all possible experiment outcomes (il is also called the 
space of elementary events). Then the individual operations with random events 
correspond to the operations with sets from § 1.23 (the complementary event cor­
responds to the complement of a set, the implication of events to the inclusion of 
sets, disjoint events to disjoint sets, the certain event to the whole space il and the 
impossible event to the empty set). 

Example 1. When throwing a fair die, the random experiment has six possi­
ble outcomes. Let Wi denote the outcome ( the elementary event) that the num­
ber i turns up ( i = 1, ... , 6). The space of elementary events is obviously il = 
= {wi. w2, w3, w4, ws, w5}. Let us consider the random events A: "a number 
greater than 4 turns up ", B: "an even number turns up", C: " an odd num­
ber turns up", and D: "the number 6 turns up", i.e. 

Then it holds, e.g., 

The events B and C are disjoint and, in addition, they form the total system of 
events. 

Example 2. If the random experiment consists in throwing two fair dice, then it 
has 36 possible outcomes and one can write 

The random event A: "the sum 5 turns up "can be written as 

P r o b ab i l i t y . Despite the fact that one cannot forecast the outcomes of the 
individual performances of a random experiment it is possible to obtain a certain 
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general information if one repeats the experiment many times. If an event A has 
occurred precisely k times in a series of n performances of the experiment, then k is 
called the frequency of the event A and k/n is the relative frequency of the event A 
in the performance considered. When n increases, then due to the so-called stability 
of relative frequencies which is the empirical foundation of probability theory, the 
relative frequencies converge to a value called the probability of the event A. 

In the modern probability theory, the existence of probabilities of random events 
is introduced axiomatically. Since the probabilities have their Counterparts in the 
relative frequencies, their properties have to be analogous to those of the relative 
frequencies. These properties are postulated in the form of the so-called axioms of 
probability: 

Al. To every event A, a real value P(A) is associated fulfilling 

0 ~ P(A) ~ 1. {1) 

The value P(A) is called the probability of the event A. 
A2. The probability of the certain event is 

P(n) = 1. {2) 

A3. If A and B are disjoint events, then 

P(A U B) = P(A) + P(B). {3) 

Theorem 1 { Properlies of Probability). Let A, B, A 1 , ••. , An be arbitrary events. 
Then the following statements hold: 

{i)P(0)=0. {4) 
{ii) P(A U B) = P(A) + P(B) - (An B). {5) 

{iii) P(A' B) = P(A)- P(A n B). {6) 
(iv) If Ac B, then P(A) ~ P(B). 

(v) P( Ü Ai)= f:{-1)i-lS~n), (7) 
i=l i=l 

where 

s~n) = :E P(Ak1 n Ak2 n · · · n AkJ· 
l~k1 <k2 <···<k;~n 

If the events A1, ... , An are disjoint, then 
n n· 

P( U Ai) = l: P(Ai). 
i=l i=l 

n n 

(vi) P( n Ai) ~ 1- l: [1- P(Ai)] (Bonferroni Inequality). 
i=l i=l 

{8) 

{9) 
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Classical Definition of Probability. If the nurober of all possible 
outcomes (the nurober of all elementary events) of a random experiment is finite and 
the individual outcomes can be considered equally probable, then the probability 
of an arbitrary random event A can be found according to the so-called classical 
definition of probability by means of the formula 

K 
P(A) = N, (10) 

where N is the nurober of all outcomes of the experiment and K is the nurober of 
such outcomes for which the event A occurs. One frequently Iooks for the values K 
and N by means of combinatorial methods (see § 1.12). This approach is known as 
the combinatorial calculation of probability. 

Example 3. A lot of 50 products contains 6 defective ones. One draws 5 products 
from the lot randomly. Then the probability of the random event A that there are 
precisely 2 defective products in the selected sample is 

(6) (50-6) 
P(A) = 2 s-2 = 15 . 13244 = 0_094 . 

(55°) 2118760 

Example 4. 11 letters A, A, C, E, H, I, M, M, S, T, T are ordered randomly 
on the magnetic blackboard. Then the probability of the random event A that the 
word MATHEMATICS arises is 

2!2!2! 8 
P(A) = 1i! = 39916800 = 0·0000002. 

REMARK 2. Modernprobability theory usually introduces the probability space 
(il, A, P). In this triplet, il is a space of elementary events, Ais a Borel field (a­
algebra) of sets in il (i.e. the non-empty family of sets in il containing with each 
set also its complement in il and with each countable sequence of sets its union) 
and Pis a probability measure on A which fulfils axioms (1), (2) given above and 
the following generalization of the axiom (3): if At, A2, ... is an at most countable 
sequence of mutually disjoint sets in A, then P(U Ai) = L: P(Ai)· 

33.2. Conditional Probability and Independent Events 

C o n d i t i o n al Probability. In conditioning, the set of all possible out­
comes of a random experiment is reduced to such outcomes which satisfy the con­
sidered condition. 
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Definition 1. The conditional probability of an event A given an event B ( or 
briefiy the conditional probability of A given B) is the value 

P(A I B) = P(An B) 
P(B) . 

The conditional probability makes sense only for P(B) > 0. 

(1) 

If the conditioning event is fixed, then the conditional probability has the same 
properlies as the probability without conditioning. In the following assertions we 
shall suppose that all conditional probabilities make sense: 

Theorem 1 (Probability of Intersection of Events). For arbitrary random events 
At, . .. , An we have 

n n-t 

P(n Ai)= P(At) P(A2 I At) P(A3 I At n A2) ... P(An I n Ai). (2) 
i=t i=t 

In particular, 
P(A n B) = P(A) P(B 1 A) = P(B) P(A 1 B). (3) 

Example 1. In a telephone exchange, 7 calls wait for acceptance; precisely one 
of them is an international call and one is a trunk-call. The telephone operator 
randomly puts through one of the calls, and after it is over, another call again 
randomly. Find the probability that the international call was put through as the 
first one and the trunk-call as the second one. 

Let A be the random event that the international call was put through as the 
first one and B be the random event that the trunk-call was put through as the 
second one. Then the probability of interest is 

P(A n B) = P(A) P(B I A) = ~ . ~ = 0·024. 

Theorem 2 (Total Probability Rule). Let At, ... , An be a total system of events 
(see § 33.1). For an arbitrary event B we then have 

n 

P(B) = L P(Ai) P(B I Ai) . (4) 
i=t 

Example 2. A warehouse is supplied by bulbs from three producers. The first 
producer delivered 1000 bulbs with 2% defective products, the second one 1500 
bulbs with 1 % defective products and the third one 3000 bulbs with 0·5% defective 
products. Find the probability that a randomly selected bulb is defective. 
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Let Ai be the random event that a randomly selected bulb comes from the i-th 
producer (i = 1, 2, 3) and B be the random event that a randomly selected bulb is 
defective. Then the probability of interest is 

_ 3 . p B A _ 1000 _!_ 1500 _1_ 3000 0·5 = 0_009 
P(B) - L P(A,) ( I .) - 5500 . 100 + 5500 . 100 + 5500 . 100 . 

•=1 

Theorem 3 (Bayes's Theorem). Let A1 , ... , An be a total system of events (see 
§ 33.1) and B an arbitrary event. Then 

P(Ak I B) = :(Ak) P(B I Ak) 

L P(Ai) P(B I Ai) 
i=l 

(k=1, ... ,n). (5) 

REMARK 1. Bayes's theorem is sometimes called the "theorem on probabilities 
of causes". If the events A1 , ... , An are possible causes of the event B, then for­
mula (5) gives the probability that the event B that has occurred is the consequence 
of the cause Ak. In this context P(Ak) are called a priori probabilities (i.e. the 
probabilities before experiment) and P(Ak I B) are called a posteriori probabilities 
(i.e. the probabilities after the experiment in which the event B occurred). 

Example 3. A special technology has been used for production of 30% devices 
while the other devices have been produced using standard technology. The pro­
bability that a device will work without failure during a period t is 0·97 for the 
devices produced with the special technology and 0·82 for the devices produced 
with the standard technology. Find the probability that a randomly chosen device 
that worked without failure during the period t was produced by means of the 
special technology. 

Let A1 and A 2 be the events that the device was produced by means of the 
special and standard technology, respectively. If B is the event that the device 
worked without failure during the period t, then the probability of interest is 

P(AI) P(B I Al) 
P(Al I B) = P(AI) P(B I AI)+ P(A2) P(B I A2) 

0·30. 0·97 
= 0·30. 0·97 + 0·70. 0·82 = 0"336 . 

Independent Events. 

Definition 2. Events A and B are independent if 

P(A n B) = P(A) P(B). (6) 
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Events A 1 , ... , An are independent if for arbitrary indices 1 ~ i1 < i2 < ... < ir ~ n, 

(7) 

holds. 

REMARK 2. If the events A and B are independent and P(B) > 0, then 

P(A I B) = P(A)' 

i.e., in this case the probability of the event A does not depend on the occurrence 
of the event B. 

Example 4. A type of the independence of events weaker than that introduced 
in (7) is represented by the so-called pairwise independent events for which the 
validity of (7) is sufficient only for r = 2. Let three faces of a regular tetrahedron 
be successively labelled by numbers 1, 2, 3 and let the fourth face contain the whole 
group of numbers 1, 2, 3. Let Ai be the event that after throwing the tetrahedron 
the face lying on the ground contains the number i ( i = 1, 2, 3). Then 

P(A1) = P(A2) = P(A3) = t, 
P(A1 n A2) = P(A1 n A3) = P(A2 n A3) = t, 

P(A1 n A2 n A3) = t. 

The events A1, A2, A3 are thus pairwise independent but they arenot independent 
in the sense of (7). 

33.3. Random Variables and Probability Distributions 

Rand o m Variable. Outcomes of random experiments can be often ex­
pressed numerically. For example, the outcomes of the random experiment from 
Example 33.1.1. can be described by the numerical values 1, 2, ... , 6. The out­
comes of a random experiment expressed as real numbers are values of a variable 
which is called the random variable. 

P r o b a b i 1 i t y D ist r i b u t i o n . The probability distribution of a random vari­
able X is a rule that enables us to determine probabilities of all random events 
which can be described by this random variable. Examples of such events are 
X = 4, X > 2, 1 < X ~ 3, etc. 
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REMARK 1. The random variable X is rigorously defined as a mapping that 
assigns a real number to each elementary event w (i.e., it is a real function X(w) 
of elementary events) and which, in addition, has to have the property that the 
set {w : X(w) ~ x} is a random event for each real x. Then the probability 
distribution of the random variable X is a mapping that assigns a probability to 
each set A of importance by means of X; this probability is formally denoted by 
the symbol P(X E A). In particular, one can write e.g. P(X ~ x). 

Definition 1. The distribution function of a random variable X is a real function 
defined by 

F(x) = P(X ~ x) (-oo<x<oo). (1) 

REMARK 2. There exists a one-to-one correspondence between the distribution 
function and the probability distribution of a given random variable. Therefore one 
also speaks of the distribution function of a probability distribution. 

Theorem 1 (Properties of Distribution Function). The distribution function of 
an arbitrary random variable is non-decreasing (in particular, the set of its points 
of discontinuity is at most countable) and continuous from the right. Furthemore, 

lim F(x) = 0, lim F(x) = 1. 
z-+-oo z-+oo 

(2) 

REMARK 3. Conversely, each function with the properties from Theorem 1 is 
the distribution function of a random variable. Further important formulae are 

P(a <X~ b) = F(b)- F(a) ( -oo < a < b < oo) (3) 

and 
P(X = a) = F(a)- F(a- 0), (4) 

where the symbol F(a- 0) denotes the left-hand Iimit of the function F at the 
point a. 

REMARK 4. Sometimes the distribution function is defined by the relation F(x) = 
=P(X < x). Then one has to replace continuity from the right by continuity from 
the left in Theorem 1. 

Two types of random variables and their corresponding probability distributions 
play the most important role from practical point of view. 

The discrete random variable X attains, with positive probabilities Pi, only va­
lues xi from an at most countable system: 

Pi= P(X = xi) > 0, LPi = 1 (5) 
z; 
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( the system extends over all the values x j) 0 The corresponding discrete probability 
distribution is completely defined by the system of values Xj with their assigned 
probabilities Pj ( the so-called probability function) 0 The distribution function of 
the discrete random variable is 

F(x) = L Pj 0 (6) 

Xj~X 

It is thus a step function with jumps at the points Xj 0 

Example 1. An example of discrete probability distribution is the alternative 
distributiono The random variable X with this distribution fulfils the relations 

P(X = 0) = 1- p, P(X = 1) = p, (7) 

where 0 < p < 1. If "O"denotes, that the tail appeared and "1"denotes, that the 
head did, then the random variable X with p = ! describes the random experiment 
consisting in tossing a fair coino The probability function of this random variable 
is shown in Figo 3301 and the distribution function in Figo 33020 

Pi 
1 

112 

0 X· 
J 

Fig. 3301. Probability function of 
the alternative distribution (p = ! )0 

F(x} 

1 ---
1/2+------<> 

0 1 X 

Figo 33020 Distribution function of 
the alternative distribution (p = 1 )0 

The continuous random variable X is not confined to discrete valueso Its distri­
bution function F ( x) can be expressed in the form 

F(x) = j_xoo f(t) dt, (8) 

where f ( x) is a non-negative functiono The function f ( x) is called the probability 
density ( or briefiy density) of the random variable X and it completely defines the 
corresponding continuous probability distributiono The distribution function (8) is 
continuous (it possesses even the property of the so-called absolute continuity)o In 
particular, 

P(a <X~ b) = 1b f(x)dx (9) 
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holds for arbitrary real a and b, a < b, and 

P(X = a) = 0 (10) 

for an arbitrary real a. 

Example 2. An example of continuous probability distribution is the exponential 
distribution with the density 

{ 
1 -x/5 

f(x) = ge 

and with the distribution function 

for x > 0, 

for x ~ 0 

{ r !e-t/5 dt = 1- e-x/5 
F(x) = lo 6 

0 

for x > 0, 

for x ~ 0 

(11) 

{12) 

(6 is a positive constant). The random variable with this distribution describes 
e.g. the time to failure of an electronic component which, under the assumption 
that it survived through the time period x, breaksdown in an interval (x, x + h) 
of a smalllength h with the probability h/6. The density (11) and the distribution 
function (12) for 6 = 1 are shown in Fig. 33.3 and Fig. 33.4, respectively. 

f(x} 

Fig. 33.3. Probability density of the 
exponential distribution (8 = 1). 

F(x} 

1 -----------------------

1 2 X 

Fig. 33.4. Distribution function of the 
exponential distribution (8 = 1). 

The shaded area under the curve of the density f ( x) between x = a and x = b 
in Fig. 33.3 corresponds to the probability (9). 

33.4. Basic Characteristics of Random Variables 

Characteristics of random variable. Characteristics of a random 
variable enable us, in contrast to the distribution function, probability function 
or density, to summarize the whole information on the random variable or on the 
probability distribution into several numerical values. 
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Definition 1. The mean ( or mean value or expectation) of a random variable X 

is defined in the discrete case by the formula 

E(X) = LXjPj (I) 

and in the continuous case by the formula 

E(X) =I: xf(x) dx, (2) 

where one assumes the absolute convergence of the sum (I) or the integral (2). 

REMARK 1. If the sum (I) or the integral (2) do not converge absolutely, then 
we say that the random variable X does not have the mean. 

RE MARK 2. The mean can be expressed for all types of random variables in 

a uniform way by means ofthe Lebesgue-Stieltjes integral f::'oo x dF(x), where F(x) 
is the distribution function. 

Theorem 1. Let g(X) be a random variable which arises from a function g(x) of 
a random variable X. Then 

E[g(X)] = Lg(xi)Pj (3) 

holds in the case of the discrete random variable X and 

E[g(x)] =I: g(x)f(x) dx (4) 

in the case of the continuous random variable X, provided that the sum (3) or the 
integral ( 4) converge absolutely. 

Definition 2. Let k be a non-negative integer. Then the k-th moment of a random 
variable X is defined by 

(5) 

and the k-th central moment of a random variable X by 

(6) 

provided that the corresponding means exist. 
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REMARK 3. In particular, 

11-~ = Mo , 11-~ = E(X), 11-1 = 0. 

Definition 3. The second central moment 11-2 is called the variance (it is usually 

denoted by the symbol var(X) or a 2). 

REMARK 4. Moments can be calculated according to Theorem 1. For example, 

in the case of a discrete random variable X one obtains 

(7) 
Xj Xj 

and in the case of a continuous random variable X, 

var(X) = i: [x- E(XW f(x) dx = i: x2 f(x) dx- [E(X)] 2 • (8) 

Example 1. The mean and the variance of the random variable with the alter­

native distribution from Example 33.3.1 are 

E(X) = 0. (1- p) + l.p = p, 

var(X) = 02 • (1- p) + 12 .p- p2 = p(1- p). 

(9) 

{10) 

Example 2. The mean and variance of the random variable with the exponential 

distribution from Example 33.3.2 are 

(11) 

{12) 

Theorem 2. The following relations hold between the moments and central mo­
ments: 

(k = 0, 1, 2, ... ). {13) 

In particular, it is (compare with (7) and (8)) 

var(X) = E(X2 ) - [E(XW. (14) 
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Definition 4. Let P be a real number, 0 < P < 1. Then the P-quantile of 
a random variable with the distribution function F(x) is defined as the value Xp 

forthat 
F(xp-O)~P, F(xp)~P. (15) 

In particular, the quantile x0.5 is called the median, xo.25 the lower quartile, xo·75 
the upper quartile, XkjlO the k-th decile (k = 1, ... , 9) and XkjlOO the k-th percentile 
(k = 1, ... '99). 

REMARK 5. In general, the P-quantile is not determined uniquely. In the case 
of a continuous random variable the relationship (15) is reduced to 

F(xp)=P. (16) 

Example 3. The P-quantile of the random variable with the exponential distri­
bution from Example 33.3.2 fulfils the relation 

so that one obtains 
xp = -8ln(1- P). 

In particular, the median is 

xo·5 = 8ln 2 = 0·69315 8. 

Characteristics of Location. Characteristics of location describe, in 
certain ways, the location of a random variable. These characteristics can be re­
garded as a "centre of gravity" about which the values of the random variable 
considered are spread. The usual characteristics of location are the mean ( see 
Definition 1), median (see Definition 4) and mode. 

Definition 5. The mode of a random variable X is a value i; that fulfils, in the 
discrete case, the relation 

P(X = x) ~ P(X = x1) (17) 

for all values x1 of the random variable and, in the continuous case, the relation 

f(x) ~ f(x) (18) 

for all real x. 

REMARK 6. As in the case of the median, the mode need not be determined 
uniquely. The probability distribution with precisely one mode is called unimodal. 
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RE MARK 7. Thc sizcs of thc mcan, median and modc can be in various mutual 
rclations as shown in Fig. 33.5. 

f(xJI 

aJ 

E(XJ=x •x 
0·5 

X 

f(x}l 

X ~ Oi E(xJ X0.5 x x 

Fig. 33.5 a, b, c. Mean E(x), median xo-5 and mode x of various probability distributions. 

C h a r a c t er ist i c s o f Varia b ili t y. Characteristics of variability measure, 
in certain ways, the degree of dispersion ( or spread) of the considered random 
variable about some of the location characteristics. The usual characteristics of 
variability arc the variance (see Definition 3), standard deviation, mean deviation, 
cocfficient of variation and interquartile range. 

Definition 6. The standard deviation is 

u = [var(X}F/2 . 

Definition 7. The mean deviation is E[IX- E(X)IJ. 
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Definition 8. The coefficient of variation is [var(X)pl2 /IE(X)I for E(X) =/:- 0. 

Definition 9. The interquartile range is Xo-75 - Xo-25, the interdecile range Xo-9 -
x0.1, and the interpercentile range xo·99 - xo·01· 

Characteristics of skewness and kurtosis. Characteristicsofskew­
ness and kurtosis concern the shape of the curve of the probability density of the 
considered random variable. 

Definition 10. The coefficient of skewness is 

/L3 
/1 = 3' a 

(19) 

where /LJ is the third central moment (see Definition 2) and a 1s the standard 
deviation (sec Definition 6). 

REMARK 8. The coefficient of skewness is zero for the probability distribution 
with symmetric curves of density (see Fig. 33.5a), it is positive for the distributions 
with such curves of density that have larger right-hand tails (see Fig 33.5b) and 
negative for the distributions with such curves of density that have larger left-hand 
tails (see Fig. 33.5c). Obviously, 11 is a measure of asymmetry of distributions. 

RE MARK 9. Some random variables have the property that 

P(X = a- x) = P(X = a + x) 

holds for an arbitrary real x in the discrete case and 

f(a- x) = f(a + x) 

in the continous case. Then we say that the distribution of these random variables 
is symmetric about the point a. In this case one has E(X) = a, /Lk = 0 for k odd, 
and 11 = 0 provided that these values exist. 

Definition 11. The coefficient of kurtosis ( or coefficient of excess) is 

/L4 
/2 =-- 3, 

a4 
(20) 

where M4 is the fourth central moment (see Definition 2) and a is the standard 
deviation (see Definition 6). 

REMARK 10. The distributions with tails of curves of density thicker or thinner 
than those of the normal distribution with the same mean and variance (see § 33.7) 
have 12 > 0 or 12 < 0, respectively. The normal distribution has always 12 = 0. 
Obviously, 1 2 is a measure of peakedness of distributions. 
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Example 4. The coefficient of skewness and kurtosis of the random variable with 
thc exponential distribution from Example 33.3.2 is 

283 984 

/1 = 83 = 2 ' /2 = 84 - 3 = 6 . 

C h a r a c t er ist i c F u n c t i o n. The characteristic function is an important 
tool for the calculation of moments and for various theoretical considerations. 

Definition 12. The characteristic function of a random variable X is a complex 
function defined by the formula 

(-oo<t<oo). (21) 

REMARK 11. The characteristic function exists for every random variable. One 
can rewrite (21) as 

(22) 
x; 

in the discrete case and as 

cp(t) =I: eitx f(x) dx (23) 

m the continuous case. Conversely, using the theory of Fourier transform, one 
obtains 

p · = - e-•tx; cp(t) dt 1 1'1'( . 
J 211" -'1'( 

(24) 

in the discrete case and 

f(x) =- e-itx<p(t) dt 1 100 

211" -oo 
(25) 

in the continuous case. lt means that there exists a one-to-one correspondence 
between the probability distribution and the characteristic function. 

RE MARK 12. The characteristic function enables us to calculate the k-th moment 
by the formula 

1 
Jl,~ = -:-;; <p(k) (0) . 

1 
(26) 

Example 5. The random variable with the alternative distribution from Exam­
ple 33.3.1 has the characteristic function 

(27) 
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Example 6. The random variable with the exponential distribution from Exam­
ple 33.3.2 has the characteristic function 

cp(t) = -ex(it-1/.5) dx = --.-. 100 1 1 

0 8 1- 18t 
(28) 

Using (26) one obtains 

E(X) = ~cpt(O) = ~i8 = 8, 
1 1 

in accordance with the result (11). 

REMARK 13. Sometimes it is advantageaus to replace the moments by the 
so-called cumulants. If we set '1/J(t) = ln cp(t), then the k-th cumulant Kk is de­
fined by the formula 

(k = 0, 1, 2, ... ). (29) 

In particular, 
(30) 

33.5. Random Vectors 

REMARK 1. In what follows, x = (x1, ... , Xn)' means the n-component column 
vector with components x1, ... , Xn, thus an n X 1 matrix with the element Xi in 
its i-th row (i = 1, ... , n). The symbol x' = (x1 , ... , Xn) means the n-component 
row vector with components x1, ... , Xn· 

Rand o m V e c t o r. Frequently, an outcome of a random experiment has to be 
described by several numbers. The column vector X, whose components are random 
variables X1, ... , Xn defined on the same space of elementary events, is called 
the n-component random vector. One writes formally X = (X1 , ... , Xn)'. The 
probability distribution of the random vector X ( or the joint probability distribution 
of the random variables X 1 , ... , Xn) is a rule that enables us to determine the 
probabilities of all random events which can be described by the random variables 
X1, ... , Xn. An example is the event X1 ~ 1, ... , Xn ~ 1. In general, one also 
speaks of the multivariate probability distribution. 

Definition 1. The distribution function of a random vector X ( or the joint distri­
bution function of random variables xl, ... , Xn) isareal function F(xl, ... , Xn) 

defined by 

( -oo < Xi < oo, i = 1, ... , n). 
(1) 
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Theorem 1 (Properties of Joint Distribution Function). The distribution func­
tion F(x1, ... , xn) of an arbitrary random vector is non-decreasing and continuous 
from the right in each of its arguments. Furthermore, 

lim F(xl, ... ,xn)=O (j=1, ... ,n), lim F(xl, ... ,xn)=l. 
Xj--+-00 Xt-+OO, ... ,:z:n--+00 

{2) 

REMARK 2. The relation 

{3) 

holds for arbitrary real ai, bi, ai < bi (i = 1, ... , n), where Ci= Diai + {1- Di)bi 
and the quantities 61, ... , Dn acquire the values 0 and 1 mutually independently. 
In particular, 

P(a1 < X1 ~ b1, a2 < X2 ~ b2) = F(b1, b2)- F(a1, b2)- F(a2, bl) + F(a1, a2). 
{4) 

The discrete random vector X = (X1 , ... , Xn)' attains, with positive probabi­
litics P{X1 = x1, ... , Xn = Xn), values (xt, ... , Xn)' from an at most countable 
systcm of n-component vectors only. The system of all these probabilities deter­
mines the probability function of the random vector X. 

Thc continuous random vector X = (X1 , ... , Xn)' is not confined to discrete 
values. Its distribution function F(x1 , .•. , Xn) can be expressed in the form 

{5) 

wherc f(xl, ... , Xn) is a non-negative function. The function f(xl, ... , Xn) is 
called the probability density of the random vector X ( or the joint probability density 
of the random variables X 1 , ... , Xn)· In particular, 

holds for arbitrary real ai and bi, ai < bi (i = 1, ... , n). 

Marginal Distribution. If X= (X1 , •.• ,Xn)' is a random vector, 
then the probability distribution of the random vector (Xi1 , ••• , Xik )' for an ar­
bitrary subset I= {i1 , ... , ik} of the index set {1, ... , n} (1 ~ k < n} is 
called the marginal probability distribution. The marginal distribution function 
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Fi,, ... , ik ( Xi,' ... ' Xik) of the random vector (Xi,' ... ' xik )' is obtained by let­
ting Xi ---+ oo in F(x1, ... , xn) for all i ~ I. The marginal probability function 

P(Xi, = xi,, ... , Xik = xik) is obtained by summing up over Xi in P(X1 = x1, ... 

. . . , Xn = Xn) for all i ~ I. The marginal probability density /i,, ... , ik ( Xi 1 , ••• , Xik) 
is obtained by integrating over Xi in j(x1, ... , Xn) for all i ~I. 

REMARK 3. lf X= (X1, X 2 )' is a two-variate random vector, then we have 

(7) 

Furthemore, 

(8) 
holds in the discrete case and 

in the continuous case. 

Conditional Distribution. Let X= (X1 , ... , Xn)' be a random vec-

tor. Let I= {it, ... , ik} and J = {h, ... , Jrn} (1 ~ k < n, k + m = n) form 
a decomposition of the index set {1, ... , n} into two disjoint subsets. Given 

Xi 1 = Xi 1 , ••• , Xik = Xik for fixed values Xi1 , ••• , Xik, the conditiona[ probabil­
ity distribution of the random vector (Xj,, ... , Xjm )' is defined in the discrete case 
by the conditional probability function 

P(Xj, = Xj,, ... ' Xjm = Xjm I xi, = Xi,, ... ' Xik = Xik) = 
- { P(Xl = x1, ... ' Xn =. x~/P(Xi, = Xi,~ .. . , xik = Xik) 
- for P(X,, - x,,, ... , X,k - x,k) =I 0, 

0 for P(Xi, = Xi,' ... ' xik = Xik) = 0 

and in the continuous case by the conditional probability density 

j(Xj1 , • •• , Xjm I Xi 1 , ••• , Xik) = 

for /i,, ... , ik ( xi,, ... , Xik) =I 0, 

for h,, ... ,ik(xi,, ... , Xik) = 0. 

(10) 

(11) 

Definition 2. Let S(X1 , ... , Xn) be a random variable defined as a function 

S(x1 , ... , Xn) of a random vector X = (X1, ... , Xn)'. Using the above nota­
tion, we define the conditional mean of the random variable S(X1o ... , Xn), given 
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Xi, = Xi 1 , ••• , Xik = Xik, in the discrete Case by 

E[S(Xt, ... ' Xn) I xi, = Xi" ... ' xik = XiJ = 

=L···LS(xt, ... ,xn)P(Xj, =Xj1 , ••• ,Xjm =Xjm IXi, =xi" ... ,Xik =Xik) 
Xjl Xjm (12) 

and in the continuous case by 

E[S(XI, ... 'Xn) I Xi, = Xi,' ... ' xik = Xik] = 

= 100 
• • ·100 

S(xi, ... , Xn)f(xj,, ... , Xjm I Xi 1 , ••• , Xik) dxj, ... dxjm. (13) 
-oo -oo 

REMARK 4. The conditional mean from Definition 2 is frequently considered as 

a random variable of the form E[S(XI, ... 'Xn) I xi,' ... ' xik]. 

The formula (12), or (13) holds also for k = 0, when it represents a generalization 
of Theorem 33.4.1 for (unconditional) mean 

or 

respcctively. 

REMARK 5. If X= (XI, X 2)' is a two-variate continuous random vector, then 
wc havc 

and 

for h(x2) =f. 0, 

for f2(x2) = 0 

E(XI I x2 = x2) =I: XIf(xi I x2) dxi. 

(14) 

(15) 

The formulae for f(x2 I xi) and E(X2 I XI = xi) can be obtained by interchanging 
the indices 1 and 2. 

In d e p c 11 d e 11 t Ra 11 d o m Variables. The independe11ce of random vari­
ables correspo11ds to the independence of random events described by the individual 
ra11dom variables. 

Definition 3. Random variables XI, ... , Xn are called independent if 

(16) 

holds for a11y real XI, ... , Xn-
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REMARK 6. For independent random variables X1, ... , Xn, the relation (3) can 
be rewritten in the form 

Moreover, if the random vector X= (Xt, ... , Xn)' is discrete, then 

and if it is continuous, then 

(19) 

Theorem 2. Let X1 , ..• , Xn be independent random variables suchthat 
E(!Xilk') < oo {i = 1, ... , n), where kt, ... , kn are given non-negative integers. 
Then 

E(Xf' ... X~n) = E(Xf') ... E(X~n). {20) 

REMARK 7. The expression on the left-hand side of {20) is called the mixed 

moment ofthe random variables Xt, ... , Xn and is denoted by IL~,, ... ,kn. In general, 
it is calculated according to the formulae from Remark 4. Theorem 2 remains valid 
even for general k 1 , ... , kn provided that the powers Xf', ... , X~n have sense. 

Example 1. Let a random experiment consist in throwing four fair dice and let the 
random variable Xi denote the number that turns Up Oll the i-th die (i = 1, ... , 4). 
The random variables X 1 , ... , X 4 are independent. In particular, the probability 
of the random event that the number 6 turns up on all the dice is 

P{Xt = 6, ... , X4 = 6) = P{X1 = 6) ... P(X4 = 6) = (it = 0·0008 

according to {18). 

Characteristics of Random Vector. 

Definition 4. The mean of a random vector X= {X1 , ... , Xn)' is an n-compo­
nent vector of the form 

E(X) = (E(Xt), ... , E(Xn))'. {21) 

Definition 5. The covariance of random variables X and Y is defined by 

cov(X, Y) = E{[X- E(X)][Y- E{Y)]}. {22) 
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The correlation coefficient of random variables X and Y is defined, under the 
assumptions var(X) # 0 and var(Y) # 0, by 

cov(X, Y) 
e(X, Y) = ] ;z . [var(X) var(Y) 1 

(23) 

REMARK 8. The expression (22) can be rewritten in the form 

cov(X, Y) = E(XY) - E(X)E(Y). (24) 

The mean on the right-hand side of (22) and E(XY) in (24) are calculated as 
special cases of the mixed moment from Remark 7 for n = 2. 

Theorem 3 (Properties of Gorrelation Coefficient). The correlation coefficient 
has the following properties: 

(i) -1 ~ e(X, Y) ~ 1 (Schwarz Inequality). (25) 
(ii) lf the random variables X and Y are independent, then e(X, Y) = 0. 

(iii) le(X, Y)l = 1 if and only if 

Y = aX + b (26) 

holds with probability 1, where a and b are real constants (a # 0). Moreover, 
e(X, Y) = 1 or e(X, Y) = -1 if a > 0 or a < 0, respectively. 

Definition 6. If cov(X, Y) = 0, then we say that the random variables X and Y 
are uncorrelated. 

RE MARK 9. Due to Theorem 3, the correlation coeffi.cient is used as a measure 
of linear dependence between two random variables. In particular, e(X, X) = 1. 
Uncorrelated random variables need not be independent. Besides the correlation 
coeffi.cient, one also uses the multiple correlation coefficient that is a (scalar) mea­
sure of linear dependence between a random variable and a random vector, and 
the partial correlation coefficient which is a measure of linear dependence between 
two random variables provided that the values of a given random vector are fixed 
(in this way one eliminates a possible dependence caused by the infl.uence of this 
random vector on both random variables of interest). Details can be found e.g. m 
[101] and [499]. 

Definition 7. The covariance matrix of a random vector X = (XI, ... , Xn)' 
is an n X n matrix Ex with elements Uij = cov(Xi, Xj) (i, j = 1, ... , n). The 
correlation matrix of this random vector is an n x n matrix with elements l?ij = 
= e(Xi, Xj) (i, j = 1, ... , n). 
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REMARK 10. The correlation matrix has the values 1 on its main diagonal. 

Definition 8. The characteristic function of a random vector X= (X1, ... , Xn)' 
is a complex function defined by 

(-oo < ti < oo, i = 1, ... , n). (27) 

Theorem 4. Random variables X1, ... , Xn are independent if and only if 

(28) 

holds for any real tt, ... , tn, where cpi(ti) is the characteristic function of the ran­
dom variable xi (i = 1, ... ' n). 

REMARK 11. One can calculate mixed moments by means of the characteristic 
function according to the formula 

1 ()kt+•••+kn 

E(Xfl ... X~") = ·k + +k k k cp(O, ... ' 0). 
1 1 ... n ßt11 . • • ßtn n 

(29) 

33.6. lmportant Discrete Distributions 

Among discrete random variables, the so-called integer ( or integral-valued) ran­
dom variables (integer probability distributions) which can attain only the values 
x = 0, 1, 2, ... , are most important. 

1. Binomial distribution with parameters n, p (n isapositive integer, 0 < p < 1): 

P(X = x) = (:)p"'(1- Pt-"' (x = 0, 1, ... , n), 

E(X) = np, var(X) = np(1- p), (n + 1)p- 1 ~ x ~ (n + 1)p (x integer), 

1 - 2p 1 - 6p( 1 - p) 
11 = [np(1- p)p/2 ' 12 = np(1- p) ' 

cp(t) = [1 + p(eit -1)jn. 

The binomial distribution describes the probability behaviour of the nurober x of 
occurrences of an event A in n independent performances of a random experiment, 
assuming that A has probability p in a single experiment (trial). This model is 
known as n Bemoulli trials. The occurrence of A is called the success and the 
non-occurrence of A is called the failure so that the binomial distribution gives the 
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probability of obtaining exactly x successes in n Bernoulli trials for x = 0, 1, ... , n. 
The special case of the binomial distribution for n = 1 is the alternative distribution 
(see Example 33.3.1). Sometimes one uses the generalized binomial distribution 
whose probability of success is not constant but has a value Pi in the i-th trial 
(i = 1, ... , n). 

Example 1. A random experiment which consists in throwing four fair dice can 
be interpreted equivalently as four independent trials each of which consists in 
throwing one fair die. Let a random variable X denote the number of sixes which 
turn up in this experiment. Then X has the binomial distribution with parameters 
n = 4 and p = i and, e.g., 

P(X = 2) = G) (~r (1- ~r = 0·116, 

E(X) = 4. ~ = 0·667, var(X) = 4. ~ ( 1 - ~) = 0·556. 

2.Negative binomial distribution with parameters r, p (r > 0, 0 < p < 1): 

for x = 0, 
{ 

pr 

P(X=x)= (r+x-1)(r+x-2) ... r 
-'-------'-'----:1----'---pr ( 1 - p )"' for x = 1, 2, . . . , 

X. 

E(X) = r(1 - p) , var(X) = r(1 - p) , 
p p2 

(r- 1)(1 - p) - 1 ~ x ~ (r- 1)(1 - p) (x integer), 
p - - p 

2 -p p2 -6p+6 
'Yt = [r(1 - p)p/2 ' 72 = r(l- p) 

<p(t) = [1 _ (1p- p)eit r 
In particular, if r is a positive integer, then one speaks of the Pascal distribution, 
where we can write 

(x = 0, 1, ... ). 

Finally, if r = 1, then the distribution is called the geometric distribution and 

P(X=x)=p(1-p)"' (x=0,1, ... ). 

The Pascal distribution describes the probability behaviour of the number x of 
failures before the r-th success in Bernoulli trials with the probability p of success 
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(therefore one also speaks of the binomial waiting-time distribution). The proba­
bilities of the geometrical distribution that describes the waiting time before the 
first success have the form of a geometrical sequence. 

3. Poisson distribution with parameter >. (>. > 0): 

>.''' 
P(X = x) = e->.- (x = 0, 1, ... ), 

x! 
E(X) = >., var(X) = >., >.- 1 ~ x ~ >. (x integer), 

'Yl = 1/ ..j>. ' 'Y2 = 1/>., 
cp(t) = exp[>.(eit- 1)]. 

Theorem 1 (Approximation of the Binomial Distribution by the Poisson Distri­
bution). Let a sequence of probabilities Pn be given with 

lim npn = >., 
n-+oo 

(1) 

where >. is a positive number. Then 

lim p~(l- Pnt-x = e->._ (n) >.x 
n-+oo X X! 

(x = 0, 1, ... ). (2) 

RE MARK 1. The assumption (1) means, especially, that the sequence of proba­
bilities Pn converges to zero with the rate n-1 . 

The Poisson distribution is sometimes called the "law of rare events" since it 
describes the probability behaviour of the nurober of successes in a long series of 
Bernoulli trials when the probability of success in each individual trial is very small 
( e.g. the nurober of the red blood-corpuscles in the field of a microscope, the 
nurober of defective items in a lot of products, the nurober of calls in a telephone 
exchange, etc.). It can approximate some more complicated distributions. The 
approximation of the binomial distribution with parameters n, p by the Poisson 
distribution with parameter >. = np is recommended for p < 0·1 and n > 30. 

Example 2. A transmitted signal is damaged in one of 100 cases in the commu­
nication channel. Find the probability that none of the 200 signals transmitted by 
this channel is damaged. 

The probability that a signal is damaged is p = 0·01. According to Theorem 1 one 
can assume that the nurober X of the damaged signals among the 200 transmitted 
signals has the Poisson distribution with parameter >. = 200. 0·01 = 2. Hence the 
probability of interest is 
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For comparison, the result obtained when using the binomial distribution with 
parameters n = 200 and p = 0·01, is 

Theorem 2 (Distribution ofthe SumofIndependent Random Variables). Let in­
dependent random variables xi ( i = 1, ... ' k) have the binomial distribution with 
parameters ni, p or the negative binomial distribution with parameters ri, p or the 
Poisson distribution with parameters >.i. Then the random variable X1 + · · · + Xk 
has the binomial distribution with parameters n 1 + · · · + nk, p or the negative bino­
mial distribution with parameters r 1 + · · · + rk> p or the Poisson distribution with 
parameter >. 1 + · · · + >.k, respectively. 

4. Hypergeometrie distribution with parameters N, M, n (N, M, n arepositive 
integers, M < N, n < N): 

(x = max(O, M + n- N), ... , min(M, n)), 

E(X) = n M var(X) = n M (1 - M) N - n 
N' N N N-1' 

(M + 1)(n + 1) - 1 :s; x :s; (M + 1)(n + 1) (x integer). 
N+2 - - N+2 

Let a Iot have N items and Iet M of these items have a certain property. Then the 
hypergeometric distribution describes the probability behaviour of the number of 
items with this property among n items that are randomly selected from the Iot. If 
n/N < 0·1, M/N < 0·1, then the hypergeometric distribution can be approximated 
by the binomial distribution with parameters n, p = MjN. If n/N < 0·1, M/N < 
< 0·1 and n > 30, then it can be approximated by the Poisson distribution with 
parameter >. = nMjN. 

Example 3. Obviously N = 50, M = 6, n = 5 and x = 2 in Example 33.1.3. 

REMARK 2. Distribution functions or probability functions of important discrete 
distributions are tabulated in various statistical tables (see e.g. [202), [205), [362], 
[368], [491]). In addition, they are included as an appendix in majority of textbooks 
on probability and statistics or they can be calculated by commonly available statis­
tical software. One can also take advantage of their approximations by the normal 
distribution (see Remark 33.13.2). 
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33.7. lmportant Continuous Distributions 

1. Uniform ( or reetangular) distribution on interval ( a, b) ( -oo < a < b < oo ): 

{ 
- 1- for a < x < b, 

f(x)= ob-a 
otherwise , 

' bk+1 - ak+1 (b- a)2 
f-lk=(b-a)(k+ 1) (k=1,2, ... ),var(X)= 12 

1'1 = 0 ' 1'2 = - ~ ' 
eitb _ eita 

cp(t) = it(b- a) 

Theorem 1. Let U be a random variable with the uniform distribution on the 

interval (0, 1). Let F be an increasing distribution function. Then the random 

variable X = F-1 (U), where F-1 is the inverse function to the function F, has the 

distribution function F. 

Theorem 1 which can be generalized for an arbitrary distribution function F 
shows the importance of the uniform distribution for simulations of various proba­
bility distributions (in the so-called random number generators). 

2. Normal distribution with parameters f-l, 172 ( -oo < fL < oo, 17 > 0): 

f(x) = y'( ~'K)I7 exp [- (x ~;)2 ] (-oo < x < oo), 

E(X) = fL, var(X) = 172 , 

(2k)! 2k 
/L2k-1 = 0, /L2k = k! 2k 17 ( k positive integer ) , 

x = xo-5 = fL' 

1'1 = 0 ' 1'2 = 0 ' 

cp(t) = exp(itLt- tl72t 2). 

Due to the Central Limit Theorem (see § 33.13), the normal distribution (sometimes 

also called the Gaussian distribution or the Gauss-Laplace distribution) plays a key 

role in theory of probability and mathematical statistics. It is mostly denoted 

by the symbol N(tL, u2). In particular, N(O, 1) is the so-called standard normal 

distribution with the probability density cp(x) and the distribution function <P(x) 

of the form 

( ) - __ 1_ -x2/2 
cp x - y'( 2'11) e , <P(x) = /_"'

00 
cp(t) dt (-oo<x<oo) (1) 

(see Figs. 33.6 and 33.7). 
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Fig. 33.6. Probability densities of the normal distribution N(O, 0"2) for O" = 0-4, 1, 2·5. 
The case O" = 1 represents the density cp(x) in (1). 

-4 -3 -2 0 1 3 4 X 

Fig. 33.7. Distribution function of the standardnormal distribution N(O, 1). 

Theorem 2. Let the random variable X have the distribution N(f.L, 0"2 ). Then 

P(a ~X~ b) = P C: f.L) - P ( a: f.L) , (2) 

P(jX- !LI ~ a) = 2<1> (~) - 1, P(jX -JLI > a) = 2 [1- P (~)] (3) 

for any real a and b, a < b. 
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REMARK 1. For an arbitrary real x, 

_ ~ _1_ _",2 12 (::_ x3 _::_:____ ) _ 
!P(x)- 2 + .j( 2·n/ 1 + 1. 3 + 1. 3. 5 + · · · - (4) 

1 1 oo ( -I)kx2k+l 

= 2 + .j( 211:) ~ k!(2k + 1)2k . 
(5) 

REMARK 2. The values cp(x) and !P(x) (or 2!P(x) - 1) are tabulated for x f; 0 
(see e.g. [362] and further references in Remark 33.6.2); for x < 0, one can make 
use of the relations cp(x) = cp( -x) and !P(x) = 1- !P( -x). The P-quantiles of the 
distribution N(O, 1) are usually denoted by up and are tabulated for 0·5 ~ P < 1 
(see e.g. [362], [368] and Remark 33.6.2); for 0 < P < 0·5, one can make use 
of the relation up = -ul-P (in some tables, the values u1-P are tabulated for 
0 < P ~ 0·5). Important quantiles up used frequently in mathematical statistics 
are given in Tab. 33.1 below. 

REMARK 3 (Sigma Limits). For a random variable X with the distribution 
N(Jl., o-2 ) one has 

{ 
0·3173 

P(IX- MI > ko-) = 0·0455 

0·0027 

for k = 1, 

for k = 2, 

for k = 3. 

(6) 

Most frequently one uses the three-sigma limits, i.e. the fact that the random 
variable X lies outside the interval (Jl.- 3o-, Jl. + 3o-) with probability 0·0027. The 
value 0·67 45o- is called the probable error since 

P(IX- Ji.l > 0·6745a) = 0·5. (7) 

3. Logarithmic normal ( or lognormal) distribution with parameters Jl., o-2 

( -oo < Jl. < oo, o- > 0): 

{ 
1 exp[-(lnx-Jl.)2] forx>O, 

f(x) = .j( 211:)o-x 2o-2 

0 for x ~ 0, 

Jl.~ = exp(kJl. + !k2 o-2) (k = 1, 2, ... ), var(X) = (Jl.~) 2 [exp(o-2 )- 1], 

x = exp(Jl.- o-2), xo·5 = exp(Jl.), 

/1 = [exp(o-2 ) + 2][exp(o-2)- Ijl/2 , 

/2 = exp( 4o-2 ) + 2 exp( 3o-2 ) + 3 exp( 2o-2 ) - 6 . 
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Theorem 3. A random variable X has the logarithmic normal distribution with 
parameters /1-, a 2 if and only if the random variable In X has the distribution N (!1-, a 2 ). 

The logarithmic normal distribution is suitable for the description of magnitudes 
of grains in loose materials, in theory of reliability ( e.g. for modelling the time to 
failure of semiconductors or of materials with possible fatigue defects), in statistical 
physics and elsewhere. 

4. Exponential distribution with parameter 8 (8 > 0): 

for x > 0, 

for x ~ 0, 

E(X) = 8, var(X) = 82 , 

Xo-s = 8ln2, 

'Yl =2, /2 =6, 

cp(t) = 1/(1 - i8t). 

Theorem 4 (Properties of the Exponential Distribution). Let a random vari­
able X have the exponential distribution. Then 

P(X > t + s I X> s) = P(X > t) (8) 

holds for any positive s and t. 

The exponential distribution is applied in theory of reliability to model the time 
to failure of some products or in queueing theory to model the waiting time to 
service. Since it is the "distribution without memory" it suits for models that are 
independent of the previous development ( e.g. for modelling the time to failure that 
occurs due to random causes and not due to a wear so that, in accordance with (8), 
the probability of the future failureless work does not depend on the length of the 
past failureless one). 

5. Double exponential distribution with parameters a, 8 ( -oo < a < oo, 8 > 0): 

1 ( lx- ai) f(x) = -exp ---
28 8 

(-oo < x < oo), 

E(X) = a, var(X) = 262 , 

x = x0.5 = a, 

'Yl =0, 'Y2 =3, 
eiat 

cp(t) = 1 + 82t2 . 
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6. Weibull distribution with parameters p, 6 (p > 0, 6 > 0): 

f(x) = { 
0
px;;

1 
exp [- (~f] for x > 0, 

for x ~ 0, 

E(X) = r ( p; 1 ) 6, var(X) = [r (P; 2) - r2 (P; 1)] 

A (p -1) 1/P x=6 -- , 
p 

xo·5 = 6(ln2)1/P 

(the function r is defined in § 13.11). The Weibull distribution has applications in 
theory of reliability to modelling the time to failure due to wear ( e.g. bearings have 
the value of parameter 6 approximately 1·5). It is suitable for the description of 
physical properties of materials as well. The special case of the Weibull distribution 
for p = 1 is the exponential distribution and for p = 2, 6 = a .../2 (a > 0) the 
Rayleigh distribution with the probability density 

for x > 0, 

for x ~ 0, 

7. Gamma distribution with parameters p, 6 (p > 0, 6 > 0): 

f(x) = { 6~;~:) exp ( -~) for x > 0, 

0 for x ~ 0, 

E(X) = p6, var(X) = p62 , 

x = (p- 1)8 (p ~ 1), 

'Y1 = 2/ ..jp ' 'Y2 = 6/p' 
cp(t) = (1 - i8t)-P. 

If p is a positive integer, then the gamma distribution is called the Erlang distribu­
tion that is useful in reliability theory for modelling the time to failure of a system 
with redundant components or in queueing theory if the service has several phases. 
The special case for p = 1 is the exponential distribution. 

Theorem 5. Let X 1 , .•• , Xn be independent random variables such that Xi has 
the gamma distribution with parameters Pi, 6 (i = 1, ... , n). Then the random 
variable X 1 + · · · + Xn has the gamma distribution with parameters P1 + · · · + Pn, 8. 
In particular, if Xi has the exponential distribution with parameter8 (i = 1, ... , n), 
then xl + ... + Xn hastheErlang distribution with parameterB n, 8. 
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8. x2 ( chi-square) distribution with n degrees of freedom ( n isapositive integer): 

{ 
-:--=1c-:---:-:-:-xnf2- 1 exp(-xl2) 

f(x) = ~nf2 r(nl2) 
for x > 0, 

for x ~ 0. 

Theorem 6. Let X 1, ... , Xn be independent random variables with the distri­
bution N(O, 1). Then the random variable Xf + · · · +X~ has the distribution 
x2 ( n) (i.e. the x2 distribution with n degrees of freedom). 

The x2 distribution is a special case of the gamma distribution for p = nl2, t5 = 2 
so that, e.g., 

E(X) = n, var(X) = 2n. 

9. t ( or Student) distribution with n degrees of freedom ( n is a positive integer): 

r (~) _til 

f(x)= 2 (1+x2
) 

2 (-oo<x<oo), 
(nl2) v( 1m) n 

E(X)=O (n>1), var(X)=nl(n-2) (n>2). 

Theorem 7. Letindependent random variables X and Y besuchthat X has the 
distribution N(O, 1) and Y has the distribution x2 (n). Then the random variable 
X I v(Y In) has the distribution t( n) (i.e. the t distribution with n degrees of free­
dom). 

10. F (or Fisher-Snedecor) distribution with n1 and n2 degrees of freedom 
(n1 , n2 arepositive integers): 

{ 1 (n1)nt/2 nt/2-1 (1 + nl )-(nl+n2)/2 
f(x) = :(nl/2, nz/2) n 2 x n2 x 

for x > 0, 

for x ~ 0, 

E(X) = ~ (nz > 2)' var(X) = 2n~(n1 + nz- 2) 
nz- 2 n1(nz- 2) 2 (nz- 4) 

(the function B is defined in § 13.11). 

Theorem 8. Let independent random variables X and Y be such that X has the 
distribution x2 ( n1) and Y has the distribution x2 ( n2 ). Then the random variable 
(XInl)I(Yin2 ) has the distribution F(n1, n2 ) (i. e. the F-distribution with n1 and 
n 2 degrees of freedom). 
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REMARK 4. The distribution x2(n), t(n) and F(n1 , n2) play an important role in 
mathematical statistics. Therefore their quantiles x~ ( n), t p ( n) and Fp ( n1 , n2) are 
tabulated (see e.g. [362] and further references in Remark 33.6.2). Figs. 33.8, 33.9 
and 33.10 show the probability densities of the distributions x2 ( 4), t( 4) and F( 4, 8) 
including the corresponding 0·95-quantiles (i.e. the 95-th percentiles). Tab. 33.1 

j(X) 

0·2 

Fig. 33.8. Probability density and 0·95 quantile of the distribution x2 ( 4). 

-4 

f(X} 
0-4 

Fig. 33.9. Probability dcnsity and 0·95 quantile of the distribution t(4). 

15 X 

X 
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Fig. 33.10. Probability density and 0·95 quantile of the distribution F(4, 8). 

contains some quantiles of these distributions. Tabs. 33.2 and 33.3 contain impor­
tant quantiles xj, ( n) and t p ( n) for various degrees offreedom n that are frequently 
used in statistical problems (see § 34.10). Sometimes one uses the following ap­
proximations by the quantiles up of the distribution N(O, 1) (see Remark 2): 

x1>(n)~n(1-~+up 1~) 3 ' 
9n V 9n 

(9) 

[ 1 2 1 2 4] tp(n) ~ up 1 + -(1 + up) + --2 (3 + 16up + 5up) 
4n 96n 

(10) 

In particular, 

xj,(l) ~ u[I+P)/2, xj,(2) ~ -2ln(1- P). 

TABLE 33.1 

p 0·01 0·025 0·05 0·1 0·9 0·95 0·975 0·99 

Up -2·3263 -1·9600 -1·6449 -1·2816 1·2816 1·6449 1·9600 2·3263 

x1>( 4) 0·29711 0·48442 0·71072 1·0636 7·7794 9·4877 11·143 13·277 

tp(4) -3·7469 -2·7764 -2·1318 -1·5332 1·5332 2·1318 2·7764 3·7469 

Fp(4; 8) 0·06757 0·11136 0·16554 0·25285 3·4579 5·3177 7·5709 11·259 
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TABLE 33.2 

n X~·02s(n) X~·os(n) x~.gs(n) X~·97s(n) 

1 0·00098 0·00393 3·8415 5·0239 
2 0·05064 0·10259 5·9915 7·3778 
3 0·21580 0·35185 7·8147 9·3484 
4 0·48442 0·71072 9·4877 11·143 
5 0·83121 1·1455 11·070 12·833 

6 1·2373 1·6354 12·592 14·449 
7 1·6899 2·1673 14·067 16·013 
8 2·1797 2·7326 15·507 17·535 
9 2·7004 3·3251 16·919 19·023 

10 3·2470 3·9403 18·307 20·483 

11 3·8157 4·5748 19·675 21·920 
12 4·4038 5·2260 21·026 23·337 
13 5·0088 5·8919 22·362 24·736 
14 5·6287 6·5706 23·685 26·119 
15 6·2621 7·2609 24·996 27·488 

.16 6·9077 7·9616 26·296 28·845 
17 7·5642 8·6718 27·587 30·191 
18 8·2307 9·3905 28·869 31·526 
19 8·9065 10·117 30·144 32·852 
20 9·5908 10·851 31·410 34·170 

21 10·283 11·591 32·671 35·479 
22 10·982 12·338 33·924 36·781 
23 11·689 13·091 35·172 38·076 
24 12·401 13·848 36·415 39·364 
25 13·120 14·611 37·652 40·646 

30 16·791 18·493 43·773 46·979 
35 20·569 22·465 49·802 53·203 
40 24·433 26·509 55·758 59·342 
45 28·366 30·612 61·656 65·410 
50 32·357 34·764 67·505 71·420 

60 40·482 43·188 79·082 83·298 
70 48·758 51·739 90·531 95·023 
80 57·153 60·391 101·88 106·63 
90 65·647 69·126 113·15 118·14 

100 74·222 77·929 124·34 129·56 



33.7 PROBABILITY THEORY 723 

TABLE 33.3 

n to·95(n) to·975 (n) 
( = -to·o5(n)) ( = -to·025(n)) 

1 6·3138 12·706 
2 2·9200 4·3027 
3 2·3534 3·1824 
4 2·1318 2·7764 
5 2·0150 2·5706 

6 1·9432 2·4469 
7 1·8946 2·3646 
8 1·8595 2·3060 
9 1·8331 2·2622 

10 1·8125 2·2281 

11 1·7959 2·2010 
12 1·7823 2·1788 
13 1·7709 2·1604 
14 1·7613 2·1448 
15 1·7531 2·1314 

16 1·7459 2·1199 
17 1·7396 2·1098 
18 1·7341 2·1009 
19 1·7291 2·0930 
20 1·7247 2·0860 

21 1·7207 2·0796 
22 1·7171 2·0739 
23 1·7139 2·0687 
24 1·7109 2·0639 
25 1·7081 2·0595 

30 1·6973 2·0423 
35 1·6896 2·0301 
40 1·6839 2·0211 
45 1·6749 2·0141 
50 1·6759 2·0086 

60 1·6706 2·0003 
70 1·6669 1·9944 
80 1·6641 1·9901 
90 1·6620 1·9867 

100 1·6602 1·9840 



724 SURVEY OF APPLICABLE MATHEMATICS 33.7 

REMARK 5. For the quantiles xp of continuous distributions, the following rela­

tions are valid: 

(i) logarithmic normal distribution: 

xp = exp(J.L + aup); (11) 

(ii) exponential distribution: 

(12) 

(iii) Weibull distribution: 

(13) 

(iv) Erlang distribution: 

(14) 

11. Beta distribution with parameters p, q (p > 0, q > 0): 

{ 
1 xP-1 (1-x)q-1 for0<x<1, 

f(x) = 
0
B(p, q) 

otherwise, 

E(X) = _P_, var(X) pq 
p + q = (p + q)Z(p + q + 1) 

(the function B is defined in § 13.11). A special case of the beta distribution for 

p = q = 1 is the uniform distribution on the interval (0, 1). 

12. Cauchy distribution with parameters a, .X ( -oo < a < oo, .X > 0): 

( -00 <X< 00), 

x = x0.5 = a, 

cp(t) = exp(iat- .XItl). 

The Cauchy distribution has no mean and no variance. 

REMARK 6. Further continuous distributions with applications to various fields 

are triangular, logistic, x, Maxwell, Pareta and others (see [244), [249], [269]). 
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33.8. lmportant Multivariate Distributions 

1. k-variate multinomial distribution with parameters n, Pt, ... , Pk ( n is a po­
sitive integer, 0 < Pj < 1, Pt + · · · + Pk = 1): 

k 

I ,Pl .. ·Pk { 
n! Xl Xk 

P(X1 = x1, ... , xk = xk) = ;1· ... xk. 
for Xj = 0, 1, ... n, I:; Xj = n, 

j=l 

otherwise, 

E(Xj) = npj, var(Xj) = npj(1- Pj) (j=1, ... ,k), 

cov(Xi, Xj) = -nPiPj (i, j = 1, ... , k; i =/= j), 

cp(t1, ... , tk) = [ tPj exp(itj)r 
J=l 

The multinomial distribution generalizes the binomial distribution in such a way 
that each of n independent trials has k possible outcomes with probabilities Pj 
now and the random variable Xj describes the number of occurrences of the j-th 
outcome (j = 1, ... , k) in these n trials. The marginal distribution (see § 33.5) 
of the random variable Xj is the binomial distribution with parameters n, Pj (j = 
= 1, ... ' k). 

Example 1. Let a random experiment consist in throwing four fair dice and let 
a random variable Xj denote the number of j's that turn up in this experiment 
(j = 1, ... , 6). Then the random vector X = (X1 , ... , X6)' has the 6-variate 
multinomial distribution with parameters n = 4, Pj = i (j = 1, ... , 6). The 
random variable X 6 coincides with the random variable X from Example 33.6.1. 
In particular, 

( i, j = 1, ... ' 6; i =I= j). 

2. n-variate normal distribution with parameters J.-L, E (J.-t is an n-component 
column vector with real components J-Li, E is an n X n symmetric positive definite 
matrix with real elements aij): 

f(xt, ... , Xn) = (21t)n/;jEjl/2 exp[-~(x -J.-t) 1 E-1 (x -J.-L)] 

(-oo < Xi < oo, i = 1, ... , n), 

E(Xi) = f-Li, cov(Xi, Xj) = aij (i, j = 1, ... , n), 

cp(tt, ... , tn) = exp(iJ.-L1t- ~t' Et) 
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(lEI is the determinant of E, E-1 is the inverse of E, x = (x1, ... , Xn)', t = 
= (t1, ... , tn)'). This distribution is usually denoted by Nn(f..L, E). If a random 

vector has the distribution Nn(f..L, E), then its mean is f..L and its covariance matrix 

is L'. 

REMARK 1. The positive definite matrix E is nonsingular but the multivariate 

normal distribution can be introduced also for a singular matrix E. Then it is 

defined by its characteristic function rather than by the probability density. 

Theorem 1 ( Probability Distribution of a Linear Transformation). Let a random 

vector have the distribution Nn(f..L, E). Let a be a real m-component column vector 

and A be a real m x n matrix. Then the random vector AX + a has the distribu­

tion Nrn(Af..L + a, AEA'). In particular, the random variable Xi has the marginal 

distribution N(JLi, aii) ( i = 1, ... , n). 

Example 2. If a random variable X has the distribution N(JL, a 2 ), then the 

random variable 

has the distribution N(O, 1). 

X- JL 
Y=-­

a 
(1) 

Theorem 2. A random vector X has the n-variate normal distribution if and 

only if the random var-iable c' X has the ( one--variate) normal distribution for any 

real n-component column vector c. 

REMARK 2. The probability density of the two-variate (or bi-variate) normal 

distribution can be written in the form 

(2) 

( -oo < Xi < oo, i = 1, 2), 

where al = aii is the variance of the random variable Xi with the marginal dis­

tribution N(JLi, al) (i = 1, 2) and p is the correlation coefficient of the random 

variables xl and x2, 
(3) 

REMARK 3. Further multivariate distributions with applications to various fields 

are multivariate t distribution, Wishart distribution ( a multivariate version of the 

x2 distribution), the Dirichlet distribution (a multivariate Version of the beta dis­

tribution) and others (see e.g. [245], [269], [499]). 
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33.9. Transformations of Random Variables 

Theorem 1 (Probability Density of Transformed Random Variable). Let X be 
a continuous mndom variable with the probability density f ( x). Let h( x) be a strictly 
monotonic differentiahte function on such interval I that P(X E J) = 1. Then the 
random variable Z = h(X) has the probability density 

(1) 

where h-1 (z) is the inverse function to the function z = h(x). 

REMARK 1. Theorem 1 can be generalized to hold for functions h that are not 

strictly monotonic and for transformations of random vectors (see e.g. [499]). 

REMARK 2. Let a continuous random variable X have the probability den­

sity f ( x). Then the following formulae hold for the probability densities q( z) of 
random variables Z: 

(i) Z = aX + b: 

(ii) z = X 2 : 

(iii) z = lXI 

(iv) Z=ex 

(v) Z=1/X: 

1 (z- b) q(z)=-f-
Iai a 

q(z) = { ~ ~z [f(y'z) + fh/z)] 

q(z) = { ~(z) + f( -z) 

{ 
_111/(lnz) 

q(z) = z 
0 

q(z) = .2_ f (!) 
z2 z 

If, moreover, f(x) = 0 for x ~ 0, then 

(vi) z =..}X : 

(vii) Z = lnX : 

q(z) = { ~zf(z2 ) 

q(z) = ez f(ez). 

(a# 0); 

for z > 0, 

for z ~ 0; 

for z > 0, 

for z ~ 0; 

for z > 0, 

for z ~ 0; 

(z # 0). 

for z > 0, 

for z ~ 0; 

REMARK 3. Letindependent continuous random variables X and Y have proba­
bility densities f(x) and g(y). Then the following formulae hold for the probability 
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densities q(z) of random variables Z: 

(i) Z =X+ Y : q(z) = 1: f(x)g(z- x) dx = 1: f(z- y)g(y) dy; 

(ii) Z = XY : q(z) = {oo -
1
1

1 
f(x)g( ~) dx = {oo -

1
1

1 
f( _:)g(y) dy; 

1-oo X X 1-oo Y Y 

(iii) Z = X/Y : q(z) = 1: IYif(yz)g(y) dy. 

Example 1. Let X and Y be independent random variables that have the expo­
nential distribution with parameter 8. Then the random variable Z =X+ Y has 
the probability density 

(
00 r 1 ( X) 1 ( Z X) q(z)= 1_
00

f(x)g(z-x)dx= 10 8exp - 6 8 exp --8- dx= 

q( z) = 0 for z ~ 0 . 

The probability density q(z) corresponds totheErlang distribution with parameters 
p = 2, 8. It is possible to show by induction, that the sum of n independent random 
variables possessing the exponential distribution with parameter 8 has the Erlang 
distribution with parameters p = n, 8 (see Theorem 33.7.5). 

Theorem 2 (Mean and Variance of a Linear Transformation). Let X1, ... , Xn 
be random variables and a1, ... , an, b be arbitrary real numbers. If E(IXil) < oo 

( i = 1, ... , n), then 

If E(Xf) < oo (i = 1, ... , n), then 

(3) 

lf E(Xf) < oo (i = 1, ... , n) and the random variables X1, ... , Xn are indepen­
dent, then (3) takes a simpler form 

(4) 



33.10 PROBABILITY THEORY 729 

Example 2. Letindependent random variables X 1, ... , Xn have the same mean J.L 

and the same variance cr2 . Then 

E(X) = J.L, var(X) = cr2 jn 

n 

holds for their arithmetic mean X= 'E Xi/n. 
i=l 

(5) 

RE MARK 4. If X is a random variable with a small coefficient of variation ( smaller 
than 0·2), then it is possible to approximate 

E(X/Y) ~ E(X)/E(Y). (6) 

33.10. Some lnequalities 

Theorem 1 ( M arkov Inequality). Let X be a positive random variable (i.e. 

P(X > 0) = 1) suchthat E(X) < oo. Then 

P(X > .\E(X)) ~ Ij.\ (I) 

for every ,\ > 1. 

Theorem 2 ( Chebyshev Inequality). Let X be a random variable such that 
E(X2 ) < oo. Then 

P(IX- E(X)! ~ c) ~ var(X)/c2 , 

P(X- E(X) ;::: c) ::; var(X) 
- - var(X) + c2 

for every c > 0. 

REMARK 1. The inequality (3) is sometimes called the Cantelli inequality. 

(2) 

(3) 

Theorem 3 ( Camp-Meidell Inequality). Let X be a random variable with a con­

tinuous unimodal probability distribution such that E(X2 ) < oo. Let lx- E(X)! ~ 
~ [var(X)pl2 . Then 

P(IX- E(X)! ~ c) ~ ~~;~~; (4) 

for every c > 0. 
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Theorem 4 (Kolmogorov Inequality). Let X1, ... , Xn be independent random 
variables suchthat E(Xf) < oo (i = 1, ... , n). Then 

k n 

P( ~~ I L[Xi- E(Xi)]l ~ c-) ~ Lvar(Xi)/c-2 

l=k=n i=l i=l 

(5) 

for every c > 0. 

Theorem 5 ( Jensen Inequality). Let X be a random variable suchthat E(IXI) < 
< oo. Let g(x) be a convex function on an interval I such that P(X E I) = 1. 
Then 

E[g(X)] ~ g[E(X)]. (6) 

If g(x) is concave then the converse inequality holds. 

Theorem 6 (Berry-Essen Inequality). Let X 1 , ... , Xn be independent identi­
cally distributed random variables with the mean JL and the variance a2 and such 
that E(IX1 13 ) < oo. Let Fn(x) be the distribution function of the random variable 

n 

I;(Xi -JL)/(ay'n). Then 
i=l 

(-oo<x<oo), (7) 

where <P(x) is the distribution function of N(O, 1) and A is a constant independent 
ofx. 

33.11. Limit Theorems in Probability Theory 

Limit Theorems in Probability Theory. Thesetheoremsare con­
cerned with the behaviour of sequences of random variables or probability distribu­
tions. An example of such assertions is Theorem 33.6.1 on convergence of binomial 
distributions to the Poisson distribution. Probability laws called the law of large 
numbers and the centrallimit theorem play the key role here. 

The law of Zarge numbers claims that the variability of a large nurober of inde­
pendent ( or weakly dependent) random variables is mu tually com pensated so that 
their arithmetic mean is nearly constant. In particular, the law of large numbers 
justifies the stability of relative frequencies mentioned in § 33.1. 

The centrallimit theoremexpresses the fact that, under very general conditions, 
the sum of a large nurober of independent ( or weakly dependent) random variables 
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with general distributions has approximately the normal distribution. In particu­
lar, the centrallimit theorem justifies the assumption on the normality of random 
variables that result from a large nurober of random factors such that each of them 
has a negligible effect by itself. 

C o n v er g e n c e o f a S e q u e n c e o f R an d o m V a ri ab 1 es. The limit 
theorems concern various types of convergence of sequences of random variables. 

Definition 1. A sequence of random variables X1, X2, ... converges in probability 
to a random variable X if 

lim P(JXn - XJ ~ c) = 0 
n-+oo 

(1) 

for every c > 0. 

Definition 2. A sequence of random variables X 1 , X 2 , • • • converges almost surely 
( or with probability 1) to a random variable X if 

P( lim Xn = X) = 1 . 
n-+oo 

(2) 

REMARK 1. The almost sure convergence implies the convergence in probability. 
The converse is not true. 

Definition 3. A sequence of random variables X1, X2, ... with distribution func­
tions F1 , F2 , . . . converges in distribution ( or weakly) to a random variable X with 
a distribution function F if 

lim Fn(x) = F(x) 
n-+oo 

(3) 

holds at every point x of continuity of the function F. 

33.12. Law of Large Numbers 

W e a k L a w o f L arge N u m b er s. This law concerns the convergence in 
probability. 

Theorem 1 (Bernoulli Theorem). Let X1, X2, ... be a sequence of independent 
random variables which have the alternative distribution with parameter p (see Ex­
ample 33.3.1 or § 33.6). Then 

(1) 

for every c > 0. 
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REMARK 1. The random variable (X1 + · · · + Xn)/n in Theorem 1 represents 
the relative frequency of successes in Bernoulli trials. Theorem 1 thus shows the 
stability of these relative frequencies that converge in probability to the probability 
of success when the number of trials increases. 

Theorem 2 (Khintchine Theorem). Let X1, X2, ... be a sequence of independent 
identically distributed random variables with the mean I"· Then 

(2) 

for every E > 0. 

RE MARK 2. According to Theorem 2, the mean of a random variable can be 
found approximately as the arithmetic mean of independent observations of this 
random variable. Theorem 1 is a special case of Theorem 2. 

Theorem 3 (Markov Theorem). Let X 1 , X2, . .. be a sequence of independent 
random variables such that E(Xl) < oo ( i = 1, 2, ... ). Let the condition 

1 [ n ] 1/2 
lim - "'var(Xi) = 0 

n-+oo n ~ 
i=l 

(3) 

be fulfilled. Then 

(4) 

for every E > 0. 

REMARK 3. In particular, the condition (3) is fulfilled if the variances of the 
random variables X 1 , X 2 , •• • are identical or at least bounded by the same constant. 

S t r o n g L a w o f L arge N u m b er s . This law concerns the almost sure 
convergence. 

Theorem 4 (Kolmogorov Theorem). Let the assumptions of Theorem 2 hold. 
Then 

P ( lim ~ ~ Xi = ~-") = 1 . 
n-+oo n ~ 

i=l 

(5) 

Jf the mean of the random variables Xi does not exist, then the sequence of the 
random variables (X1 + · · · + Xn)/n is unbounded with probability 1. 
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33.13. Central Limit Theorems 

Theorem 1 (Moivre-Laplace Theorem). Let X1. X2, ... be a sequence of inde­
pendent random variables that have the alternative distribution with parameter p 
(see Example 33.3.1 or § 33.6). Then the sequence of the random variables 

Yn = [np(1 ~ p)p/2 (txi- np) (1) 

converges in distribution to a random variable with the distribution N(O, 1). 

REMARK 1. Preserving the notation from Theorem 1 we can use the following 
approximation for every c > 0 and sufficiently large n: 

(2) 

where cJ! is the distribution function of N(O, 1). 

Theorem 2 (Levy-Lindeberg Theorem). Let X1, X2, ... be a sequence of inde­
pendent identically distributed random variables with the mean f-L and variance a2 • 

Then the sequence of the random variables 

(3) 

converges in distribution to a random variable with the distribution N(O, 1). 

Theorem 3 (Lyapunov Theorem). Let k be a real number, k > 2. Let X1, 
X 2, ... be a sequence of independent random variables suchthat E[IXi- E(Xi)lk] < 
< oo (i = 1, 2, ... ). Let the condition 

n 

~ E[IXi - E(Xi)jk] 
lim _i=-1------:--=-- = 0 

n-+oo L~ var(Xi)] k/2 

(4) 

be fulfilled. Then the sequence of the random variables 

(5) 

converges in distribution to a random variable with the distribution N(O, 1). 
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REMARK 2. Centrallimit theorems justify the approximation of some discrete 
distributions by the normal distribution: Let a random variable X have the bino­
mial, negative binomial, Poisson or hypergeometric distribution (see § 33.6) and let 
var(X) > 9 (in the case of the hypergeometric distribution we require, moreover, 
n/N < 0·1). Then for any non-negative integers a and b, a < b, one can use the 
approximation 

(6) 

where {? is the distribution function of N(O, 1). 

REMARK 3. Let a random variable Xn have the distribution x2 (n). Then the 
sequence ofrandom variables (Xn -n)/ J(2n) converges in distribution to N(O, 1). 

REMARK 4. Let a random variable Xn have the distribution t(n). Then the 
sequence of the random variables Xn converges in distribution to N(O, 1). 
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34.1. Basic Concepts 

This chapter is devoted both to theoretical and practical aspects of mathema­
tical statistics. Necessary foundations for elementary statistical analysis are given 
in § 34.1, § 34.2 and § 34.5. Furthermore, the chapter is concerned with problems 
of statistical estimation and hypothesis testing; § 34.6 and § 34.9 are concentrated 
on theoretical analysis of these problems while practical computational advice for 
estimation can be found in§ 34.7 and § 34.8 and for testing in § 34.10- § 34.12. 

M a t h e m a t i c a 1 S t a t ist i c s. Mathematical statistics is concerned with 
analysis of numerical data obtained under circumstances affected by chance. These 
data are collected in order to draw certain conclusions concerning lots (populations) 
with a large nurober of items. The substantial feature of mathematical statistics, 
in contrast to descriptive statistics, consists in the fact that it regards the investi­
gated data as realizations of random variables and that it aims at obtaining certain 
information concerning probability distributions of these random variables. There­
fore procedures of mathematical statistics exploit substantially probability theory 
discussed in Chap. 33. 

S t a tistic al Model. The working premises on probability distributions that 
generate numerical data for statistical analysis are usually called the statistical 
model. The statistical analysis must include the description which model is suitable 
for the data investigated. 

R an d o m S a m p 1 e . The random sample ( or briefiy sample) from a given 
probability distribution is a sequence of independent random variables Xt, ... , Xn 
that have this distribution. It can be written as a random vector X = (Xt, ... , Xn)'. 
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The number n is called the size of the random sample. The random sample of size n 
corresponds to the situation when a random experiment is repeated n times under 
the same conditions and with mutually independent repetitions ( e.g., the weighing 
of n randomly selected casts of the same type can be regarded as a random sample 
from the normal distribution, the measuring of time to failure for n bearings as 
a random sample from the Weibull distribution). The random sample can also be 
formed from a multivariate probability distribution ( e.g. the simultaneaus weighing 
of casts and measuring of their tensile strength) or mutually independent random 
samples from several probability distributions may be available { e.g. the weighing 
of two batches of casts produced by different technologies). The random sample 
defined by means of random variables is only a hypothetical concept that conforms 
to the probability formulation of the statistical model. For practical treatment, 
a statistician obtains only n realized values x1, ... , Xn which are called observa­
tions of the random sample X1, ... , Xn. The family of all possible observations 
Xt, •.• , Xn of a given random sample is called the sample space. 

S t a tis tic s an d E sti m a t o rs. The values constructed on the basis of a ran­
dom sample in order to draw certain conclusions are called statistics. From the ma­
thematical point of view, the statistic is a function S(Xt, ... , Xn) of the random 
variables X1, ... , Xn that is itself a random variable and that can be constructed 
without knowledge of the probability distribution of these random variables. The 
statistics whose objective is an approximate determination of characteristics of 
a probability distribution are called sample ( or empirical) characteristics since 
they are the sample counterparts of actual theoretical characteristics (see § 34.2). 
The statistics whose objective is an approximate determination of parameters of 
a statistical model are called estimators. 

34.2. Sampie Characteristics 

1. Sample mean: 

{1) 

2. Sample variance: 

{2) 

Theorem 1 (Properties of Sample Mean and Sample Variance). Let X1, ... , Xn 
be a random sample from a distribution with the mean f.1. and variance a 2 • Then 

E(X) = f.1., var{X) = a2 fn, 
E(S2) = a 2 • 

{3) 

{4) 
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If n increases, then X converges almost surely (§ 33.11) to f.1. and 8 2 to a 2 • If 

p,4 exists, then 

(8 2 ) f.1.4 n- 3 4 var =-- a 
n n(n- 1) 

(5) 

3. Sample standard deviation: 

(6) 

4. Sample coefficient of variation: 

C= S/IXI. (7) 

5. Sample k-th moment: 

M~ = ~fxt (k=1,2, ... ). (8) 
i=l 

6. Sample k-th central moment: 

(k=1,2, ... ). (9) 

REMARK 1. For the sample second central moment we have E(M2) = 

= ( n - 1 )a2 j n i- a 2 . Therefore one mostly uses the statistic S 2 instead of M 2 • 

Forthis statistic E(S2 ) = a 2 holds and the term "sample variance" usually refers 

to it. 

7. Sample coefficient of skewness and kurtosis: 

(10) 

8. Sample correlation coefficient (for a two-variate random sample (Xt, Yl)', ... 

. . . , (Xn, Yn)'): 

n 

(11) 
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A sample covariance equals the numerators ofthe expressions in (11) divided by n. 

9. Sample correlation matrix (for a k-variate random sample X1, ... , Xn) is 
a k x k matrix Rx with elements r ij, where r ij is the sample correlation coe:fficient 
of the i-th and j-th component of the considered random sample. A sample cova­
riance matrix Sx is defined analogously by means of the sample covariances. 

34.3. Random Sampie from Normal Distribution 

Theorem 1 (Random Sample Jrom Normal Distribution). Let X1. ... , Xn be 
a random sample from the normal distribution N(J.L, a2). Then the sample mean X 
has the distribution N(J.L, a2 jn) and the random variable (n - 1)82 fa2 has the 
distribution x2 ( n - 1), the random variables X and 8 2 being independent. The 
random variable 

T= X- J.L .jn 
s 

has the distribution t(n- 1) (§ 33.7). 

REMARK 1. Under the assumptions of Theorem 1, 

{1) 

{2) 

Theorem 2 ( Two Independent Random Samples from Normal Distributions). Let 
X1, ... , Xn 1 be a random samplefrom the distribution N(J.Lb aD andY1. ... , Yn2 

a random sample from the distribution N(J.L2, an, the samples being independent. 
Let X and Sf denote the sample mean and sample variance of the random sample 
X1, ... , Xn 1 and, analogously, Y and S? these quantities of the random sample 
Y1, ... , Yn 2 • Then the random variable 

{3) 

has the distribution F(n1 -1, n2 -1) {§ 33.7). lj, moreover, ai = a~ = a 2 then the 
random variable 

{4) 

has the distribution t(n1 + n2- 2) {§ 33.7). 
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Theorem 3 (Random Sample from Two- Variate Normal Distribution). Let 
(XI. Y1 )', ... , (Xn, Yn)' be a random sample from the two-variate normal distribu­
tion with the probability density (33.8.2). Let r be the sample correlation coejjicient 
(see {34.2.11)). lf e = 0 (see (33.8.3)), then the random variable 

_ r _ jl/2 
T - [I - r2j1/2 [n 2 (n ~ 3) (5) 

has the distribution t(n- 2) (§ 33.7). 

REMARK 2. For a general e one frequently uses the so-called Z-transformation 
of the form 

Z= ~ln I+r. 
2 I-r 

(6) 

If e is not too close to the nurober I or -I, then for n ~ IO it is possible to approx­
imate the probability distribution of the random variable Z by the distribution 

N (~ ln I + e + e _I_) 
2 I-e 2(n-I)' n-3 · 

(7) 

REMARK 3. Theorems I - 3 are usually applied in order to draw various con­
clusions in statistical models based on the normal distribution (see e.g. § 34.IO). 
Derivation of properties of sample statistics for other probability distributions is 
mostly much more difficult. For example, if X 1, ... , Xn is a random sample from 
the gamma distribution with parameters p, fi, then the sample mean X has the 
gamma distribution with parameters np, fi fn and, for larger n, its distribution can 
be approximated by the distribution N(p, 62 /n). 

34.4. Ordered Random Sampie 

Frequently it is necessary to analyze data ordered from the smallest to the largest 
item or to concentrate one's attention to the behaviour of the smallest or largest 
data items, etc. In such a case one can exploit the following theory. 

Definition 1. Let X1. ... , Xn be a random sample. Let random variables 
X(l)• ... , X(n} be obtained from X1, ... , Xn by rearranging from the smallest to 
the largest item so that 

(I) 

Then X(l}• ... , X(n) is called the ordered random sample. The i-th random variable 
X(i) is called the i-th order statistic (i =I, ... , n). 
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Definition 2. Let x1' ... ' Xn be a random sample. Then the statistic X of the 
form 

- { x((n+1)/2) for n odd' 

X= i[X(n/2) + X(n/2+1)] for n even 
(2) 

is called the sample median. The statistic R = X(n) - X(l) is called the sample 
range. 

Theorem 1 ( Probability Distribution of Order Statistics). Let X 1 , .•. , Xn be 
a random sample from a probability distribution with distribution function F(x). 
Then the distribution function F( i) ( x) o f the i-th order statistic is given by 

F(i)(x) = :t (~) [F(xW[1- F(x)t-r ( -oo < x < oo, i = 1, ... , n). (3) 
r=t 

If the probability distribution considered is continuous with probability density f ( x), 
then the probability density f(i)(x) of the i-th order statistic is 

f(i)(x) = n (~- 1) f(x)[F(x)]i-l[1- F(x)]n-i 
2-1 

( -oo < x < oo, i = 1, ... , n). 

(4) 

REMARK 1. In particular, for the statistic x(1) = min(X1' ... ' Xn) one has 

!(l)(x) = nf(x)[1- F(x)t-1 (5) 

and for the statistic X(n) = max(X1, ... , Xn) 

f(n)(x) = nf(x)[F(x)t-1 . (6) 

Example 1. Let n bulbs be connected in series in a circuit. The time to failure of 
the i-th bulb can be modelled by the Weibull distribution with parameters p, 8. This 
distribution has the probability density f(x) given in § 33.7 and the distribution 
function 

{ 
1- exp[-(x/8)P] for x > 0, 

F(x) = 
0 for x ~ 0. 

The time to failure for the whole system is described by the statistic X(l) since the 
first failure of any bulb destroys the whole system. The probability density of this 
statistic is, according to ( 5) 

{ 
pxP-1 [ ( x ) P] 

/(q(x) ~ :f(x)[l- F(x)]"-' ~ (8/n'lv)v exp - 6/n'lv for x > 0, 

for x ~ 0. 
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Hcnce the time to failure of the whole system has the Weibull distribution as well, 
but with parametersp, 5jn11P. In particular, we obtain for p = 1 that the statistic 

X(l} in a random sample from the exponential distribution with parameter 5 has 

the exponential distribution with parameter 5 jn. 

34.5. Elementary Statistical Treatment 

Frequencies of Observations. Some values among the observations 

that are obtained as realization of a random sample of size n can repeat several 

times. The number ni of occurrences of a value Xi is called the frequency of the 
observation Xi and the quotient ni/n is called the relative frequency of the observa­
tion Xi. The sum of the frequencies of all observations is equal to n and the sum of 

the relative frequencies to one. The cumulative frequency of the observation Xi is 

the sum of frequencies of all the observations that do not exceed the value Xi and 

analogously for the cumulative relative frequency of the observation Xi. 

F r e q u e n c y an d C o r r e 1 a t i o n T ab 1 es . The j1·equency table contains 

the values Xi ( usually ordered from the smallest to the largest) that appeared at 

least once among the observations in the first column and their frequencies ni 
in the second one. The correlation table used for two-variate random samples 

contains the values Xi that appeared at least once among the observations of the 

first component of the random sample on the left-hand side and the values Yi that 

appeared at least once among the observations of the second component on the top 

edge. At the points of intersections of the individual rows and columns frequencies 

nii corresponding to the pairs (xi, Yi) are recorded. 

Frequency and correlation tables can be used for calculations of various sam­

ple characteristics. One frequently calculates the sample mean, sample standard 

deviation and sample correlation coefficient according to the formulae 

1 
x=- L:xini, 

n 

s = { n ~ 1 L(xi- x)zni} 1/2 

= { n ~ 1 [2::: x;ni- ~(L:xini)2 ] f 12 
, 

L,L,xiyjnij- *(L,xini)(L,yjnj) 
r= -------=~=---~~~~~--~~~~~----~ 

{ [L, xrni - * (L, Xini) 2] [L, yjni - * (L, Yini )2)} 112 ' 

(1) 

(2) 

(3) 

respectively (the summation runs always over all possible values Xi or Yi)· It is 

also possible to find any sample quantile in such a simple way that the observations 
that do not exceed this value form the prescribed part of the sample, e.g. 25% for 

the sample lower quartile, 50% for the sample median, etc. 
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Example 1. Twenty laboratory tests have given the following data representing 
the percentage of carbon content in coal: 

85, 82, 81, 83, 74, 84, 83, 84, 83, 84, 
87, 79, 87, 81, 83, 90, 77, 84, 85, 85. 

The corresponding frequency table is given as Tab. 34.1. The sample mean is 
x = 83·050 and the sample standard deviation s = 3·546. The sample lower quartile 
is 81·5 (the arithmetic mean of the values 81 and 82), the sample median 83·5 (the 
arithmetic mean of the values 83 and 84) and the sample upper quartile 85. 

TABLE 34.1 

Frequency Relative Cumulative Cumulative 
Xi ni Frequency Frequency Relative 

ni/n Frequency 

74 1 0·05 1 0·05 
77 1 0·05 2 0·10 
79 1 0·05 3 0·15 
81 2 0·10 5 0·25 
82 1 0·05 6 0·30 
83 4 0·20 10 0·50 
84 4 0·20 14 0·70 
85 3 0·15 17 0·85 
87 2 0·10 19 0·95 
90 1 0·05 20 1·00 

2: 20 1·00 

G r o u p in g. If a random sample of size n consists of too many numerically 
different observed values, then the range of all observations is usually divided into 
k class intervals (or cells). The recommended value of k ranges from 5 to 20, one 
sometimes takes k ~ Jn or k ~ 1 + 3·3lnn (the so-called Sturges rule). The 
observations lying in the same dass interval are said to form a class and they 
are usually approximated by the midpoint of this interval. The number of values 
in a dass is called the class frequency and, after dividing by n, the relative class 
frequency. If an observation coincides with the common endpoint of two dass 
intervals, then it is either assigned systematically to the lower interval or the dass 
frequency of both the intervals is increased by ~. The grouped observations are 
presented again in the form of a frequency table with the individual dass intervals 
and their midpoints. The sample characteristics are calculated according to the 
formulas {1) - (3) (and others) but now the values Xi or Y; are the dass midpoints 
and ni or n; are the corresponding dass frequencies. 
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The calculation of x and 8 can be simplified if all the class intervals have the same 
width d. In this case, one can replace the original class midpoints by the values 
... , -2, -1, 0, 1, 2, ... of an auxiliary variable u, where the value 0 corresponds 
to a suitably chosen class interval ( e.g. to the middle one or to that with the largest 
class frequency), the value 1 corresponds to the right-hand adjacent interval, etc. 
Then 

x = xo + dU, 8 = d8u, (4) 

where u and 8u are the sample mean and the sample standard deviation of the 
values u, respectively, and xo is the midpoint of the interval with u = 0. 

Example 2. Tab. 34.2 is the frequency table that describes the results of weighing 
a produced chemical (in grams) in 300 tests. The data are grouped into 12 class 
intervals of the same length 100 grams. If we set xo = 1500, then the auxiliary 
variable u attains the values given in Tab. 34.2. For these values of u it is easy to 
calculate 

U = 0·027, 8u = 2·041 . 

Finally, one obtains 

x = 1500 + 100 . 0·027 = 1502· 7, 8 = 100 . 2·041 = 204·1 

according to ( 4). 

TABLE 34 2 

Class Class Auxiliary Class Relative Cumulative 
i Interval Midpoint Variable Frequency Class Freq· Relative 

Xi u ni ni/n Class Freq· 

1 950- 1050 1000 -5 4 0·013 0·013 
2 1050- 1150 1100 -4 9 0·030 0·043 
3 1150- 1250 1200 -3 19 0·063 0·106 
4 1250- 1350 1300 -2 36 0·120 0·226 
5 1350- 1450 1400 -1 51 0·170 0·396 
6 1450- 1550 1500 0 58 0·193 0·589 
7 1550- 1650 1600 1 53 0·177 0·766 
8 1650- 1750 1700 2 37 0·123 0·889 
9 1750- 1850 1800 3 20 0·067 0·956 

10 1850- 1950 1900 4 9 0·030 0·986 
11 1950- 2050 2000 5 3 0·010 0·996 
12 2050- 2150 2100 6 1 0·003 0·999 

I: 300 0·999 
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REMARK 1. Errors of sample moments due to grouping data into dass intervals 
of the same length d can be reduced by means of the so-called Sheppard correction. 
The corrected standard deviation s* has the form 

Histogram and Empirical Distribution Function. The his­
togram and empirical distribution function are constructed in order to obtain an 
idea on the form of the probability density aud distribution function of the probabi­
lity distribution from which the given random sample has arisen. Ifthe observations 
are grouped into dass intervals, then the histogram is a system of rectangles whose 
horizontal edges located on the horizontal axis coincide with the individual dass in­
tervals and whose areas correspond to the relative dass frequencies. The empirical 
distribution function denoted often by F n ( x) can be constructed e.g. in such a way 
that one assigns the cumulative relative dass frequencies to the upper endpoints of 
the corresponding dass intervals. The histogram and empirical distribution func­
tion for the data from Example 2 are shown in Fig. 34.1 and 34.2. 

n;/n 

0·2 

0·1 

X 

Fig. 34.1. Histogram of the data from Example 34.5.2. 

REMARK 2. In general, the empirical distribution function of a random sample 
X1, ... , Xn is defined by the formula 

{ 

Ü for X < X(l) , 

Fn(x) = i/n for x(i) ~X < x(i+l) 

1 for x ~ X(n), 

(i=1, ... ,n-1), (6) 

where X(1), ... , X(n) is the corresponding ordered random sample (see § 34.4). 
The empirical distribution function defined in this way has a random character. 
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However, if n increases, then Fn(x) converges with probability 1 to the distribution 

function of the probability distribution from which the observed random sample 

has been obtained, the convergence being even uniform for real x ( the so-called 

Glivenko theorem). 

~(X) 

1·0 

0·5 

0 0 

000 

0 0 0 

1500 2000 

Fig. 34.2. Empirical distribution function of the data from Example 34.5.2. 

Probability P aper. The probability paper is a graphical instrument that 

facilitates the decision on the type of the probability distribution from which the 

observed random sample has been obtained. In order to verify the normality one 

uses the normal probability paper. It is a graph paper whose horizontal axis has the 

usuallinear scale. However, the vertical axis is scaled nonlinearly so that the actual 

distance up is denoted by P (or 100P in per cent), where up is the P-quantile of 

N(O, 1). We plot the empirical distribution function Fn(x) of a random sample 

on this probability paper. If the random sample has been obtained from the dis­

tribution N (fL, a 2 ), then the graph on the paper can be fitted approximately with 

a straight line as in Fig. 34.3 for the data from Example 2. Moreover, this line 

achieves the value P = 0·5 ( or 100P = 50 in per cent) at the point with abscissa 

x ~ fL so that it can be taken for a rough estimate of the corresponding mean. 

There exist also other types of probability papers, e.g. the exponential or Weibull 
probability paper. 

34.6. Estimation Theory 

The task of estimation theory can be formulated as follows: Let X 1 , ... , Xn be 
a random sample from a probability distribution which depends on an unknown 
parameter {). The values to be considered for the parameter {) can be taken only 
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1000 1500 2000 X 

Fig. 34.3. Empirical distribution function of the data from Example 34.5.2 plotted on the 
normal probability paper. 

from a known parameter space il. In the siruplest case, il is a subset of the real 
line. The estimation of the parameter iJ consists in the construction of a statistic 
T(X1 , ... , Xn) whose distribution is concentrated (maximally, in a specified sense) 
about such a value of the parameter iJ E il for which the random sample was 
observed. 

REMARK 1. The above formulation concerns a parametric estimation. However, 
it is also possible to use a nonparametric estimation. An example is the sample 
median (see Definition 34.4.2) that estimates the median without specifying the 
type of probability distribution parametrically. 
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REMARK 2. Instead of a scalar parameter iJ one can, in the same manner, esti­
mate a value 7('1?), where 'I?= (iJ1, ... , iJm)' is an m-component (vector) parameter 
(i.e., il is a subset of the rn-dimensional Euclidean space Em) and T is a known 
function defined on il. In particular, the functions Ti( 'I?) = iJi make possible the es­
timation of the individual components iJi of the vector parameter 'I? (i = 1, ... , m). 

Point and Interval Estimation. The statistic T(X1, ... , Xn) in the 
above formulation of the estimation problern represents the so-called point estimator 
ofthe parameter iJ since, in practice, after substituting the observations x1, ... , Xn, 
we estimate the parameter iJ by a single number T(x1, ... , Xn) called the point 
estimate. For simplicity, one sometimes denotes the point estimator of iJ by J. 

However, we can also construct the interval estimator where, using two statis­
tics T1(X1> ... , Xn) and T,..(X1, ... , Xn), we specify an interval that covers the 
actual value of the parameter iJ with a prescribed (sufficiently large) probabil­
ity, e.g. P(T1(Xb ... , Xn) < iJ < T,..(X1, ... , Xn)) = 0·95. In an individual 
problem, after substituting observations x1 , ..• , Xn, we obtain a certain interval 
(T1(x1> ... , Xn), T,..(x1, ... , Xn)) called an interval estimate. 

Example 1. Let the time to failure of a device have the exponential distribution 
with distribution function F(x) given in (33.3.12). Then it is often important to 
estimate the probability that the device will work without failure at least during 
a period xo: 

P(X > xo) = 1- F(xo) = exp(-xo/6) (1) 

(xo > 0 being a given constant). If X1, ... , Xn is the corresponding random sample 
from the exponential distribution with parameter 6 then, due to certain properties 
of optimality, the statistic 

1 ( 
n )n-1 

1- x0 jt;x• 
T(X1, ... , Xn) = O 

n 

for L:xi > xo, 
i=1 

n 

for LX• ~ xo 
i=1 

(2) 

can be taken for the point estimator of the value T(o) = exp( -xo/6), while the 
recommended estimator covering the actual value T(o) with probability 1- a has 
the form 

(3) 

where xJ,(2n) is the P-quantile of the distribution x2(2n) (see Remark 33.7.4). 

P r o p er t i es o f E s t i m a t o r s. In applications, one prefers estimators with 
certain properties. Let X1, ... , Xn be a random sample from a probability distri­
bution with an unknown parameter iJ Eil. 
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Definition 1. An estimator T(X1, ... , Xn) of the parameter 1J ~s called unbiased 
if the relation 

E[T(Xll ... , Xn)] = 1J 

holds for all 1J E il. The value 

b(1J) = E[T(Xll ... , Xn)]-1J 

is called the bias oj the estimator T(Xb ... , Xn)· 

(4) 

(5) 

Definition 2. An estimator T(X1, ... , Xn) of the parameter 1J is called best un­
biased if it is unbiased and if, for any unbiased estimator S(X1, ... , Xn) of the 
parameter 1J, 

var[T(X1, ... , Xn)] ~ var[S(X1, ... , Xn)] (6) 

holds for all 1J E il. 

Sometimes an estimator T(X1, ... , Xn) is acceptable only for large values of n. 
The estimator properties that become apparent only when n --+ oo are called 
asymptotic. 

Definition 3. An estimator T(X1, ... , Xn) of the parameter 1J is called asymp­
totically unbiased if, for all 1J E il, 

lim E[T(X1, ... , Xn)] = 1J. 
n-+oo 

(7) 

Definition 4. An estimator T(X1, ... , Xn) of the parameter 1J is called consistent 
if, for every E: > 0 and all 1J E il, 

lim P(JT(XI. ... , Xn) - 1lJ ~ c) = 0. 
n-+oo 

(8) 

REMARK 3. According to Definition 33.11.1 the consistency of an estimator 
means the convergence in probability to the corresponding value of the parameter. 

Theorem 1. Let T(X1, ... , Xn) be an asymptotically unbiased estimator of the 
parameter 1J such that 

lim var[T(Xll ... , Xn)] = 0. (9) 
n-+oo 

Then T(X1 , ... , Xn) is a consistent estimator of 1J. 

Example 2. Let X1, ... , Xn be a random sample from a probability distribution 
with the mean 1-" and variance a 2 • According to (34.2.3), 

E(X) = 1-", lim var(X) = lim a2 jn = 0 
n-+oo n-+oo 

so that the sample mean X is an unbiased and consistent estimator of the pa­
rameter 1-" according to Theorem 1. Furthermore, the sample variance 8 2 is the 
unbiased estimator of the parameter a2 according to (34.2.4) (Theorem 34.2.1 even 
guarantees that if n increases, then X converges to 1-" and 8 2 converges to a 2 almost 
surely). 
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Efficiency of Es tim ator. The quality of an estimator T(X1, ... , Xn) of 
the parameter {} is frequently appreciated according to its mean square error ( or 
briefly mean error) 

(IO) 

that expresses the degree of concentration of the estimator about the estimated 
parameter. The mean square error of an unbiased estimator coincides with the 
variance of this estimator. The natural aim of estimation is the construction of 
such estimators whose mean square error is as small as possible. Under certain 
conditions on a given random sample X 1 , ... , Xn with parameter {} one can find 
a lower bound of mean square errors of all possible estimators T(X1, ... , Xn) of 
the parameter iJ. In particular, one uses mainly the lower bound of variances of 
the unbiased estimators (the so-called Cramer-Rao lower bound). An unbiased 
estimator whose variance achieves this bound is called the efficient ( or minimum 
variance) estimator. If this bound is achieved only in Iimit for increasing size of 
the sample, then the corresponding estimator is called asymptotically efficient. 

34.7. Point Estimators 

In this Section two methods for systematic construction of point estimators are 
presented. Their description is given in terms of continuous probability distribu­
tions even though it is valid for discrete distributions as weil. 

M ethod of Maximum Likelihood. Let X1. ... , Xn be a random 
sample from a probability distribution with density f(x, '!?), where 'I? is an m­
component parameter from an rn-dimensional open interval Q. 

Definition 1. A real function L( '!?) of the parameter 'I? defined for the observed 
values Xl, ... ' Xn of the random sample xl, ... ' Xn by 

n 

L('l?) = IJ!(xi, '!?) (I) 
i=l 

is called the likelihood function. A value .ß of the parameter 'I? fulfilling the condition 

L( .ß) ~ L( '!?) for all 'I? E [} (2) 

is called the maximum likelihood estimator of the parameter 'I?. 

REMARK I. By (2), the maximum likelihood estimator is such a value of the pa­
rameter 'I? for which the likelihood function (I) attains its maximum when the values 
x1 , ... , Xn have been observed. However, investigating its theoretical properties, 
one regards the maximum likelihood estimator as a random vector .ß(X1, ... , Xn)· 
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REMARK 2. In some cases (usually if the exponential function occurs in the den­
sity f ( x, iJ)) it is suitable to maximize ln L( iJ) ( the so-called log likelihood function) 
instead of L( iJ). If one sets ln 0 = -oo, then the logarithm does not infiuence the 
determination of .J. 

There is a connection between the value .J and the solution of the likelihood 
equations 

o ln L( iJ) 
oiJ. = 0 (j = 1, ... ' m) 

J 

{3) 

provided that the corresponding partial derivatives exist. The method of maximum 
likelihood is usually applied just by solving the equations (3). 

Example 1. Let X1, ... , Xn be a random sample from the Weibull distribution 
with parameters p > 0 and 8 > 0. Then we have 

n n 

lnL(p, 8) = nlnp- npln8 + (p -1) I:lnxi- L (Xir 
. . 8 
•=1 •=1 

for the observed values x1, ... , Xn so that the likelihood equations (3) have the 
form 

n 1 n 

~ - n ln 8 + ""ln x · - - ""'x'l!(ln x · - ln 8) = 0 L....J t 8P L....J t t ' 
p i=1 i=1 

n 

np P ""' P---g- + 8P+1 L....Jxi- 0. 
i=1 

After some rearrangement, one obtains for the estimator ß the equation 

that has to be solved numerically. Afterwards the estimator 8 can be calculated as 

A ( 1 n •) 1/p 
8 = - ""'x'l! 

n L....J • 
i=1 

M e t h o d o f M o m e n t s. Although this method need not provide estimators 
of optimal properties, its advantage lies in the fact that it is usually simple from the 
numerical point of view. The estimators obtained by this method are frequently 
used as initial values for more complicated estimation procedures. 

Let X1, ... , Xn be a random sample from a probability distribution depending 
on an m-component parameter 1'J E il. Let the moments l'~(iJ) (k = 1, ... , m) 
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of this distribution exist for all iJ E Q (see Definition 33.4.2), the symbol J.t~( iJ) 
expressing explicitly the dependence of the moment J.t~ on the parameter iJ. Fi­
nally, let M~ denote the sample k-th moment corresponding to the random sample 
X 1 , ... , Xn (see (34.2.8)). Then the estimator J of iJ is constructed by the method 
of moments as the solution of the equations 

J.t~(iJ) = M~ (k = 1, ... , m). (4) 

RE MARK 3. Sometimes one must enlarge the number of equations ( 4) in order 
to achieve uniqueness of the solution. If the solution of ( 4) is unique and its com­
ponents are continuous functions of the sample moments M~, then the estimator 
obtained by the method of moments is consistent. 

Example 2. Let X 1 , ... , Xn be a random sample from the logarithmic normal 
distribution with parameters -oo < J.t < oo and a2 > 0. Then equations ( 4) have 
the form 

exp(J.t + a2 /2) = X, 

exp(2J.t + 2a2 ) = M~. 

Solving these equations, we obtain the estimators 

-2 I A2 I -2 
[L = ln(X / JM 2 ), a = ln(M2 /X ) . 

Point Estimators for Some Important Distributions. Inwhat 
follows, we give a survey of point estimators constructed by means of a random 
sample X 1 , ... , Xn for the parameters of some important probability distributions. 

1. Binomial distribution (Na positive integer, 0 < p < 1): 

A 1 X p=-
N 

(an e:fficient estimator of p if N is known). 

2. Poisson distribution (>. > 0): 

(an efficient estimator). 

3. Uniform distribution (a < b): 

A n X 1 X 
a = n- 1 (l) - n- 1 (n) ' 

A n 1 
b = --1 X(n)- --1 X(l) 

n- n-

(the best unbiased estimator). 

(5) 

(6) 

(7) 
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4. Normal distribution ( -oo < fL < oo, o-2 > 0): 

fL = x, a2 = B 2 

(the best unbiased estimator); 

- X o-' 2 = n - 1 S2 
jJ,= ' n 

(the maximum likelihood estimator). 

5. Logarithmic normal distribution ( -oo < J.L < oo, o-2 > 0): 

1 n 

{l =- LlnXi, 
n i=l 

(the best unbiased estimator). 

6. Exponential distribution ( 8 > 0): 

( the best unbiased estimator). 

7. Weibull distribution (p > 0, 8 > 0): 
see the maximum likelihood method in Example 1. 

8. Gamma distribution (p > 0, 8 > 0): 

- 1-
8= -X 

p 

(an efficient estimator of 8 if p is known). 

34.8. Interval Estimators 

34.8 

(8) 

(9) 

(10) 

(11) 

(12) 

Let X1, ... , Xn be a random sample from a probability distribution which de­
pends on an m-component parameter tJ E Q and let T( tJ) be a known real function 
Oll Q. 

Definition 1. Let 0 < a < 1 be a given number. Let Tt(Xl, ... , Xn) and 
Tu(Xb ... , Xn) be such statistics that 

(1) 

holds for all tJ Eil. Then (Tt(Xl, ... , Xn), Tu(Xl, ... , Xn)) is called the two-sided 
confidence interval for T(tJ) with the confidence level1- a while Tt(Xb ... , Xn) 
and Tu(Xb ... , Xn) are called the lower and upper confidence limits for T(iJ). If 

P(T(tJ) < Tu(Xl, ... , Xn)) = 1-a or P(T(tJ) > Tt(Xl, ... , Xn)) = 1-a, (2) 

then ( -oo, Tu(Xb ... , Xn)) and (Tt(Xl, ... , Xn), oo) are called the one-sided 
confidence intervals with the confidence level 1 - a. 
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RE MARK 1. It is usual to give the confidence levels in per cent ( e.g., a 95% 
confidence interval covers the actual value r( ß) with probability 0·95, i.e. a = 0·05). 
The most frequent confidence intervals in statistical practice are 95 % and 99 % 
ones. The one-sided confidence intervals are used in such situations when we are 
interested in the lowest or highest parameter value that can be expected on the 
given confidence level. Multivariate generalization of confidence intervals provides 
the so-called confidence regions. 

Interval Estimators for Some Important Distributions. 
There exists a general theory of interval estimator construction that is related to the 
testing of statistical hypotheses (see e.g. (297]). Weshall give a survey of two-sided 
confidence intervals with confidence level 1 - a constructed by means of a random 
sample X1, ... , Xn for parameters of some important probability distributions. Let 
us put 

T=X1 +···+Xn. 

1. Alternative distribution (0 < p < 1): 

T 
=-----:-----=:----:-:--=---;-:-:---=--:--:= < p < 
T + (n- T + l)FI-af2(2{n- T + 1), 2T) 

< (T + l)FI-a/2(2(T + 1), 2(n- T)) (3) 
n- T + (T + l)FI-a/2(2(T + 1), 2(n- T)) 

( the lower confidence limit is equal to 0 for T = 0 and the upper confidence limit 
is equal to 1 forT= n). An approximate confidence interval for large n is 

X- U!-aj2[X(l- X)jnj112 < p <X+ u1-a/2[X(l- X)jnj112 . {4) 

2. Binomial distribution (Na positive integer, 0 < p < 1): 
If N is known, approximate lower and upper confidence limits for p can be obtained 
for large n as the roots of the quadratic equation 

(5) 

3. Poisson distribution (>. > 0): 

(6) 

(the lower confidence limit is equal to 0 for T = 0). An approximate confidence 
interval for large n is 

1 1 
-(T- ul-a/2 y'T) < >. < -(T + 1 + ul-a/2 y'( T +I)). (7) 
n n 
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4. Normal distribution ( -oo < JL < oo, a 2 > 0): 

X- t1-af2(n- 1)8/ /n < JL <X+ t1-af2(n- 1)8/ /n , (8) 

(n- 1)82 /xLat2(n- 1) < a 2 < (n- 1)82 /X~t2 (n- 1), (9) 

8[(n- 1)/xLat2(n- 1)]112 < a < 8[(n- 1)/X~t2 (n- 1}F/2 . (10) 

5. Exponential distribution (8 > 0): 

2TfxLa12 (2n) < c5 < 2Tfx~12 (2n). (11) 

6. Two-variate normal distribution ( -oo < JL1 < oo, -oo < JL2 < oo, a~ > 0, 
a~ > 0, -1 < e < 1): 
Approximate lower and upper confidence limits for e can be obtained for large n 
as the roots of the nonlinear equation 

1/2 (1 1 + T 1 1 +X X ) (n-3) -ln--- -ln--- = ±u1-a/2• 
2 1 - r 2 1 - x 2( n - 1) 

(12) 

where r is the sample correlation coefficient (34.2.11). 

REMARK 2. Sometimes one uses the following appro:ximate confidence intervals 
with confidence level1- a for the basic characteristics E(X), var(X), [var(X)p/2, 
e(X, Y) corresponding to random samples of large size n: 

X- u1-a/28/ /n < E(X) <X+ u1-a128/ /n , {13) 

8 2 - u1-a1282 /( 2/n) < var(X) < 8 2 + u1-a1282 /( 2/r~,.), (14) 

8- u1-a/28/ /( 2n) < [var(X}F/2 < 8 + u1-a/28/ /( 2n), (15) 

r- u1-af2(1- r 2)/ /n < e(X, Y) < r + u1-af2(1- r 2)/ /n . (16) 

Example 1. In Example 34.5.1, we have n = 20, x = 83·050, s = 3·546. If we 
assume that it is a random sample from the normal distribution N(JL, a 2), then the 
95 % confidence intervals for JL and a are 

81·390 < JL < 84·710, 2·697 < 0" < 5·179 

according to (8) and (10). For example, the lower confidence limit for JL has been 
calculated by the substitution of the observed values x and s for X and 8: 

x- t1-af2(n- 1)s/ /n = 83·050- 2·0930. 3·546/ /20 = 81·390 

(we have used to-975(19) = 2·0930). One can compare these intervals with the 
approximate 95% confidence intervals {13) and {15) which are 

81·496 < JL < 84·604' 2·447 < 0" < 4·645. 
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34.9. Hypothesis Testing 

Testing of statistical hypotheses is a statistical procedure in which we have to 
choose, on base of an observed random sample, exactly one oftwo mutually exclusive 
decisions ( e.g., using experimental results, one must choose the better of the two 
production technologies or to decide on the efficiency of a new therapy). This 
section is devoted to the so-called parametric tests in which the possible decisions 
are formulated by means of suitable parameters. Various nonparametric tests can 
be found e.g. in [92), [219), [427). 

S t a tis tic al Hypothesis. Let a probability distribution from which a ran­
dom sample X 1 , ... , Xn has been chosen depends on an unknown m-component 
parameter iJ from a known parameter space Q. Let w be a given subset of Q. Then 
the assertion of the form iJ E w is called the statistical hypothesis and the aim is 
to decide on its validity using observations x1, ... , Xn of the considered random 
sample. We write Ho: iJ E wand Ht: iJ E Q "w, where H0 is called the null hy­
pothesis ( or briefly the hypothesis) and H1 the alternative hypothesis ( or briefly the 
alternative), and say that we test the null hypothesis H 0 against the alternative hy­
pothesis Ht (or briefly the hypothesis Ho against the alternative H1). Construction 
of a test consists in finding out a suitable subset W of the sample space that is called 
the critical region. If (x1 , ... , xn)' E W holds for the observations x1 , ... , Xn, then 
we reject Ho and accept H 1 . In the opposite case we cannot reject Ho and it mostly 
means in practice that we prefer Ho to H 1. 

Example 1. A lucid example of a critical region can be formulated in the field 
of quality control (see § 35.12 and § 35.13). Let x be the number of defective items 
found among n items that were drawn randomly from a Iot of products. The 
consignee refuses to accept the Iot if the fraction iJ of defective items in the whole Iot 
exceeds 0·01. However, the fraction iJ is unknown so that one must statistically test 
the null hypothesis H 0 : iJ ~ 0·01 against the alternative hypothesis H 1 : iJ > 0·01 
(i.e. Q = ( -oo, oo), w = ( -oo, 0·01)). It is shown in§ 35.12 that the hypothesis Ho 
on the acceptable quality is rejected ( and the lot is returned to the producer in this 
case) if x > c, where c is a suitable number constructed for this test. Obviously, the 
inequality x > c represents a specialform of the general relation (x1 , ... , xn)' E W 
here. 

Definition 1. The function ß( iJ) defined on Q by 

ß(iJ) = PtJ(X E W) (1) 

is called the power function ( or briefly the power) of the corresponding test ( the 
symbol PtJ means that the probability of the event X E W is calculated using the 
value iJ of the parameter). 
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Every test of statistical hypothesis takes a risk of a wrong decision. There are 

two possibilities of making an error. Type-one error is committed if Ho is rejected 

when it is true. On the contrary, type-two error is committed if Ho is not rejected 

when it is false. The objective is to find such a critical region that the probability 

of type-one error does not exceed a prescribed number a (i.e. ß( iJ) ~ a for {) E w) 
and, at the same time, the probability of type-two error is assmall as possible (i.e. 

the values of the power function ß(iJ) for {) E fl-..... w are as large as possible). 

Definition 2. The number a for which 

a = sup ß(iJ) (2) 
'I?Ew 

is called the significance Ievel of the corresponding test. Sometimes this test is 

called the test of size a. 

REMARK 1. If (x1, ... , Xn)' E W holds for observations x 1, ... , Xn, then we say 

that the hypothesis Ho is rejected on the significance level a. In statistical practice 

one usually takes a = 0·05 or a = 0·01 (the significance levels larger than 0·1 are 

used exceptionally). It is common to give the significance level in per cent ( e.g., 

for a = 0·05 one speaks of the 5% significance level). In some special cases the 

uniformly most powerful test for Ho against H 1 with a given significance level can 

be constructed whose power function attains the largest value for each {) E fl-..... w 

among all the tests for Ho against H 1 with the same significance level. 

In practice one most frequently tests H 0 : 7(iJ) = 70 against H 1 : 7(iJ) > 7o or 

Ho: 7(iJ) = 7o against H1: 7(iJ) < 7o (the so-called one-sided tests) and H 0: 7(iJ) = 
= 70 against H 1 : 7( '!9) ::j:. 70 ( the so-called two-sided tests) where 7( iJ) is a known 

function defined on D and 70 is a given constant. 

34.10. Tests of Hypotheses on Parameters of Normal Distributions 

This section gives a survey of tests with a significance level a that concern 

parameters of normal distributions. The assumption of normality is frequently 

acceptable and therefore these tests are very common in statistical practice. For 

simplicity, only the inequalities that determine the corresponding critical region will 

be given ( e.g. (1) instead of the full form W = { ( x1, ... , xn)': y'n (x - J-Lo) / s ~ 
~ t1-a ( n- 1)}), and only one of the two one-sided tests will be described ( the form 

of the other test should be clear, e.g., y'n (x- J-Lo)/s ~ ta(n- 1) is the other one­

sided test to the test (1)). The following tests on parameters ofnormal distributions 
make use of the quantiles of the distributions xZ, t, F (see Remark 33.7.4). 
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1. One-sample tests. Let X1. ... , Xn (n > 1) be a random sample from the 
distribution N(f.L, a2) where f.L, a2 are unknown parameters and f.Lo, a5 are given 
constants. 

(i) Ho: f.L = f.Lo against H1: f.L > f.Lo: 

Jn (x- P,o)/s ~ t1-a(n -1); (1) 

(i') Ho: f.L = 11-o against H1: p, # P,o: 

(2) 

(the so-called one-sample t tests). For example, if the inequality (1) is fulfilled for 
a = 0·05 after substituting the observed numerical values, then we can reject the 
null hypothesis f.L = 11-o and accept the alternative hypothesis p, > 11-o with the 95% 
certainty. 

(ii) Ho: a2 = a5 against H1: a2 > a5: 

(n- 1)s2/a2 > x2 (n- 1) . 0 = 1-a ' (3) 

Example 1. A machine fills packages of a certain weight, the maximum tolerated 
standard deviation being ao = 0·4 grams. Using a sample of 10 packages, the 
sample standard deviation s = 0·5 grams was calculated. The objective is to decide 
whether the machine works properly, i.e., to test H 0 : a2 = a5 against H 1 : a2 > a5 
(a = 0·05). 

According to (3) one obtains 

(n- 1)s2 ja~ = 9. 0·52 /0·42 = 14·063 < 16·919 = x~.95 {9) 

so that the hypothesis that the machine works properly cannot be rejected on the 
5 % level significance. 

2. Two-sample tests. Let X1, ... , Xn 1 {n1 > 1) be a random sample from 
the distribution N(f.Lb aD and Y1, ... , Yn2 (n2 > 1) a random sample from the 
distribution N(f.L2, a~) where f.Lb /1-2, ai, a~ are unknown parameters. Letthese 
random samples are mutually independent. 

(i) Ho: 11-1 = f.L2 against 11-1 > 11-2: 
if ai = a~, then 

(5) 
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if ai # a~, then 

x- y > t1-a(n1 - 1)sUn1 + t1-a(n2 - 1)sVn2 . 
(sUn1 + sVn2)1l2 = si/n1 + sVn2 ' 

(i') Ho: JL1 = JL2 against P.1 # JL2: 
if ai = a~, then 

34.10 

(6) 

[ n1n2(n1 + n2 - 2)] 112 lx- Yi > t (n + n _ 2). (7) 
1/2 = 1-a/2 1 2 ' 

n1 + n2 [(n1 - 1)s~ + (n2 - 1)s~] 

if a~ =f a~, then 

ix- "Yi > t1-aj2(n1 -1)sUn1 + t1-aj2(n2 -1)sVn2 
(si/n1 + sVn2)1l2 = si/n1 + sVn2 

(8) 

(the so-called two-sample t tests). 

(ii) Ho: a~ = a~ against H1: ai > a~: 

(9) 

(ii') Ho: ai = a~ against H1: ai =f a~: 

REMARK 1. The significance level of the tests (6) and (8) is equal to o: only 
approximately. In order to decide whether to apply the test (5) or (6) (analogously 
(7) or (8)) one can first perform the test (10). 

Example 2. A sample of 20 bulbs from the first producer has the mean lifetime 
x = 1230 hours with the sample standard deviation s1 = 75 hours while a sample 
of 30 bulbs from the second producer has the mean lifetime y = 1180 hours with 
the sample standard deviation s2 = 80 hours. The objective is to decide whether 
the bulbs from both producers have the same lifetime. Since the first producer is 
known to have better conditions for production of bulbs with long lifetime than the 
second producerweshalltest Ho: P.1 = JL2 against H1: JL1 > JL2 (a = 0·05). 

First it is necessary to verify whether we can assume ai = a~. According to (10) 
we obtain 

Fo·025(19, 29) = 0·416 < sVs~ = 755/802 = 0·8789 < 2·2313 = Fo·975(19, 29). 
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Hence the assumption ai = d is not rejected so that the test (5) can be applied: 

[ n1n2(n1+n2-2)] 1/2 x-y 

n1 + n2 [(n1 -1)si + (n2 -1)s~] 1 /2 

[20. 30(20 + 30- 2)] 1/2 1230- 1180 = 

20 + 30 [19. 752 + 29. 802]1/2 

= 2·2189 > 1·6772 = to·95(48). 

Therefore the hypothesis that both types of bulbs have the same lifetime must be 

rejected on the 5 % significance level and we accept the alternative that the lifetime 

of bulbs from the first producer is longer. 

3. Paired tests. Let (X1, Y1)', ... , (Xn, Yn)' (n > 2) be a random sample from 
the two-variate normal distribution with unknown parameters {L1, f.L2, ai, a~, f!· 

(i) Ho: f.L1 = /-L2 against H1: f.L1 > f.L2: 

x-y 
Jn 112 ~ t1-a(n- 1); (11) 

{ - 1- f: [(xi- Yi)- (x- y)JZ} 
n- 1 i=1 

lx-'fll > 
vn 1/2 = t1-aj2(n- 1) (12) 

{ - 1- f: [(xi- Yi)- (x- y)JZ} 
n- 1 i=1 

(so called paired t tests). 

(ii) H0 : {! = 0 against H1: {! > 0: 

(13) 

(ii') Ho: f! = 0 against H1: {! #- 0: 

(14) 

(iii) Ho: ai = a~ against H1: ai > a~: 

see the critical region (13); however, here r is the sample correlation coefficient of 

the random samples X1 + Y1, ... , Xn + Yn and X1- Yi., ... , Xn- Yn; 

(iii') Ho: ai = a~ against H1: ai =f. a~: 
see the critical region (14) with the same r as before. 
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REMARK 2. The tests {13) and {14) enables us to decide whether the compo­
nents of the observed two-variate normal distribution are uncorrelated (see Defini­
tion 33.5.6). 

Example 3. The following 10 pairs of values show what is the wear (thickness 
in millimeters) of the left-hand front tire (the first value in the pair) and of the 
right-hand front tire (the second value in the pair) in a sample of 10 cars of the 
same make during some time period: 

(2·1, 1·9), (0·9, 0·8), (0·5, 0·7), (1·8, 1·9), (1·7, 1·3), 

(2·0, 2·1), (0·9, 0·7), (1·4, 1·1), (1·7, 1·6), (0·8, 0·9). 

The objective is to decide whether the left-hand and right-hand tire wear off uni­
formly, i.e. to test Ho: J.L1 = J.L2 against Ho: /LI =/= J.L2 (a = 0·05). The rejection 
of Ho and acceptance of H1 should mean that there is a systematic defect in the 
symmetry of the front axle. 

According to (12), 

..jn lx- "Yi = 

{ - 1- f: [(xi- Yi)- (x- Y)j2 } 112 

n- 1 i=l 

0·08 = y'10 0.1989 = 1·2719 < 2·2622 = t 0•975 (9) 

so that the hypothesis that the tires wear off uniformly cannot be rejected on the 
5 % significance Ievel. 

REMARK 3. One can see that there is a close connection between the critical 
regions and the corresponding confidence intervals (compare e.g. (2) and (34.8.8)). 

34.11. Goodness of Fit Tests 

The goodness of fit tests form a category of statistical tests that enable us to 
test, on a prescribed significance Ievel a, the null hypothesis Ho that a given ran­
dom sample X1, ... , Xn was chosen from probability distribution of a given type, 
possibly with unknown parameters (in the case of unknown parameters one must 
assume their independence without mutual functional relations). They are also 
called the tests for distribution functions. For example, one can test the null hy­
pothesis that the corresponding probability distribution is N(J.L, a 2 ) with known or 
unknown parameters J.L, a2 • 
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C h i- Square Test. The chi-square test is generally carried out in the fol­
lowing steps: 

1. The range of values of the tested probability distribution ( e.g. the interval 
(0, oo) for the exponential distribution) is divided into k dass intervals lt, ... , Ik 
(see § 34.5); the end intervals ft and Ik are frequently unbounded. The dass fre­
quencies ni corresponding to the intervals Ii (i = 1, ... , k) are called the empirical 

frequencies in this test. 

2. One finds the probability Pi of the event that the random variable with the 
tested probability distributionlies in interval Ii (i = 1, ... , k). If this distribution 
depends on an unknown m-component parameter iJ = ('1?1. ... , '!?m)' (m < k -1), 
then the probabilities Pi depend on this parameter as weil and it is necessary to 
write Pi( iJ). The terms npi or npi( iJ) are called the theoretical frequencies in this 
test. 

3. If the tested probability distribution depends on an unknown parameter iJ, 
then one constructs its maximum likelihood estimate .ß. The corresponding likeli­
hood equations (34.7.3) have the form 

k 

'""' ~ opi( iJ) = O 
L...J p·(iJ) 8'1?. 
i=l • J 

(j = 1, ... , m). 

If parameters of the tested distribution are known, then this step is omitted. 

{1) 

4. One performs the test with the significance level a: that has the critical region 

{2) 

provided that the parameters are known, and 

(3) 

provided that the parameters are unknown. 

REMARK 1. The dass intervals should be chosen in such a way that the the­
oretical frequencies arenot too small (npi ~ 5 or npi(.ß) ~ 5 is recommended). 
The test {2) or {3) is only approximate since it has been derived asymptotically 
for n---+ oo. 

Example 1 { Goodness of Fit Test for the Exponential Distribution). The objec­
tive is to test the null hypothesis that a random sample X1, ... , Xn was chosen 
from the exponential distribution with an unknown parameter 8 > 0. Let all the 
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dass intervals {0, bt], {bt, b2], ... , (bk-2, bk-t], (bk-b oo) except for the last one 
have the same length h, i.e. bi = ih (i = 0, 1, ... , k -l). Then the solution of the 
likelihood equation (1) has the form 

k 

Lini- nk 

8 = h ln ..;_i=--"k1'----

Lini -n 
i=1 

-1 

{4) 

Finally, xLa(k- 2) is on the right-hand side of the inequality {3) and one substi-
tutes 

~ { exp(-ihj8)[exp(hj8) -1] for i = 1, ... , k -1, 
Pi(8) = ~ 

exp[-{k- l)h/8] for i = k 
{5) 

on the left-hand side. 

Example 2 ( Goodness of Fit Test for the Normal Distribution). The objective 
is to test the null hypothesis that a random sample Xt, ... , Xn was chosen from 
the distribution N(J.L, a 2 ) with unknown parameters -oo < J.l < oo and a 2 > 0. 
Let the dass intervals be { -oo, bt], (b1, b2], ... , (bk-2, bk-t], (bk-b oo) (k ~ 4). 
Let Ci be the midpoints of the intervals (bi-1, bi] {i = 2, ... , k -1) and, moreover, 
c1 = b1- (b2- bt)/2, ck = bk-1 + (bk-1- bk-2)/2. Then the likelihood equations {1) 
have the form 

1 ni a 2 2 k { 2 } 
J.l = ~~Pi J.lPi + J(27l") [exp( -Ai_tf2) - exp( -Ai/2)] , 

2 1 ni 2 a 2 2 k { 2 } a = ~~Pi a Pi+ J(27l") [Ai-1 exp( -Ai_tf2) - Ai exp( -Ai/2)] , 

where 

Pi= 4>(Ai)- 4>{Ai-t), Ai= (bi- J.l)/a (i = 1, ... , k- I), 

Ao = -oo, Ak = oo, Ao exp( -AV2) = Ak exp( -AU2) = o. 

One frequently uses the approximate solution 

k 

~2 1 ""'< ~)2 a =--~ ci-J.l ni 
n -1 i=l 

{6) 

{7) 

or solves equations (6) iteratively with the initial approximation {7). Finally, 
xLa(k- 3) is on the right-hand side of the inequality {3) and one substitutes 

{8) 



34.12 MATHEMATICAL STATISTICS 763 

on the left-hand side, where 

.~t = ( bi - M 1 a- ( i = 1, ... , k - 1) , .Ao = - oo , .Ak = oo . 

The values of the distribution function P(x) of the distribution N(O, 1) can be 
found in statistical tables (see Remark 33.7.2) or can be calculated by means of 
(33.7.4) or (33.7.5) (see also Fig. 33.7). 

Let us test the goodness of fit for the normal distribution in Example 34.5.2 

(see also the graphical verification in Fig. 34.3). For this purpose we shall use 
the dass intervals from Tab. 34.2. According to Example 34.5.2, the approximate 

solution (7) is P, = x = 1502·7 and a = s = 204·1. There is a considerably good 
coincidence between the empirical and theoretical frequencies here (e.g., n 1 = 4 
and np1(P,, &2 ) = 3·9627, n2 = 9 and np2(P,, &2) = 8·5818, etc.). The test (3) gives 

~ [ni- 300Pi(P,, &2 )]2 = 0·106 < 16·919 = 2 (9) 
~ 300 ·(A A2) Xo·95 
i=l p, J.l, (]" 

so that the hypothesis on the normality cannot be rejected on the 5% significance 
level. 

K ol m o gorov- S mirnov Test. Let a random sample X1, ... , Xn have 
the empirical distribution function Fn(x) (see Remark 34.5.2). The Kolmogorov­

-Smirnov test enables us to test the null hypothesis that the probability distribution 
from which the random sample was chosen has a known continuous distribution 

function F0 ( x). The corresponding critical region with the significance level o: has 
the form 

s~p IFn(x)- Fo(x)i = 1~~n { max[IFo(x(i))- i ~ 1 1, IFo(x(i))- ~~] }~ kl-aj2(n), 

(9) 
where kp(n) are tabulated values. Fora sufficiently large n, one can use the ap­
proximation 

kl-af2(n) = (1/ Jn )[-(1/2) ln(o:/2}F/2 • (10) 

34.12. Contingency Tables 

An r x s contingency tableis used in the situation when we classify a sample of 
size n by two criteria A and B and distinguish among r possible categories according 
to the criterion A and among s possible categories according to the criterion B. The 
intersection of the i-th row and j-th column (these intersections are called cells of 
the contingency table) contains the observed frequency nij among n observations 
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that corresponds to the i-th category of the criterion A simultaneously with the 
j-th category of the criterion B (i = 1, ... , r, j = 1, ... , s). The row sums ni. 
and the column sums n.j defined by 

s 

ni. = I:: nij ( i = 1, ... , r) , 
j=l 

r 

n.j =I:: nij (j = 1, ... , s) 
i=l 

are called marginal frequencies (see Tab. 34.3). 

(I) 

From the point of view of mathematical statistics, the described contingency 
table gives the frequencies of observed values of a two-component discrete vector 
(X, YY where X= i corresponds to the i-th category of the criterion A and Y = j 
to the j-th category of the criterion B. Obviously, the contingency tables form 
a special discrete case of the correlation tables from § 34.5. If we put 

P(X = i, Y = j) = Pij (i = 1, ... , r, j = 1, ... , s) (2) 

then 
s 

P(X = i) =Pi· = l:Pij (i=l, ... ,r), 
j=l 

r (3) 

P(Y = j) = P·j = l:Pij (j = 1, ... ' s) 
i=l 

holds for the marginal probability distributions of the random variables X and Y. 

After recording frequencies in a contingency table we can test various hypotheses. 
One most frequently tests the hypothesis on the independence of the criteria A 
and B, i.e. Ho: Pij = Pi.P.j (i = 1, ... , r, j = 1, ... , s). The critical region 
corresponding to the test on the significance level a has the form 

~~ (n··- n· n -jn)2 (~~ n 2. ) 
~ ~ ..:.__.:.,'1'-----___:.:_'· ....,.:·1'-'----'--- = n ~.-=1 3~-=1 n,·.~·3· -I ~ xLa((r- I)(s- I)). 
i=l j=l ni.n.jjn 

(4) 

' 

TABLE 34.3 

B 
TABLE 34.4 

A L: Failure Failure B 
1 2 ... s L: 

A no yes 
1 nu n12 ... n1s nl. 
2 n21 n22 ... n2s n2. no 99 11 110 

. . . ................... . .. yes 14 6 20 
r nrl nr2 ... nrs nr. 

L: 113 17 130 

L: n.l n.2 ... n.s 
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RE MARK 10 The test ( 4) is approximate since it has been derived asymptotically 
for n-+ OOo Furthermore, we should have nionoi/n ~ 5 (i = 1, o 0 0, r, j = 1, 0 o 0, s)o 

REMARK 20 If r = s = 2 (ioeo, the contingency table has 4 cells), then the critical 
region ( 4) can be expressed as 

(5) 

REMARK 3o The described contingency table for two criteria is called the two­
-way contingency tableo However, one can also have the three-way contingency table 
for three criteria, etco 

Example 1. For 130 devices of the same type one has observed the frequencies of 
failures of two types A and B given in Tabo34.4o The objective is to decide on the 
independence of the failures A and Bo 

The test (5) gives 

130(99 0 6- 11 0 14)2 2 
110 0 20 0 113 0 17 = 5o9552 > 308415 = Xoo95(1) 

so that the hypothesis on the independence of the failures A and B is rejected on 
the 5 % significance level. 
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A. REGRESSION ANALYSIS. FITTING CURVES TO 
EMPIRICAL DATA. CALCULUS OF OBSERVATIONS 

35.1. Regression in Statistics 

Regress i o n F u n c t i o n . In many practical situations one investigates the 
dependence of a quantity on an other quantity, or quantities. An example of it is 
the dependence of the petrol consumption on the driving speed of a car. However, 
the main interest of mathematical statistics does not lie in the study of functional 
dependences of the form 

(1) 

where y is a dependent variable and x1, ... , Xr are independent variables. Due 
to random infiuences (e.g., due to measurement errors or negligence of important 
aspects that arenot included in x1, ... , xr), it is suitable to consider the dependent 
variable as a random variable Y and to rewrite (1) in the form 

Y = f(xb ... , Xr) + e, (2) 

where e is an error variable. The random variable e should fiuctuate about zero 
level, i.e. it should have zero mean. The objective of statistical analysis is to find 
(to estimate) the function f using observations Yl. ... , Yn of the random variable 
Y that correspond to values (xn, ... , Xlr), ... , (xnl. ... , Xnr) of the variables 
x 1 , •.• , Xr· The specification of the function f mostly consists in the estimation of 
parameters that determine this function uniquely. For example, if one supposes f to 
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be of the form f ( x1, x2) = ß1 x1 + ß2x2, we have to estimate the parameters ß1 and 
ß2 • The estimated function f enables us to estimate (predict), for arbitrary values 
of variables x 1 , ... , Xn the corresponding value of the variable Y. In mathematical 
statistics, f ( x 1 , •.. , Xr) is called the regression function, Y is called the response 
variable and x 1 , ..• , Xr are called the explanatory variables ( or regressors). 

M e t h o d o f L e a s t S q u a r es . In order to estimate parameters of a regres­
sion function, one most frequently uses the method of least squares that consists in 
minimization of the expression 

n 

L [Yi- f(xit, .. ·, Xir)] 2 (3) 
i=l 

over all possible values of the parameters of the regression function. The method 
of least squares is often interpreted in a deterministic way as a method that en­
ables us to fit a suitable curve y = f(xt, ... , Xr) optimally to n observed points 
[xu, ... , Xlr, Yl], ... , [xnl, ... , Xnn Yn] (one speaks on fitting curves to empirical 
data). For example, Fig. 35.1 shows the fitting of a straight line y = ßo + ß1x to 
points [x1, Yl], ... , [x5, y5]. The estimates bo and b1 of the parameters ßo and ß1 
are found by minimizing the expression 

5 

L [Yi- (ßo + ßlxi)]2 
i=l 

y 

0 

Fig. 35.1. Fitting a straight line to given points by means of the method of least squares. 

over allreal ßo and ßb i.e., by minimizing the sum of areas of the squares shown 
in Fig. 35.1. As concerns the determination of a suitable type of regression curve 
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to fit given points, its choice in statistical practice is often obvious due to the con­
figuration of the points being fitted or can be carried out with help of an objective 
method (see e.g. Remarks 35.3.1 and 35.5.1). 

35.2. Linear Regression Model 

The simplest type of dependence among variables is the linear dependence. This 
type of dependence with the linear regression function 

(1) 

is treated in statistics by means of the linear regression model 

Yi = ßo + ßtXil + · · · + ßkXik + ei (i = 1, ... , n), (2) 

where Yi denotes the response variable Y when the values of the explanatory vari­
ables x1, ... , Xk are Xil, ... , Xik· The error variables ei are assumed to fulfil the 
relations 

E(ei) = 0 (i = 1, ... , n), (3) 

{ 
a2 for i = j 

cov(ei, ej) = . . 
0 for z # J 

(i,j=1, ... ,n), 

(i, j = 1, ... , n). 
(4) 

The model ( 2) has k + 1 unknown real regression parameters ßo, ß1, ... , ßk and an 
unknown parameter a2 > 0. 

REMARK 1. The assumptions (3) and (4) mean that the error variablesei :fl.uc­
tuate about zero Ievel, have a constant unknown variance a 2 and are mutually 
uncorrelated. 

The model (2) is often written in the matrixform 

Y=Xß+e, (5) 

where Y = (Yi, ... , Yn)' is an n-component random vector, Xis an n X (k+ 1) 
matrix with elements Xij (i = 1, ... , n, j = 0, 1, ... , k) and XiQ = 1 (i = 1, ... , n), 
ß = (ßo, ßt, ... , ßk)' is a (k + 1)-component vector and e = (et, ... , en)' is an 
n-component random vector. The first column of the matrix Xis formed only from 
numbers 1. Moreover, one assumes that the rank of the matrix Xis equal to k + 1 
where k + 1 < n. Hence the columns of this matrix are linearly independent and one 
speaks of a full rank model. If the rank of X is less than k + 1, then one has a model 
not possessing full rank that demands special procedures based on pseudoinverse 
matrices (see e.g. (382]). 



35.2 TOPICS IN STATISTICAL INFERENCE 769 

REMARK 2. Some important cases of the linear regression model have their in­
dividual names. We shall give some of them including the corresponding regression 

function: 

(i) linear regression: ßo + ß1x; 

(ii) quadratic regression: ßo + ß1x + ß2x2 

(it takes the form (1) if we put k = 2, x 1 = x, x 2 = x 2); 

(iii) polynomial regression: ßo + ß1x + · · · + ßkxk 

(it takes the form (1) if we put x 1 = x, x2 = x 2, ... , Xk = xk); 

(iv) hyperbolic regression: ßo + ß1 / x 

(it takes the form (1) if we put k = 1, x 1 = 1/x). 

Estimation in Linear Regression Model. 

Theorem 1. The estimator b = (b0 , b1, ... , bk)' of the regression parameters 

ß = (ßo, ß1, ... , ßk)' constructed in the linear regression model by the method of 

least squares (see § 35.1) has the form 

(6) 

Its covariance matrix is 

(7) 

REMARK 3. In practical applications we substitute the vector of observations 

y = (y1, ... , Yn)' for the random vector Y in the formula (6) (see Example 1). 
Then for any given values x 1 , ... , Xk of explanatory variables one can estimate 
(predict) the corresponding response variable Y as 

(8) 

In particular, we have 

(9) 

REMARK 4. Instead of direct substitution to the formula (6) it is common that 
one solves numerically the system 

X'Xb=X'y (10) 



770 SURVEY OF APPLICABLE MATHEMATICS 35.2 

of k + 1 linear equations with k + 1 unknowns bo, bt, ... , bk. The equations (10) 
are called the normal equations. They can be rewritten as 

n n n n 

bo L x~0 + bt L XioXit + ... + bk L XioXik = L XiOYi 
i=l i=l i=l i=l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {11) 
n n n 

bo L XikXio + bt L XikXit + ... + bk L x~k 
i=l i=l i=l 

n 

= LXikYi. 
i=l 

REMARK 5. The estimator b defined by (6) is called linear since each of its com­
ponents can be expressed as a linear function of the random variables Yt, ... , Yn. 
Furthermore, it can be called unbiased since it is not difficult to show that each 
of its components is an unbiased estimator of the corresponding component of the 
vector ß (see Definition 34.6.1). According to the so-called Gauss-Markov theorem 
bis even the best linear unbiased estimator (BLUE) since for any linear unbiased 
estimator of the vector ß with covariance matrix E the matrix difference E- Eb 
is positive semidefinite. In general, the estimator b is not the best unbiased esti­
mator (see Definition 34.6.2). However, if the error variables ei have the normal 
distribution, then b is not only the best unbiased estimator but even the efficient 
estimator (see § 34.6). 

Definition 1. The values 

{12) 

where "fi are given in (9), are called the residuals of the linear regression model. 
Furthermore, one introduces the following sums: 

n 

St = L (Yi- Y) 2 (total sum of squares), (13) 
i=l 

n 2 

Sr = L ( "fi - Y) { regression sum of squares), {14) 
i=l 

n 

Se= L e~ (residual sum of squares). (15) 
i=l 

Theorem 2. In the linear regression model 

{16) 
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Definition 2. The coefficient of determination of the linear regression model is 
defined by 

(17) 

REMARK 6. The coeflicient of determinationexpresses inasmuch the considered 
linear regression model is capable to explain the sample variance of the response 
variable, i.e., R 2 assesses the quality of the model for the given data. It is always 
0 ~ R2 < 1. One frequently takes R2 > 0·95 for the criterion of acceptance of 
a model. It is common to express R2 in per cent. 

Theorem 3. The estimator 

2 1 1 Ln ( ~ )2 
S = Se= Yi- Yi 

n-k-1 n-k-1 
i=l 

(18) 

is an unbiased estimator of the parameter a 2 and the estimator 

(19) 

is an unbiased estimator of the covariance matrix Eb of the estimator b. 

Example I. One investigates the dependence of the monthly consumption of 
heating oil y (in litres) on the average monthly temperature x1 (in °C) and on the 
ßoorage x 2 (in m 2 ). The observed values are given in Tab. 35.1. 

Yi 140 200 370 

Xil 17·8 16·6 12·2 

Xi2 170 210 150 

From {6) we compute 

[ 
10, 

b = (X'X)- 1 X'y = 54·3, 
1685, 

From (17) we obtain 

600 

7·1 

190 

54·3, 
837·37, 
9583·5, 

620 1300 1050 1280 

2·8 0·1 -2·9 -3·1 

110 250 140 155 

95~~~~]-l [ 1~~!~] = 
299125 1243400 

R2 = 1- Se= 1- 59632·9 = 0·965. 
St 1685890 

TABLE 35.1 

1100 550 

-0·7 4·4 

180 130 

[ 
438·73 l 
-54·468 . 

3·4304 
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The value R2 = 96·5% seems tobe suffi.ciently large. From (18) we compute 

2 1 1 
S = Se = -7 59632·9 = 8518·98 

n-k-1 

and from (19) 

[ 
16768·2, 

Sb= s2 (X'X)-1 = -9·9669, 
-94·138, 

-9·9669, 
16·070, 

-0·45870, 

-94·138] 
-0·45870 . 

0·57346 

35.2 

Hence, in particular, the standard deviation of the estimates b0 , bt, b2 can be esti­
mated as 

Sb0 = y'16768·2 = 129·5, Sb 1 = y'16·070 = 4·009, Sb2 = y'0-57346 = 0·7573. 

If the objective is to predict the consumption fj of heating oil for the average tem­
perature x 1 = -1·5°C and the floorage x 2 =200m2, then we obtain from (8) 

fj = bo + b1x1 + b2x2 = 438·73 + ( -54·468).( -1·5) + 3·4304. 200 = 1206·5 (litres). 

RE MARK 7. In order to simplify calculations, one sometimes replaces the model 
(2) with k + 1 regression parameters by the following one with only k parameters: 

where 
1 n 

Y=- I)i, 
n i=l 

1 n 

Xj =- l.:.:xij (j = 1, ... , k). 
n i=l 

The estimators b = (bo, b1, ... , bk)' and b* = (br, ... , bk,)' constructed by the 
method of least squares in the models (2) and (20), respectively, are related by 

bo = Y- b~x1 - · · ·- b'kxk, b1 = bj (j = 1, ... , k). (21) 

REMARK 8. For routine computer calculations it is advantageous to employ the 

recursive method of least squares. The estimate bt based on the observations Yi and 

Xi = (1, xi1 , ... , Xik) (i = 1, ... , t) is calculated by means ofthe recursive formula 

(22) 

where 
(23) 
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is an auxiliary matrix calculated recursively, too. The formulae (22) and (23) 
require a choice of suitable initial values bo and Po (see e.g. [138] , [509]). 

35.3. Normal Linear Regression Model 

The normal linear regression model fulfills all the assumptions introduced for 
the linear regression model in § 35.2 and, in addition, its error variables ei are 
independent random variables with the normal distribution, i.e. 

(1) 

Theorem 1. The following statements hold in the normallinear regression model: 

(i) 

(2) 

(ii) The random vector b and the random variable s2 are independent. 

(iü) Let s~, be the i-th diagonal element (i = 0, 1, ... , k) of the matrix Sb 
defined by (35.2.19). Then the random variable 

(3) 

has the distribution t(n- k- 1). 

Tests of Significance in the Normal Linear Regression Mo­
d e l. Some useful tests on a significance level a can be constructed by means of 
Theorem 1 in the normallinear regression model. For simplicity we shall give their 
critical regions only (i.e., if the given inequality is fulfilled, then the corresponding 
null hypothesis is rejected) : 

(i) Ho: ßi = 0 against Ht: ßi =j; 0 ( test of significance for the parameter ßi): 

(4) 

(ii) Ho: (ßt, ... , ßk)' = (0, ... , 0)' against Ht: (ßt. ... , ßk)' "# (0, ... , 0)' 
( test of significance for the model): 

n- k -1 R2 
k --2 = Ft-a(k, n- k- 1). 

1-R 
(5) 
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REMARK 1. The tests (4) and (5) enable us to decide whether the presence of 
some explanatory variables in the model is statistically significant. They are used 
if we want to choose an optimal system of explanatory variables (in particular, 
an optimal degree of polynomial regression). The test (5) enables us to decide on 
the significance of a chosen system of explanatory variables if it is considered as 
a whole. 

Theorem 1 also enables us to construct interval estimators for parameters of the 
model. Most frequently one constructs the so-called prediction interval that covers 
the predicted value of the response variable Y corresponding to given values of 
explanatory variables x1, ... , Xk on a given confidence Ievel 1 - a. This interval 
has the form 

{Y- t1-a12(n- k + 1)s [1 + x'(X' x)-1 x]!, 

Y + t1-af2(n- k- 1)s [1 + x'(X' X)-1 x] i), (6) 

where x = (1, x1, ... , xk)', Y is the prediction (35.2.8) and fort see § 33.7. 

Example 1. The test of significance (4) for the individual parameters ßo, ßb ß2 
in the model from Example 35.2.1 gives 

lbol /sbo = 438·73/129·5 = 3·39 > 2·3646 = to·97s(7), 

lb1l /sb 1 = 54·468/4·009 = 13·59 > 2·3646 = to·97s(7), 

lb2l /sb2 = 3·4304/0·7573 = 4·53 > 2·3646 = to·97s(7). 

Hence each of the parameters differs significantly from zero on the significance 
Ievel 5 % so that none of the terms of the regression function can be omitted. 
Furthermore, from (5) we have 

n- k -1 R2 

k 1-R2 

7 0·965 
2 1 _ 0.965 = 96·5 > 4·7374 = F0•95 (2, 7) 

so that the estimated model is distinctly significant as a whole. Finally, the predic­
tion interval with the confidence Ievel 95% (the so-called 95% prediction interval) 
for the prediction in Example 35.2.1 corresponding to the values XI = -1·5 and 
x2 = 200 is 

(959·5, 1453·5) 

since 

.1 
Y ±to·97s(7)s [1 + x'(X'X)-1x] 2 = 

= 1206·5 ± 2·3646. y'8518·98 y'(1 + 0·2809) = ' { 
959·5 

1453·5. 
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35.4. Linear Regression 

The linear regression ( or simple linear regression) is a special case of the model 
(35.2.2) for k = 1 (i.e. n > 2) and can thus be written as 

Yi = ßo + ßtxi + ei (i = 1, ... , n). (1) 

The regression function determines a straight line. The parameters can be estimated 
by the formulae 

bo = (~Yi-bt~xi) I n=Y-btx, (2) 

n n n n 

~)xi- x)Yi n 2:::XiYi- LXi LYi 
b i=l i=l i=l i=l 
t=-n----

t;(xi- x)2 n ~X~- (~Xir 
(3) 

The st::.ndard deviations of thP. P.Rtimators b0 and b1 can be estimated by 

n .! 

Sbo = s [ 1/n + x2 I t;(xi- x)2] 
2

, 

sb1 = s I [:f)xi- x)2]! 
t=l 

(5) 

The test of significance {35.3.4) for the parameter ß1 (the test of linearity) has the 
critical region of the form 

(6) 

(fort see § 33. 7). The prediction interval {35.3.6) corresponding to a value x of the 
explanatory variable has the endpoints of the form 
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35.5. Polynomial Regression 

The polynomial regression of degree k is a special case of the model (35.2.2) (see 
Remark 35.2.2) and is of the form 

(1) 

If we proceed in accordance with the general scheme from § 35.2, then the formula 
{35.2.6) for the estimation of the regression parameters by the method of least 
squares has the form 

n n -1 n 

n, ,Lxi, ... ' ,Lx: _LYi 

:_:.] 

i=l i=l i=l 

n n n n 

LXi, I:x;, .. 0' I:x:+l ,LxiYi (2) 
i=l i=l i=l i=l 
0 •• 0 •• 0 0 •••••••• 0 0 •• 0 •• 0 •••••• 0 0 0 0 

bk n n n n 

,Lx:, ,Lx~+l . ' 0. 0' ,Lx;k ,Lx:Yi 
i=l i=l i=l i=l 

Sometimes one carries out the so-called orthogonalization of regressors. lt means 
that one treats the model 

Yi = ao<po(xi) + a1<pl(xi) + · · · + ak'Pk(xi) + ei (i = 1, ... , n) {3) 

instead of the model (1), where 'Pj(x) (j = 0, 1, ... , k) is the Chebyshev polynomial 
of degree j. These polynomials have the following orthogonality property: 

n 

L <pj(xi)<pm(xi) = 0 (j f; m; j = 0, 1, ... , k; m = 0, 1, ... , k). 
i=l 

The model (3) is again a polynomial regression of degree k so that it can be used 
equivalently instead of the model (1). However, the least squares estimators ai of 
the regression parameters ai can be found directly according to the formulae 

(j = o, 1, ... ' k). (4) 

Chebyshev polynomials are usually constructed recursively by the formula 

n n 

,Lx{'Pj-l(xi) ,Lx{<po(xi) 

<pj(x) = xj- i=~ 'Pj-l(x)- · · ·- ..:..i=--'~=-----<po(x), (5) 

L 'P~-1 (xi) L <p~(xi) 
i=l i=l 

where <po(x) = 1. 
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Example 1. To orthogonalize the quadratic regression 

it is sufficient to use the following Chebyshev polynomials up to the second degree: 

cpo(x) = 1, 
n 

cp1 (x) = x- L xdn = x- x, 
i=1 

n 

L(Xi- x)x; n 

cp2 {x)=x2 -i=~ (x-x)-I:xUn. 
i=1 

RE MARK 1. There are various methods that enable us to find the unknown degree 
k of the polynomial regression. Either tests of significance of the type {35.3.4) are 
applied to polynomial terms that are added successively with increasing power 
(see e.g. (188]) or special criterial functions are used whose minimization provides 
directly the optimal degree of the polynomial regression. 

35.6. Generalized Linear Regression Model. 
Calculus of Observations 

The generalized linear regression model fulfils all the assumptions of the linear 
rcgression model from § 35.2 except for the assumption {35.2.4). Instead of it one 
supposes, more generally, that the covariance matrix of the vector of error variables 

e = (e1, ... 'en)' has the form 
{1) 

whcre a 2 > 0 and n is a positive definite matrix. It means that the error variables 
ei need not have constant variance and need not be mutually uncorrelated. The 
linear rel!;ression model is a special case of the generalized linear regression model 
whose matrix n is the identity matrix. 

Theorem 1 (Aitken Theorem). The bestlinear unbiased estimator of the regres­
sion parameters ß in the generalized linear regression model has the form 

b = (X' n-1 X) - 1 X' n-1 Y (Aitken Estimator). {2) 

Its covariance matrix is 
E-" = a 2(X'n- 1 X)-1 . {3) 
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Possibilities of the practical application of the Aitken estimator are restricted due 
to the fact that the matrix {J is only seldom a priori known in practice and it is 
impossible, in general, to estimate n(n+ 1}/2 unknown elements of this symmetric 
matrix using n observations. Therefore, from the practical point of view, only 
such special cases are important in which the matrix {J is given a priori or can be 
described using a small number of (unknown) parameters. 

Weighted Method of Least Squares. Duetopracticalreasons,one 
sometimes assigns various weights to the individual terms in the sum (35.1.3) that is 
minimized in the method of least squares, so that, in the case of the linear regression 
function, one minimizes the expression of the form 

n 

L Wi [Yi - (ßo + ß1xi1 + · · · + ßkxik)]2 , (4) 
i=l 

where w1, ... , Wn are given positive numbers (the weights). This procedure is 
equivalent to the construction of the Aitken estimator (2) whose matrix {J is di­
agonal with diagonal elements 1/w1, ... , 1/wn. Another equivalent interpretation 
consists in the estimation of the regression parameters ß using the classical method 
of least squares in the transformed model 

Calculus of 0 bservations. Calculus ofobservations is used in geodesy, 
in the first place. Every measurement is subject to errors. If a quantity with 
the true value a is measured n times and the individual results are denoted by 
Y1, ... , Yn, then we can write 

Yi = a+ei (i = 1, ... , n), (6) 

where ei is the error of the i-th measurement. In this context, the probability 
distribution of the random variables e1, ... , en is called the law of error. Generally, 
a1l measurements of the same quantity cannot be regarded as equally precise. The 
quality of the individual measurements is then expressed by weights so that a larger 
weight is assigned to more precise measurements. Let us denote the given positive 
weight of the measurement Yi by Wi (i = 1, ... , n). Then, using the weighted 
method of least squares, the expression (4) tobe minimized has the simple form 

n 

L wi(Yi- a)2 • (7) 
i=l 
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The corresponding estimator a of a is called the adjusted value of a. According to 
(2) or (5) one obtains 

n n 

a = LWiYi I L:wi. (8) 
i=l i=l 

The Standarddeviation of the adjusted value a can be estimated by (see (35.2.18) 
and (3)) 

(9) 

where the residual ei = Yi- a is often called the correction of the measurement Yi· 
A generally adopted practice in the calculus of observations is to present the result 
of the adjustment in the form a ±Sä. 

REMARK 1. For Wi = 1 (i = 1, ... , n) the formulas (8) and (9) reduce to 

n 

a= LYdn 
i=l 

(the arithmetic mean) and 

sä= {teU[n(n-1)]}! 

35.7. Nonlinear Regression 

lf the regression function is not a linear function of parameters, then one speaks 
of the nonlinear regression. (If the regression function is a linear function of pa­
rameters then, according to Remark 35.2.2, the corresponding model can always be 
expressed in the form of a linear regression model without changing the parame­
ters.) The nonlinear regression model can be written as 

Yi = f(xi, ß) + ei (i = 1, ... , n), (1) 

where Yi denotes a responsevariable corresponding to the values Xi = ( Xit, ••• , Xir )' 

of explanatory variables, {} = ('1?1, ... , '!?m)' is an m-component vector of regres­
sion parameters and ei's are error variables satisfying the assumptions (35.2.3) and 
(35.2.4) in the simplest case. 

The estimator i9 of regression parameters ß obtained by the method of least 
squares minimizing the expression (35.1.3) over all possible values ß cannot usu­
ally be given explicitly but one employs various optimization procedures that con­
struct the estimator i9 iteratively. If the first partial derivatives 8/(xi, ß)/8'!?j 
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(i = 1, ... , n, j = 1, ... , m) exist for all values iJ from a given parameter space 
il, then the Gauss-Newton method is commonly used. The iterative formula of this 
method describing the calculation of the value ..? k+l in the ( k + 1 )-st step by means 
of the value Jk from the k-th step has the form 

where F(th) is the n x m matrix with elements öf(xi, Jk)jö.Jj (i = 1, ... , n, 
j = 1, ... , m), f(ßk) is the n-component vector with components f(xi, Jk) (i = 
= 1, ... , n) and y = (y1 , ... , Yn)' is the n-component vector of observed values of 
the response variable. Under general assumptions one takes Jk for the estimate 
..? to be found provided that k is sufficiently large ( there e:xist various stopping 
criteria indicating the end of the iterative procedure). The variance a 2 of the error 
variables can be estimated by 

s2 = _1_s(-0), 
n-m 

(3) 

where S( ..?) denotes the value of the expression (35.1.3) for the value..? ofregression 
parameters. Finally, the covariance matrix E ~ of the estimator ..? can be estimated 
by 

(4) 

REMARK 1. In order to aceeierate the rate of convergence of the iterative pro­
cedure, the formula (2) is sometimes modified to the form 

where I is the m X m identity matrix and >.k's are suitably chosen numbers (the so­
-called Levenberg-Marquardt method, see e.g. [175)). Another possible modification 
has the form 

where the numbers vk are chosen from the interval (0, 1) in such a way that the 
replacement of Jk by Jk+l reduces the value of the minimized expression (35.1.3) 
(the so-called Hartley method, see [208)). 

REMARK 2. The calculation of the partial derivatives öf(xi, Jk)/öiJi is per­
formed either analytically or using the numerical appro:ximation of the form 

where Öj is a sufficiently small positive number. 
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Linearization M ethod . In some cases the regression flmction f(x, '!?) 
can be transformed by a simple transformation T into the function T(f (x, '!?)) 
that depends on its parameters linearly so that the transformed model with the 
transformed response variable T(Y) can be treated as a linear regression model. 

Example 1. The regression function 

f(x, 1, 8) = 8 [g(x)F, (8) 

where g(x) isapositive function of arealvariable x and 1, 8 are parameters (8 > 0), 
can be logarithmically transformed into the linear form 

ln f(x, 1, 8) = ln8 + 1lng(x) = ßo + ß1x1, (9) 

where we put x1 = lng(x), ßo = ln8, ßt =I· Then the rough estimates :y,li of 
parameters 1, 8 are 

:Y = bt, 1i = exp(bo), (10) 

where bo, b1 are the estimates obtained by the method of least squares in the 
linearized model. 

REMARK 3. The procedure·shown in Example 1 can considerably distort the 
estimates of parameters of the original model. An improvement can be achieved by 
the so-called linearization method with transformed weights (see (439]). For exam­
ple, in case of the logarithmic transformation that is the most frequent linearization 
transformation, one estimates the transformed model by the weighted method of 
least squares (see § 35.6) using the weights Wi = y;, where Yi is the i-th observed 
value of the response variable in the original model. 

Example 2. If we use the linearization method with transformed weights in Ex­
ample 1, then the estimates bo, b1 of the parameters ßo, ßt in tpe transformed 
regression function (9) are obtained by minimizing the expression 

n 

LY~ [lnyi- (ßo +ßtxit)] 2 (11) 
i=l 

or, equivalently, by applying the method ofleast squares to the model (cf. (35.6.5)) 

{12) 

The estimates of the parameters 1, 8 of the original model are obtained again 
from {10). 
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B. ANALYSIS OF VARIANCE 

35.8. Principle of the Analysis of Variance 

In practice it is often necessary to decide whether different values ( levels) of 
a certain factor have significantly different effects ( expressed usually by different 
means) on units of a sample. For example, a producer of cars is interested in the 
effect of different sorts of oil on the wear of piston rings. It is natural to subdivide 
the observed sample into groups corresponding to particular levels of the considered 
factor. If the grouping is carried out according to a single factor, then one speaks 
of the so-called one-way classification (see § 35.9). However, the observed sample 
of piston rings can be subdivided into groups corresponding not only to different 
sorts of oil but simultaneously also to different periods between oil exchanges. In 
such a case one speaks of the two-way classification according to two factors. In 
general, it is possible to classify according to k factors (see e.g. [414], [499]) .. 

The term "analysis of variance" (sometimes abbreviated ANOVA) is justified 
by the fact that the sample variance of the observed sample can be decomposed 
into components that correspond to the influence of individual factors (i.e., they 
explain variability in data due to different values of the factors), and into a residual 
component that corresponds to random fluctuations. This decomposition is usually 
written by means of the so-called table of analysis of variance (see Tab. 35.2 and 
others). Suitable statistical tests compare, on a given significance Ievel, the sizes 
of the components corresponding to individual factors with the size of the residual 
component and thus they decide on a possible significance of individual factors. 

If the analysis of variance confirms the significance of a factor, then some of 
the method of multiple comparison is usually applied in order to find out such 
groups of the given classification that are significantly distinct ( e.g. Scheffe 's method 
described in §35.9, Tukey's method, Duncan' s method and others). 

The analysis of variance exploits the following notation. If the sample values 
are distinguished by means of several indices, then dots in place of some indices 
denote sums over all possible values of these indices, and bars above such symbols 
denote the corresponding averages. For example, for a sample with values Xip ( i = 
= 1, ... , I; p = 1, ... , ni) we use the symbols 

n; 

Xi. = l:xip, 
p=l 

Xi. = Xi./ni, 

I n; 

x .. = l:Lxip, 
i=l p=l 

x .. = x . .f(nt + · · · + n1). 
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35.9. One-Way Classification 

In the one-way classification according to a factor A, let a sample of size n be sub­
divided into I groups with values Xit, Xi2, ... , Xin; in the i-th group (i = 1, ... , I). 
It means that n 1 + · · · + n1 = n. In this situation, the analysis of variance uses the 
following model of one-way classification: 

Xip = f.k + ai + eip (i = 1, ... , I; p = 1, ... , ni), (1) 

where eip's are independent random variables with the distribution N(O, a2 ) and 
J.k, ai, a 2 are unknown parameters (the parameters ai can be interpreted as effects 
of the factor A). The objective is to test the hypothesis 

Ho : a1 = a2 = · · · = a1 = 0. (2) 

If Ho is rejected on a prescribed significance level a, then the effects of the factor 
A are statistically significant. 

REMARK 1. If I= 2, then the two-sample t test (see § 34.10) is also applicable. 
For I> 2, however, two-sample t test cannot be applied to each from the I(I -1)/2 
pairs that can be selected from the I groups considered (what is connected with 
the problern how to achieve a prescribed significance level of the composite test). 

The appropriate procedure is based on the decomposition of the form 

(3) 

where ST, SA and Se are the total sum of squares, A-factor sum of squares and 
residual sum of squares, respectively: 

p p 

Se = L L(Xip- xi.)2 = ST- BA. 
p 

The critical region of the hypothesis Ho has the form 

n- I SA > 
I_ 1 Se = Ft-o.(I- 1, n- I). 

(4) 

(5) 

(6) 

(7) 

The situation is displayed in the table of analysis of variance (see Tab. 35.2) that 
serves as a check, at the same time ( the last row must contain the corresponding 
column sums). 
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Provided that the hypothesis Ho is rejected we reject the equality of the r-th 
and s-th group (r = 1, ... , I; s = 1, ... , I; r ;j:. s) in the consequent analysis if 

(8) 

(the so-called Scheffe method). 

TABLE 35.2 

Source of Sum of Degrees of Mean Test 
Variation Squares Freedom Square Statistic 

Factor A SA I-1 SA/(I- 1) 
SA/(I- 1) 
Se/(n- I) 

Residual Se n-I Se/(n- I) -

Total ST n-1 - -

Example 1. The objective is to compare the content of copper (in per cent) for 
three technologies of the bronze casting. One has performed 5, 3 and 4 laboratory 
experiments for the first, second and third technology, respectively. The observed 
values are summarized in Tab. 35.3. From (4)- (6) we have 

ST = 77347·31- 963·12 /12 = 50·5092, 

SA = 392·12 /5 + 246·92 /3 + 324·12 /4- 963·12 /12 = 31·7537, 

Se= 50·5092- 31·7537 = 18·7555. 

The corresponding table of analysis of variance is Tab. 35.4. The test (7) gives 

7·6188 > 4·2565 = Fo·95(2, 9). 

TABLE 35.3 

i Xip n· • x· .. x· .. L:xrp 
p 

1 80·1 78·7 79·1 76·1 78·1 5 392·1 78·42 30757·33 
2 82·8 80·5 83·6 3 246·9 82·3 20325·05 
3 79·8 81·2 82·7 80·4 4 324·1 81·025 26264·93 

2: 12 963·1 - 77347·31 
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Hence, on the significance level 5 %, we reject the hypothesis that the mean content 
of copper does not depend on the technology used. Tab. 35.5 contains the left­
-hand and right-hand sides of the test (8) (o: = 0·05) for particular r and s. We 
can conclude that only the first and second technologies differ from each other 
significantly on the significance level 5 %. 

TABLE 35.4 

Source of Sum of Degrees of Mean Test 
Variation Squares Freedom Square Statistic 

Factor A 31·7537 2 15·8769 7·6188 
Residual 18·7555 9 2·0839 -

Total 50·5092 11 - -

TABLE 35.5 

r s Left-hand side of (8) Right-hand side of ( 8) 

1 2 15·0544 9·4617 
1 3 6·7860 7·9833 
2 3 1·6256 10·3487 

C. MULTIVARIATE ANALYSIS 

Multivariate statistical analysis makes use of methods that are capable to treat 
various aspects of information contained in multivariate data, i.e., in observations 
of random vectors. This analysis includes multivariate correlation analysis (which 
investigates various aspects of dependence of random vectors), multivariate analy­
sis of variance MANOVA (which generalizes methods of the analysis of variance 
in such a way that the data classified according to individual factors can be multi­
variate), canonical correlation (pairs of linear combinations of components of two 
random vectors are constructed that successively exhaust the maximal portions of 
correlation between both vectors), factor analysis ( this method suggested origi­
nally for evaluating psychological tests enables us to draw certain conclusions on 
unobserved variables), principal components (that reduce a set ofmultivariate data 
in an optimal way with minimalloss of information), discriminant analysis (this 
method is employed in the case when multivariate data must be classified into se-
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veral groups called clusters) and other methods (see e.g. [10], [15], [95], [114], [178], 

[275], [338], [499]). 

D. RELIABILITY THEORY 

35.10. Basic Reliability Concepts 

Reliability theory is concerned with technological and mathematical aspects of 
reliability of products (in general, one speaks of elements or components) that are 
to perform required functions for a certain time period. As the mathematical as­
pects are concerned, the tools of probability theory and mathematical statistics 
enable us to investigate various reliability characteristics (like the mean time to 
failure, 100'}' % life, mean costs on repairs and others) and, consequently, to design 
a suitable strategy that optimizes the work of a device without failures. Special 
types of reliability problems are renewal theory ( which is concerned with processes 
of replacement of failed elements by new ones), system reliability (which investi­
gates reliability of composite systems on the basis of reliability characteristics of 
individual components), maintenance strategy, etc. 

Definition 1. Let a non-negative random variable X with the distribution function 
F(x) = P(X ~ x) describe the time to failure (or lifetime) of an element. Then 
the function 

R(x) = 1- F(x) = P(X > x) (x ~ 0) (1) 

is called the reliability function. For 0 < 'Y < 1, the quantile Xt--y of the random 
variable X is called the 100'}' % life. 

REMARK 1. The quantity R( x) is interpreted as the probability of the event that 
no failure occurs in the interval [0, x] (sometimes one calls R(x) the probability of 
survival and F(x) the probability of failure). The interpretation of the 100'}'% life 
is such that approximately 100'}' per cent products will work without failure at least 
till the time x 1_,.. 

Let us suppose for simplicity that the time to failure X has a continuous prob­
ability distribution with probability density f(x). 

Theorem 1. Let k be a positive integer and let the time to failure X fulfil the 
assumption E(Xk) < oo. Then 

(2) 
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REMARK 2. In particular 

E(X) = 1= R(x)dx (the mean time to failure), 

var(X) = 2100 
xR(x)dx- [E(X)]2 

according to Theorem 1. 

Definition 2. The function 

f(x) 
r(x) = 1- F(x) 

R'(x) 
- R(x) (x > 0), 

787 

(3) 

(4) 

(5) 

which is defined for such x that F(x) < 1, is called the hazard rate (or failure rate 
or force of mortality). 

REMARK 3. The reliability function can be expressed by means of the hazard 
rate as 

R(x) = exp [ -1x r(t)dt] . (6) 

The following approximation is admissible for small values of h: 

P(x <X< x + h I X> x) ~ r(x)h. (7) 

Thus the quantity r(x) approximately gives the probability of the event that an 
element which survived to time x will fail in the time interval (x, x + 1). Some 
engineering devices feature a hazard rate that resembles the so-called bathtub curve 
shown in Fig. 35.2. Period I is referred to as the period of "infant mortality" 
("running-in"), period II represents the usefullife period and period III is called 
the "wear-out" period. 

r(x) 

0 II 111 X 

Fig. 35.2. Typical form of a hazard rate. 
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Theorem 2. Let a system be composed of n independent components with their 
times to failure X t, ... , Xn and hazard rates r1 ( x), ... , r n ( x). Let the time to 
failure X of the system be 

X= min(X1, ... , Xn), (8) 

i.e., the failure of the system occurs if any of the n considered components fails. 

Then 
r(x) = r1(x) + · · · + rn(x) 

holds for the hazard rate r(x) of the system. 

Probability Distribution of the Time to Failure. As proba­
bility distributions of the time to failure are concerned, one frequently uses the 
exponential, Weibull, Erlang and logarithmic normal distribution in practice (see 
notes in § 33.7 devoted to the application of these continuous distributions to reli­
ability theory) but also other special distributions or mixtures of several distribu­
tions. We shall give a survey of hazard rates that correspond to the most frequent 
distributions of the time to failure. 

1. Exponential distribution ( 8 > 0): 

r(x) = 1/8. 

The exponential distribution, as the "distribution without memory", is suitable for 
such situations where a failure occurs due to random causes and not due to wear, 
thus it has the constant hazard rate. 

2. Weibull distribution (p > 0, 8 > 0): 

r(x) = JPxp-l. 

The popularity of the Weibull distribution in reliability theory follows just from 
the flexibility of the corresponding hazard rate (r(x) is decreasing for 0 < p < 1, 
constant for p = 1, increasing and concave for 1 < p < 2, increasing and linear for 
p = 2, and increasing and convex for p > 2). 

3. Erlang distribution (p a positive integer, 5 > 0): 

4. Logarithmic normal distribution ( -oo < f-L < oo, a2 > 0): 

where the functions cp(x) and .P(x) are given in {33.7.1). 
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Redund an c y. Redundancy means in reliability theory that given elements 
which carry the Ioad of the system function are accompanied by components which 
are redundant for the proper function of the system until the load-carrying ele­
ments fail. The active ( or parallel) redundancy means that the redundant elements 
operate and share the system Ioad while the standby redundancy refers to the case 
of redundant elements that are inactive until the load-carrying elements fail. 

Example I. Let n independent elements have their times to failure Xt, ... , Xn 
possessing the exponential distribution with parameter 8. If only one element can 
carry the Ioad of the system (i.e., n- 1 elements are redundant), then the mean 
time to failure (3) of this system with the standby redundancy is 

while for the case of the active redundancy we have (see (3) and (34.4.6)) 

In particular, the mean time to failure with the standby redundancy is !arger than 
that with the active redundancy. 

35.11. Estimation of Reliability Characteristics 

Ce n so ring . In the classical estimation theory (see § 34.6) one uses a random 
sample Xt, ... , Xn. However, if performing reliability experiments, when one ob­
serves the times to failure X1, ... , Xn of n independent elements of the same type 
starting at time t = 0, the experiment must often be finished before all n elements 
fail. In this case one speaks of the censored random sample. 

There are three basic types of censoring. In the following text, Iet X(l) ~ X(2) ~ 

~ · · · ~ X(n) denote the ordered random sample corresponding to the random 
sample Xt, ... , Xn (see Definition 34.4.1). 

1. Type I censoring (or time censoring). A positive number T (time censor) 
is prescribed and the experiment is finished as soon as its time length achieves T. 
The number r of observed failures is a random variable which can assume the 
values 0, 1, ... , n. The result of the experiment consists of the observed values 
x(l) ~ X(2) ~ · · · ~ X(r) and the information that the value of the (r + 1)-st order 
statistic is !arger than T. 

2. Type II censoring (or failure censoring). A positive integer r (r ~ n) is 
prescribed and the experiment is finished as soon as the r-th failure occurs. The 
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time length of the experiment is a random variable which coincides with the r-th 
order statistic X(r)· The observed values X(l) ~ X(2) ~ · · · ~ X(r) are the result of 
the experiment. 

3. Random censoring. This type of censoring is most frequent in practice. Here, 
in addition to the random variable X (time to failure), one has to consider a random 
variable T (random time censor) describing the time length of observation of an 
element. The time length of the experiment and the number of failures observed 
are random variables. The observed values ( w1, i1 )', ... , ( Wn, in)' of two-variate 
random vectors (Wb h)', ... , (Wn, In)' are the result of the experiment, where 

(1) 

{ 
1 if Wi = Xi (the i-th observation is not censored), Ii = O if Wi =Ti (the i-th observation is censored). 

(2) 

The random variable I informs us whether the observation of an element is stopped 
due to failure or due to time censor. 

Method of Maximum Likelihood for Censored Random 
S a m p I es. The approach represents parametric estimation methods used in the 
case of censoring. Using this method, one must derive the form of the likelihood 
function corresponding to the considered censored random sample from a given 
probability distribution. 

Example 1. Maximum likelihood estimators of the parameter 8 of the exponential 
distribution for the individual types of censoring have the following form: 

( 1) type I censoring: 

(3) 

(2) type II censoring: 

(4) 

(3) random censoring: 

n n 

6= L:wi /L:Ii. (5) 
i=l i=l 
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Then the reliability function R( x) can be estimated by 

R(x) = exp( -xjS). (6) 

Nonparametrie Estimation for Censored Random Samples. 
As far as nonparametric estimation for censored random samples is concerned, one 

frequently uses the so-called Kaplan-Meier estimator (or product-limit estimator) of 
the reliability function R( x). In random censoring, let no coincidences occur in the 

random sample W1, ... , Wn so that W(l) < W(2) < · · · < W(n) for the correspon­
ding ordered random sample. Let the random sample h, ... , In be ordered in 

such a way that I(i) corresponds to the i-th order statistic W(i)' i.e. let the random 
sample (W1, h)', ... , (Wn, In)' be ordered according to the first component. Then 
the Kaplan-Meier estimator of the reliability function has the form 

for X< W(l)' 

for w(l) ~X< W(n)' 

for x ~ W(n). 

(7) 

Example 2. Reliability tests of 8 products with random censoring have provided 

the following values of the random sample (W(l)J(l))', ... , (W(n)J(n))' ordered 
according to the first component: 

(4, 1), (7, 0), (12, 1), (15, 1), (27, 0), (31, 1), (35, 0), (47, 1). 

The first component is the time length of the observation of the corresponding 
product. According to (2), zero in the second component means that the random 

time censoring was active so that the observation of the corresponding product was 

stopped before its failure, while one means that the failure occurred. The formula 

(7) gives 

R(4) = (n: ~: 1) 
1

(1) = (~) 1 = 0·8750, 

R(7) = R(4) (n:;! 1) 
1

<
2
> = R(4) (~r = R(4) = o-8750, 

R(12) = R(7) (n:;! 1) I(a) = R(7) (~) 1 = 0·7292 

and similarly R(15) = R(27) = 0·5834, R(31) = R(35) = 0·3889, R(47) = 0. The 
estimate R( x) for x ~ 0 is a jump function that is continuous from the right and 
has jumps at the above given points (i.e., R(x) = 1 for 0 ~ x < 4, R(x) = 0·8750 
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for 4 ~ x < 12, R(x) = 0·7292 for 12 ~ x < 15, R(x) = 0·5834 for 15 ~ x < 31, 
R(x) = 0·3889 for 31 ~ x < 47, R(x) = 0 for x ~ 47). If one now wants e.g. to 
evaluate the probability that no failure occurs in the interval [0, 20] for the tested 
type of products, then the estimate of this probability is obviously R{20) = 0·5834. 

E. STATISTICAL PRINCIPLES OF QUALITY CONTROL 

35.12. Acceptance Sampling 

Statistical methods are successfully applied to quality control of mass production 
when the inspection of every piece in a Iot is uneconomical ( e.g. in screw produc­
tion) or impossible due to the destructive character of control tests. The practical 
importance stimulates the efforts devoted to this problern (see e.g. [63], [86], [120]). 
Nowadays one exploits effective strategies not only in the quality control but also 
in the consequent regulation of production processes. 

The objective of the acceptance sampling procedures ( or sampling inspections or 
sampling plans) is to decide whether a consumer can accept a Iot of products from 
a producer. Each acceptance sampling procedure is determined by two numbers. 
The first of them is the number n of products which must by randomly sampled 
from the Iot and inspected. The second one is the so-called acceptance number 
which determines a rule that enables us to decide on the acceptance or rejection of 
the whole Iot using the test sample of size n. 

Operating Characteristic and Risks. Each acceptance sampling 
procedure has its operating characteristic P( '!?) which presents the probability that 
a Iot with the fraction '!? of defective items will be accepted ( '!? is the so-called fraction 
defective). Let '!?o and '!?1 ( 0 < '!?o < '!?1 < 1) be such values that the lots with the 
fraction defective '!? ;;i; '1?0 are accepted while those with '!? ~ '!?1 are rejected ( the 
values '!?in the interval ('!?o, 1?1) are indifferent). Then the probability a = 1-P('!?o) 
that a Iot with the admissible fraction defective '!? = '!?o will be rejected is called the 
producer's risk while the probability ß = P('!?t) that a Iot with the inadmissible 
fraction defective '!? = '!?1 will be accepted is called the consumer's risk. There exist 
close relations to hypothesis testing (see § 34.9) where a and ß correspond to the 
type-one and type-two errors, respectively, and 1- P('!?) corresponds to the power 
function for the null hypothesis Ho: '!? ~ '!?0 against the alternative H1 : '!? ;;;; '!?1. 
The graph of P( '!?) is called the operating characteristic curve. Its typical form is 
sketched in Fig. 35.3. 



35.12 

100% 
95% 

50% 

15% 

0 

TOPICS IN STATISTICAL INFERENCE 

I 
I 
I 
I 
I 
I 
I 

------~-- -------------------
1 
I 
I 
I 
I 
I 
I 
I 

tJ(%) 

Fig. 35.3. Operating characteristic curve ('l?o = 1%, 1?1 = 5%, a = 5%, ß = 15%). 

793 

Acceptance Sampling Procedures by Attributes. Inacceptance 
sampling procedures by attributes, the only information about an inspected item is 

whether the item is defective or not. The decision on accepting or rejecting a Iot of 

size N is based on the number x of defective items in a sample of size n from this 

Iot. One compares x with the acceptance number c. If x ~ c or x > c, then the Iot 
is accepted or rejected, respectively. 

REMARK 1. If M is the number of defective items in the Iot (i.e. 1J = M jN), then 

the number X of defective items in the sample has the hypergeometric distribution 

with parameters N, M, n (see § 33.6) so that the operating characteristic is 

(1) 
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For nfN < 0·1, {) < 0·1, n > 30 one can use its approximation by the Poisson 
distribution in the form 

P(iJ) = e-nfJ ~ (niJ}:z: . 
L..t x! 
:z:=O 

(2} 

Special tables (see, e.g. [120], [442]} provide the numbers n and c for prescribed 
values of {)0 , {)1, a, ß suchthat the corresponding acceptance sampling procedure 
by attributes has the producer's risk a for the admissible fraction defective iJo and 
the customer's risk ß for the inadmissible fraction defective iJ1. 

Example 1. The hypergeometric distribution (1} can be also approximated by 
the normal distribution (see Remark 33.13.2}. Then the numbers n and c can be 
found by solving the system of equations 

(3} 

where up is the P-quantile of the distribution N(O, 1} (see Remark 33.7.2}. The 
explicit formulae for n and c are 

n = ..!_ [u1-aiJo/iJ1 + u1-ß .j(iJofiJI) ] 2 
, 

iJo 1 - iJo/iJ1 (4} 

c = u1-a J(niJo) + niJo - ~. 

For the situation in Fig. 35.3 (iJo = 0·01, iJ1 = 0·05, a = 0·05, ß = 0·15} the 
formulae (4} give (u1-a = uo·95 = 1·645, u1-ß = uo·85 = 1·036} 

n = 98·09 ~ 98, c = 2·11 . 

If a sample of size 98 contains at most 2 defective items, then the lot is accepted 
while in the opposite case it is rejected. 

REMARK 2. Sometimes the consumer demands that all rejected lots be inspected 
completely and all defective items be replaced by acceptable ones. In such a si­
tuation one uses the so-called rectifying acceptance sampling procedures. After the 
rectification the original value {) of the fraction defective is replaced by the new 
value iJP(iJ) where P(iJ) is the operating characteristic of the original acceptance 
sampling procedure before the rectification. 

REMARK 3. If the fraction defective :fluctuates largely in various lots, then it is 
more effective to use the so-called multiple acceptance sampling procedures, which 
aceeierate the decision on acceptance or rejection provided that the fraction de­
fective is low or high. For example, in the double acceptance sampling proce­
dure one divides the original sample of size n into two subsamples of sizes n1 and 
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n 2 ( n 1 + n 2 = n) with the corresponding acceptance numbers c1 and c2. If Ct < c2, 

then one first finds the number x 1 of defective items in the sample of size n1. If 
x 1 ~ c1. then the whole lot is accepted while for Xt > c2 it is rejected. However, 
if c1 < x1 ~ c2 , then one also has to find the nurober x2 of defective items in 
the sample of size n2. If Xt + x2 ~ c2, then the whole lot is accepted while for 
Xt + x2 > c2 it is rejected. 

A c c e p t an c e S a m p li n g P r o c e d u r es b y V a r i ab 1 es . If an average 
value p, of some quality factor is prescribed for products, then one can use acceptance 
sampling procedures by variables that compare an acceptance number c with the 
value of a suitable sample characteristic. This sample characteristic has frequently 
the form 

lx-p,l 
U=---, 

s 
(5) 

where x is the sample mean and s is the sample standard deviation calculated from 
the values of the considered quality factor that are observed for items of a sample 
of size n. The corresponding numbers n and c are used in the way analogous to 
acceptance sampling procedures by attributes (the lot is accepted for u ~ c while 
it is rejected for u > c) and they are again tabulated ( see [120], [442]). In order 
to simplify the calculations, the sample standard deviation s in (5) is sometimes 
replaced by the sample range (see Definition 34.4.2). 

35.13. Sequential Acceptance Sampling 

Sequential analysis is exploited not only in acceptance sampling procedures but 
generally for statistical hypothesis testing (see e.g. [40],[481]). The advantage of 
the sequential analysis consists in the fact that the size of a random sample for the 
construction of a desired decision need not be unnecessarily large. Namely, this 
size is not prescribed in advance but it is determined during the procedure that is 
carried out successively in steps. The result of each step is exactly one of the three 
possible decisions: (a) accept the null hypothesis Ho; (b) accept the alternative H1; 
(c) make an additional observation (or observations). 

Sequential acceptance sampling procedures with the producer's risk a for the 
admissible fraction defective '!9o and with the consumer's risk ß for the inadmissible 
fraction defective 791 operate with the test statistic 

Plk 
Vk=-

POk 
(1) 

for the k-th step, where Pok and Plk are the probability functions or probability 
densities that relate to the observations in the considered sample of size k under the 



796 SURVEY OF APPLICABLE MATHEMATICS 35.13 

null hypothesis Ho : {} ~ {}o and under the alternative H1 : {} ~ {}1, respectively. 
Then the decision rule in the k-th step is 

(a) accept the whole lot if Vk ~ ß/(1- a); 
(b) reject the whole lot if vk ~ (1- ß)Ja; 
(c) make an additional observation if ß/(1- a) < vk < (1- ß)Ja. 

The procedure stops in the cases ( a) and (b) while it has to be repeated for k + 1 
observations in the case (c). 

Example 1. If one approximates the hypergeometric distribution with parameters 
N, M, k by the binomial distribution with parameters k, {} = MJN (k/N < 0·1, see 
§ 33.6) in a sequential acceptance sampling procedure by attributes, then 

where x is the number of defective items in a sample of size k. According to (1) 
one has 

Vk = ({}1)"' (~) k-x 
{}0 1 - {}0 

Taking the logarithm of the right-hand side of (3) and putting 

a = ln {}1 - ln {Jo, b = ln(1 - {}1) - ln(1 - {}o), 

the decision rule for the k-th step of the procedure has the form: 

(a) accept the whole lot if ax + b(k- x) ~ lnß -ln(1- a); 
(b) reject the whole lot if ax + b( k - x) ~ ln(1 - ß) - ln a; 
(c) make an additional observation if 

lnß -ln(1- a) < ax + b(k- x) < ln(1- ß) -lna. 

(3) 

In particular, for the situation in Fig. 35.3 ({}0 = 0·01, {}1 = 0·05, a = 0·05, 
ß = 0·15) one obtains: 

(a) accept the whole lot if 1·609x- 0·041{k- x) ~ -1·846; 
(b) reject the whole lot if 1·609x- 0·041(k- x) ~ 2·833; 
(c) make an additional observation if -1·846 < 1·609x- 0·041(k- x) < 2·833. 
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36.1. Classification of Stochastic Processes 

The concept of stochastic process ( or random process or briefly process) is used 
if the random variable X depends on time. We write X(t) for t E T. Observing 
a stochastic process X ( t), one obtains the realization ( or trajectory, path, sample 
function) of this stochastic process denoted by x( t) that is already a real ( determin­
istic) function of the argument t. Practical examples of realizations of stochastic 
processes are meteorological records, electroencephalograms, records of mechanical 
vibrations, seismograms, time registrations of failures in reliability tests, etc. The 
role of probability theory and mathematical statistics in the analysis of stochastic 
processes consists in the calculation of characteristics describing the behaviour of 
processes as a whole, in the construction of models that enable us to generate the 
corresponding processes, in filtering, in prediction, etc. 

If T is an interval on the real axis, then one speaks of the stochastic process in 
continuous time ( random function). If T is a set of discrete real values t1, t2, ... , 
then one speaks of the stochastic process in discrete time ( random sequence, time 
series ); the time moments tb t 2, . . . are often equidistant and then one usually 
writes Xn instead of X(tn)- If the random variables X(t) are continuous, then one 
speaks of the stochastic process with continuous states. If X(t) are discrete, then 
one speaks of the stochastic process with discrete states ( the process with discrete 
states 0, 1, 2, ... is often called the counting process since it usually registers the 
number of certain events in time). If random vectors X(t) stand instead of random 
variables X(t), then one speaks of the multivariate stochastic process instead of the 
univariate stochastic process. 

Example 1. We shall give some examples of stochastic processes in accord with 
the above given classification: 



798 SURVEY OF APPLICABLE MATHEMATICS 36.1 

1. Discrete time and discrete states. An example is the branching process 
( Galton- Watson process) {Xn: n = 0, 1, 2, ... } that describes the numbers Xo, 
X1, X 2 , ••• of items in particular generations. Each item of an arbitrary genera­
tion gives rise to j items (descendants) of the next generation with the probability 
p3 (j = 0, 1, 2, ... ) independently of the behaviour of other items in its genera­
tion. Ifthe 0-th generation contains ko items (i.e. Xo = ko), then the mean number 
of items in the n-th generation is 

E(Xn) = komn (n = 0, 1, 2, ... ), (1) 

where 
00 

m= LiPj (2) 
j=l 

is the mean number of the direct descendants of each item. The brauehing processes 
are employed, e.g., in modelling particle fission. 

2. Discrete time and continuous states. An example is the sequence { Xt: 
t = ... , -1, 0, 1, ... } of uncorrelated random variables with the distribution 
N(O, a 2). A sequence of arbitrary random variables, for which 

E(Xt) = 0, var(Xt) = a2 > 0, cov(Xs, Xt) = 0 (s # t) (3) 

holds, is called the white noise. The white noise is important as a basic element for 
generating more complicated processes. 

3. Continous time and discrete states. An example is the Poisson process 
{X(t): t ~ 0} (see also § 36.3), where X(t) describes the number of occurrences of 
an observed event in the time interval [0, t] (e.g., the number ofphone calls coming 
to a telephone exchange during this interval). In addition, one assumes that 

(a) X(O) = 0; 

(b) the lengths of the intervals between occurrences of the observed event are 
independent random variables; 

( c) the lengths in the assumption (b) have the exponential distribution with the 
probability density 

f(x) = { ~ exp( --Xx) for x > 0, 

for x ~ 0, 
(4) 

where -X > 0 is a parameter (the so-called intensity of Poisson process or intensity 
of ftow). 

On these assumptions, the random variable X(t) has the Poisson distribution with 
the parameter -Xt, i.e. 

P(X(t) = i) = exp(--Xt)(-Xt)i/i! (i = 0, 1, ... ). (5) 
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In particular, the mean nurober of occurrences of the event in the interval [0, t] is 
E [X(t)] = >.t. Thus the intensity gives an average nurober of occurrences of the 
event in the unit time interval. The Poisson process is a "stochastic process without 
memory" (see also Theorem 33.7.4), i.e. the fact that the observed event did not 
occur in a certain interval does not affect the probability of its occurrences in the 
next interval. The Poisson process is frequently used in queueing theory (see § 36.5 
and § 36.6). 

4. Continuous time and continuous states. An example is the Wiener process 
{W(t): t ~ 0} for which 

(a) W(O) = 0 and W(t) has continuous trajectories; 

(b) the increments W(t2) - W(tl), W(t3) - W(t2), ... , W(tn)- W(tn-1) are 
independent random variables for arbitrary moments 0 ~ t1 < t2 < ... < tn; 

(c) an arbitrary increment W(t + s)- W(t) (0 ~ t < t + s) has the distribution 
N(O, s). 

On these assumptions, the random variable W(t) has the distribution N(O, t) and 

cov [W(s), W(t)] = min(s, t) (s, t ~ 0). (6) 

The Wiener process is employed, e.g., in modelling diffusion phenomena or Brown­
ian motion and in asymptotic statistics. 

A. MARKOV PROCESSES 

36.2. Concept of Markov Processes 

Let {X(t): t ~ 0} be a stochastic process in continuous time and with discrete 
states from the set I= {0, 1, 2, ... } (the states are denoted by non-negative inte­
gers, for simplicity). 

if 
Definition 1. The stochastic process {X ( t) : t ~ 0} is called the M arkov process 

P(X(r) = j I X(t) = i, X(tn) =in, ... , X(tl) = il) = 

= P(X (r) =j I X(t) = i) (1) 

for arbitrary 0 ~ t1 < t2 < · · · < tn < t ~ T and it, ... , in, i, j E I (the so­
-called Markov property). The probabilities of the type (1) are called transition 
probabilities. If these probabilities do not depend on particular values of t and T 
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but only on their difference, then such Markov process is called homogeneaus and 

the transition probabilities are denoted by 

Pij(T-t) =P(X(T) =j I X(t) =i). (2) 

REMARK 1. Ift denotes the current time moment, then the Markov property (1) 
means that the probability behaviour of the Markov process in an arbitrary future 

time moment T ( T ~ t) depends only on the current state and not on past states. 

If the process is homogeneous, then the transition probabilities depend only on the 

distances of corresponding time moments and are invariant with respect to shifts 

in time. In particular, 

Pij(O) = { ~ for i = j, 

for i -=J j . 

Futher important characteristics of a Markov process are the probabilities 

Pi(t) = P(X(t) = i) 

(3) 

(4) 

that describe the probability distribution of the process at time t. If t = 0, then 

one speaks of the initial distribution of the Markov process. For increasing t, the 

behaviour of a Markov process sometimes becomes stabilized so that it can be 

described by the so-called stationary distribution with stationary probabilities of 

the form 
1ri = lim Pi(t) (i = 0, 1, ... ) . 

t-oo 
(5) 

Theorem 1. In a homogeneaus Markov process, the following equations hold: 

(i) 

00 

Pij(tt + t2) = I>ik(tt)Pkj(t2) (tl, t2 ~ 0; i, j = 0, 1, ... ) (6) 
k=O 

( the so-called Chapman-K olmogorov equations); 

(ii) 
00 

Pi(t) = I>j(O)Pji(t) (t ~ 0; i = 0, 1, ... ) . 
j=O 

(7) 

Theorem 2 (Prospective Kolmogorov Differential Equations). Let a homogeneaus 
Markov process fulfil the conditions: 

( a) there exist limits 

(i=0,1, ... ); (8) 
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(b) there exist limits 

10 Pii(h) 
qi·= liD --

J h-+O+ h 
(i =P j; i, j = 0, 1, 0 0 0 ); (9) 

( c) the convergence in (9) is uniform with respect to i for an arbitrary fixed j o 

Then 
00 

P~j(t) = LPik(t)qkj (t > 0; i, j = 0, 1, 0 0 0) (10) 
k=O 

holds for the transition probabilities and 

00 

p~(t) = LPk(t)qki (t > 0; i = 0, 1, 0 0 0) (11) 
k=O 

for the probability distribution of the processo 

REMARK 20 The quantities qii (i, j = 0, 1, 0 0 o) are called the transition inten­
sitieso They fulfil the relation 

Pii(h) = 1 + qiih + o(h), Pii(h) = %h + o(h) (i =f: j), (12) 

where the symbol o( h) represents a function f of argument h such that 

lim f(h) = 0 
h-+0 h 

(13) 

(see § 11.4)0 

REMARK 30 The Kolmogorov differential equations are an important tool for the 
treatment of Markov processeso Besides the prospective (forward) equations one 
can also use the retrospective ( backward) Kolmogorov differential equations of the 
form 

00 

P~j(t) =- L qikPkj(t) (t > 0; i, j = 0, 1, 0 0 0) (14) 
k=O 

(then one has to interchange i and j in the assumption (c) of Theorem 2)0 

REMARK 40 According to (11), the equations 

00 

0= L1fkqki (i=O, 1, ooo) (15) 
k=O 

hold for the stationary probabilities (5)0 
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36.3. Examples of Markov Processes 

P oiss o n P roc e ss . Interpretation: X(t) describes the number of occurrences 

of an observed event in the time interval [0, t]. One assumes that the observed event 

occurs in the interval (t, t + h) of a smalllength h exactly once with the probability 
>..h + o(h) (i.e. with the probability proportional to the intervallength) and more 

than once with the probability o( h) independently of the number of occurrences till 
the time t. An equivalent interpretation of the Poisson process is given in the third 
point of Example 36.1.1. 

Transition intensities: 

qii = ->., qi,i+l = >.., % = 0, (j # i; j # i + 1). (1) 

System of Kolmogorov differential equations (36.2.11): 

p~(t) = ->..po(t), 

p~(t) = APi-t(t)- >..pi(t) (i = 1, 2, ... ) . 
(2) 

Initial conditions: 

Po(0)=1, Pi(O)=O (i=1,2, ... ) (3) 

(they follow from the requirement X(O) = 0). 

Solution (see also (36.1.5)): 

Pi(t) = exp(->..t)(>..t)i/i! (i = 0, 1, ... ). (4) 

The efficient estimator (see § 34.6) of the intensity )... of the Poisson process is 

(5) 

where n is the number of occurrences of the observed event during the time interval 
of length T. The corresponding confidence interval with confidence level 1 - o: is 

(x!;2 (2n + 2) /2T, xLa;2 (2n + 2) /2T) . (6) 

Example 1. One has registered n = 13 failures of a device during T = 1000 

working hours. ModeHing the number of failures by the Poisson process, we estimate 
its intensity ( the so-called failure intensity) by 

A n 13 
)... = - = -- = 0·013. 

T 1000 
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The lower and upper bounds of the 95% confidence interval are 

x~.025 (2n + 2)/2T = x~. 025 (28)/2000 = 0·0077, 

X~·975(2n + 2)/2T = X~- 975 {28)/2000 = 0·0222 
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so that the intensity A lies with the 95% confidence in the interval [0·0077, 0·0222]. 

Yule P rocess . Interpretation: X(t) describes the population size at the 
timet. One assumes that, in the interval (t, t + h) of a smalllength h, each item 
of the population gives rise to exactly one item with the probability Ah + o(h) and 
to more than one item with the probability o(h) independently of the behaviour of 
the other items. In contrast to the branching process discussed in the first point of 
Example 36.1.1, the Yule process is defined in continuous time. 

Transition probabilities: 

qii = 1 - iA, qi,i+l = iA, % = 0, (j -:f; i; j -:f; i + 1). (7) 

System of Kolmogorov differential equations (36.2.11): 

p~(t) = (i- 1)APi-l(t)- iApi(t) (i = 1, 2, ... ). (8) 

Initial conditions: 

Pk0 (0) = 1, Pi(O) = 0 (i -:f; ko) (9) 

(they follow from the requirement X(O) = k0 , i.e., the population starts with ko 
items at time t = 0). 

Solution: 

( ) { ( .i-
1 ) exp( -k0 At) [1 - exp( -At)]i-ko 

Pi t = z- k0 

0 

for i ~ ko, 
{10) 

for i < ko. 

Birth-and-Death Process. Interpretation: X(t) describes the popula­
tion size at the timet. One assumes that, in the interval (t, t + h) of a smalllength 
h, the population containing i items at the time t increases by exactly one item with 
the probability Aih + o(h) (i = 0, 1, ... ), decreases by exactly one item with the 
probability J.Lih + o( h) ( i = 1, 2, ... ) and increases or decreases by more than one 
item with the probability o(h) independently of the behaviour of the other items. 

Transition probabilities: 

qii = 1 -Ai -/-Li (J.Lo = 0), qi,i+l = Ai, qi,i-1 =/-Li, 

% = 0 (j "'i- 1; j "'i; j "'i + 1). 
(11) 
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System of equations (36.2.15): 

0 = -Ao'lfo + JL1'lf1, 

0 = Ai-1'lfi-1- (.Ai+ JLi)'lfi + JLi+1'lfi+1 (i = 1, 2, ... ). 
(12) 

Solution: 

[ 
oo n A ] -1 

'lfo = 1 + I: II k-1 , 

n=1 k=1 /Lk 

(i=1,2, ... ). (13) 

REMARK 1. The solution (13) is a probability distribution if the series in the 
formula for 'lfo converges ( e.g., the convergence is guaranteed if Ai = 0 for at least 
one index i). One can also write the system of Kolmogorov differential equations 
(36.2.11) that has a unique solution in the form of a probability distribution pro­
vided that the coefficients of the individual equations form bounded sequences. The 
Poisson and Yule processes are special cases of the birth-and-death process. 

36.4. Markov Chains 

Markov chains are an analogy of Markov processes in discrete time. Let again 
I= {0, 1, 2, ... } denote the set of discrete states. 

Definition 1. The stochastic process (random sequence) {Xn: n = 0, 1, ... } is 
called the M arkov chain if 

P(Xn+1 = j I Xn = i, Xn-1 = in-1, ... , Xo = io) = P(Xn+1 = j I Xn = i) (1) 

for arbitrary i0 , i 1 , ... , in_1, i, j EI (Markov property). If the transition proba­
bilities (1) do not depend on n, then such Markov chain is called homogeneaus and 
the transition probabilities (1) are denoted by 

Pij = P(Xn+1 = j I Xn = i) · (2) 

Further important characteristics of a Markov chain are k-step transition prob­
abilities 

Pij(k) = P(Xn+k = j I Xn = i) (k = 0, 1, ... ) (3) 

and probabilities describing the probability distribution of the chain at time n, 

Pi(n) = P(Xn = i) (i = 0, 1, ... ) . (4) 

It is usual to arrange the transition probabilities in the form of the so-called tran­
sition matrix P = (Pij) and k-step transition matrix P(k) = (Pij(k)). 
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Theorem 1. For a homogeneaus M arkov chain we have 

(i) 
00 

Pij(kt + k2) = LPik(ki)pkj(k2) 
k=O 

( the so-called Chapman-K olmogorov equations); 

(ii) 
P(k) = pk; 

(iii) 
00 

Pi(k) = LPi(O)Pji(k) (k = 0, I, ... ) . 
i=O 
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(5) 

(6) 

(7) 

Example 1. Let us consider Bernoulli trials with the probability of success p and 
the probability of failure q = 1 - p (see § 33.6). Let Xn = k provided that the 
last failure with respect to the n-th trial occurred in the (n- k)-th trial which was 
followed by a series of k successes (k = 0, 1, ... , n). Then {Xn: n = 1, 2, ... } is 
the Markov chain with the transition matrix 

p - q, 0, p, 0, 0, ... [
q, p, 0, 0, 0, .. "] 

- ~: .. ~· ... ~· ... ~· ... ~· ... ·.·.· ' 

i.e. Poo = q, Pot = p, Po2 = 0, etc. Further 

P(k) = pk = [

q, qp, qp2, ... ' qpk-1, pk, 0, 0, ... ] 
q, qp, qp2, ... ' qpk-1, 0, pk, 0, .. . 

~: .. ~~: .. ~~~: .. :: ·.: .. ~~~~.1.' ... ~: ... ~: ... ~~· ... ·.·.· 
As k -+ oo, P(k) converges to the matrix in which all the elements of the j-th 
column are equal to qpi-1 (j = 1, 2, ... ). 

If we observe a homogeneous Markov chain with the finite set of states I= 
= {0, 1, ... , m} and if nii denotes the number of observed transitions from the 
state i to the state j, then the maximum likelihood estimates ( see § 34. 7) of the 
transition probabilities are 

m 

Pii = nij j L nik (i, j = 0, 1, ... , m). (8) 
k=O 

If the numerator in (8) is zero, then we put Pii = 0. Further aspects of the theory 
of Markov chains including the classification of states and problems connected with 
stationary distributions are given e.g. in [80], [81], [141]. 
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B. QUEUEING THEORY 

36.5. Service Systems 

Queueing theory deals with the following situation: customers come to a ser­

vice system where service channels (servers) provide service of a certain type, the 
customers are either served immediately or must wait for service, and then they 
leave the service system. Examples of service systems are telephone exchanges, 

petrol filling stations, computers shared by several users, and others. The objective 

of queueing theory is to obtain basic characteristics of a service system, e.g. the 
probability distribution of the number of the customers who are in the system at 

time t, distribution of the waiting time (i.e. the time that a customer spends in 
the system waiting for the service), distribution of the service time, distribution 
of the waiting time in system (i.e. the time that a customer spends in the system 

on the whole), the distribution of busy periods (the service channel does not work 
between these periods due to the Iack of customers) and others. It is also important 

to investigate under which conditions the system achieves the so-called stationary 

traffic with stabilized behaviour. 

TABLE 36 1 

Symbol X y 

M Poisson arrival process (i.e. exponential distribution of 
exponential distribution of service time 
the tim es between arrivals) 

E Erlang distribution of the Erlang distribution of service 
times between arrivals time 

D the constant times between constant service time 
arrivals 

G general arrival process general distribution of 
service time 

GI recurrent arrival process 

In order to distinguish among various service systems, one uses the so-called 

Kendall's classification X/Yfc where X denotes the type of the stochastic process 
that describes the arrival of customers to the service system ( the so-called arrival 

process), Y denotes the type of the probability distribution of the service time and 
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c isapositive integer {or oo) that gives the nurober of service channels. Tab. 36.1 
surveys the most frequent symbols for X and Y. In particular, the symbol GI 
is used if the times between the arrivals of customers are independent random 
variables with an identical (but otherwise unspecified) probability distribution. 

Besides the basic Kendall's classification one distinguishes loss systems, in which 
the customer does not wait for service and leaves the system if the service channels 
are engaged. In case of waiting, there are various queue disciplines {first come­
-first served discipline, last come-first served discipline, discipline with priorities, 
discipline with balking, and others). The corresponding theory can be found e.g. 
in [96], [195], [406]. 

36.6. Examples of Service Systems 

S y s t e m MIM In . Interpretation: The arrival of customers to the system 
is the Poisson process with the intensity >. ( >. is the average nurober of customers 
who enter the system in a time unit). If some of the service channels is not engaged, 
then the customer is served immediately, the service time having the exponential 
distribution with the mean value 11 J-L (i.e. J-L customers are served in a time unit 
on the average). In the opposite case the customers wait for service in a queue of 
unbounded length. 

Condition for the existence of stationary traffic: 

(! < 1, {1) 

where (! = ß In, ß = >.I J-L ( (! is called the traffic intensity). For the stationary traffic, 
let 7ri {i = 0, 1, ... ) denote the probability of the event that the system contains 
i customers {who wait in a queue or are served), W denote the waiting time and R 
denote the waiting time in system. 

Probability distribution of the number of customers: 

for i = 0, 

for i = 1, ... , n, (2) 

for i = n + 1, n + 2, .... 

Probability of immediate service ( without waiting): 

{3) 
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Probability of waiting jor service: 

(4) 

Averagenumber of customers waiting for service: 

00 

P """ . 1fnf! 
1 = ~ Z1fn+i = (1 _ )2 · 

i=l {! 

(5) 

Averagenumber of engaged service channels: 

n oo 

P2 = L i1fi + L n1fn+i = ß · (6) 
i=l i=l 

Average number of customers in system: 

(7) 

Average waiting time: 

E(W)- 1fn 
- (1- e)(nJ.L- .A) • 

(8) 

Average waiting time in system: 

E(R) = E(W) + 1IJ.L· (9) 

REMARK 1. The system MIMin is a special case ofthe birth-and-death process 
(see § 36.3), e.g., one can put Ai = .A (i = 0, 1, ... ) and J.Li = J.L (i = 1, 2, ... ) 
for n = 1. 

REMARK 2. The system MIM I oo with an unbounded number of service channels 
acheives the stationary traffic for arbitrary .A and J.L, and 

{10) 

It means that the stationary distribution is the Poisson distribution with parame­
ter ß. 
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Example 1. Approximately).. = 4 customers enter a system MIMI3 in one hour. 

The service time for one customer is approximately half an hour so that f..L = 2 and 

).. 4 
ß =- =- = 2, 

f..L 2 
ß 2 e=-=-. 
n 3 

Since the condition (1) is fulfilled we obtain the following characteristics of the 

stationary traffic by the successive application of the formulae (2)- (9): 

1r0 = 0·111, 1r1 = 0·222, 1r2 = 0·222, 1f3 = 0·148, etc., 

Ih = 0·556, 

p1 = 0·889, 

E(W) = 0·222, 

Ih = 0·444, 

P2 = 2, P3 = 2·889 ( customers) , 

E(R) = 0·722 (hours) . 

S y s t c m MIM In w i t h t h e B o und e d Leng t h r o f Q u e u e . In­

terpretation: The interpretation is similar to that of the system MIM In above. The 
only difference consists in the fact that the system is closed for further customers 
if the length of the queue achieves the value r. 

Condition for the existence of stationary traffic: 

The system achieves the stationary traffic for arbitrary ).. and /1· 

Probability distribution of the number of customers: 

for i = 0, 

for i = 1, ... , n, 

for i = n + 1, ... , n + r, 
0 for i = n + r + 1, n + r + 2, .... 

Average waiting time (provided that a customer can enter the system): 

r-1 

(ßnln!) 2: (i + 1)ei 
E(W) = --n---1 ---'--i=..:...O _____ _ 

nf..LL~ (ßili!) + (1ln!)(1- er)l(1- e)J 

REMARK 3. In particular, if r = 0, then no queues can arise. In this case 

for i = 0, 1, ... , n, 

for i = n + 1, n + 2, .... 

(11) 

(12) 

(13) 
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S y s t e m MI D 11. Interpretation: The interpretation is similar to that of the 
system MIM 11 with the only exception that the service time of each customer is 
equal to a constant value 1lp. (i.e., exactly p. customers are served in a time unit). 
The corresponding process {X(t): t ~ 0} that describes the nurober of customers 
in the system is not the Markov process in this case. 

Condition for the existence of stationary traffic: 

{! = >.1 J1. < 1. 

Probability distribution of the number of customers: 

Average waiting time: 
{! 

E(W) = 2p.(1- f!) 

C. STATIONARY PROCESSES 

for i = 0, 

for i = 1, 

(14) 

for i = 2,3 .... 

(15) 

(16) 

36.7. Correlation Properties of Stationary Processes 

Stationary stochastic processes, whose characteristics are invariant with respect 
to a shift in time, play an important role among stochastic processes both from 
the theoretical and practical point of view (see, e.g., [9], [11], [54], [59], [75], [102], 
[164], [183], [186], [192], [206], [207], [257], [265], [377], [399], [404], [503], [506]). 
From now on, let { X(t): t E T} be a stochastic process where T is a subset of the 
real axis and the random variables X(t) can attain real values. 

Definition 1. If E [IX(t)IJ < oo for all t E T, then the function 

p.(t) = E [X(t)] (t E T) (1) 

is called the mean of stochastic process (or mean function). 

Definition 2. If E [X2(t)] < oo for all t E T, then the function 

R(s, t) = cov [X(s), X(t)] = E {[X(s)- p.(s)] [X(t)- p.(t)]} (s, t E T) (2) 
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is called the autocovariance function of stochastic process and the function 

B(s, t) = e [X(s), X(t)] = R(s, t)f [R(s, s)R(t, t)] 1/ 2 {s, t E T) {3) 

is called the autocorrelation function of stochastic process. 

REMARK 1. The autocovariance and autocorrelation functions generalize the 
concept of the covariance and correlation matrix, respectively { see Definition 33.5. 7). 

Obviously R(t, t) = var [X{t)]. 

Theorem 1 (Properties of Autocovariance Function). For the autocovariance 
function of a stochastic process we have 

{i) 

IR(s, t)i ~ [R(s, s)R(t, t)] 1/ 2 (s, t E T) (Schwarz Inequality); (4) 

(ii) 
R(s, t) = R(t, s) (s, t E T); (5) 

{iü) the autocovariance function is non-negative definite, i.e. 

n n 

L :~::>iCjR{ti, tj) ~ 0 (6) 
i=l j=l 

holds for arbitrary c1 , ... , Cn real, t1, ... , tn E T, n a positive integer. 

Properlies of the autocorrelation function are analogous. 

Definition 3. Let E [X2 (t)] < oo for all t E T. Then the stochastic process 
{X ( t) : t E T} is called stationary if its mean function f.l( t) is constant and its 
autocovariance function R(s, t) depends only on the difference t-s ofits arguments. 
In this case one writes 

f.l(t) = f.l, R(s, t) = R(t- s) (s, t E T). {7) 

REMARK 2. The autocovariance and autocorrelation functions of a stationary 
process depend only on the lag and not on the absolute time position ( they are 
invariant with respect to shifts in time); therefore they can be written as func­
tions R(t) and B(t) of one argument. In particular, R(O) = var [X(t)] and B(t) = 
= R(t)/ R(O). According to {5) one has R(t) = R( -t). Sometimes in this case one 
speaks of a weak stationarity in cantrast to a strict stationarity where not only the 
first and second moments but even the probability distribution of the process (i.e. 
the probability distribution of all random vectors ofthe type {X {t1), ... , X (tn))') 
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is invariant with respect to shifts in time. If E [X2 (t)] < oo for all t E T, then 
the strict stationarity implies the weak stationarity. In case of a normal stochas­
tic process, where all random vectors of the type (X (tt), ... , X (tn))' have the 
multivariate normal distribution, both the types of stationarity are equivalent. 

Example 1. 

1. White noise (see point 2 of Example 36.1.1). It is a stationary random se­
quence with the zero mean function and the autocovariance function of the form 

{ 
a2 

R(t) = 0 
fort= 0, 

fort an integer, t # 0. 
(8) 

2. Moving average process MA(q). It is a stationary random sequence {Xt: t an 
integer} that has the model 

Xt = yt + ß1Yt-1 + · · · + ßqYt-q (t an integer), (9) 

where {yt: t an integer} is a white noise with the variance var(yt) = a 2 and 
ß1. ... , ßq, a2 (ßq # 0, a2 > 0) are real parameters. The positive integer q 
is called the order of moving average. The mean function of the process MA(q) is 
zero and its autocovariance function is 

for ltl = 0, 1, ... , q, 
(10) 

for t an integer, ltl > q. 

3. Autoregressive process AR(p). It is a stationary random sequence {Xt: t an 
integer} that has the model 

(11) 

where {yt: t an integer} is a white noise with the variance var(yt) = a2 and 
0:1. ... , o:p, a 2 (o:p # 0, a 2 > 0) arereal parameterssuchthat the roots >.1, ... 
. . . , >.P of the polynomial 

(12) 

fulfil the condition 

l>.il < 1 (i = 1, ... , p). (13) 

The positive integer p is called the order of autoregression. The mean function 
of the process AR(p) is zero and its autocovariance function fulfils the so-called 
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Yule- Walker equations of the form 

{ a1R(t-1)+···+a R(t-p) 
R(t) = P 2 

. a1R(1) + · · · + apR(p) + a 

In particular, the process AR(1) has 

for t = 1, 2, . . . , 

fort= 0. 

a2 
R(t) = --altl (t an integer). 

1- ai 1 

813 

(14) 

(15) 

4. Mixed process ARMA(p,q). It is a stationary random sequence {Xt: t an 
integer} that has the model 

Xt = a1Xt-1 + · · · + apXt-p + yt + ß1Yt-1 + · · · + ßqrt-q (t an integer), (16) 

where the notation and assumptions used for the processes MA(q) and AR(p) above 
remain valid. 

5. Harmonie process. It is a stationary random function {X(t): t real} that has 
the model 

K 

X(t) = L [Ai cos(>.i t) +Bi sin(.Ai t)] (t real), 
i=1 

where Ai, Bi are random variables, for which 

E(Ai) = E(Bi) = 0, var(Ai) = var(Bi) = a7, 
E(AiAj) = E(BiBj) = 0 (i =I= j), 

E(AiBj) = 0, 

(17) 

(18) 

and ar > 0, .Ai ( i = 1, ... , K) are real parameters. The mean function of the 
harmonic process is zero and its autocovariance function is 

K 

R(t) = L a7 cos(>.i t) (t real). (19) 
i=1 

RE MARK 3. Let {X ( t) : t E T} be a p-variate stochastic process, i.e. X ( t) = 
= (X1(t), ... , Xp(t))' are p-variate random vectors. Let E [X~(t)] < oo for all 
t E T and k 1, ... , p. Then one defines the mean of this process (or mean 
function) as 

J.L(t) = (J.L1(t), ... , J.lp(t))' = E [X(t)] (t E T) (20) 

and the matrix autocovariance function as 

R(s, t) = (Rij(s, t)) = E {[X(s)- J.L(s)] [X(t)- J.L(t)]'} (s, t E T), (21) 
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where R(s, t) is a p x p matrix and 

Rii(s, t) = E {[Xi(s)- tti(s)] [Xj(t)- /Lj(t)]} (s, t E T; i, j = 1, ... , p) (22) 

is the so-called cross-covariance function of the processes {Xi(t): t E T} and 
{Xj(t): t E T}. In the stationary case one writes p., R(t) and Rij(t). 

Estimation of Correlation Characteristics. As the estimation 
of correlation characteristics of a stationary stochastic process is concerned, we 
mostly have at our disposal only a single realization { Xt: t = 1, ... , T} in the case 
of a random sequence or { x( t): 0 ~ t ~ T} in the case of a random function. Then 
the mean /L, autocovariance function R(t) and autocorrelation function B(t) can be 
estimated by 

(23) 

~ 1 T-ltl 
R(t) = T L (xi- [t)(xi+ltl - [1,) (t an integer), 

i=l 

{24) 

B(t) = R(t)/R(O) (t an integer), (25) 

respectively, for the random sequence, or 

1 {T 
jl = T lo x(t)dt, (26) 

~ 1 {T-Itl 
R(t) = T Jo [x(r)- fl] [x(r + !t!)- fl] dr (t real), (27) 

B(t) = R(t)/R(o) (t real) (28) 

respectively, for the random function. 

REMARK 4. The estimates {23) and (26) are unbiased and the estimates (24) 
and (27) have only a small bias (see Definition 34.6.1). The coefficient 1/T in 
(24) and (27) is sometimes replaced by 1/(T -!tl) (this reduces the bias of these 
estimates but their mean square error increases). The estimates (23)- (28) have 
suitable properties for the so-called ergodie processes (see e.g. [9], [11], [122], [164], 
[377], [404]). 

36.8. Spectral Properties of Stationary Processes 

The spectral ( or Fourier) analysis of stochastic processes considers a process 
as a mixture of periodic components (e.g. sine or cosine waves) with different 
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frequencies and, among others, it enables us to obtain a conception of intensity with 
which particular frequencies are contained in the investigated stochastic process 
(one speaks of the so-called spectrum of the stochastic process). From now on, Iet 
{X ( t) : t E T} he a stationary stochastic process with the zero mean function and 
autocovariance function R(t). 

Spectral Decomposition of Autocovariance Function. 

Theorem 1 (Spectral Decomposition of Autocovariance Function). 

(i) Let T be the set of all integers. Then the autocovariance function R(t) can 
be expressed in the form 

R(t) = i: cos(.At) dF(.A) (t an integer), (1) 

where F(.A) is a non-decreasing function that is continuous from the right, and 
F( -'rr) = 0 and F('rr) = R(O). Moreover, the function F(.A) with these properties is 
determined uniquely. 

(ii) Let T be the real axis. Let the autocovariance function R(t) be continuous at 
the point t = 0. Then R( t) can be expressed in the form 

R(t) = i: cos(.At) dF(.A) (t rea~, (2) 

where F(.A) is a non-decreasing function that is continuous from the right, and 
lim F(.A) = 0 and lim F(.A) = R(O). Moreover, the function F(.A) with these 

.>.--+-oo .>.--+oo 

properties is determined uniquely. 

Definition 1. The function F(.A) from the decomposition (1) or (2) is called the 
spectral distribution function. If it can be written as 

(3) 

in the case (1) or as 

F(.A) = /_~ f(x)dx (-oo ~ .A ~ oo) (4) 

in the case (2), then the function /(.A) is called the spectral density. 
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REMARK 1. One has 

var(Xt) = R(O) = i: dF(.X) (5) 

and 

var [X(t)] = R(O) = /_: dF(.X). (6) 

If the spectral density f (.X) exists, then one can write 

R(t) = /_: cos(.Xt)f(.X) d.X = 21-rr cos(.Xt)f(.X) d.X (t an integer) (7) 

and 

R(t) = /_: cos(.Xt)f(.X) d.X = 2100 
cos(.Xt)f(.X) d.X (t real). (8) 

The spectral density can be chosen so that it is an even function, i.e., f(.X) = f( -.X). 

Theorem 2. 

(i) Let T be the set of all integers. If 

00 

L JR(t)J < 00' (9) 
t=O 

then the spectral density f(.X) exists. If f(.X) is continuous in [-')(, ')(], then 

1 00 1[ 00 
] f(.X) = - L R(t) cos(.Xt) = - R(O) + 2 L R(t) cos(.Xt) 21( 21( 

~-00 ~1 

(10) 

(ii) Let T be the real axis. Let R(t) be continuous at the point t = 0. lf 

1oo JR(t)J dt < oo, (11) 

then the spectral density f (.X) exists and it holds 

1 100 1100 f(.X) = -2 R(t) cos(.Xt) dt = - R(t) cos(.Xt) dt ( -oo < .X < oo ). ')( -oo ')( 0 
(12) 

REMARK 2. The formulae (10) and (12) are called the inverse formulae. They 
enable us to derive the form of the spectral density on the ground of the autoco­
variance function. 
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S p ectr al D eco m p ositio n of Station ary P rocess . The spectral 
decomposition of a stationary process is closely related to the spectral decomposition 
of an autocovariance function. For example the spectral decomposition of a random 
sequence { Xt: t an integer} has the form 

Xt = /_: cos(>.t) dV(>.) + /_: sin(>.t) dW(>.) (t an integer), {13) 

where the symbols dV(>.) and dW(>.) can be considered as stochastic processes that 
are labelled with a continuous index >.. A simplified interpretation of the relation 
{13) is such that the random sequence can be expressed as a mixture of periodic 
components of the form 

dV(>.) cos(>.t) + dW(>.) sin(>.t). (14) 

The amplitudes of these periodic components are random and 

E [dV(>.)] = E [dW(>.)] = 0, 

E [dV(>.I) dV{>.2)] = E [dW(>.I) dW{>.2)] = 0 (>.1 -::f. >.2), {15) 

E [dV(>.I) dW{>.2)] = 0 

(V(>.) and W(>.) are called the stochastic processes with independent increments). 
The variance of the periodic component {14) is 

var [dV(>.) cos(>.t) + dW(>.) sin(>.t)] = dF(>.). {16) 

If compared with {5), dF(>.) (or f(>.) d>.) expresses the intensity {in terms of vari­
ances) with which the periodic component {14) corresponding to the frequency >. 
is contained in the decomposition {13). 

Exam.ple 1. We shall give spectral characteristics of the stochastic processes from 
Example 36.7.1. 

1. White noise. According to {36. 7.8) and to the inverse formula {10) one obtains 

1[ CXl ] 2 
J(>.) = 2'1r R(O) + 2 ~ R(t) cos(>.t) = ~'Ir {17) 

The spectral density of the white noise is a constant function, i.e., particular fre­
quencies are contained in the spectrum of this process with the same intensities. 

2. Moving average process MA(q): 

2 

f(>.) = ;'Ir leiq.X + ßlei(q-l).X + ... + ßql2 (-'Ir~>.~ 'Ir). {18) 
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3. Autoregressive process AR(p): 

In particular, the process AR(1) has 

(20) 

If 0 < a 1 < 1, then the function (20) is decreasing in [0, 11"] (i.e., lower frequencies 

prevail in the spectrum, see Fig. 36.1a for a 1 = 0·75); if -1 < a 1 < 0, then the 

function (20) is increasing in [0, 11"] (i.e., higher frequencies prevail in the spectrum, 

see Fig. 36.1b for a 1 = -0·75). 

f(AJ 

8c'tlr -----------------------------

0 N A 7r A 
aJ b) 

Fig. 36.1 a, b. Spectral density of the process AR(l) for ( a) 0:1 = 0· 75 and (b) 0:1 = -0· 75 
(the function J(>.) is even and therefore its graph for -11" ~ ).. < 0 is omitted). 

4. Mixed process ARMA(p, q): 

>. - a2 ieiq>. + ß1ei(q-1).>. + ... + ßql2 

f( ) - 2'IT ieip.>.- a1ei(p-1).>.- ... - apl2 
(21) 

5. Harmonie process. The spectral distribution function is a jump function with 

jumps of magnitudes ar /2 at the points ±>.i (i = 1, ... , K). The spectral den­

sity does not exist. The defining relation (36. 7.17) expresses directly the spectral 

decomposition of this process. 
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REMARK 3. Spectral analysis is also used for multivariate stochastic processes. 
It enables us to obtain relations among spectra of the corresponding univariate 
processes (see e.g. [9], (207], [265], (377]). 

Period o gram . Let { Xt: t = 1, ... , T} be a realization of a stationary ran­
dom sequence or let {x(t): 0;:;; t;:;; T} be a continuous realization of a stationary 
random function. 

or 

Definition 2. The function 

I(A) = 2~T{ [1T x(t)cos(At)dtr + [1T x(t)sin(At)dtf} (-oo <).. < oo) 

(23) 
is called the periodogram. 

RE MARK 4. The periodogram can be expressed equivalently as 

T-1 . 

I(>-.) = 2~ [ R(O) + 2 ~ R(t) cos(>-.t)] ( -'II";:;;)..;:;; '11") (24) 

or 11T I(>-.)=- R(t) cos(>-.t) dt 'II" 0 
( -()() < ).. < 00)' (25) 

where R(t) is the estimate of the autocovariance function according to (36.7.24) or 
(36.7.27). 

REMARK 5. The periodogram plays an important role in estimation of spectral 
densities. It is also used if we treat random sequences of the form 

r 

Xt = L [ai cos(Ai t) + ßi sin(A; t)] + yt, (26) 
i=l 

where ai, ßi, Ai (0 < Ai ;:;; '~~") are unknown parameters and yt is a white noise 
with the variance a 2 > 0 (or a more general stationary process). Since the pe­
riodogram constructed for a realization of (26) attains relatively large values at the 
points >-.1, ... , Ar it enables us to find "hidden frequencies" >-.1, ... , Ar as well as 
the number r. The recommended statistical procedure is called Fisher's test of 
periodicity (see e.g. [9], (377]). The remaining parameters ai,ßi (i = 1, ... , r) 
and a 2 can be estimated as parameters of the linear regression model (see § 35.2). 
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Estimation of Spectral Density. Let{xt:t=1, ... ,T}beareal­
ization of a stationary random sequence or let { x( t): 0 ~ t ~ T} be a continuous 
realization of a stationary random function. Let the spectral density f ( >.) exist. 
Despite the fact that the periodogram I(>.) is the asymptotically unbiased esti­
mator (see Definition 34.6.3) of the spectral density /(>.) it is not, in general, its 
consistent estimator (see Definition 34.6.4). Therefore the periodogram is usually 
modified with the help of a system of suitable weights Wt or w(t) so that the spectral 
density can be estimated by 

T-1 

](>.) = woR(O) + 2 L WtR(t) cos(>.t) (27) 
t=l 

or 

](>.) = lT w(t)R(t) cos(>.t) dt. (28) 

Example 2. The following estimates of the spectral density of a stationary random 
sequence are frequently used in practice: 

Parzen's estimator: see (27) with weights 

1
1 [ 6t2 t ] - 1--(1--) 

211" m 2 m 

Wt = 1 ( t )3 - 1--
')'[ m 
0 

m 
fort= 0, 1, ... , 2 , 

m 
for t = 2 + 1, ... , m, 

for t = m + 1, ... , T - 1 ; 

Tukey-H anning estimator: 

](>.) = !g(>.) + !g (>-- ~) + !g (>. + ~) ' 
2 4 m 4 m 

where 
1 A 1 ~ A 

g(>.) = -R(O) +-~ R(t) cos(>.t). 
2m m t=l 

(29) 

(30) 

(31) 

In both cases the estimates are constructed only at the points >. = 11"j / m (j = 
=0, 1, ... , m). It is recommended to choose the number m between T/6 and T/5. 
Other types of estimates of spectral density are given, e.g., in [9], [265], [377]. 

Filters . From the mathematical point of view, filtering is the construction 
of special transformations of an original process. The most frequent filters are the 
so-called linear filters that can be written as 

00 

Zt = L likXt-k (t an integer) {32) 
k=-oo 
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or 

z(t)= i:8(T)x(t-T)d'T (treal). (33) 

The sequence 8k or the function 8('T) is chosen in such a way that the output 
process Z(t) which results from the filtering of the input process X(t) has some 
desired properties. Under general assumptions, the relation 

fz(>.) = 11/J(>-)1 2 /x(>.) (34) 

holds between spectral densities /x(>.) and fz(>.) of the processes X(t) and Z(t), 
where 

00 

1/J(>.) = L 8ke-ik>. (35) 
k=-oo 

is the so-called transfer function of the filter. General filter theory (and closely 
related prediction theory) is given, e.g., in [9], (48], [164], [269], (377]. 

Example 3. Low-pass filter, through which only low frequencies pass, has the 
transfer function 'lj;(>.) that has to fulfil, due to (34), the relation 

11/J(>.)I = 0 for 1>-1 > c:, (36) 

where c: is a small positive number. 
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By FRANTISEK N OZICKA 

References: [16], [35], [42], [72], [105], [108], [166], [169], [247], [268], [355], [356], [371], 
[372], [423], [428], [500]. 

INTRODUCTORY REMARK. Linear programming is a branch of mathematics 
belonging to mathematical optimization methods. It provides a very useful math­
ematical tool for solving a lot of problems in economy where a great number of 
variables as well as many conditions representing restrictions for these variables 
are involved. The methods of linear programming can be efficiently applied also to 
many problems in engineering. 

In the introductory paragraphs of this chapter, we state the problern considered, 
present some examples of practical problems leading to linear programming, and 
survey the fundamental theoretical procedures and results. How to proceed prac­
tically when employing the simplex method is demonstrated in Example 37.9.1. 
In the concluding paragraphs, we then refer to some further linear programming 
methods. 

Throughout this chapter, we use the usual set notation: For example, {1, 2, 3} 
denotes the set of numbers 1, 2 and 3. Writing I C {1, 2, 3} we mean that I is 
a subset of the set {1, 2, 3}, e.g. the set {1, 2}. The cases I = {1, 2, 3} or I = 0 
(i.e., I is the empty set) arenot excluded. If I = {1, 2}, then {1, 2, 3} -......I is the 
complement of the set I, i.e. {1, 2, 3} -......I = {3} (thus the set consisting of the 
number 3). The notation 

means that M is the set of all points x = (x1, x2, x3) of the Euclidean space E 3 for 
which the relation a1x1 + a2x2 + a3x3 = b holds. (In case that at least one of the 
numbers a1, a2 and a3 is non-zero, this relation represents the set of points of E3 
that lie in the plane a1 x1 + a2x2 + a3x3 = b.) 

Speaking about numbers in this chapter, we always mean real numbers. 
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37.1. Formulation of the General Problem of Linear Programming 

Let 

and 

C1, o o o, Cn 

be given numbers (m and n arepositive integers, n ~ 2) and Iet 

be a given matrix whose entries are numberso In En, Iet us consider the set M of 
all the points x = (x1, 0 0 0, Xn) (we will also call them n-tuples (x1, 0 0 0, Xn)) that 
satisfy the system of equations and inequalities ( the linear constraints) 

n 

L ajiXi = bj (j E I) , 
i=l 

(1) n 

L ajiXi ~ bj (jE {1, 0 0 0, m}-...... I), 
i=l 

w here I C { 1, 0 0 0 , m} 0 (For the notation see the beginning of this chapter 0) We 
thus have the set 

n n 

M = {X E En I L ajiXi = bj (j E J)' 
i=l 

"'a··x· < b· ~ J• • = J 

i=l 

(jE {1, 0 0 0, m}-...... I)} 0 

(2) 
Our task is to find at least one point x = ( x1 , 0 0 o , Xn) in the set M for which the 
(given) linear function 

n 

f(x) = L CiXi 
i=l 

assumes its extremum (ioeo minimum or maximum) on Mo 

The optimization problern just presented is often written briefl.y in the form 

max{ f: CiXi} ! 
xEM 

i=l 

or 
n 

min {L cixi}! o 
xEM 

i=l 

(3) 

(4) 

Definition 1. The linear function (3) is called the objective function, the set M 
is called the set of feasible points (or the feasible set) corresponding to the linear 
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optimization problern given. Every point x E M that yields the extrernurn of the 

objective function {3) on the feasible set M is called the solution or the optimal 

point of the linear optirnization problern given. 

RE MARK 1. If there is no such point x ( this situation occurs, for exarnple, 

if the linear constraints (1) are incornpatible, i.e., if M = 0, or if the objective 

function (3) is not bounded frorn below (in case of rninirnurn) or frorn above (in 

case of rnaxirnurn) on M), then we say that the given optimization problern has no 

solution (see also § 37.6). 

REMARK 2. The above forrnulated generallinear prograrnrning problern can be 

properly interpreted as a geornetrical problern if we consider the fact that each 

equation in (1) with a non-zero vector Oj = ( ajb ... , ajn) describes a certain 

hyperplane in En and that each inequality in (1) with a non-zero vector Oj describes 

a certain closed half-space in En. In accordance with (2), the feasible set M is then 

the intersection of a finite nurnber of closed half-spaces and hyperplanes in En· 

Every such non-ernpty set is called a convex polyhedron in En. In case M =f. 0, the 

feasible set M can thus be geornetrically interpreted as a convex polyhedron in En. 

For any choice of a nurnber k and a non-zero vector c = (c1, ... , cn), the set 

n 

Rk = {X E En I L CiXi = k} 
i=l 

is also a hyperplane in En so that considering all the choices of k, we obtain a sys­

tern of parallel hyperplanes in En. The objective function (3) can thus be geornet­

rically interpreted as a systern of parallel hyperplanes in En (see Fig. 37.1 for the 

case n = 2). 

I 
Fig. 37.1. 

The optirnization problern ( 4) can then be geornetrically interpreted in the fol­

lowing way: Such a point x0 = (xot, ... , Xon) of the set M is tobe found that the 



37.2 LINEAR PROGRAMMING 

hyperplane with the description 

n 

Rk0 = {X E En I 2: CiXi = ko} , 
i=l 

n 

where ko = 2: CiXoi , 

i=l 

825 

is "supporting" hyperplane of the polyhedron M (see the figure). Further, in case 
of minimization, the vector c with the initial point x0 points to that of closed half­
-spaces with the boundary hyperplane Rko, in which the polyhedron M lies (see 
Fig. 37.1), while in case of maximization it points to the complementary half-space. 

In this chapter, we will often speak (in case M # 0) about the corresponding 
polyhedron M instead of the set M of feasible points. 

37.2. Linear Optimization Problem in Normal Form 

Let a (general) optimization problern (37.1.4) with the set (37.1.2) of its feasible 
points be given. Further let at least one equation occur in the description of M 
(i.e., let I "I 0). If now the system of equations 

n 

2: ajiXi = bj (j E I) (1) 
i=l 

has no solution, then M = 0 and the optimization problern considered has no 
solution, either. If the system (1) is solvable, then it has a certain rank s where 
1 ~ s ~ n. Assuming s = n, we have a trivial optimization problern where M is 
either a single-point set or the empty set. If s < n, then s variables can be expressed 
from the system (1) as linear function of the other n- s variables. Without loss of 
generality we can suppose that these s variables are x 1 , ••• , X 8 and thus 

n-s 

Xi=l:eilXs+t+di (i=1, ... ,s). 
l=1 

(2) 

Substituting this into all the inequalities in the description (37.1.2) of the set M, 
we obtain certain linear inequalities 

n-s 

L aj[Xs+l ~ bj (j E {1, ... , m} ' I) . 
l=1 

If some of these inequalities reduce to the form 0 ~ bj and if at least one of the 
numbers bj is negative, then M = 0 and the optimization problern considered thus 
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has no solution. lf all the numbers b; in the inequalities 0 ~ b; are non-negative, 
then these inequalities can be omitted. In this case, we put 

n-s 

I' = {i E {1, ... , m} 'I I I: la;d > o} 
l=l 

and arrive at the inequalities 

n-s 

L a;zxs+l ~ b; (j E I') . {3) 
l=l 

Since each of the numbers Xs+l can be written as a difference of two non-negative 
numbers, i.e. 

the substitution into {3) yields the system of inequalities 

n-s n-s 

L a;zx;+l + L ( -a;z)x;+l ~ b; (j E 1'), 
l=l l=l (5) 

x;+l f; 0, x;+l f; 0 (l = 1, ... , n- s). 

Substituting further {2) into the objective function f in {37.1.3), we obtain a certain 
linear function 

n-s 

L:czxs+l 
l=l 

and, with respect to {4), the linear function 

n-s n-s 

L czx;+l +I:< -cz)x;+l 
l=l l=l 

of variables x;+ll x;+l (l = 1, ... , n- s). 

{5') 

In case that no equation occurs in the description {37.1.2) of the set M (i.e. in 
case I= 0), we will take into account only the substitution {4) (putting s = 0) and 
substitute both into all the inequalities in the description of the set M and into the 
objective function {37.1.3). 

In this way, we can either transform the original (general) linear programming 
problern into an equivalent optimization problern with the objective function {5') 
and the feasible set described by {5) (which is a particular case oflinear optimization 
problems of Definition 1) or we find in the course of this procedure that the original 
problern has no solution. 
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Definition 1. The linear optimization problern with the description 

n 

M = { x E En I :~:::>jiXi ~ bj (j = 1, ... , m), Xi ~ 0 {i = 1, ... , n)} {6) 
i=l 

of the set of feasible points is called the linear optimization problern in normal form. 

REMARK 1. The procedure that preceded Definition 1 thus shows that either 
it is possible to transform a general linear programming problern into an equiva­
lent linear optimization problern in normal form or the procedure reveals that the 
problern has no solution. Here, the equivalence of two linear optimization problems 
means such their property that existence of the solution of one of the problems 
implies existence of the solution of the other. 

37.3. Linear Optimization Problem in Equality Form 

Like in § 37.2, consider a (general) linear optimization problern (37.1.4) with the 
description {37.1.2) of the feasible set M. In the case that at least one inequality 
occurs in this description (i.e. {1, ... , m} ' I "# 0), we introduce further variables 

n 

~i = bj- L ajiXi (j E {1, ... , m} 'I) {1) 
i=l 

that are subject to the conditions 

ei ~ 0 (j E {1, ... , m} 'I) 

in accordance with the inequalities from the description {37.1.2) of the set M. The 
optimization problern with the original objective function 

n 

f(x) = L CiXi, 

i=l 
with the feasible set M described by 

n 

L ajiXi = bi (j E I) , 
i=l {2) 

n 

L ajiXi + ej = bj (j E {1, ... ' m} ' I) ' 
i=l 
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and with the condition ~j ~ 0 (j E { 1, ... , m} " I) is apparently equivalent 
( cf. Remark 37.2.1) to the original optimization problem. Moreover, putting Xi = 
=xt- x; in (2), where xt ~ 0 and xi ~ 0 (i = 1, ... , n), we again arrive at 
an equivalent optimization problern with the variables xt, x; (i = 1, ... , n) and ~j 
(j E {1, ... , m} '-..I) occurring in the linear objective function (here, the variables ~j 
have zero coeflicients) andin the feasible set whose description involves only linear 
equations together with the conditions of non-negativity of the variables. 

Definition 1. The quantities ~j (jE {1, ... , m} "I) defined by (1), which occur 
in the optimization problern assigned to the originallinear optimization problern in 
the above presented way, are called slack variables. 

Definition 2. The linear optimization problern with the description 

n 

M = { x E En I L ajiXi = bj (j = 1, ... , m), Xi ~ 0 (i = 1, ... , n)} 
i=l 

of the set of feasible points is called the linear optimization problern m equality 
form. 

REMARK 1. As we have just shown, a generallinear optimization problem, whose 
feasible set has inequalities in its description, can be transformed into an equivalent 
linear optimization problern in equality form. 

37.4. Examples of Linear Optimization Problems Solved in Practice 

(a) Classical Transportation Problem 

Let P1 , ... , P rn be the sites of production (production centres) of some product p 
(e.g. coal mines) and let ai (ai > 0) be the amount of the product p produced at 
the centre Pi ( i E { 1, ... , m}) in some time period ( the same for all the centres). 
The consumption of this product is planned at the sites of consumption C1 , ... , Cn 
( e.g. in certain towns) in such a way that the amount bj ( bj > 0) corresponds to 
the site c1 (j E {1, ... , n} ). In the considered time period, the total production of 
the product is, moreover, assumed tobe equal to its total consumption ("economic 
balance"), i.e. 

rn n 

:Lai= 2::: bj. 
i=l j=l 

Let Xij (i = 1, ... , m; j = 1, ... , n) be the unknown amounts of the product p 
in some appropriate units ( e.g. weight units) to be transported from the production 
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centre Pi to the site of consumption C1. The following conditions are thus to be 

fulfilled: 

Xij ~ 0 (i = 1, ... , m; j = 1, ... , n), 
n 

LXij=ai (i=1, ... ,m), 
j=l 

m 

L ixij = bj (j = 1, ... , n). 
i=l 

(1a) 

(1b) 

(1c) 

From the viewpoint of economy, the condition (1a) is evident. The condition (1c) 
represents the fact that the consumption b1 at the site Cj is tobe met by the delivery 
from the production centres P1, ... , Pm considered. The condition (1b) expresses 

the economic requirement that the whole amount ai of the product produced at the 
ccntre Pi be delivered to the sites C1 , ... , Cn of its consumption. Further, positive 
numbers Cij ( i = 1, ... , m; j = 1, ... , n) are given that correspond to the cost of 

transportation of the product unit from the centre Pi to the site Cj. 

Our task is to determine the transported amounts Xij (i = 1, ... , m; J = 

= 1, ... , n) in such a way that the total transportation cost, expressed by the 
linear function 

m n 

f = L L CijXij , (2) 
i=l j=l 

be, under the conditions (1a), (1b), and (1c), minimal. The linear optimization 
problern thus consists in the minimization of the function (2) on the set of all 
points 

X= (xll, ... 'Xln, X21, ... 'X2n, ... ' Xm!, ... 'Xmn) 

which is described by the linear constraints (1a), (1b), and (1c). In literature, 

this linear optimization problem, given apparently in equality form, is called the 
classical transportation problem. 

(b) Biending Problem 

Assurne that a certain number of petrol sorts, that differ from each other both 

in quality and in price, are available. Denote these sorts by B1 , ... , Bn and let 

Pi (Pi > 0) be the price of a litre of petrol Bi. Suppose that Ab ... , Am are the 
substantial components of all the petrol sorts considered whose amounts in a par­
ticular petrol sort ( contained in a litre of it) determine its quality. Suppose further 

that aij (aij ~ 0, L:j=l aij > 0) are known numbers representing the amount of 
component Aj in a litre of petrol Bi. These data are well arranged in Tab. 37.1: 
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TABLE 37.1 

A· J 

Our task is to get, blending the petrols Bt. ... , Bn, a new petrol Bo, whose 
one litre contains at least the amount Cj (cj > 0) of the component Aj, in such 
a manner that the price of this new petrol be minimal. 

Denoting by Xi (i = 1, ... , m) the unknown amount of petrol Bi contained in 
a litre of the blend prepared, we have the following conditions for these quantities: 

xi~o (i=1, ... ,n), 
n 

"a··x· > c· (J. -1 m) L...., ., • = J - ' ••• ' • 

(3) 

i=l 

The price of a litre of the petrol blend is 

n 

f(x) = LPiXi. (4) 
i=l 

We can thus state the mathematical formulation (the mathematical model) of the 
problern considered: 

On the set M of all the n-tuples (x1, ... , xn) satisfying the constraints (3), we 
are to find such an n-tuple xo = (xot, ... , Xon) fromM for which 

f(xo) = min f(x) 
xEM 

holds. It is thus a linear optimization problern with the objective function (4) and 
the feasible set M described by (3). In Iiterature, this optimization problern is 
referred to as the blending problem. 
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(c) Production Planning 

A majorplant produces, in its sectors S1, ... , Sq, certain products P1. ... , Pr 
that are assumed to be divisible into relatively small amounts ( e.g. different sorts 
of beer in a brewery, different sorts of tinned meat in a canning factory). It is not 
supposed that each product must be necessarily manufactured in each sector of the 
plant. Each of the products passes through definite stages (production stages) of 
successive processing. For this purpose, there are certain departments A1, ... , Av 
in the plant. For the sake of simplicity, suppose that these departments exist in 
each sector. Let Pi denote the minimal amount of the product Pi (i E {1, ... , r}) 
planned to be manufactured in the plant during some time period (e.g. a year). 
Furtherlet aJi denote the maximal amount of the product Pi (i E {1, ... , r}) 
that can be processed by the department Aj (j E { 1, ... , p}) of the sector S k 

(k E {1, ... , q}) during the time period given. If the product Pi does not pass 
through the department Aj of the Sector sk, we put aji = 0, otherwise aji > 0. 
It is assumed that no department can process two products at the sametime and, 
moreover, that after passing through a certain department, the product does not 
re-enter it. Denote further by sji the cost of production of a unit amount of the 
product Pi in the department Aj of the sector Sk. The cost of production of a unit 
amount of the product Pi in the sector Sk is then the sum 

Let Xki (i = 1, ... , r; k = 1, ... , q) be the unknown amount ofthe product Pi to 
be manufactured in the sector Sk. Since aji is the maximal amount of the product Pi 
that can be processed in the department Ai of the sector Sk during the given time 
period (this time periodwill be assigned the unit length), the nurober 1/aji (in case 
aJi > 0) represents the fraction ofthistime period needed to process a unit amount 
of the product Pi in the corresponding department and sector. A fraction of the 
time period equal to Xki/ aji then corresponds to the amount Xki of the product Pi 
in the department Aj of the sector sk. This fraction is called the Capacity load of 
the department Aj in Sector sk by the product Pi. Introducing the index sets 

I(k, j) = {i E {1, ... , r} I aji > 0} (k E {1, ... , q}, jE {1, ... , p}), 

we see that the sum 
""' Xki 
L...J a~. 

iEI(k,j) 1' 

represents such a fraction of the time period that is needed to process all products 
in the department Ai of the sector Sk. This fraction is at most equal to the given 



832 SURVEY OF APPLICABLE MATHEMATICS 

total time period (which has been assigned the unit length), so that 

'"' Xkki <= 1 (k {1 } . {1 }) ~ E , ... ,q ,JE , ... ,p. 
iEI(k,j) aji 

The conditions 
Xki ~ 0 (k E {1, ... , q}, i E {1, ... , r}) 

are quite natural from the viewpoint of economy. 

Putting 

{ 
1 if the product Pi is manufactured in the Sector sk' 

Cki = O otherwise, 

we find that the sum 
q 

LCkiXki 

k=l 

37.5 

(4a) 

(4b) 

represents the total production of the product Pi in the plant and the conditions 

q 

LCkiXki~Pi (i=1, ... ,p) (4c) 
k=l 

are required to be fulfilled. The expression 

(5) 

represents the total cost of production of all the considered products during the 
given time period. The natural requirement is that this total cost is minimal under 
the conditions presented. 

The linear optimization problern thus consists in the minimization of the objec­
tive function (5) of the variables Xki (k = 1, ... , q; i = 1, ... , r) satisfying the 
linear constraints (4a), (4b), and (4c). 

37.5. Decomposition of a Convex 
Polyhedron into its Interior and Faces 

An arbitrary convex polyhedron M is a non-empty intersection of a finite nuro­
ber of closed half-spaces and hyperplanes in En (see Remark 37.1.2) and it thus 
represents a closed convex set in En. That means: M = M and >.1x + >.2y E M 
holds for every pair of points x E M, y E M and every pair of numbers >.1 ~ 0, 
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>.2 ~ 0 such that >.1 + >.2 = 1. In this sense, every linear manifold (straight line, 
plane, hyperplane) in En ( as well as a point and the space En itself) is also a convex 
polyhedron in En. 

We say that the dimension of a convex polyhedron M in En is d ( and write 
dim M = d) if the linear manifold of the smallest dimension, that contains the 
convex polyhedron M, has dimension d. 

For example, a triangle in E 2 has dimension d = 2 since the linear manifold of 
smallest dimension, that contains it, is the plane E 2• The segment described by 
the relations y = 3x + 1, -1 ~ x ~ 1, has dimension d = 1 as the linear manifold 
of smallest dimension, that contains it, is the straight line in E2 described by the 
equation y = 3x + 1. 

Instead of the linear manifold of the smallest dimension containing the polyhe­
dron M, we will often speak briefiy about the linear span of this polyhedron. 

Let M be a convex polyhedron of dimension d (1 ~ d ~ n) in En and Ld be 
its linear span. Every point x E M, to which there exists c > 0 so that its 
E-neighbourhood in Ld (i.e. the set 

Ud(x; c) = {y E Ld I e(y, x) < c}, 

where e(y, x) is the distance between the points y and x) belongs to M, is called 
the interior point of the polyhedron M. The set of allsuch points x E M is called 
the interior of the polyhedron M and is denoted by rel. int M, in case d = n also 
int M. If the convex polyhedron consists of a single point, i.e. M = { x0 }, we put 
rel. int M = { xo}. 

The set 

8M = M '- rel.int M 

is called the boundary of a convex polyhedron M in En· If M isalinear manifold 
in En, then apparently rel. int M = M and thus 8M = 0. 

Let M be a convex polyhedron in En, which is not a linear manifold. In this 
case, it can thus be described as an intersection of a certain linear manifold L and 
a finite nurober of closed half-spaces H 1, ... , H P• i.e. 

(1) 

where LnH1 n. · ·nHp :f:. 0 holds for the corresponding open half-spaces H 1, ... , Hp. 
We can easily verify that then 

rel. int M = L n H1 n · · · n Hp , 

dimM =dimL. 
(1') 
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Since Hi = Hi U Ri where Ri is the boundary hyperplane of the half-space Hi, we 
obtain from this and (1), and using the well-known operations with sets, that 

M =Ln (H1 U R1) n · · · n (Hp U Rp) = 

= (Ln H1 n · · · n Hp) u L Ln Ri1 n · · · n R, n Hi,+t n · · · n Hip , 
(2) 

where the symbol 2: represents the union of such non-empty sets 

s,1 ,· = L n Ri1 n · · · n Ri, n Hi,+t n · · · n Hi , 1,. .. , p p (3) 

for which 1 ~ l ~ p and {ib ... , i1, il+l, ... , ip} is a permutation of the p-tuple 
{1, ... , p} with the property i 1 ~ · · · ~ i1, il+1 ~ · · · ~ ip. The relations (1'), (2), 
and (3) imply that 

M = rel. int M u L sL, ... ,ip . (4) 

Each of the non-empty sets st, ... ,ip in (3) is called the face of the convex polyhe­
dron M and the expression on the right-hand side of ( 4) is called the decomposition 

of the convex polyhedron M into its interior and faces. The closure s!1 , ... ,ip of 
a face SL, ... ,ip of a convex polyhedron M is called a closed face oj this polyhedron 
and it follows from (3) that 

( since L = L and Ri = Ri). A closed face of a convex polyhedron is a convex 
polyhedron as weiland, moreover, 

-l l 
Si1 , ... ,ip C oM, dimSi1 , ... ,ip < dimM. 

The face of dimension 0 is called a vertex, the face of dimension 1 is called an edge 
of a convex polyhedron M. 

The reader can readily form a geometrical interpretation of the presented con­
cepts in E3 if he takes the closed half-spaces, whose intersection is the closed first 
octant in E3, for H 1, H 2 , and H 3, and a plane, whose part lying in this octant is 
the polyhedron M, for L. 

RE MARK 1. Two linear manifolds Ld, ( i = 1, 2) in En of dimensions di = dim Ld,, 
where 1 ~ di ~ n- 1 (i = 1, 2), are called parallel in En if Ld1 n Ld2 = 0 and 
(Ld, U Ld,) C Ld where d = max(d1, d2) + 1. The following statement then holds 
for convex polyhedra in general: 

Let M be a convex polyhedron in En containing a linear manifold Ld of dimen­
sion d, where 1 ~ d ~ n - 1. Then every linear manifold of the same dimension, 
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that passes through an arbitrary point x E M and is parallel to the manifold Ld, 
belongs to the polyhedron M. 

Since the first octant in En, i.e. the set E;!- = {x E En I Xi ~ 0 (i = 1, ... , n)}, 
contains no linear manifold of the space En whose dimension is greater than or 
equal to 1, the preceding statement implies this corollary: 

lf the feasible set M of a linear optimization problern in equality form (see Defini­

tion 37.3.2) is non-ernpty, then M is a convex polyhedron in En containing vertices 

( i. e. at least one vertex). 

37.6. The Set of Optimal Pointsofa Linear Optimization Problem 

Let us consider a (general) linear optimization problern (37.1.4) with the feasible 
set described in (37.1.2). Let us denote by Mopt the set of alloptimal points of the 
considered problem, i.e. 

Mopt = {x E MI f(x) = min f(x)} 
xEM 

or 

Mopt = {x E MI f(x) = maxf(x)}. 
xEM 

If Mopt =1- 0, we say that the considered optimization problern is solvable. In the 

case Mopt = 0 (i.e. in the case that either M = 0, or M f. 0 but, at the same time, 
the function f ( x) does not assume its minimum or maximum on the set M) we say 
that the given problern has no solution. 

The following theorems hold: 

Theorem 1. If the generallinear optimization problern (37.1.4), (37.1.2) is solv­

able, then the set Mopt of alt its optimal points is either a closed face of the cor­

responding convex polyhedron M, or the whole polyhedron. The case Mopt = M 

occurs if f(x) = 0 for alt x E M ( i.e. Ci= 0 for i = 1, ... , n), or if for sorne point 

xo E M, the hyperplane 

n n 

Ro = {X E En I 2::>iXi = I: CiXOi} 
i=l i=l 

contains the whole polyhedron M. 

Theorem 2. lf the general optirnization problern (37.1.4), (37.1.2) is solvable and 

if the polyhedron M contains at least one face of dimension d and no face of dimen­

sion less than d, then there exists such a face Sd oj dirnension d that Sd c Mopt. 

Theorem 2 and the second statement of Remark 37.5.1 imply the next theorem: 
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Theorem 3. lf the linear optimization problern in equality form (see Defini­

tion 37.3.2) is solvable, then there exists a vertex of the corresponding convex poly­

hedran M that is the optimal point of the optimization problern considered. 

37.7. The Concept of Feasible Basic Point 

Consider a linear optimization problern in equality form (see Definition 37.3.2), 

i.e. a linear optimization problern with the feasible set 

n 

M = { x E En I l:::>jiXi = bj (j = 1, ... , m), Xi ~ 0 (i = 1, ... , n)}, (1) 
j=l 

and suppose 

a) m < n; 
b) the matrix 

A = [ ~-1 ~: .. : : : : •• ~~ ~ l 
aml, ... ' amn 

(2) 

has the maximal possible rank, i.e. m. 

REMARK 1. If M ::/:- 0, then the assumptions a) and b) imply that the set 

n 

Ln-m = {XE En I I:>jiXi = bj (j = 1, ... , m)} 
j=l 

is non-empty as well and it represents a linear manifold of dimension n- m in En. 

Thus in case M ::/:- 0, M is a convex polyhedron in En, which is an intersection of 
the linear manifold Ln-m with the first octant 

E~={xEEnlxi~O (i=1, ... ,n)} 

of the space En, and 0 ~ dim M ~ n- m. 

REMARK 2. With respect to the fact that the rank of the matrix Ais m, there 

exists at least one square submatrix of order m of the matrix A whose determinant 

is non-zero. Let 

::/:- 0' (3) 
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wherc {i1, ... , im} is a certain m-element subset of the set {1, ... , n}. Then we 
can express the variables Xi 1 , ••• , Xim from the system of equations 

n 

2:::>jiXi = bj (j = 1, ... , m) 
i=l 

as linear functions of the other n - m variables Xim+l, ... , Xin, i.e. 

n 

Xis= dis- L disizXiz (s E {1, ... , m}). 
l=rn+l 

(4a) 

(4b) 

Putting Xiz = 0 for l = m+1, ... , n, we obtain Xis= dis (s = 1, ... , m) from (4b) 
so that the point x E En with Coordinates 

Xis = dis, Xiz = 0 (s = 1, ... , m; l = m + 1, ... , n) (5) 

satisfies equations ( 4a) and it is thus a point of the linear manifold Ln-rn from 
Remark 1. Conversely, assigning zero values to n-m variables Xiz ( l = m+ 1, ... , n) 
of the total numbcr of n variables x1, ... , Xn in the system of equations ( 4a), we 
obtain the system of m linear equations 

Tn 

La)isXis = bj (j = 1, ... , m). (6) 
s=l 

If this system has a unique solution Xis = dis ( s = 1, ... , m) ( which occurs if and 
only if (3) holds), then the point x with the coordinates given in (5) is a uniquely 
detennined point of the variety Ln-rn· 

In the presented way we can thus find particular points of the linear vari­
ety Ln-rn, which are characterized in the following definition: 

Definition 1. Let x = ( x1 , .•. , xn) be a point satisfying (und er the assumptions 
a) and b)) the system of equations ( 4a) from the description (1) of the set M and 
fulfilling the following conditions: 

1. The set I(x) = {i E {1, ... , n} I Xi = 0} contains at least n- m elements. 
2. From the set I(x), we can extract such its subset {im+l, ... , in} of n- m 

elements that the system of equations ( 6) has the unique solution Xi" ... , X im, 

where we denoted by { i1, ... , irn} = {1, ... , n} '-... { im+l, ... , in} the complement 
of the subset { im+b ... , in}· 

The point x is then called the basic solution of the equations (4a), and the 
variables Xi 1 , ••• , Xim and Xim+l, ... , X in are called basic and non-basie variables, 
respectively, corresponding to the basic solution x. 
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Definition 2. If x is such a basic solution of the equations ( 4a) that the point x 
has more than n - rn zero coordinates, we say that x is a degenerate basic solution 

of the equations ( 4a). If the point x has just n - rn zero coordinates, we speak 
about a non-degenerate (or regular) basic solution of the equations (4a). 

Definition 3. A basic solution x = ( x1 , ... , xn) of the systern of equations ( 4a) 

possessing the property Xi ~ 0 (i = 1, ... , n) (i.e. the property x E M) is called 

a feasible basic point of the optirnization problern considered. If a feasible basic 
point has more than n - rn zero coordinates, we speak about degeneracy at this 

point. If it has just n - rn zero Coordinates, then it is called regular. 

The fact that, in case M =/= 0, there exists (und er the assurnptions a) and b)) 
at least one feasible basic point of the linear optirnization problern, follows from 
Theorem 37.6.3 and the following Theorem 1, which, in turn, is a consequence of 
the definition of a vertex of the polyhedron M in § 37.5: 

Theorem 1. Each feasible basic point of the linear optirnization problern consid­

ered is a vertex of the polyhedron M. Conversely, each vertex of the polyhedron M 

from (1) is a feasible basic point of the linear optirnization problern considered, to 

which either a unique index basis (in case of non-degeneracy) or several index bases 

(in case of degeneracy) correspond. 

Example 1. Let the set 

M = { x E E I x1 - 2x2 + X3 = 1 , 2xl + 3x2 + X3 = 2 , Xi ~ 0 ( i = 1, 2, 3)} 

be a feasible set of a certain linear optimization problern in three variables x1 , x 2 

and x3 . We thus have n = 3, rn = 2, and n - m = 1. Putting x1 = 0 in the systern 
of equations 

x1 - 2x2 + X3 = 1 , 2x1 + 3x2 + x3 = 2 , 

we obtain the equations 

(7) 

with the unique solution x2 = i and x3 = t. According to Definitions 1 and 2, the 
point Xo = (0, i, t) is a non-degenerate basic solution of the systern of equations (7) 
with index basis {2, 3}. Since all its coordinates are non-negative, it is a regular 
feasible basic point of the considered linear optimization problern (Definition 3). 

Choosing x2 = 0 in the equations (7), we obtain the equations 

with the unique solution x1 = 1 and X3 = 0. The point y0 = (1, 0, 0) is thus 
a degenerate basic solution of the systern of equations (7) with index basis {1, 3} 
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and, due to the non-negativity of its Coordinates, it is a feasible basic point of the 
considered linear optimization problern at which degeneracy occurs. 

Finally, putting X3 = 0 in the equations (7), we arrive at the equations 

with the unique solution x1 = 1 and x2 = 0. Therefore, the previous point Yo is 
the solution of the equations (7) in this case as well and it now represents their 
degenerate basis solution with index basis {1, 2}. 

According to Theorem 1, this implies that the points xo and Yo represent all the 
vertices of the polyhedron M, which is apparently a closed segment with end points 

xo and Yo· 

37.8. Exchange of Basic Variables. 
Optimality Criterion. The Degenerate Case 

Preparing an algorithm for the solution of the linear optimization problern in 
equality form considered in§ 37.7 under the assumptions a) and b) presented there, 
we mnst first consistently describe the individual steps of the procedure. This is 
with which we will be concerned in the present paragraph. 

Let xo = (xob ... , Xon) be a known feasible basic point of the given linear 
optimization problern in equality form and with the feasible set from (37.7.1). Let 
this point corresponds to the basic solution ofthe system of equations (37.7.4a) with 
index basis { i1, ... , im}· Without loss of generality we can assume { i1, ... , im}= 
= {1, ... , m} (which can be always achieved by a suitable renumbering ofvariables 
X1, ... , Xn)· Then the equations (37.7.4b) have the form 

n 

Xi = diO- L dijXj (i = 1, ... , m), 
j=m+l 

(1) 

where diO = Xio ~ 0 (i = 1, ... , m). Substituting (1) into the objective function 
n 

f(x) = L iciXi, we obtain 
i=l 

n 

f(x) = co + L(ci- zi)Xi, (2) 
i=l 
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7n 

co = L cidio, 
i=l 
7n 

zz=Lcidiz (l=m+1, ... ,n), 
i=l 

zz = cz (l = 1, ... , m). 

37.8 

(2') 

The relevant data can be conveniently arranged in Tab. 37.2, where x 1 , ... , x 111 are 
basic variables corresponding to index basis { 1, ... , m}. The inner product of the 

row vector (x1, ... , Xn) and the row vector in the i-th row of the hold framed matrix 

in Tab. 37.2 ( the so-called basis matrix) yields, by (1 ), the value of dio. The inner 
product of the column vector (c1, ... , c111 ) on the left-hand side of Tab. 37.2 and 

the i-th column vector in the basis matrix gives the value of Zi ( i E {1, ... , n} ). 
The number c0 is the inner product of the column vector ( c1 , ... , c711 ) and the 

column vector ( d10, ... , drno ), and represents the value of the objective function at 
the point xo. 

Theorem 1, which follows, yields an optimality criterion for the point x 0 while 

Theorem 2 a criterion for the non-existence of solution of the given optimization 
problern 

n 

max{L cixi}!. 
xEM 

i=l 

(3) 

Theorem 1. If Ci- Zi ~ 0 for i = 1, ... , n or Ci- Zi ~ 0 for i = 1, ... , n, then 

the feasible basic point xo is the optimal point of the minimization or maximization 

problem (3), respectively. 

Theorem 2. Ij, in the minimization or maximization problern (3), there exists 

such an index j 0 E {m + 1, ... , n} that 

Cj0 - Zj0 < 0, dijo ~ 0 for i = 1, ... , m 

or 

Cj0 - Zj0 > 0, dijo ~ 0 for i = 1, ... , m, 

n 

then the objective function '2:::: iciXi is no~ bounded from below or from above, re­
i=l 

spectively, on the set M. 

REMARK 1. If none of the cases described in Theorems 1 and 2 takes place then, 

in the minimization or maximization problern (3), the set 

l1 = {j E {m + 1, ... , n} I Cj- Zj < 0} 
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or 
/2 ={jE {m + 1, ... , n} I c;- z; > 0}, 

respectively, is non-empty and, to each index j E /1 or j E /2, respectively, there 
exists an index i; E {1, ... , m} with the property di;i > O.It means that in the 
bottom row of Tab. 37.2 (in the so-called characteristic row), there is at least one 
negative or positive entry c; - z;, respectively, and in the column of the basis matrix 
above each such entry, there is at least one positive entry. The process, leading from 
the original feasible basic point x 0 with index basis { i1, ... , im} = {1, ... , m} to 
the feasible basic point whose index basis differs from the basis { i1, ... , im} by one 
index, is called the index basis change and represents a proper step of an algorithm 
we will describe later. 

We begin with a feasible basic point that corresponds to the starting ( above 
considered) vertex xo of a convex polyhedron M and with the relevant data (1), 
(2) and (2') arranged in Tab. 37.3 below. If the vertex x 0 is not an optimal feasible 
point of the considered linear optimization problem, there exist indices k and s, 
1 ~ k ~ m and m + 1 ~ s ~ n, such that 

Then we can calculate the variable X 8 from the k-th equation in (1), according to 
the formula 

Xs = -}- (dko - t dkjXj - Xk) · 
ks j=m+1 

j#s 

Substituting this into the remaining equations (1), we obtain 

(i = 1, ... , m; i =I k) 

and, substituting into the objective function (2) with its coefficients given in (2'), 
we further have 

( ) dko ~ [( ) ( ) dkj] Cs - Zs j =Co+ C8 - Z8 d + L....J Cj- Zj - C8 - Z8 d Xj + d Xk. 
b ~~1 b b 

j#s 

Writing the obtained equations brießy as 

n 

X8 + L d~;x; + d~kxk = d~0 , 
j=m+1 

j#s 
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n 

xi+ L d~;x;+d~kxk=d~0 (i=1, ... ,m; i:f.k), 
j=m+l 
#s 

n 

f = ~ + L(c;- zj)x; 
j=l 

and comparing the coefficients, we find that 

d' _ dko d' . = dk; ( . 1 . :f. ) So - - , sJ J = m + , ... , n ,· J s , 
dks dks 

d' _ d· _ disdko d'. = d·. _ disdkj d',·k = _ dis 
iO - •O dks ' •J •J dks ' dks 

(i = 1, ... , m; i :f. k and j = m + 1, ... , n; 

zj = Zj + ( Cs - Zs )d~j (j = m + 1, ... , n; j :f. s) , 

z~ = Ck +(es- Zs)d~k, c~ =Co+ (es- Zs)d~o, 

z~ =Ci (i = 1, ... , m; i :f. k), z~ = Cs. 

From this we further have 

j:f.s), 

c;- zj = (c;- z;)- (es- zs)d~j (j = m+ 1, ... , n; j :f. s), 

843 

(4) 

(5) 

Ck- z~ =-(es- Zs)d~k, (6) 

Ci-Z~=O (i=1, ... ,m; i:f.k), Cs-Z~=O, 
m 

L Cid~j + Csd~j = zj (j = m + 1, ... , n; j :f. s), 
i=l if.k 

m 

L Cid~k + Csd~k = z~ , 
i=l 
if.k 

m 

L cid~0 + csd~0 = c~ . 
i=l 
if.k 

(7) 

The elimination just described together with the corresponding transformation re­
lations (4), (5), (6), and {7) represent the transition from a feasible basic point to 
a new basic solution of the equations {37.7.4a) which, however, need not be a feasi­
ble basic point of the given optimization problem, in general (see Definitions 37.7.1 
and 37. 7.2). The systems of basic variables of the original and the new basic so­
lution differ just by a single variable. The transformation formulae {4), {5), {6), 
and {7) describe the calculations necessary in the successive steps of the desired 
algorithm. These transformations can be carried out in a routine way with the help 
of Tab. 37.3. This "tableau transformation" is performed as follows: We enclose 
the above considered non-zero entry dks (it is called a pivot or central element) in 
a box. The pivot lies in the k-th row ( called a pivot row) and in the s-th column 
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(called a pivot column) of the basis matrix in Tab. 37.3. The last row of Tab. 37.3, 
which contains the values of Cj- Zj (j = 1, ... , n), is called the characteristic row 
and it is the key for the decision whether the corresponding feasible basic point (the 
vertex x0 of the polyhedron M in the case considered) is an optimal point of the 
given linear optimization problern of § 37.7. From Tab. 37.3, we come to the next 
tableau (see Tab. 37.4), proceeding in accord with the following rules describing 
the transformation: 

1° We exchange the variable Xk with the variable X 8 in the second column and 
the number ck with the number C8 in the first row of Tab. 37.3. 

2° We divide all the entries of the pivot row of the basis matrix as well as the 
last entry dko of this row by the pivot dks. 

3° We put all the entries of the pivot column except for the pivot element dks 

equal to zero. 
4° We calculate all the entries of the basis matrix in Tab. 37.4 that lie neither 

in the k-th row nor in the s-th column, using the so-called "cross rule". Let 
us calculate e.g. the entry d~i in Tab. 37.4 that corresponds to the entry dij 

(where i =/= k and j =/= s) at the same position in Tab. 37.3. In Tab. 37.3, 
consider the four entries 

dkj ... dks +-- pivot row 

T..__ __ pivot column 

and subtract the product of the entries dkj and dis of the pivot row and 
column, divided by the pivot element dks, from the original entry dij at 
the considered position in Tab. 37.3. Similarly we calculate the entries of 
the last column in Tab. 37.4 except for the entry d~0 • 

5° We obtain the entry zj as an inner product of the first column of Tab. 37.4 
and the j-th column of the basis matrix in this tableau. We calculate c~ 
analogously. 

6° The quantity Cj - zj (j = 1, ... , n) can be calculated in two different 
ways, either as the difference of the second row and the last but one row of 
Tab. 37.4, or by the cross rule. It is advantageous to use both the methods 
and compare the results. 

When the procedure described is implemented in a computer, the quantities 
computed are stored at the same locations but the above rules are applied in the 
sequence 1°, 4°, 2°, 3°, 5° and 6°. 

The presented calculation rules completely describe the transition from a certain 
basic solution to another one. These two basic solutions may represent either two 
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different points, or, in case of degeneracy, sometimes also a single point. In order 
that the above described procedure may lead to an algorithm for the computation of 
the optimal basic point of the considered linear optimization problern from § 37.7, 
we have to choose the pivot element from the tableau form of the feasible basic 
solution in each step in such a way that the transition to a new basic solution 
yields a feasible basic point with a better ( or at least with the same) value of the 
objective function. This choice is considered in the following two theorems that 
refer to the data in Tab. 37.3 and correspond to a starting feasible basic point Xo. 

Theorem 3. If there exists an indexpair (k, s), 1 ~ k ~ m, m + 1 ~ s ~ n, 
possessing the properties 

(i) C8 - Z8 < 0 ( Or Cs- Zs > 0), 

( 1.1.) d d 0 dko . dio 
kO > 0, ks > ' -d = ID1~ -d ' 

ks •EI is 
where 

I' = { i E { 1, ... , m} I dis > 0} , 

then the variables x1, ... , x k-1, x s, x k+ 1, ... , x= are basic variables o f the feasible 
basic point x' which is represented by the tableauform 37.4 and for which 

f(x') < f(xo) or f(x') > f(xo), 

respectively, holds. 

Theorem 4. If there exists an indexpair (k, s), 1 ::::; k ::::; n, m + 1 ::::; s ~ n, 
possessing the properties 

(i) Cs - Zs < 0 ( Or Cs - Z8 > 0) , 

(ii) dko = min dio = 0 
dks iEl' dis ' 

where 

I' = { i E { 1, ... , m} I dis > 0} f; 0 , 

then (with the notation introduced in Theorem 3) x' = xo and f(x') = f(xo). 

RE MARK 2. Theorems 3 and 4 are useful if none of the cases described in Theo­
rems 1 and 2 occurs, i.e., if we have to consider the case from Remark 1. Theorems 3 
and 4 give a procedure for the transition to a feasible basic point with a different 
index basis by the exchange of a single basic variable, with the help of the appro­
priate choice of a pivot element and with the aim to reach a better value of the 
objective function. If the hypothesis of Theorem 3 is fulfilled, this end is gained. If, 
however, the case of Theorem 4 takes place, then the value of the objective function 
does not change and there are certain troubles to locate a next feasible basic point, 
that are connected - from the geometrical viewpoint - with the question how 



848 SURVEY OF APPLICABLE MATHEMATICS 37.9 

to come from the starting vertex of the polyhedron M to its neighbouring vertex 
which yields a better value of the objective function. After a next change of basic 
variables, the case of Theorem 4 can, however, occur for the corresponding basic 
point if, under the hypothesis of Theorem 3, the choice of pivot element from the 
formula 

is ambiguous. 

REMARK 3. The case of Theorem 4 occurs if the feasible basic solution (see 
Definition 37.7.1) is degenerate, what is briefiy called a degeneracy in the theory of 
linear programming. The occurrence of degeneracy is connected with the structure 
ofthe feasible set M in (37. 7.1) and there are methods to avoid this case. One of the 
approaches consists in assigning, to the given linear optimization problem, another 

n 

one (called the c:-perturbed problem) with the same objective function L CiXi but 
i=l 

with the feasible set 

n n 

M(c:) = {XE En I :~::::ajiXi = bj+ L ajiC:i (j = 1, ... , m), Xi ~ 0 (i = 1, ... , n)} 
i=l i=l 

where c: is a very small positive number from the next theorem: 

Theorem 5. To every linear optimization problern in equality form for which the 
assumptions a) and b) from § 37.7 are satisfied, there exists such a number c:o, 
with 0 < c:0 < 1, that every feasible basic solution of the assigned c:-perturbed 
optimization problern is non-degenerate for any c; E (0, co). Moreover, the original 
and the assigned c:-perturbed optimization problems are either both solvable, or both 
have no solution. lf xo(c:o) is the optimal point of the assigned c:-perturbed problem, 
then 

xo = lim xo(c:) 
e--+0+ 

is the optimal point of the original optimization problem. 

37.9. Simplex Method. An Example 

The algorithm we are going to present ( currently called the simplex method in 
the theory of linear programming) corresponds to the following geometrical idea: 
We start with a known vertex xo of the polyhedron M and - if xo is not the 
optimal point of the given linear optimization problern from § 37.7 - we proceed 
along the edges of the polyhedron M from a vertex to a neighbouring vertex until 
we reach a vertex that is the optimal point of the optimization problern considered. 
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Since the polyhedron M has a finite number of vertices, the number of steps of the 
algorithm exploiting the geometrical idea presented is finite as weil. 

Consider the linear optimization problern in equality form from § 37. 7, i.e. the 
problern to find the minimum (or maximum) of the given linear function 

on the set 

n 

f = L CiXi ( c = (ct, ... , cn) is a non-zero vector) 
i=l 

n 

M = { x E En I L ajiXi = bj (j = 1, ... , m), Xi ~ 0 (i = 1, ... , n)}, (1) 
i=l 

or, more exactly, the problern of finding at least one point x E M at which the 
function f assumes its minimum (or maximum) on M. 

The assumptions: 

1° 1 ~ m < n. 
2° The rank of the matrix A of the coefficients of the system of equations in 

the description (1) of the set M is m. 
3° The point x 0 = ( xo1 , ... , Xon) is a known feasible basic point with the 

corresponding system of basic variables x 1 , ..• , Xm ( this can always be 
achieved by renumbering the variables). 

Initialization Step of the Algorithm: We solve the system of equations from the 
dcscription (1) of the set M for the basic variables Xt, ... , Xm, 

n 

Xi = dio - L dijXj (i = 1, ... , m). 
j=m+l 

In the way presented in § 37.8, we now form Tab. 37.5 ("simplex tableau") that 
corresponds to the initial feasible basic point x0 . 

If the hypothesis of Theorem 37.8.1 is satisfied for the data on the bottom (char­
acteristic) row of Tab. 37.5, the point x 0 is the optimal point and the algorithm 
ends. 

If the assumptions of Theorem 37.8.2 are satisfied, the given problern has no 
solution and the algorithm ends as weil. 

If none of the two cases occurs, the first step of the algorithm foilows. 

1st Step: In the characteristic (last) row of Tab. 37.5 (where we have Ci- Zi = 0 
for i = 1, ... , m in accordance with (37.8.2')), we choose an index j 0 with the 



~
 

r..: C
l') 

rll 
0 ~ ~ ri.1 

=
 

~ ~ ri.1 
...:l 
IXl 
<

 
0 ...... 
...:l 
ll.. 
ll.. 
<

 ~ 0 ~ i5;i 
:::> 
rll 

0 >J? 
0

0
 

C
1 

X
l 

C
i 

x
· • 

C
m

 
X

m
 

X
l 

... 
X

i 
. .. 

C
l 

... 
C

i 
. .. 

1 
... 

0 
. .. 

0 
. .. 

1 
. .. 

0 
... 

0 
. .. 

Z1 
... 

Z
i 

. .. 

C
1

-
Z1 

. . . 
C

i-
Z

i 
. .. 

T
A

B
L

E
 37.5 

X
m

 
X

m
+

l 
. .. 

x
· J 

. .. 
X

n
 

C
m

 
C

m
+

l 
. .. 

c· J 
. .. 

C
n 

0 
d

l,m
+

l 
. .. 

d
lj 

. .. 
d

ln
 

d
w

 

0 
d

i,m
+

l 
. . . 

d
ij 

. .. 
d

in
 

d
io

 

1 
d

m
,m

+
l 

. .. 
d

m
j 

. .. 
d

m
n

 
d

m
o

 

Z
m

 
Z

m
+

l 
. .. 

Z
j 

. .. 
Z

n
 

co 

C
m

 -
Z

m
 

C
m

+
l -

Z
m

+
l 

. .. 
C

j
-

Z
j 

... 
C

n
-

Z
n

 



37.9 LINEAR PROGRAMMING 851 

property 

Cj0 - Zj0 = min ( cz - zz) or Cj0 - Zj0 = max (c! - zz). (2) 
IE{l, ... ,n} !E{l, ... ,n} 

If there are more indices with the property (2), we choose e.g. the smallest of them. 
This choice is based on no theoretical foundation; it represents only a unique choice 
from the set of indices jo with the property Cj0 - Zj0 < 0 (or Cj0 - Zj0 > 0). 
The uniqueness of the choice can be also achieved e.g. in such a way that we 
choose the first negative ( or positive) entry from the left in the characteristic row 
of Tab. 37.5. The particular decision guaranteeing uniqueness of the choice is 
completely immaterial for the algorithm itself. To the uniquely chosen index jo 

with the property Cj0 - Zj0 < 0 ( or Cj0 - Zj0 > 0), we introduce the index set 

Ij0 = { i E {1, ... , m} I dij0 > 0} 

that is non-empty in accordance with Remark 37.8.1. Further we introduce the 
index set 

o { I dw . diO } 
Iio = l E lj0 -d . = mm -d·. . 

lJo •El,o •Jo 
(3) 

If the set (3) contains exactly one element io, we choose the entry dioio in Tab.37.5, 
which is apparently positive, for the pivot element, the i 0-th row for the pivot row, 
and the jo-th column for the pivot column (see Tab. 37.6). 

TABLE 37.6 

X1 Xa Xjo 

Cl Ca Cjo 

Cl XI •••••• 0 0 0 •• d1a dljo dlO 

Ci Xi • 0 0 0 •• 0 0 0 0 0 dia dijo dio 

Cio Xio • 0 •• 0 0 0 0 0. 0 di0 a I dioio I dioO 

Cm Xm 0 ••• 0 •••••• dma dmjo dmo 

Zl Za Zjo co 

Cl- Z1 Ca- Za Cjo - Zjo 
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If the index set IJ0 in (3) contains more indices, we introduce a further index set 

I~ = {z E J9 1 dn = min dil } • 
Jo Jo dz· ·eio d·. 

Jo • io •Jo 

If the index io is its single element, we choose the entry dioio for the pivot element, 
the i0-th row for the pivot row, and the jo-th column for the pivot column. In case 
that even the set 1}0 contains more than one index, we introduce a further index 
set 

If the set IJ0 contains a single index io, then we choose the entry dioio in Tab. 37.5 
for the pivot element, end the io-th row and the io-th column for the pivot ones. 
Otherwise we again introduce a further index set by a general formula 

I k _ {z E 1k-I I dzk _ . dik } ·- . --mm--
Jo Jo dz· ·elk-1 d·. 

Jo • io •Jo 

(k ~I). 

A theoretical analysis of degeneracy shows (see e.g. [355], p. 104-119) that the 
presented process ends with a certain set lJ0 containing one and only one element i0 

that determines the pivot element dioio and the corresponding pivot row and column 
in Tab. 37.5 uniquely. Having uniquely chosen the pivot element dioio (marked 
in Tab. 37.6), we change the original system x1 , ... , Xm of basic variables and 
arrive at a new system XI, ... , Xio-b Xj0 , Xio+b ..• , Xm of basic variables using 
the procedure described by 1° to 6° of § 37.8. In the way completely analogaus to 
the transition from Tab. 37.3 to Tab. 37.4, we thus obtain Tab. 37.7 corresponding 
either to a new feasible basic point x<1) =/= x 0 or - in case of degeneracy- again 
to the starting feasible basic point xo with a different index basis. The above 
described procedure for a unique choice of pivot element prevents the algorithm 
from cycling, i.e. the case, when, after some finite number of steps, we come back to 
a point obtained already in some previous step. According to Theorems 37.8.1 and 
37.8.2, we find out from the characteristic row of Tab. 37.7 whether the algorithm 
ends (i.e. whether the point x(l) is the optimal point of the problern or whether 
the problern has no solution) or whether the next, second step of the algorithm 
is to be considered. In this step, we proceed completely analogously to the first 
step, the only difference consisting in the fact that the point x(l) is now taken for 
the starting feasible basic point. Proceeding in this way, we obtain, step by step, 
a finite sequence x 0 , x< 1>, ... , x<s) ofvertices ofthe polyhedron M. Moreover, ifwe 
consider the data in the relevant characteristic row of the tableau corresponding to 
the feasible basic solution x<s), we can decide in the last, s-th step of the algorithm, 
whether the point x<s) is optimal or whether the given optimization problern has 
no solution. 
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Example 1. Find the maximum of the objective function 

on the feasible set 

f=6x+6y+z 

6x- 6y + z ~ 6, 

6x + 6y + z ~ 12 , 

6x - 6y - z ~ -6 , 

6x+6y+z~O, 

O~x~1, O~y~1, O~z~3o 

3709 

Introducing slack variables 6, o 0 0, 6 (see Definition 37o3o1), we obtain a linear 
optimization problern in equality form with the same characteristic function 

f = 6x + 6y + z + 0 0 6 + 0 0 6 + o o o + 0 0 6 (4) 

and the feasible set M described by the relations 

6x -6y+z +6 = 6, 
6x + 6y + z +6 = 12, 

-6x+6y+z +6 = 6, 
6x + 6y + z -~4 = 0, (4') 

X +~5 = 1' 
y +~6 = 1' 

z +6= 3, 
X~ 0, y ~ 0, z ~ 0, ~r ~ 0 (r = 1, o o o, 7) o 

The assumptions 1° and 2° from the beginning of this paragraph are obviously 
satisfied for the set M described by (4')o The equations in (4') can be easily solved 
for the variables z, 6, 6, 6, ~4, ~5 and ~6: 

z = 3- 6 
6 = 6- 6x + 6y- z = 6- 6x + 6y- (3- 6) = 3- 6x + 6y + 6, 
6 = 12 - 6x - 6y - z = 12 - 6x - 6y - (3 - ~7) = 9 - 6x - 6y + 6 , 
6 = 6 + 6x - 6y - z = 6 + 6x - 6y - (3 - 6) = 3 + 6x - 6y + 6, (5) 
~4 = 6x + 6y + z = 6x + 6y + (3- ~7) = 3 + 6x + 6y- 6, 
~5 = 1- x, 
~6 = 1 - y' 

Putting x = xo = 0, y = Yo = 0 and ~7 = ~07 = 0 in the equations (5), we obtain the 
unique solution z = zo = 3, 6 = ~01 = 3, 6 = ~02 = 9, 6 = ~03 = 3, e4 = eo4 = 3, 
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~5 = ~05 = 1 and ~6 = ~06 = 1. The point 

thus represents a feasible basic point of the linear optimization problern with the 
objective function f from (4) and with the feasible set M described by (4'). The 
system 6, 6, 6, ~4 , ~5 , ~6, z of basic variables corresponds to this point; the vari­
ables 6, x and y are non-basic. The point x<0) is thus a known feasible basic point. 
The assumption 3° from the beginning of this paragraph is thus satisfied, too, and 
we can apply the simplex method. Note that the choice of the starting feasible 
basic point was easy here. Forageneral case see § 37.10. 

According to our discussion of the subject, we now construct a tableau (see 
Tab. 37.8) from (4) and (4'). Do not pay attention to the frame, in which the 
entry in the first row and the eight column of the basis matrix is enclosed, for 
the moment. As we are interested in the maximum of the objective function we 
consider only positive entries in the characteristic row of Tab. 37.8. They are only 
in the x- and y-columns and their values are 6 and 6. Since not all of the entries of 
the characteristic row are less than or equal to zero we cannot use Theorem 37.8.1 
to conclude whether the point x<0) is optimal for the considered problem. The 
characteristic row of Tab. 37.8 does not imply that the studierl problern has no 
solution, either, since there are positive numbers in the columns above all the 
positive entries of the characteristic row (see Theorem 37.8.2). The algorithm thus 
continues. 

TABLE 37.8 

6 6 6 ~4 ~5 ~6 z X y 6 
0 0 0 0 0 0 1 6 6 0 

0 6 1 0 0 0 0 0 0 rn -6 -1 3 
0 6 0 1 0 0 0 0 0 6 6 -1 9 
0 6 0 0 1 0 0 0 0 -6 6 -1 3 
0 ~4 0 0 0 1 0 0 0 -6 -6 1 3 
0 ~5 0 0 0 0 1 0 0 1 0 0 1 
0 ~6 0 0 0 0 0 1 0 0 1 0 1 
1 z 0 0 0 0 0 0 1 0 0 1 3 

0 0 0 0 0 0 1 0 0 1 3 

0 0 0 0 0 0 0 6 6 -1 

Ist Step. We find the largest entry of the objective row in Tab. 37.8. It is the 
mumber 6 which lies both in the x- and the y-column. We choose the x-column for 
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the pivot column since in our ordering of all the variables 

X1 = 6, X2 = 6, X3 = 6, X4 = ~4, X5 = ~5, 
x 6 = ~6 , X7 = z, Xs =X, Xg = y, XJO = ~7 , 

37.9 

the index of the variable x is the least of all the assigned indices for which the cor­

responding column of Tab. 37.8 contains positive entries in the characteristic row. 
The entries of the last column of Tab. 37.8, which lie in the rows containing posi­
tive entries in the x-column of the basis matrix, are divided by the corresponding 

positive numbers. Thus we obtain the ratios 

and determine uniquely 

3 9 1 

6' 6' 1 

~ = min (~ ~ ~) 
6 6' 6' 1 

where the ratio ~ comes from the first row of the basis matrix. We choose this row 
for the pivot one. Then the pivot element is determined uniquely {it is enclosed in 

box in Tab. 37.8). Exchanging the basicvariables in the manner described by the 

operations 1° to 6° in § 37.8, we arrive at the following simplex tableau 37.9 which 
corresponds to the feasible basic point x(ll. The values of the basic variables are 

x = ! , 6 = 6, 6 = 6, ~4 = 6, ~5 = ! , ~6 = 1 and z = 3 ( they can be found in 
the last column of Tab. 37.9), the values of the non-basie variables 6, y and 6 are 
zeroes. The feasible basic point is non-degenerate and has exactly n - m = 3 zero 

coordinates. Since the objective row in Tab. 37.9 contains a single positive entry, 

TABLE 37.9 

6 6 6 ~4 6 ~6 z X y 6 
0 0 0 0 0 0 1 6 6 0 

6 X 
1 0 0 0 0 0 0 1 -1 1 1 
6 -6 2 

0 6 -1 1 0 0 0 0 0 0 12 0 6 
0 6 1 0 1 0 0 0 0 0 0 -2 6 
0 ~4 1 0 0 1 0 0 0 0 -12 0 6 

0 6 1 0 0 0 1 0 0 0 m 1 1 
-6 6 2 

0 ~6 0 0 0 0 0 1 0 0 1 0 1 
1 z 0 0 0 0 0 0 1 0 0 1 3 

1 0 0 0 0 0 1 6 -6 0 6 

-1 0 0 0 0 0 0 0 12 0 
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number 12, and since not all of the entries of the corresponding y-column are less 
than or equal to zero, the algorithm continues. 

2nd Step. The column of Tab. 37.9 containing entry 12 in the characteristic row 
is uniquely the pivot column. Positive entries in this column of the basis matrix are 
(from top to bottom) numbers 12, 1 and 1 that lie in the second, fifth, and sixth 
row of the matrix, respectively. The entries of the last column of Tab. 37.9, which 
lie in these rows, are divided (in this order) by these numbers. We thus obtain 

1 

the ratios 162 , f and f, i.e. !, ! and 1, from which the smallest value is ! and 
the corresponding row index is determined ambiguously ( the ratio ! corresponds 
to both the 6-row and the e5-row). In the next course of the above presented 
algorithm, we calculate further ratios as follows: The entry in the 6 -column and 
the 6-row of the basis matrix is divided by the entry in the pivot y-column and 
the 6-row. Similarly the entry in the 6 -column and the e5-row is divided by the 

1 _.1 ( entry in the pivot y-column and the e5-row. We obtain the ratios - 12 and -f in 
this order), i.e. -l2 and -~, and the smallest of them, namely -~, corresponds 
uniquely to the e5-row which is chosen for the pivot one. This determines the 
pivot element ( enclosed in box in Tab. 37.9) uniquely. Changing the basis (basic 
variables), we arrive at a new tableau (see Tab. 37.10) that implies neither the 
optimality of the corresponding feasible basic point x<2> (the values of the basic 

variables are x = 1, 6 = 0, 6 = 6, e4 = 12, y = !, e6 =! and z = 3; the values of 
the non-basic variables 6, e5 and 6 are zero; the point x<2> is degenerate feasible 
basic point as it has more than n- m, i.e. more than 3, zero coordinates), nor the 
conclusion that the given optimization problern has no solution. A next step of the 
algorithm thus follows. 

TABLE 37.10 

6 6 6 '4 '5 '6 Z X y 6 
0 0 0 0 0 0 1 6 6 0 

6 X 0 0 0 0 1 0 0 1 0 0 1 

0 6 rn 1 0 0 -12 0 0 0 0 -2 0 
0 6 1 0 1 0 0 0 0 0 0 -2 6 
0 '4 -1 0 0 1 12 0 0 0 0 2 12 
6 y 1 0 0 0 1 0 0 0 1 1 1 -6 6 2 
0 '6 1 0 0 0 -1 1 0 0 0 1 1 

6 -6 2 
1 z 0 0 0 0 0 0 1 0 0 1 3 

-1 0 0 0 12 0 1 6 6 2 12 

1 0 0 0 -12 0 0 0 0 -2 
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3rd Step. Since the characteristic row of Tab. 37.10 contains a single positive 
entry (number 1 in the 6-column of the tableau) the pivot columns is determined 
by it uniquely. The pivot 6 -column contains positive entries in the 6-, 6- and 
e6-row, namely numbers 1, 1 and t· By them, the entries of the last column of 
Tab. 37.10, which lie in these rows, are divided (in this order). We thus obtain the 

ratios ~, ~ and *, the smallest of them being equal to zero and corresponding 
uniquely to the 6-row. This uniquely determines the pivot element (enclosed in box 
in Tab. 37.10). Changing the basis, we arrive at next tableau (see Tab. 37.11) whose 
characteristic row contains only non-positive entries. According to Theorem 37.8.1, 
the corresponding feasible basic point x<3> with the value x = 1, 6 = 0, 6 = 6, 

e4 = 12, y = ~' e6 = ~ and z = 3 of basic variables and the values 6 = es = 6 = 0 
of non-basie variables is the optimal point of the linear maximization problern 
with the objective function (4) and the feasible set (4'). This implies that the 
point (x, i}, z) = (1, ~' 3) is the optimal point of the original optimization problern 
considered. Further, the value of the objective function at this optimal point is 
equal to 12 (the last entry in the last column of Tab. 37.11). 

TABLE 37.11 

6 6 6 e4 es e6 Z X y 6 
0 0 0 0 0 0 1 6 6 0 

6 X 0 0 0 0 1 0 0 1 0 0 1 
0 6 1 1 0 0 -12 0 0 0 0 -2 0 
0 6 0 -1 1 0 12 0 0 0 0 0 6 
0 e4 0 1 0 1 0 0 0 0 0 0 12 
6 y 0 1 0 0 -1 0 0 0 1 1 1 

6 -6 2 
0 e6 0 1 0 0 1 1 0 0 0 1 1 

-6 6 2 
1 z 0 0 0 0 0 0 1 0 0 1 3 

0 1 0 0 0 0 1 6 6 0 12 

0 -1 0 0 0 0 0 0 0 0 

37.10. Finding a Feasible Basic Point 

The simplex method described in § 37.9 for linear optimization problems in equal­
ity form has been derived under the assumption that the number of equations in the 
feasible set M from (37.9.1) is less than the number of variables and that a starting 
feasible basic point is known. In practice (economic, primarily), we treat mostly 
large optimization problems of the type considered, where the number of equality 
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constraints may belarger than the nurober ofvariables, where (in general) the start­

ing feasible basic point (i.e. the initial vertex of the polyhedron M from (37.9.1)) 

is not known, and where it is also very hard to determine the rank of the matrix A 
of the coefficients in the equality constraints from the description (37.9.1) of the 

feasible set. We can, however, use a method based on the simplex method, whose 

application either provides the information that the feasible set M is empty, or 

leads to finding a starting feasible basic point. To this end, consider the given lin­

ear optimization problern with the feasible set M from (37.9.1) in whose description 

we can assume that 

bj ~ 0 (j = 1, ... , m) (1) 

(this can be achieved if we multiply the equations with negative right-hand sides 

by -1). To the given problem, we assign an auxiliary optimization problern 

min{ cp( u)}! (2) 

with the objective function 
m 

cp(u) = L Uj 
j=l 

and the feasible set 

n 

M = { (x, u) E En+m I L ajiXi + Uj = bj (j = 1, ... , m), 
i=l (2') 

xi~O (i=1, ... ,n), ui~O (j=1, ... ,m)} 

The set M is obtained from the set M described by (37.9.1) if we introduce a new 

variable Uj (j = 1, ... , m) in the j-th equation in the way apparent from the 

description (2') of M. The variables Uj (j = 1, ... , m) are called artificial variables. 
For the auxiliary linear optimization problern (2) we see, on the one hand, that 

( 1) holds ( since this has been assumed) and, on the other hand, that the number 

of equality constraints in the description (2') of the set M is less than the number 

n + m of variables x 1 , ... , Xn, u 1 , ... , Um. Moreover, these equations can be solved 

for the variables u1, ... , Um, 

n 

Uj = bj- L ajiXi (j = 1, ... , m). 
i=l 

Their basic solution (x0, u0), where Xoi = 0 for i = 1, ... , n and Uj = bj ~ 0 for 

j = 1, ... , m, represents a feasible basic point for the optimization problern (2) in 
equality form and the assumptions from § 37.9 for the application of the simplex 

method are thus satisfied. Since the objective function cp( u) is bounded from below 



860 SURVEY OF APPLICABLE MATHEMATICS 37.11 

and continuous on the closed set M, there always exists the optimal feasible point 
(x, ii.) of the problern (2). The following theorem holds: 

Theorem 1. lf (x, ii.) = (x1, ... , xn, ii.1, ... , ii.m) is the optimal point of the 
m 

auxiliary optimization problern ( 2), then M = 0 in the case I: j Üj > 0 ( and thus the 
i=l 

original optimization problern with the jeasible set M from (39.9.1) has no solution), 
or the point x = (x1, ... , xn) is a feasible basic point of the original optimization 
problern with the feasible set M from (37.9.1) in the case Uj = 0 (j = 1, ... , m). 

REMARK 1. The next Theorem 2, which can be deduced from the so-called 
theory of parametric linear programming (see, e.g., [356]), enables us to omit the 
auxiliary problern (2) for finding a starting feasible basic point when we solve the 
given problern 

n n 

~il}{L>ixi}! (or ~~{L:Cixi}!) (3) 
i=l i=l 

with the feasible set M from (37.9.1). Instead of the originally considered prob­
lern (3) we solve another one by the simplex method. It is the assigned problern 

n m 

min_ {Lcixi + J.L L Uj}! 
(x,u)EM i=l j=l 

or (4) 

with the feasible set M from (2') where J.L is a parameter whose value is taken larger 
than any other nurober encountered in the computation. This method is called the 
parametric J.L-method and the following theorem holds: 

Theorem 2. lf there exists a number J.Lo such that for no J.L > J.Lo there is an optimal 
feasible basic point (x, u) of the problern ( 4) with the property ii.j = 0 jor j = 
= 1, ... , m, then the original problern (3) has no solution. Otherwise there exists 
a sufficiently large positive number J.L such that the point x is the optimal point 
of the original problern (3) ( as long as the point (x, u) with the property Uj = 0 
(j = 1, ... , m) is the optimal basic point of the problern (4)). 

37.11. Duality Principle 

Consider a linear maximization problern in normal form (see Definition 37.2.1), 
i.e. the problern 

max{t Cixi}! 
xEM 

i=l 

(1) 
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with the feasible set 

n 

M = {XE En I I>jiXi ~ bj (j = 1, ... , m), Xi ~ 0 (i = 1, ... , n)}. {1') 
i=l 

The integers m and n are chosen arbitrarily and there are no requirements on the 
rank of the matrix 

To the maximization problern (1), we assign the linear minimization problern 

with the feasible set 

m 

m 

min{" b ·u ·}! 
uEN ~ J J 

j=l 

(2) 

N = { u E Em I L ajiUj ~Ci (i = 1, ... , n), Uj ~ 0 (j = 1, ... , m)}. (2') 
j=l 

In the Iiterature on linear programming, the pair of the optimization problems 
(1) and (2) is often written symbolically in the concise matrixform 

Problem I : 

Problem II: 

max{cTx I Ax ~ b, x ~ o}, 

min{bTu I ATu ~ c, u ~ o}. 
(3) 

From the following Tab. 37.12, we can readily deduce the structure of the pair of 
linear optimization problems (3), from which the first one is always a maximization 
problern and the second one a minimization problem. 

TABLE 37.12 

Xl Xi Xn 

Ul an a1i aln ~ bl 

u· J ajl aji ajn ~ bj 

Um aml ami amn ~ bm 

~Cl ~Ci ~ Cn 
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We obtain the system of constraints Ax ~ b in Problem I formally from Tab. 
37.12 ifwe multiply the row (x1, ... , xn) by each ofthe rows (ajl, ... , ajn) and put 
the inner product obtained less than or equal to bj (j = 1, ... , m) as is marked in 
Tab. 37.12. In a similar way, we get the system of constraints AT u ~ c in Problem II 
if we multiply the column (u1, ... , um) by each of the columns (ali, ... , ami) and 
put the result greater than or equal to Ci ( i = 1, ... , n ). The pair of the linear 
optimization problems I and II (Problem I is a maximization problem, Problem II is 
a minimization one) is called a pair of duallinear optimization problems in normal 
form and Problem II is called dual to the original (primaQ Problem I. The following 
theorems hold: 

Theorem 1. lf the feasible sets M and N of the pair of dual Problems I and II 
in (3) are non-empty, then we have, for an arbitrary point x E M and an arbitrary 
point u E N ( where x = (x1, ... , Xn) and u = (u1, ... , Um)), 

n m 

L CiXi ~ L bjUj 

i=l j=l 

( i. e. cT x ~ bT u in matrix notation). 

Theorem 2 (Duality Principle). lf the feasible sets M and N of the dual Prob­
lems I and II in (3) are non-empty, then there exist an optimal point xo of Problem I 
and an optimal point uo of Problem II, and the values of the objective functions of 
both these optimization problems are equal to each other at these optimal points, 
i.e. cTxo = bTuo. 

Theorem 3. Problem I is solvable if and only if Problem II is solvable. 

REMARK 1. If x is an arbitrary feasible point of Problem I and u is an arbitrary 
feasible point of Problem II, then there exist optimal points x 0 and u0 of Problems I 
and II according to Theorem 2, and Theorem 1 implies that 

We obtain from this that the feasible points found in the individual steps of the 
algorithm for solving Problems I and II determine an interval containing the optimal 
value of the objective function. Moreover, the length of this interval decreases as 
the number of steps grows. Another advantage of the dual problern consists in the 
fact that, for a great number of practical linear programming problems, solving 
of the dual problern is simpler and less time-consuming than solving the primal 
problem. 
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REMARK 2. A generalproblern of linear programming stated in § 37.1 can also 
be assigned a certain dual problem. Moreover, the pair of these problems is such 
that the statements of Theorems 1, 2, and 3 hold (see, e.g., [355], Chap. 3). 

CONCLUDING REMARK. In addition to the just discussed "dassical" simplex 
method, which represents a finite algorithm for solving linear programming prob­
lems, there exist several its modifications like e.g. the revised simplex method, the 
dual simplex method, and the primal-dual algorithm. The dass of linear program­
ming algorithms, which represent limit ( and thus infinite) processes, indudes some 
gradient methods (see, e.g., [514]) and the so-called centroid method. There are 
two methods important, in the first place, from the theoretical point of view: The 
Khachiyan ellipsoid method and, in particular, the Karmarkar method of successive 
projections (see Karmarkar, N., Combinatorica 1984, pp. 373-395) that converge 
"in polynomial time". It means that if the problern involves n variables, the time 
estimate for its solution is O(nk) where k is an integer. An algorithm possessing 
this property is said to belong to the dass of polynomial time algorithms. The sim­
plex method does not have the property mentioned. The estimate for this method 
is O(ekn). Also the last two of the mentioned algorithms have been modified in 
different manners and their efficiency has been compared with the simplex method. 

A special dass of optimization problems belonging to linear programming is the 
dass of the so-called integer ( discrete, in general) problems of linear programming. 
In their solution, the algorithms called cutting plane methods prevail. Among them, 
the so-called Gomory algorithm is well-known (Gomory, R.E., Bull. Amer. Math. 
Society 64(1958)). 
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INDEX 

I, or II means Volume I, or Volume II, respectively. The symbol ff means "and 
following pages". For example, "Abstract functions, II 364 ff'' means that ab­
stract functions are treated in Volume II, starting with page 364. Articles (definite, 
indefinite) have been omitted whenever it was possible. 

Abel 
identity, II 52 
integral equation, II 242 
Summability of series, I 645 
test of convergence of series, I 350 
theorem of power series, I 647, II 263 

Abelian groups, I 47 
Abscissae of quadrature formula, I 555 
Absolute convergence, I 345 
Absolutely continuous operator, II 351 
Absolute stability, II 506 

domain of, II 511 
interval of, II 506 

Absolute value 
of complex number, I 10 
of real number, I 8 
of vector, I 227 

Abstract function(s), II 364 ff 
Bochner integrable, II 367 
continuity of, II 365 
derivative of, II 366 
integral of, Il 366 
Iimit of, II 366 
simple, Il 366 
strongly measurable, II 366 

Acceleration, vector of, components, I 276 
Acceptance sampling, II 792 ff 

acceptance number, II 792 
fraction defective, II 792 
operating characteristic, II 792 
procedures (sampling inspections, sam-

pling plans), II 792 
by attributes, II 793 
by variables, II 795 
multiple, II 794 
rectifying, I I 794 
sequential, II 7915, II 796 

Acceptance sampling continued 
risk, consumer's and producer's, II 792 
sequential, I1 795, H 796 

Accumulation point, I 340, II 319 
in metric space, II 326 

Adams-Bashforth method, II 502 
Adams-Maulton method, II 503 
Addition 

of tensors, I 254 
of trigonometric functions, formulae, 

I 74 ff 
of vectors, I 225 

Adjoint 
differential equation, II 79 
integral equation, II 224 
operator, II 350, II 352 ff, II 359 
space, II 350 
system of Coordinates, I 196 

Adjusted value, II 779 
Admissible parameter, I 264 
Affine ratio and transformations, I 189 ff 
Airy function, II 203 
Aitken 

estimator, II 777 
theorem, II 777 

Algebra 
fundamental theorem of, I 21 

Algebraic 
brauch point, II 27 4 
curves, I 149 ff, I 263, I 289 
equatious 

numerical solution of, II 648 ff 
of lligher degree, I 37 ff 
quadratic, cubic, biquadratic, I 39 ff 

multigrid method, II 626 
real uumbers, I 5 

Almost 
everywhere, I 560 
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Almost continued 
uniform convergence, II 261 

Alternating 
direction method, II 560 
series, I 350 
tensor, I 256 

Amplitude 
of complex number, I 11 
of sine curve, I 156 

Analysis of variance {ANOVA), II 782 
Ievels, II 782 
method of multiple comparison, II 782 

Duncan, Schelfe, Tukey, II 782, II 784 
multivariate {MANOVA), II 785 
one-way classification, II 782, II 783 
sum of squares, II 783 

A-factor, residual, total, II 783 
table of, II 782 
two-way classification, II 782 

Analytic 
continuation ( extension) 

of functions of one complex variable, 
II 275, II 272 

of functions of several complex vari­
ables, II 286 

function of complex variable, II 274, 
II 276 

geometry 
plane, I 167 ff 
solid, I 195 ff 

Anchor ring, equation of, I 220 
Angle(s) 

between Iine and plane, I 208 
between two curves, I 304 
between two planes, I 202 
between two straight lines, I 17 4, I 208 
bisectors of, I 178 
circular measure and degrees, I 69 ff 
of contingence, I 278 
trigonometric functions of, I 71 ff 

Angular 
extension, II 181, II 263 
frequency, I 156 

Annuloid, volume, surface area, moment of 
inertia, I 111 

ANOVA, II 782 

Aperiodic motion, I 159 
A posteriori estimates, II 557 
Applications of integral calculus in geome­

try and physics, I 616 ff 
Approximate 

computation of integrals in finite element 
method, II 450 

expressions, I 398 
solution of integral equations, II 585 ff 
solution of ordinary differential equa-

tions, II 478 ff 
boundary value problems, II 515 ff 

finite difference method, II 525 
invariant imbedding method, II 524 
methods of transfer of boundary 

conditions, II 520 
multishooting method, II 518 
shooting method, II 515 

initial value problems, II 483 ff 
Euler method, II 483 
extrapolation methods, II 512 
linear k-step methods, II 496 
predictor-corrector methods, II 508, 

II 509 
Runge-Kutta methods, II 492 

Approximation{s), II 665 ff 
best, II 666 
Chebyshev, II 669 
curve constructions, I 165 ff 
finite difference, II 546 
first and higher, for various functions, 

I 399 ff 
in Hilbert space, II 667 
in linear normed space, II 666 
interpolation, II 665 
minimax, II 669 
of function by polynomials, I 370, II 669 
succesive, for Fredhohn integral equa-

tions, II 585 
uniform, II 669 

A priori extimates, II 556 
Arehünedes spiral, I 135 

constructions and theorems, I 136 ff 
equation in polar coordinates, I 136 

Arcsin, arccos, arctan, arccot functions, 
I 86 ff 



Areas of plane figures 
formulae for, I 95 ff 
integral calculus, I 622 

Argand diagram, I 10 
Argument{s) 

calculation, li 648 ff 
by Bairstow method, li 659 
by Bernoulli-Whittaker method, 

II 653 
by Graeffe method, li 654 
by iterative methods, li 661, II 662 
by Newton method, li 658, li 663 
by "regula falsi" method, li 658 

of complex number, I 11 
of function, I 359 

Arithmetic sequences, I 16 
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Autoregressive process (AR), II 812, li 818 
Auxiliary equation, II 58 
Axes of coordinates, I 167, I 195 
Axial pencil of planes, I 203 
Axioms for 

addition aud multiplication, groups, 
rings, I 47, I 48 

distance, II 323 
metric, I I 323 
norm, II 331 
scalar product, II 333 

Backsubstitution, II 597 
Backward 

analysis of round-off errors, II 603 
difference, II 678 

Arsinh, arcosh, artanh, arcoth functions, 
difference method, II 504 
light cone, II 281 

I 92 ff 
Arzela (Ascoli) theorem, I 639, II 329 
Associate Legendre functions, I 705 
Associative 

law, I 4 
for vectors, I 226 

rings, I 47 
A-stability, li 511 
A-stable methods, II 467, II 511 
Astroid, I 134 
Asymptotes 

of hyperbola, I 121 
of plane curves, I 288 ff 

in polar coordinates, I 302 
Asymptotic 

behaiviour of integrals of differential 
equations, II 46 

cone of two hyperboloids, I 214 
curve (or line) on surface, I 332 
directions on surface, I 326 
expansions of series, I 660 
point of curve, I 138 
stability, II 113 

Autocarrelation function, li 811 
Au tovariance 

function, li 811 
matrix, li 813 

Autonomaus system, II 102 

Bairstow method, II 659 
Balancing of matrix, II 644 
Ball, II 278 
Bauach 

fixed-point theorem, li 345 
space, II 331 
theorem on 

continuous extension 
of functional, II 349 
of operator, II 349 

contraction mapping, II 345 
on inverse operators, II 349 

Band matrix, II 613 
Bandwith of matrix, II 613 
Basic 

functions, II 423 
point {in linear programming), II 838 
variables (in linear programming), II 837 

Basis in Hilbert space, II 338 
orthonormai, II 338 

Bayes theorem, II 693 
Bending Hexion of bar, II 140 

her, bei functions, I 704 
Bernoulli 

coefficien ts, I 511 
equation, II 20 
lemnisca te, I 151 
trials, II 710 
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Bernoulli continued Bilinear continued 
succes and failure, II 710 
theorem, II 731 

Bernoulli-Whittaker method, II 6.53 
Berry-Essen inequality, II 730 

Bertrand curves, I 296 
Bessel 

differential equation, I 693, II 70, II 72, 
II 135, II 542 

modified, I 702, II 135 
functions, I 692 ff, II 72, II 73, II 135, 

II 542 
bei x, her x, I 704 
integral representation of, I 694 

Jo(x), J1(x) (tables of), I 695 
roots of (tables), I 695, I 697 
roots of their derivatives (tables), 

I 695 
kei x, ker x, I 705 
Iimit form of, I 697 
modified, I 702 
of first kind, I 692 
of second kind, I 700 
of third kind, I 702 
recursion formulae, I 694 
Yo(x), Yt(x) (tables of), I 700, I 701 

inequality, I 674, II 337 
interpolation formulae, II 681 

Best approximation 
in Hibert space, II 667 
in linear normed space, II 666 
uniform, II 669 

Beta function, I 549 
Bias of the estimator, II 748 
Bidics, II 279 
Dieberbach estimate, II 495 
Biharmonic 

equation for Airy function, li 203 
problem, II 203 

Biholomorfic mapping, li 288 
Bijective operator (mapping), II 345 
Bilinear 

form, II 208, II 411, II 441 
V -bounded, II 209 
V -elliptic, II 209 

Lagrange element two-dimensional, 
li 438 

Binomial 
coefficieuts, I 19 
equations, I 42 
integrals, reductiort formulae for, I 490 
series, I 653 -

theorem, I 19 
Binomtal (unit vector) to curve, I 269 
Biquadratic 

equations, solutiou 
algebraic, I 42 
by factorization, I 41 

Lagrange element two-dimensional, 
II 438 

Bisectors of augles 
between two straight lines, I 177 
of triaugle, I 80 

Biending problem, li 829 
Bochner integral, II 367 
Bolzano-Cauchy couditiou, I 337, I 34.5, 

I 372 
improper iutegrals, I 524, I .529 
of uniform convergence, I 642 

Bolzano-Weierstrass theorem, I 340 
Bonferroni inequality, II 690 
Bore! field, II 691 
Bouudary 

conditions, II 80, II 155, II 176, II 410, 
II 480, II 551 

homogeueous, II 80, II 410 
linear, II 80, II 480 
nonhomogeneous, II 410 
separated, II 480 

correspondeuce priuciple, II 300 
element method, II 469 ff 

direct, II 469 
indirect, II 470 

integral equation method, II 469 
of a set, II 320 
point of a net (mesh), II 563 
properties in conformal mapping, II 304 
value problems of ordinary differential 

equations, II 80, II 480 
approximate solution, II 515 ff 
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Boundary continued 
by finite difference method, II 525 ff 
by finite element method, II 428 ff 
by shooting method, I I 515 
by transferring boundary condi­

tions, II 520 
by variational methods, II 409 ff 

two point, II 480 
value problems of partial differential 

equations, II 155, II 176, II 204 ff, 
II 207 ff 

approximate solution, II 409 ff, II 546 ff 
by finite difference method, II 546 ff 
by finite element method, II 428 ff 
by product method, II 539, II 543 
by variational methods, II 409 ff 

value problems, table of, II 413 

Bounded 
diameter, I 113 
function, I 366 
operator, II 347, I1 352 ff, II 372 
region, II 321, II 322 
sequence, I 339 
set, II 321, II 322 
variation, function of, I 370 

Bounds of real numbers, I 5 
Brachistochrone problem, II 382 
Branch 

of a multivalued function, II 276, II 272 
point 

algebraic (of finite order), II 274 
transeendental ( of infinite order ), 

II 274 
Brauches of hyperbola, I 119 

Budan-Fourier theorem, II 651 
Bundle of planes, I 204 

Calculus 
differential, I 359 ff 
integral, I 448 ff 
of observations, II 778, II 779 

adjusted value, II 779 
of variations, II 374 ff 

braclüstochrone problem, II 382 
canonical form of Euler equations, 

II 407 

Calculus continued 
categories of problems 

elementary, II 374 
functionals depending on functions 

of n variables, II 392 
Lagrange, II 406 
moving (free) ends of admissible 

curves, II 395 
parametric, II 403 
simplest case of isoparametric prob­

lem, II 399 
with constraints, II 405 
with generalized constraints, II 406 

curves of r-th dass (of dass Tr ), II 375, 
II 385 

distance of order r 
of curves, II 376, II 385 
of hypersurfaces, II 392, II 393 

epsilon ( e )-neighbourhood of order r 

of curve, II 376, II 385 
Euler equation and special cases, 

II 381, II 400 
Euler-Ostrgradski equation, II 394 
Euler-Poisson equation, II 389 
extremal of variational problem, II 381 
functions of dass Tr, Il 375, Il 385 
Hamilton 

differential equations, II 407 
function, II 407 

isoperimetric problem, li 399 
Lagrange variational problem, li 406 
Legendre tranformation, li 407 
necessary conditions for extremum, 

II 381, II 386, II 389, II 394, 
II 396, li 400, II 404, li 406 

positive homogeneaus functions, II 403 
prohlems 

parametric, li 403 
with constraints, II 405 
with moving ends, II 395 

regular hypersurface, li 392 
system of 

Euler equations, II 387, II 404 
Euler-Poisson equations, II 391 

transversality conditions, II 396, II 397 
variati011 of functional 
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Calculus continued Cauchy continucd 
in Du Bois-Reymond form, li 380 
in Lagrange form, II 380 

operational, li .567 ff 
tensor, I 242 ff 

vector, I 22.5 ff 
Camp-Meideil inequality, II 729 

Canonical 
correlation, li 78.5 

form of Euler equations, II 407 

system of differential equations, II 99 

Cantelli inequality, II 729 
Caratheodory region, II 308 
Cardioid, I 132 
Cartesian 

coordinates 
in plane geometry, I 167 

congruent transformations, I 186 

relations with polar Coordinates, 
I 179 

in solid geometry, I 19.5 
relations with cylindrical and spher­

ical coordinates, I 197 
singular points, I 198 
transformation by translation, rota­

tion and refiection, I 198 ff 

product of sets, I 4.5 
Cask volume formulae, I 111 
Cassinian ovals, I 1.51 
Catenaries (chainettes), I 14.5 

constant strength, I 147 
general, I 14.5 
involute of (called tractrix), I 147 

Cauchy 

continuity definition, I 366 
form of Taylor theorem, I 397 
inequality, I 8, I .533 
integral formula anti theorem 

for functions of one complex variable, 
li 2.52, li 2.53 

for functions of several complex van-

ables, li 28.5 
integrals, type of, II 2.5.5 
method, II 16.5 

principal value of integral, I .524, I .544, 
II 2.56 

problem for partial differential equations, 
li 1.50, II 191, II 197 

product of series, I 3.54 
root test for convergence of series, I 347 

sequence, II 327 
theorem, I 349, II 2.52, II 28.5 

Cauchy-Dirichlet formulae, II 37 

Cauchy-Kovalewski theorem, li 1.51 

Cauchy-Riemann 
equations 

for functions of one complex variable, 
II 246 

for functions of several complex vari­
ables, II 283 

integrals, I .513 
Cauchy-Schwarz inequality, I .533 

Cea Iemma, II 424 
Censoring, II 789, li 790 

censored random sample, li 789 

method of maximum likelihood for, 
I1 790, I1 791 

nonparametric estimation for, II 792 

Kaplan-Meier (product-limit) estimator, 
I1 791 

random, II 790 

type I (time), li 789 
type II (failure), II 789 

Central 

difference, I! 680 
element, I! 843 

limit theorems, I! 730, I! 733, II 734 
Centre 

of curvature, I 286, I 301 
construction for cyclic curves, I 136 

of gravity 
curves in space, I 620 
plane curves, I 619 
plane figures, I 623 
solids, I 627 

surfaces, I 631 

(singular point of differential equation), 
II 27 

Centraids 
plane figures, I 9.5 ff 
solids, I 1 04 ff 
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Cesaro summable series, I 354 
Chain 

rule, I 382 
of regions, II 275 

Chainettes: see Catenaries 
Change of order of differentiation, I 408 
Chapman-Kolmogorov equations, II 800, 

II 805 
Characteristic 

curve of family, I 319 
equation, II 58, II 104 
exponent, II 50 
function, II 81, II 206, II 225, II 703, 

II 710 

matrix 
of Jordan block, I 60 
of square matrix, I 59 

polynomial, II 50 
of k-step method, II 498 
of matrix, I 59, II 629 

row, II 842 
strip, II 166 
value in eigenvalue problem, II 59, II 81, 

II 225 
of integral equation, II 225 
of matrix, I 59, II 628 

Characteristic direction, li 152 
Characteristics, II 152 

of random variable, II 697 
of random vector, II 708 
sample (empirical), II 736 ff 
theoretical, II 736 

Chasles theorem, I 321 
Chebyshev 

alterning 
property, II 670 
set, II 670 

approximation, li 669 
equation, I 712 
expansion, li 674 
inequality, li 729 
polynomials, I 711, II 136, II 671, II 776 
theorem, II 669 

Chi square test, II 761 
Choleski factorization, II 600 

Circle (=disc), II 320 
Circle, I 113, I 181 

circumscribed on triangle, I 80 
closed, li 321 
conchoid of, I 153 
constructions of, I 112 
diameter, bounded and conjugate, I 113 
equation of, I 181 

in polar Coordinates, I 182 
formulae for geometrical elements of, I 99 
inscribed in triangle, I 80 
involute of, I 134 

curtate and prolate, I 135 
of curvature, I 285 
open, II 320 
parametric equations of, I 181 
rectification of, Kochanski and Sobotka, 

I 113, I 114 
superosculating, I 287 
Thalet, I 113 

Circular 
cask, volume formula, I 111 
frequency, I 156 

Circumferences, formulae for plane figures, 
I 95 

Cissoid of Diocles, I 149 
Clairaut differential equation, II 32 

generalized, li 163 
Class, II 742 

frequency, II 742 
intervals (cells), II 742 

Classical solution of partial differential 
equations, II 149, II 175 

Classification 
one-way, II 782, II 783 
two-way, II 782 

Clansen transformation, I 353 
Closed 

circle, I 402, II 320 
(completed, extended) plane of complex 

numbers, II 243 
curve, I 261 
disc, II 320 
interval, I 359 
problem, II 90 
region, I 402, II 321 
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Closed continued 
set, II 321, II 326 
subspace, II 331 
system in Hilhert space, li .337 

Closure of a set 
in Euclidean space, II 321 
in metric space, li 326 

Clothoid, I 141 
Cluster point, II 319 
Codazzi fundamental equations for surfaces, 

I 333 
Coefficient( s) 

of determination, II 771 
of kurtosis (excess), II 702 
of quadrature formula, I 555 
of skewness, II 702 
of variation, II 702 

Coercive 
functional, II 370 
operator, II 372 

Cofactor in determinant, I 30 
Collatz theory, II 78 ff 
Combinations, definition and theorems, 

I 18 
Common logarithms, I 15 
Commutative 

groups and rings, I 47 ff 
laws governing vectors, I 226, I 229 

Compact 
operator, II 351 
space, II 329 
support, II 339 

Camparisan 
function of eigenvalue problem, II 82 
test for convergence of series, I 346 
theorem, II 4 7, II 87 

Complementary subaspace, II 335 
Complement of a set, II 322 
Complete 

analytic function, II 276 
hull, II 410 
induction, I 2 
integral, II 161 
Reinhardt domain, II 280 
sequence, II 338 
space, II 327 

Complete continucd 
system 

in Hilbert space, II 337 
of eigenvectors, li 356, li 363, II 631, 

II 90 
Completely continuous operator (mapping), 

II 351 
Campletion of metric space, II 327, II 410 
Camplex 

derivative, II 282 
differentiable function, II 282 
differential, II 282 
function of real variable, II 222 
numbers, I 9 ff 

absolute value (modulus) of, I 10 
conjugate of, I 10 
principal value of argument, I 11 
trigonometric form, I 10 ff 

potential of flow, li 248, II 299 
space L2, I 668, li 221 
variable, functions of, I 243 ff 

application of the theory of functions, 
li 248, li 298 ff 

Cauchy integral theorem and formula, 
II 252, II 253, II 258, II 284 

derivative, li 246, II 282 
fundamental concepts, II 243 ff 
integral of, II 250 
Iimit and continuity, II 245, li 246 
logarithm and power, li 272 ff 

Composite functions, I 361, I 403 
continuity, I 368, I 406 
differentiation, I 382, I 412 
Iimit, I 372 

Composite quadrature formula, I 556 
Computation with small numbers, I 398 ff 
Concavity and convexity, I 391 
Conchoid 

of circle, I 153 
Nicomedes, I 152 

Condition 
number of matrix, li 605 
of minimal angle, II 448 

Cone 
right circular, I 108 
frustum of, and its centroid, I 108, I 109 
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Cone conlinued 
virtual, I 216 
volume, surface areas, moment of inertia, 

I 108, I 109 
Confidence 

interval, one-sided and two-sided, II 7.52 
Ievel, I 752 
Iimits, lower and upper, II 7.52 
region, II 753 

Conformally collinear (parallel) vectors, 
I 227 

Gonformal mapping, II 289 ff 
"adjacent" regions, II 310 
boundary correspondence principle, 

II 300 
boundary properties, II 304 
Caratheodory region, II 308 
concept of, II 289 
dictionary of, II 312 ff 
eccentric cylindrical condenser, II 298 
ellipse on circle, II 316, II 317 
existence amd uniqueness, II 293 
extremal properties, II 303 
flow rom1d an obstacle, II 299 
homographic, II 291 
hyperbola on upper half-plane, II 315, 

II 316 
infinite strip with a cut on infinite strip, 

II 313 
Joukowski airofoils, II 297 
methods of performing, II 296 ff 

by integral equations, II 308 
examples, II 296 ff 
small parameter, II 305 
variational, II 305 

of n-tuply connected regions, li 295 
parabola on upper half-plane, II 314, 

II 315 
plane with segments 

on annulus, I1 317 
on plane with segments, II 318 

Riemann-Schwarz reflection principle, 
II 301 

Riemann theorem, II 293 

Schwarz-Christoffel theorem, li 302 
sector of circle on upper half-plane, li 314 

Conformal mapping conlinued 
square on circle, II 306 
upper half-plane 

on polygon, li 302, II 311 
on rectangle, II 300 
with segments on upper half-plane, 

II 314 
use of Green function, II 303 

Congruent 
matrices, I 64 

Hermitian, I 68 
transformation of cartesian coordinates 

in plane, I 186 
Conical surfaces, I 221 
Conicoids, I 209 ff 
Conic section(s) 

axes of, I 193 
conjugate diameters, I 193 
conjugate direction of parallel chords, 

I 192 

discriminant of, I 188 
general equation of, I 188 
polar of a point with respect to, I 192 
pole of a line with respect to, I 192 
singular ancl regular (nonsingular), I 189 
tangents to, I 193 

Conjugate 
diameters 

of circle, I 113 
of conic section, I 193 

directions methods, II 620 
gradients methocl, II 620, II 622 

Connected set, II 320 
Conoids, I 223 

Conservative vector field, I 233 
Constant strength catenary, I 147 
Constrained extremes, I 441 
Contingency table, II 763 

cells, II 763 
two-way and three-way, II 765 

Con tin uation ( extension) 
analytic, II 272, II 275, II 286 
of solution of ordinary differential equa­

tion, II 7 
Continuity, I 366, I 404 

Cauchy and Heine definitions, I 366 
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Continuity continued 
equation, II 204 
of abstract function, II 365 
of functions of complex variable, I1 245, 

II 246 
rigltt-hand and left-hand, I .367 
sectional or piecewise, I .369, I 404 

Continuous 
dependence of sohtti011 of differential 

equations on initial and boundary 
conditions and on paramaters, II 45, 
li 112, II 155, li 177, li 194, II 200 

extensibility on the boundary, I 405, 
II 246 

functional, II 367 
group, I 71.3 
Operator, II 34 7 

Contraction 
mapping, II .345 
of tensors, I 255 

Contravariant and covariant 
tensor on surface, I 251 
tensors, I 24 7 
vector coordinates, I 242, I 244 
vector on surface, I 249 
vectors, I 24 7 

Convergence 
in tlte mean, I 666, 11 .326 
in metric space, II .326 
in norm, 11 332 
of improper integrals, I 522, I 527, I 594 

Bolzano-Cauchy condition, I 524, 
I 529 

of matrices, II 111 
of sequence 

of matrices, II 111 
of random variables, II 731 

almost sure ( with probabili ty 1), 
11 731 

in distribu tion ( weak), li 731 
in probability, II 731 

of sequences and series, I 3.36, I 343, 
I 637, I 641, li 260 

absolute, I .34.5, I 351, I 642 
Bolzano-Cauchy condition, I .3.37, 

I 345, I 637, I 642 

Convergence continued 
Clansen transformation, I 353 
conditional, I 345 
domain of, II 261 
improvement of, I 352 
in the mean, I 666 
in space L2, I 666 
of functions of complex variable, 

II 259, II 260 
radins of, I ·646 
tests for, I 346 ff 
uniform, I 637, I 642 

of series in Hilbert space, II 333 
theorems 

for finite difference metltod, 11 565 
for finite element method, 11 447 ff 

weak, II 350 
Convex 

functional, II 370 
polyhedron, II 824 

boundary of, II 833 
decomposition of, II 833 
dimension of, II 832 
edge of, II 834 
face of, 11 834 
interior of, 11 834 
linear span of, II 833 
vertex of, 11 834 

set, II 320 

Couvexity (functions of one variable), I 391 
Convolution, 11 580, II 573 
Coordinate system, I 167, I 195 
Coplanar vectors, I 227 
Cerreetion of measurement, II 779 
Correctness of boundary value problems, 

II 155, II 177, II 194, II 200 
Correlation 

analysis, multivariate, II 785 
canouical, II 785 
coefficient, II 709 

multiple and partial, 11 709 
sample, II 737 

matrix, II 709 
sample, II 738 

table, II 741 
Correspondence between two sets, I 46 



INDEX 735 

Cosiue 
iutegrals, I 450, I 494 ff 
tlteorem 

for plane triangle, I 79 
for spherical Euler triangle, I 85 

Counting process, II 797 
Courant minimax principle, II 86, II 531 
Covariance, II 708 

matrix, II 709 
sample, II 738 

Covariaut and contravariant 
teusor on surface, I 249 
teusors, I 24 7 
vector coordinates, I 242, I 244 
vector on surface, I 249 
vectors, I 24 7 

Cramer-Rao lower bound, II 749 
Cramer rule, I 36, II 595 
Crank-Nicolsou metltod (scheme), II 467, 

II 560 
C-region, II 308 
Critical 

damping, I 159 
region, li 755 

Cross 
covariauce function, II 814 
product of vectors, I 229 
ratio of four points, I 189 

Cube, volume and surface of, I 105 
Cubic 

discriminating, of quadratic, I 218 
equation, I 39 ff 

solution 
algebraic, I 40 
by factorization, I 40 
trigonometric, I 41 

Hermite element 
one-dimensional, II 433 
two-dimensional, II 435 

Lagrange element, li 435 
Cubical parabola, I 126 
Cumulant, li 704 
Curl of vector, I 235 
Curtate 

cycloid, I 129 
epicycloid, I 131 

Curtate conlinued 
involute of circle, I 135 

Curvature, I 277, I 326 
Gaussian, I 330 
geodetic, I 334 
normal, I 328 

Curve(s) 
approximate constructions of, I 165 ff 
canonical equations (representation) of, 

I 279 
closed, I 572 
contact of, I 281 ff 
cyclic, I 127 ff 
definitions and equations, I 260 ff, I 572 
directrix, I 221 
double point of, I 261 
equations as locus of a point, I 169 
equation of tangent to, I 267 
evolutes and involutes of, I 279 ff 
exponential, I 143 ff 
first and second curvature, I 271, I 277 ff 
gradient on surface, I 335 
growth, I 162 
in space, I 260, I 263 

implicit equations defining, I 262 
integral calculus, I 620 

integral, I 599 ff 
intrinsic equations of, I 280 
Jordan, I 573 
leugt.h of, I 265, I 573, I 618, I 620 
length of arc, linear element, I 265, I 600 
logistic, I 164 
natural equations of, I 280 
of greatest slope on surface, I 335 
of oscillations, I 156 
of r-th dass, li 375, li 385 
on surface, I 309 ff 
oriented in sense of increasing parameter, 

I 599 
osculating circle, I 285 
parallel, I 296 
parametric equations, I 261, I 572 
piecewise smooth, I 260, I 573 
plane, I 112 ff 
positively oriented with respect to its 

interior, I 599 
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Curve(s) continued 
power, I 125 
simple finite piecewise smooth, I 572 

positively oriented, I 599 
simplicity of, I 572 
smooth, I 261, I 379, I 573 

Curvilinear 
Coordinates of points on surface, I 308 
element, II 439 
integrals, I 599 ff 

along a curve in space, I 604 
geometrical and physical meanings, 

I 603 
of first and second kinds, I 601 

Cusp of curve, I 291 
Cuspidal edge, I 316 
Cutting plane methods, II 863 
Cyclic 

curves, I 127 ff 
construction of centres of curvature, 

I 136 
reduction, II 614 

Cycloids, I 127 ff 
curtate and prolate, I 129 

Cylinder 
hollow (tube), I 108 
hyperbolic, parabolic, real and virtual 

elliptic, canonical and transformed 
equations, I 217 

right circular, I 107 
of given volume having least surfa.ce, 

I 395 
segment of, I 107 
truncated, I 107 
volume, surface areas, moment of inertia, 

I 106 ff 
Cyrindrical 

coordinates 
in solid analytic geometry, I 196 
transformations of differential equa­

tions and expressions into, I 432 
functions, I 692 ff 
helices, I 297 

D'Alembert 
formula, II 192 

D'Alembert continued 
ratio test for convergeuce of series, I 347 

Damped 
oscillations 

forced, curves of, I 161 ff 
free, curves of, I 158 ff 

vibrations 
differential equation, II 132, II 133 

Darboux sums, I 512 
Decile, II 700 
Decompositiou(s) 

of convex pohyhedron, II 832 
of domain, II 428 
systems of, II 44 7 

Deferred approach to Iimit, I1 487, II 491, 
II 557 

Definite integrals, I 512 ff, I 576 ff, I 589 ff 
approximate evaluation, I 555 ff 
Cauchy-Riemann definition, I 513, I 577, 

I 590 
Lebesgue definition, I 559 ff, I 562 
Simpson rule, I 557 
Stiltjes definition, I 567 
substitution, I 520, I 586, I 592 
table, I 541 ff 
trapezoidal rule, I 557 

Defiection 
of clamped plate, II 205 
of fixed solid beam, II 390 
of loaded plate, II 543 

Deformation teusor, I 249, I 256 
Degenerate quadric, I 218 
Degree of freedom, li 430 
"Dei" operator, I 234 
Delta (6)-neighbourhood, I 404, II 245, 

li 319, II 321, II 326 
Delta symbol: see Kronecker 
De Moivre formula aud theorem, I 11 
De Morgan formulae, I 46 
Dense set, in metric space, II 326 
Density 

of potential 
of double layer, II 185, II 469 
of siugle layer, II 185, II 469 

probability, II 696, II 705 
spectral, li 815 



INDEX 737 

Dependence 
of functions, I 420 ff 
of solutions of initial and boundary value 

problems on initial and boundary 
conditions and on parameters, II 45, 
II 155, li 177, li 194, II 200 

Dependent variable, I 359 
Derivative(s), I 377, I 406 

complex, li 246, II 255, II 282 
Frechet, II 373 
fundamental formulae, I 379 ff 
Gä.teau, II 372 
generalized, II 339 
general theorems on, I 387 ff 
improper, infinite, I 378 
interchangeability of mixed, I 408 

left-hand, right-hand, I 378 
of abstract function, II 366 
of composite functions, I 382 
of inverse functions, I 382 
of matrices, II 110 
of vector, I 231 
partial, I 406 ff 

Descartes 
folium, I 150 
theorem, II 650 

Determinant ( s) 
additions rule, I 30 
cofactor, I 30 
definition and theorems, I 29 
evaluation of, I 31 
expansion according to i-th row, I 30 
Gram, I 423 
minor, I 30 
multiplication of, I 30 
Wronskian, li .'51 

Developable surfaces, differential equations 
of, I 322 

Dictionary of conformal mapping, II 312 ff 
Difference(s), I 384 

divided, II 677 
k-th backward, II 678 
k-th central, II 680 
k-th forward, II 678 

of sets, I 45 

Differentiable function, I 378, I 409, II 246, 
II 282 

Differential, I 384 
calculus, I 359 ff 

survey of important formulae, I 400 ff 
equations: see separately below 
Fn!chet, II 373 
Gä.teaux, II 367, II 372 
geometry 

curves, I 260 ff 
surfaces, I 305 ff 

partial, I 412 
strong, II 373 
total, I 409 
weak, II 367, li 372 

Differential equations 
Bernoulli, II 20 
Bessel, I 693, II 70, II 72, li 135, II 542 
Clairaut, II 32, II 163 
classification and basic concepts, II 2 
discriminant curve, II 33 
Euler, II 60 
Hermite, I 712, II 74 
integrals of, II 3, II 4 
Lagrange, II 31 
Laguerre, I 712, II 74 
Laplace, li 174 
Legendre, I 705, II 74, II 137 
linear, II 17, II 50 

homogeneous, II 18, II 51, II 55 
with constant coefficients, II 57 

nonhomogeneous, II 18, II 51, II 55 
with constant coefficients, II 62 

Liouville for!nula, II 52 
order of, II 2, II 148 

methods of reducing, II 42 
ordinary: see separately below 
oscillatory solu tion, II 4 7 
partial: see separately below 
systems of, II 2, II 4, II 99 ff, II 203 
trajectories, II 35 

isogonal (oblique), II 36 
orthogonal, II 36 

uniqueness of solution, II 5, II 6, II 8, 
II 177 
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Differential equations, ordinary, li 1, li 2 ff 
approximate solution of 

boundary value problems, li 515 ff 
eigenvalue problems, Il 528 ff 
initial value problems, li 483 ff 

asymptotic behviour of integrals, II 46 
boundary value problems, II 80, II 91 ff 
continuation of solution, II 7 

directional elements and field, II 4 

eigenvalue problems, II 81 
two-sided estimate of the least eigen­

value, II 87 
elementary methods of integration, 

II 12 ff 
Euler equation, II 60 

exact, II 23 
existence and uniqueness of solution, 

theorems, II 5, II 6, II 8 
extension of solution, II 7 
first integral of, II 41, II 116 
fundamental 

matrix, II 103 

system of solution, II 53, II 102 
normal ( standard), II 55 

generalintegral (general solution, general 
form ofsolution}, II 9, II 53, II 101 

geometrical interpretation, II 3 
homogeneous, II 15, II 17, li 51 

with constant coeficients, li 58, 11 62 

Hurwitz 
matrix, II 114 
polynomial, li 114 
test, II 114 

initial conditions, II 5 
integral curve, II 5 
integrals of, II 3, II 4 
integrating factor, II 24 
integration, elementary methods, II 12 ff 
linear homogeneous, II 18, II 51, II 57, 

li 102 
discontinuous solution, li 75 

periodic solutions, II 49 
linear nonhomogeneous, II 18, II 51, 

I1 55, II 108 

constant coeflicients, special right­
hand side, II 62 

Differential equations, ordinary conlinued 
variatim1 of parameters (constants), 

II 18, I1 56, I1 108 
linear of n-th order, Il 50 

linear of second order with variable 
coefficients, II 66 

Lipschitz condition, II 6 

maximal solution, II 7 

normal (standard) system of solutions, 
II 55 

not solved with respect to derivative, 
II 27 

oscillatory solutions, II 47 
periodic solutions, II 49 
separation of variables, II 14 
singular points, II 26, li 119 

centre, node and saddle points, li 26, 
II 27 

singular solution (integral}, li 11, II 33 

solution, II 3, II 4 
approximate, II 478 ff 
by parameter method, II 28, II 38 
by separation of variables, II 14 
by variation of parameters, II 18, II 56 
dependence on initial conditions and 

parameters, II 46, II 112 
in matrix form, li 111 
stability of, li 113 

asymptotic, li 113 

system(s), II 2, li 4, li 99 ff 
canonical form, li 99 
dependence and stability of solutions, 

li 112, II 113 
first integral of, li 116 
fundamental, II 102 
general integral of, II 101 
homogeneous, II 101 
linear, II 101 ff 
non-homogeneous, li 101 
normal, li 100 

vector {matrix) form, li 4, II 5, li 101, 
II 111 

table of solved, II 120 ff 
with regular singularity, II 69 

Differential equations, partial, II 14 7 ff 
basis concepts, li 148 
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Differential equations, partial continued 
characteristic of first order, II 166 
characteristic strip, II 166 
complete integral, II 161 
Dirichlet problem, II 176 
distinguished from "ordinary", II 149 
eigenvalue problems, II 206 
elliptic, II 172, II 17 4 ff 
exterior cone condition, II 190 
first order, Il 1.56 ff 

general integral, II 161 
generalizecl solution, II 194, li 205, II 362 
harmonic functions, II 175 
Harnack and Liouville theorems, II 180, 

Il 181 
heat conduction equation, II 197, II 536, 

li 540, li 542 
hyperbolic ancl ultrahyperbolic, II 172, 

II 191 ff 
integrability, conclitions of, JI 202 
integral elements, Il 166 
integral strip, II 166 
linear 

homogeneous of first order, II 156 
nonhomogeneous of first onler, II 159 
of seconcl order, classification, II 172 

method of discretization in time, II 215 
of lines, horizontal, II 21.5 
of Rothe, Il 21.5 

methods of solotimt 
finite difference, II 546 ff 
finite element, II 428 ff 
functional analytic, II 204 ff 
infinite series (Fourier, product. 

methocl), II .534 ff 
operational, II 567 ff 
variational ( direct), II 409 ff 

Neumann problem, II 176 
nonlinear, of first order, II 160 ff 
order of, Il 148 
parabolic, II 172, II 197 
potentials of single and double layers, 

I1 184 
problems 

boundary value, Il 155, II 176, II 204 
Cauchy: see separately 

Differential equations, partial continued 
Dirichlet and Neumann: see separately 
mixed, li 1150, II 195, II 199, II 215, 

II 534 ff 
of mathematical physics, II 147, II 172, 

II 203 
well-posed, II 155 

quasilinear of first order, II 159 
second order linear, classification, II 172 
system of, II 201 ff 
ultrahyperbolic, II 173 
wave, II 191 
weak solution 

of elliptic problems, II 209 
of parabolic problems, II 219 

Differentiation 
change of order, I 408 
composite functions, I 382, I 412 
of Fourier series, I 687 
of series with variable terms, I 644 

Dihedral angle, volume and centroid of, 
I 106 

Diocles cissoid, I 149 
Dirac distribution, II 342 
Direct 

methods, II 409, II 594 
sum of su bspaces, I I 335 

Directed 
distance, I 167 
half-line and line segment, I 17 4 
segmen ts ( vectors), I 226 
straight line, theorems and examples, 

I 174 ff 
Direction 

cosines, I 17 4 
of normal to surface, I 313 
of tangent to coordinate curves, I 309 

vector of line, I 206 
Directional elements and field, II 4 
Directrix curve, I 221 
Dirichlet 

formula 
regarding selfadjoint problems, li 83 

integral, II 394 
problem 

for Laplace equation, II 176 
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Dirichlet continued 
for Poisson equation, II 176 

test for convergence of series, I 350 
Dirichlet and Neumaml problems 

existence of solution, li 177 
for Laplace equation, li 176 
for Poisson equation, II 177 
interior and exterior, II 176 
uniqueness of solution, II 177 

Disc ( =circle) 
closed, II 321 
open, II 320 

Discontinuity 
points of, I 368 
removable, I 369 
types of, I 368 

Discontinuous solution of differential equa­
tions, II 75 

Discrete optimization problems, II 863 
Discretization error, II 483, II 556 

accumulated, II 483 
local, II 485, 11 556 

Discriminant 
analysis, II 785 
curve of differential equation, II 33 
of conic section, I 188 
of equation of second and third 0rders, 

I 39, I 40 
Discriminating cubic of quadric, I 218 
Distance 

between 2 curves, or hypersurfaces, 
II 375, II 385, II 392 

between 2 parallel planes, I 203 
between 2 points in plane, I 168 
between 2 skew straight lines, I 207 
directed, I 167 
in Euclidean space, II 319, li 321 
in metric space, li 323, II 334 
of point from plane, I 202 
of point from straight line, I 178, I 207 

Distinguished boundary of bidisc, II 279 
Distribution (see also Raudom varihle, 

Raudom vector) 
alternative, II 696, II 771 
beta, II 724 
binomial, II 710 

Distribution continued 
generallized, II 711 
negative, II 711 

Cauchy, li 724 
chi (x), II 724 
chisquared (x2), 11 719 
conditional, 11 706 
continuous, 11 696, li 714 ff 
Dirichlet, 11 726 
discrete, 11 696, 11 710 ff 
Erlang, 11 718 
exponential, II 697, II 717 

double, II 717 
F (Fisher-Snedecor), 11 719 
function, II 695, II 704 

empirical, li 744 
marginal, II 705 
spectral, II 815 

gamma, II 718 
geometric, 11 711 
hypergeometric, II 713 
initial and stationary, 11 800 
integer, li 710 
logarithmic normal (lognormal), II 716 
logistic, II 724 
marginal, II 705 
Maxwell, II 724 
multinomial, II 725 
multivariate, II 704, II 725, li 726 

normal (Gaussian, Gauss-Laplace), 
II 714 

bivariate, II 726 
logarithmic, li 716 
multivariate, li 725 
standard, li 714 

of order statistics, II 7 40 
of random vector (joint), li 704 
Pareto, I I 724 
Pascal (binomial waiting-time), II 711 
Poisson, li 712 
probability, li 694 
Rayleigh, 11 718 
symmetric, II 702 
t (Student), II 719 
triangular, II 724 
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Distribution continued 
uniform {rectangular), II 714 
unimodal, II 700 
Weibull, II 718 
Wishardt, II 726 

Distributions, II 341 
Distributive laws of vectors, I 226 
Divergence of vector, I 234 

Divergent 
integrals, I 522, I 528, I 594 
sequences, I 337, I 637 
series, I 334, I 641 

application of, I 659 
Divided differences, II 677 
Division rings, I 48 
Domain 

of convergence of series, II 261 
of definition of function, I 359, I 402 
of holomorphy, II 287 
of stability, II 511 

Double 
integral 

evaluation by repeated integration, 
I 581 

geometric meaning, I 578 
improper, I 594 
method of substitution, I 586 

layer .potential, II 184, II 469 
point of curve, I 261, I 290 
pole, II 267 

series, I 351,1651 
Dual space, II 349 
Duality principle (linear programming), 

II 860 
Du Bois-Raymond form of variation, II 380 
Dupin indicatrix, I 330 

Economic balance, II 828 
Economized power series, II 674 
Edge of regression of surface, I 316 
"Edge of the wedge" theorem, II 286 
Efficiency of estimator, II 749 
Eigenelement of operator, II 335, II 362, 

II 457 
Eigenfunction, II 81, II 355, II 481 

of operator, II 457 

Eigenfunction contirwed 
orthogonality in generalized sense, II 84 

EigenprobJem: see Eigenvalue problem 
Eigenvalue problem{s), II 81 ff, II 206, 

II 355 ff, II 362 ff, II 481, II 628 ff 
algebraic generalized, II 530, II 645 
comparison function of, Il 82 
for matrices, I 59, II 628 

generalized, Il 530, II 645 
in ordinary differential equations, II 81 ff, 

II 481, II 528 
two-sided estimate for least eigenvalue, 

II 87 
in partial differential equations, II 206 
positive, II 82 
regular, II 84 
symmetric, II 82 

Eigenvalue(s), II 81, II 481 
definition of, I 59, II 81, II 355, II 481 
of matrices, I 59, II 628 

connection with roots of algebraic 
· equations, II 652 

dominant, II 631 
multiple, II 631 

of multiplicity p (p-fold), Il 84, II 356 
of operator, Il 355, II 362, II 457 
simple, II 84 
two-sided extimates of, Il 87 

Eigenvector, II 355 
of matrix, II 628 

Elasticity 
plane problems of, II 203 

Electric circuit, differential equation, II 121, 
11 570 

Electromagnetic field, I 203 
Elementary 

polynomials of Lagrange interpolation, 
II 676 

symmeric functions, I 38 
Element of set, I 44 
Elements: see Finite elements 
Elimination 

method, Gaussian, II 596, II 644 
of interior parameter, 11 435 

Ellipse 
as conic section, I 189 
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Ellipse continucd 
equation for polar, I 192 

centres of curvature at vertices, I 118 

centroid of, I 102 
circumference, I 101 

approximate calculation, I 102 
table, I 102 

constructions, I 115 ff 
definition, I 183 
eccentricity, I 101, I 115, I 183 
foci and focal radius, I 114, I 183 

major and minor axis and vertices, I 114 

Rytz construction, I 118 

sector, area of, I 102 
standard equation of, I 183 
tangent and normal to, I 116 
theorems, I 114 ff 
vertex circles, I 115 

Ellipsoid 
canonical and transformed equations, 

I 216 
moment of inertia, I 110 
oblate and prolate, I 110 
real and virtual, I 216 
volnme and surface area, I 110 
volume determinated by repeated inte­

gration, I 583 
Elliptic 

equations, II 172, II 174 ff, II 204 

integral, I .551 
complementary, I 553 
complete of first and second kiud, 

I 552 
paraboloid, equation of, I 212 
point, I 326 
sector, form ula for area of, I 1 02 

Embedding theorem, II 343, I! 368 
Empirical distribution function, I! 744 

Empty set, I 45 
End point of vector, I 226 

Energetic 

norm, I! 361, II 412 
scalar product, II 361, II 412 

space, li 205, II 361 

Energy 
functional, II 204, II 354, II 360, II 410 

Euergy continued 
norm, Il 361, II 412 
scalar product, II 361, II 412 
space, I I 361 

Ent.ire transeendental function, li 268 
Envelope 

of one-parameter family of plane curves, 
I 292 ff 
of surfaces, I 317 

Epicycloid, I 130 ff 
Epsilon ( c) -

neighbourhood of curve, II 376 
net, II 329 

Equality of tensors, I 254 

Equation(s) 

algebraic 
binomial, I 42 
biquadratic, I 41 
cubic, I 39 
linear systems, I 32 ff 

solution by numerical methods, 
II 594 ff 

nonlinear, numerical solu tion of, 
II 648 ff 

quadratic, I 39 
quartic, I 41 
reciprocal, I 43 

differential, II 1 ff, II 147 ff 
elliptic, II 172, II 174 ff 
hyperbolic, II 172, II 191 ff 
integral, II 220 ff 
Laplace, II 17 4 

nonlinear systems, numerical solution of, 
li 662 

of compleness, II 337 
of mathematical physics, II 147, li 203 

of plane, I 200 
of plane elasticity, li 203 
of straight line, I 170, I 205 

of vibrating string, II 191, II 196, II 534 ff 
parabolic, li 172, II 197 ff 
Poisson, I! 17 4 

Equiangular spiral, I 139 

Equicontinuous functions, I 639 

Equidistant curves, I 296 

Equipotential surfaces, I 232 
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Equitangential curves, I 305 
Equivalence, I I 

of norms, li 604 
of systems, I .32 

Equivalent functions, I 560, I 664 
Error 

estimate 
for boundary element method, II 473, 

II 474 
for finite difference method, II 556 

a posteriori, li 557 
a priori, II 556 

for finite elemeut method, II 449, 
II 452, I1 4.59, II 466 

for iuterpolation formulae, II 675 
function, I 551 
law of, li 778 
mean square, II 749 
of quadrattue formulae, I 555 
probable, II 716 
variable, II 766 
type oue and type two, II 7.56 

Essential siugularity, II 267 
Estimate, point and interval, II 747 
Estimation, estimator, II 770 

Aitkeu, II 777 
bestlinear uubiased (BLUE), li 770 
bias of, II 748 
consistent, II 7 48 
efficient {minimum variance), I! 749 

asymptotically, I! 7 49 
in linear regression model, I I 769 ff 
in nonlinear regression model, II 779, 

II 780 
interval, II 752 ff 
method 

of maxinnun likelihood, II 7 49, II 750 
of moments, li 750 

of correlation charactcristics, II 814 
of reliability characteristics, I! 78D ff 
of spectral dcnsity, II 820 
parametric ancl nonparametric, II 7 46 
point, II 747, II 749 ff 
theory of , li 7 45 ff 
unbiased, li 748 

asymptotically, li 748 

Estimation, estimator coniinued 
best, II 748 

Euclidean 
algorithm, I 21 
space, II 319, II 321 

Euler 
coefficients, I 511 
constant, I 343, I 541, I 547 
equation, II 60 

for extremal in variational problems, 
I1 381, II 396, II 400 

linear differential, II 60 
spccial cases in calculus of Variations, 

li 381 
integral (function) 

of first kind, I 549 
of second kincl, I 546 

methocl, li 483 
convergence of, II 484 
discretization error of, II 483, II 485 
error bound of, II 484 
error estimate of, asymptotic, II 484 
implicit, II 466 
modified, li 493 
rate of convergence of, II 484 

relation, II 264 
summability of series, I 645 
theorem on homogeneaus functions, I 416 
theorem regarding curvature, I 329 
triangle, I 82 

formulae for, I 85 
Euler-Ostrogradski equation, II 394 
Euler-Poisson equation, II 389 
Event: see Raudom event 
Evolutes of curves, I 297 
Exact clifferrential equation, II 23 
Existence and uniqueness theorems for 

solution of problems 
m ordinary differential equations, II 5, 

II 6, II 8 
m partial differential equations, II 177, 

li 190, I1 206, I1 210, II 214, II 219 
Expansions of some functions of complex 

variable, II 263 
Expansion theorem (eigenvalue problems), 

II (10 
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Expectation, II 698 
Explanatory variable (regressor), II 767 
Explicit 

equation 
of curve on surface, I 310 
of function, I 360 

of plane curve, I 264 
of surface, I 306 

scheme (method), II 560 
Exponent of power of number, I 12 
Exponential 

curve, I 143 
equations, I 15 
function, I 365 

Extension of solution of ordinary differential 
equation, II 7 

Exterior 
cone condition, II 190 
Dirichlet problem, II 176 

Extrapolation methods, II 512 
Gragg method, II 514 
Richardson extrapolation, I I 512 

Extremal 
hypersurface, Il 394 
n-dimensional variety, II 394 
of variational problem, II 381 
properties of conformal mapping, II 303 

Extremes of functions, I 392, I 438 
Extremum constrained, I 441 

FACR method, II 615 
Factor analysis, II 785 
Factarial symbol, I 17 
Failure rate (hazard rate), II 787, II 788 

intensity, II 805 
Fast 

Fourier transform, I 691, II 684 
method, II 612 

Feasible point(s), II 823 
basic, II 838, II 8.58 

degenerate, II 8:J8 
regular, II 838 

optimal, II 824 
regular, II 838 
set of, II 823 

Fehlberg method, II 493 

Field of force of unit eh arge placed at origin 
of coordinate system, I 234 

Fill-in in LU factorization, II 613 
Filter 

linear, II 820 
low-pass, II 821 
transfer function of, II 821 

Finite difference approximation, II 546 
for biharmonic equation, II 551 
for heat conduction equation, II 550 
for Poisson equation, II 550 
for wave equation, II 551 
remainder of, II 54 7 

Finite difference method, II 525, II 546 
basic concepts, II 546 ff 
basic theorems, II 565 
boundary conditions, II 551 

containing derivatives, II 553 
not containing derivatives, II 551 

boundary value problems for ordinary 
differential equations, II 525 

error estimates, II 556 
examples, II 557 ff 

biharmonic equation, II 561 
heat conduction equation, II 559 
Laplace equation, II 557 

formulae for differential operators, 
II 550 ff 

formulation of boundary conditions, 
II 551 

Collatz method, II 553 
grid, II 546, II 562 
mesh, II 546, II 562 

point, II 546, II 562 
net(s), II 546, II 562 

hexagonal, "n 550 
irregular, II 549 
polar, II 550 
refinement of, II 550 
regtdar rectangular, II 549 
square, II 549 
triangular, li 550 

Finite element method (see also Finite 
elements), II 428 

convergence of, II 447 



INDEX 745 

Finite element(s), li 430 ff 
curvilinear, li 439 ff 
nodes of, li 430 
one-dimensional, li 431 ff 

cubic Hermite, II 433 

general Hermite, II 433 
general Lagrange, li 433 
linear, li 432 
quadratic, li 432 
reference interval, li 432 

three-dimensional, li 441 ff 
linear tetrahedral, li 442 
prismatic pentahedral, II 443 
trilinear hexahedral, li 442 

two-dimensional isoparametric, li 439 ff 
quadrangular bilinear, II 440 
quadrangular biquadratic, II 441 
triangular, II 439 

two-dimensional rectangular, li 437 ff 
bilinear Lagrange, li 438 
biquadratic Lagrange, li 438 
reetangular Hermite, li 438 

two-dimensional triangular, II 43.1 ff 
cubic Hermite, II 435 
cubic Lagrange, II 435 
elimination of interior parameter, 

II 435 
general Lagrange, I! 435 
linear, I! 434 
quadratic, II 434 
quintic, II 436 
reference triangle, II 433 

Finite element spaces, II 443 
First and second curvatures, I 277 ff 

First and second integral mean value 
theorems, I 516 

Firstintegrals (differential equations), I! 41, 
II 116 

Fisher test of periodicity, II 819 
Fitting curves, II 767 
Fixed 

point, II 346 
Banach theorem on, I! 345 

polhode, I 127 
Floquet theorem, li 49 

Flow 
of viscous incompressible fluid, II 203 
round ohstacle, II 299 

Flux of vector, physical meaning, I 240 
Focal radins of hyperbola, I 119 

Focus 
of ellipse, I 183 
of parabola, I 185 

Folium of Descartes, I 150 
Forced oscillations 

damped, I 161 
undamped, I 157 

Force of mortality (hazard rate), II 787, 
II 788 

Forward 
difference, II 678 
light cone, II 281 
substitution, II 600 

Fourier 
coefficients, I 673, I 678, II 336 

generalized, II 90 
integral, I 690 

transform, II 568 
method (partial differential equations), 

II 534 ff 
series, I 673, I 678 

differentiation and integration of, I 687 
expansions of some important func­

tions, I 682 ff 
generalized, I 673, II 90, II 668 

in Hilbert space, II 336 

harmonic analysis, I 691 
in complex form, I 687 
in 2 variables, I 688 
pointwise convergence, I 678 
trigonometric, I 678 

transform, II 568 
fast, I 691, II 684 
n-dimensional, II 584 

Fraction defective, II 792 
Frame of bidisc, II 279 
Frazer diagram, II 681 
Fn!chet 

derivative, II 373 
differential, II 373 
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Fredholm 
alternative, II 225, II 3.'i8 
equations, II 223 
integral equations, II 223 ff 

approximate 
determination of first eigenvalue, 

II 591 
sohttion 

by Galerkin method, II 589 
by replacement of kerne! by 

eiegenerate one, II .'i89 
by Ritz method, II .'i89 
by successive approximations, 

II 58.'i 
using quadrature formulae, II 586 

with symmetric kernels, II 231 
theorems, II 225 

Free 
oscillations, I 156, I 1.'i8 
vectors, I 226 

Frenel integrals, I .'i44, I 5."i 1 
Frenet formulae, I 270 
Frequency 

dass, II 742 
empirical and theoretical, II 761 
marginal, II 764 
of event, II 690 
of observation, II 741 

cumulative and relative, li 741 
stability, li 690 
table, II 7 41 

Frohenins theorem, I 33 
Functional(s) 

analysis, li 319 ff 
coercive, li 370 
complex, li 34.'i 
convex, li 370 

strictly, II 370 
determinant, I 418 
extension of, II 349 
extremum of, li 377 

strong, II 377 
weak, li 377 

maximum and minimum along curve, 
II 374, li 376 

of energy, II 204, II 354, II 360, li 410 

Functional(s) continued 
quadratic, II 354, II 360 
real, II 345 
variation of, li 379 

Function(s) 
abstract (see also Abstract functions), 

li 364 
algebraic, I 364 
analytic, li 276, li 247 
approximation, I 398 
bei x, her x, I 704 
bounded, I 366 
composite, I 361, I 403 

differentiation of, I 382, I 412 
concave, I 391 
continuity of, I 366, I 404 
continuously extensible, I 405 
continuous 

on curve, I 576 
on surface, I 576 

convex, I 391 
decomposition of, I 362 
decreasing, I 390 
dependence of, I 420 ff 
derivatives of, I 377 ff 
differentiable, I 378, I 409 
domain of definition of, I 359, I 402 
elementary, I 364 
equal ahnost everywhere, I 560, II 221 
equicontinuous, I 639 
equivalent., I 664 
erf x, erfc x, I 551 
even, I 366 
exponential, I 36~ 
graphical representation of, I 394 
Green, II 93, II 182 
harmonic, li 175 
higher transcendental, I 365 
holomorfic, II 24 7 
homogeneous, I 416 

Euler theorem, I 416 
hyperbolic, I 90 ff 
implicit, I 423, I 430 
important formulae, I 400 ff, I 446 ff 
increasing, I 390 
inverse, I 362 
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Function(s) continued 
hyperbolic, I 92 ff 
trigonometric, I 86 

investigation of, I 393 ff 
kei x, ker x, I 705 
Lebesgue 

integrable, I 562 
measurable, I 561 

Iimits of, I 371 ff 
computation by !'Hospital rule, I .388 ff 

linear combination of, I 422 

linearly dependent, indepenJent, I 422 

local depenJency of, I 422 
mean-value theorem, I 414 ff 
measurable, I 561 
meromorphic, II 267, II 288 
monotonic, I 391 
new variables, introduction and transfor­

mations, I 4.32 ff 
normed ( norm;tlized ), I 670 

with weight function, I 673 
odd, I 366 
of bounded variation, I :no 
of dass Tr, li 375, I I 385 
of one complex variable: see separately 

below 

of several complex variables: see sepa­

rately below 
of two or more variables, I 402 ff 

extremes, I 4:38 ff 
important formulae, I 446 ff 
introduction of new variables, I 4:l2 ff 

of type B, I 574, I .57.5, 
piecewise 

continuous, II 75 
smooth, I 40.5, II 7.5 

points of inflection, I 391 
rational, I 364 
real, I 359 

regular, II 247 

relative maximum and mimmum of, 
I 392, I 438 

smooth, I 379 

special, of mathematical physics, I 713 
square integrable, I 565, I 662, II 220 
stationa.ry ponts of, I :Hl3 

Function(s) conlinued 
transcendental, I 364 ff 
uniformly bounded, I 638 
vanishing at infinity, II 175 
with compact support, II 339 

Fnnction(s) of one complex variable, 
II 243 ff 

analytic, II 276, II 247 
continuation of, II 275, II 272 
natural domain of, II 276 

Cauchy 

integral formula, II 253 
theorems, li 252, II 253, II 258 
type of integrals, li 255 

Cauchy-Riemann equations, II 246 

derivative, li 246, II 255 
domain of definition, II 244 
fundamental concepts, II 243 ff 
holomorphic, I I 24 7 
integral of, I I 249 ff 
Iimit and continuity, II 24.5, II 246 

Liouville theorem, II 269 

logarithmic, II 272 ff 
meromorphic, II 267 
Plemelj formulae, II 257 
pole, II 267 

regular, li 247 
residue theorem, II 270 
series, II 24 9 ff 

Laurent, II 265 
Taylor, II 264 

simple, II 248 
univalent in domain, II 248 

Function(s) of several complex variables:, 

I! 277 ff 
analytic continuation of, II 286 
ball, II 278 
bidisc, II 279 

biholomorphic mapping, Il 288 

Cauchy integral formula, II 285 

Cauchy-Riemann equations, II 283 

complex 
derivative, II 282 

differentiable function, II 282 
differential, II 282 

complexified light cone, II 280 
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Function(s) continued 
distinguished boundary, li 279 
domain of holomorphy, li 287 
"edge of the wedge" theorem, li 286 
frame, li 279 
holomorphic, li 283 

mapping, II 288 
relativistic field, li 280, li 281 

identity theorem, II 285 
"Kugelsatz", li 286 
light cone, li 280 

backward, li 281 
forward, II 281 

meromorphic, II 288 
pluriharmonic, II 284 
point of indetermination, II 288 
polycylinder, li 278 
polydisc, li 278 

with vectorial radius, li 279 
Reinhardt domain, li 280 

complete, II 280 
Taylor expansion, 11 285 
tube domain, II 280 
uniqueness theorem, li 285 

Fundamental 
equation, li 70 
matrix, li 103, II 517 
sequence, li 327 
solution of Laplace and heat. conduction 

equatios, li 182, li 198, ll 470 
system, II 53, II 102 

standard, li 55 

Galerkin rnethod, II 427, II 589 
sernidiscrete, li 464 

Gamma function, I 546 
graph and table, I 548 

Gä.teaux 
derivative, II 372 
differential, II 367, II 372 

second, li 368 
Gauss(ian) 

curvature on surface, I 330 
differential equation, I 710, ll 74, II 138 
elimination, II 596 
function, I 550 

Gauss(ian) continued 
fundamental equation for surfaces, I 333 
hypergeometric equation, I 710, II 138 
integral, I 542 
interpolation formula, li 681 
quadrature formula, I 555 
theorem, I 613 

in vector notation, I 240, I 616 
theorem egregium, I 333 

Gauss-Legendre quadrature forrnula, I 556 
Gauss-Markov theorem, li 770 
Gauss-Newton method, II 780 
Gauss-Seidel method, II 618 
Gauss-Ostrogradski theorem, I 613 
General 

Hermite element, one-dirnensional, 11 433 
integral of differential equations, I1 9, 

li 53, I1 101 
Lagrange element 

one-dimensional, II 433 
two-dimensional, II 435 

oue-step method, II 489 
asymptotic error estimate, II 490, 

li 491 
consistent, II 489 
convergence of, II 489 
error bound of, II 489 
local error of, II 489 
order of, li 489 
regular, li 489 

power, I 13, II 274 
solution of differential equations, II 9, 

II 53, li 101 
Generalized 

Clairaut equation, II 163 
derivatives, II 339 
polar coordinates, I 588 
solution, II 194, li 205, II 362, II 410 
spherical coordinates, I 593 

Generating 
curve, I 127 
function 

for Bessel functions, I 694 
for Legendre polynomials, I 707 

lines, I 221 
Generators, I 221 
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Geodesie curvature, I 334 
Geometrie 

mean, I 9 
sequence, I 16 

Geometry 
analytic, I 167 ff 

solid, I 195 ff 
differential, I 260 ff 

Gershgorin 
disc, II 629 
theorem, II 629 

Givens method, II 640 
G.l.b. (greatest lower bound), I 5 
Glivenko theorem, II 745 
Gomory algoritlun, II 863 
Goodness of fit tests, II 760 
Gradient 

curves on surface, I 335 
methods in linear programming, II 863 
of scalar field, I 232 
of straight line, I 170 

Graeffe method, II 654 
Gragg method, II 514 
Gram 

determinant, I 423 
matrix, II 422, II 668 

Gravitational field, equation for particle 
moving in, II 146 

Greatest lower bound (g.l.b.), I 5 
Green 

formula regarding symmetric prohlems, 
II 83 

function, II 93, II 182 
construction, II 94 
for special regions, II 183, li 184 
in conformal mappiug, li 303 

identities, I 615, I 616 
resolvent, II 97 
theorem, I 605 

Grid (see also Net), II 430, II 546, li 562 
Grouping, II 742 ff 
Group(s) 

Abelian, I 47 
commutative, I 47 
continuous, I 713 
definition, I 4 7 

Group(s) continued 
representation and special functions, 

I 713 
topologic, I 713 

Growth 
curves, I 162 ff 
law of, I 162 
Robertson law of, I 164 

Guldin rules, I 633 

Haar condition, II 670 
Hahn-Banach theorem, II 349 
Half-angle formulae for trigonometric func­

tions, I 74 
Half-line, directed, I 174 
Hamilton 

differential equations, II 407 
function, II 407 
nabla operator, I 234 

Hanke] 
functions, I 702 
transform, II 568 

Hannonic 
analysis, I 691 
functions, II 175, II 247 

properties of, II 177, II 180, II 181 
motion, simple, I 156 
oscillation curves, I 156 
process, II 813, II 818 
series, I 344 
set of four poits, I 191 
vibrations, II 131 

Harmonics, spherical, I 708 ff 
Harnack theorems, first and second, II 180 
Hartley method, II 780 
Hazard rate, II 787, II 788 
Heat conduction equation, II 197, II 539, 

II 540, II 542, II 559, II 571, II 572 
Bessel functions applied to, II 542 
in infinite cylinder, II 542 
in reetangular regions, II 540 
stationary, II 539 

Heat potentials, II 200 
Heaviside operational calculus, II 570 
Heine continuity definition, I 367 
Helicoid, I 223, I 316 
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Helix 
axis, I 273 
circular, I 273 
cylindrical, I 297 
slope of gradient, I 274 

Herrnite 
differential equation, I 712, II 7 4 
interpolation, II 676 
polynomials, I 712, II 75 
spline, II 687 

Herrnitian 
forms, I 62 ff 

congruent, I 68 
matrices, I 68 

Heron formula, I 80, I 95 
Heun rnethod, II 493 
Hexagonal nets, II 5.50 
Higher degree 

hyperbola.'i, I 125 
parabola.'i, I 12.5 

Hilbert 
kerne!, li 238 
rnatrix, II 611 
space, li 334, li 409 

operators in, li 3.52 ff 
bounded, li 3.52 ff 
unbounded, II 3.58 ff 

Hilbert-Schmid t theorem, li 233 
Histogram, II 744 
Hölder 

condition, li 255, li 671 
inequality, I 8, I 356 

Holamorphie 
functions, li 24 7 

of several complex variables, II 283 
singular points, li 267 

mapping, li 288 
relativistic field, li 280, li 281 

Homeomorphic image of sphere, li 322 
Homogeneaus 

Coordinates, I 187 
functions, I 416 

Euler theorem, I 416 
linear differential equations, li 18, li .51 

Homographie mapping, II 291 
Horizontal method of lines, li 21.5 

Horuer scheme (method) for polynomials, 
I 22 

Hausholder method, li 641 
Hull complcte, li 410 
Burwitz 

matrix, II 114 
polynomial, II 114 
test, li 114 

Hyperbola, I 119 ff, I 184 
as conic section, I 189 
asymptotes of, and their directions, I 121 
branches, I 119 
conj ugate, I 185 
conjugate diameter, I 121 
constructions, I 119 ff 
excentricity, I 119, I 184 
focal radius, I 119 
lügher degree, I 125 
polar, equation for, I 192 
reetangular, I 185 
segment area, I 103 
standard equation for, I 184 
theorems, I 119 ff 

Hyperbolic 
equations, li 172, li 191 ff 

generalized so\ution, li 194 
functions, I 90 ff 

inverse, I 92 ff 
relations between, I 91 ff 

paraboloid, I 213 
point, I 326 
regression, II 769 
spiral, I 138 

Hyperboloid(s) 
a.<;ymptot.ic cone of two, I 214 
of one and two sheets, I 210 

canouical and transformed equations, 
I 216 

of revolution, I 210 
Hyperelliptic integrals, I 551 
Hypergeometrie 

functions, I 710, li 74, li 138 
Gauss equation, I 710, II 74, II 138 
series, I 710, II 74, II 138 

Hypersingular integral, II 4 72 
Hypersurface, li 392 



Hypocycloids, I 130 

simple, astroid, I 134 

Steiner, I 133 

Hypothesis 
null and alternative, li 755 

statistical, II 755 

testing, li 7 55 ff 

Ideal elements (in completion of metric 
space), li 327 

ldentity 
element of group, I 47 

matrix, I 50, li 111, li 602 

operator, II 3.'55 

theorem, II 27.'5, II 28.'5 

Image of element, II 344 

in integral transforms, li .'567 

lmaginary 
axis, I 11 

lines, forming conic section, I 189 

part of complex number, I 10 

lmpiication, I 2 

Impiicit 
Euler metlwd, li 466 
function, I 423, I 4:30 

geometrical interpretation, I 424 

theorems on, I 423 ff 
scheme, II .'560 

Improper integrals, I .'522 ff 
double and triple, I 594 

involving parameter, I 534 

lncomplete factorization, II 624 

Indefinite integrals, I 448 

tables of, I 4 70 

irrational functions, I 4 78 ff 
rational functions, I 4 70 ff 
transeendental functions, I 50:3 ff 

exponential, I .'50.'5 ff 
hyperbolic, I .'503 ff 
inverse hyperbolic, I .'510 ff 
logarithmic, I 506 ff 

trigonometric funct.ions coutainiug 
cosine, I 4 94 ff 
sine and cosine, I 497 ff 
sine only, I 491 ff 
tangent aud cotangeut, I 501 ff 

INDEX 

Independent variable, I 3.'59 

Iudicatrix of Dupin, I 330 

lndicial equation, li 70 

lneq uali ties 
basic rules of, I 3 
between real numbers, I 6 ff 
Cauchy, Hölder, Minkonwski, I 8, I 9 

lnertia, Sylvester law of, I 67 

Infimum, I 5 
Infinite 

products, I 357 

series of 
constant terms, I 343 ff 

convergence, I 343 

important formulae, I 354 ff 
multiplication or product, I 353 

functions, I 641 ff, II 260 

lnßuence function, II 96 

Initial 
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conditions (differential equations), Il .'5, 
II 8, II 488 

line (polar coordinates), I 178 

point of vector, I 226 

value problems in ordinary differential 
equatious, solution by 

geueral oue-step methods, II 489 ff 
linear k-step methods, II 495 ff 
predictor-corector mothods, II 506 ff 

lnjective operator, II 345 

Inner 
measure of set, I 560 

product, li 333 

of functions, I 663 

of vcctors, I 228 

Integer methods (in linear programming), 
li 863 

In tegers, I 3 
Integrability 

Cauchy-Riemann, I 513, I 577, I 590 

Lebesgue, I 562 

Stieltjes, I 568 

lntegral(s) 
able to be rationalized, I 463 

calculus 
applications in geometry and physics, 

I 616 ff 
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Integral(s) continued 
of functions of one variable, I 448 ff 

approximate evaluation of definite 
integrals, I 555 

basic (standard) iutegrals, I 449 
definite integrals, I 512 ff, I 576 ff 

table, I 541 ff 
indefinite integrals, I 448 ff 

table, I 4 70 ff 
integrals involving parameter, 

I 534 ff 
Lebesgue aud Stieltjes integration, 

I 560, I 567 
methods of iutegration, I 451 ff 
rational functions, I 457 ff 
Riemann ( Cauchy-Riemanu) iute-

gration, I 512 ff 
series expansions, I 550 ff 
survey of some importaut formulae, 

I 570 
of functions of two or more variables, 

I 576, I 589 
basic definitions and uotation, 

I 572 ff 
surface integrals, I 609 ff 
survey of some important formulae, 

I 634 
representation of Bessel functions, I 694 
Cauchy (of Cauchy type), II 255 
convergent and divergent, I 522 
curve, II 3 
curvilinear, I 599 ff 

along curve in space, I 604 
definite, I 512, I 576, I 589 

table, I 541 ff 
double, I 576 ff 
elliptic, I 551 
equations, II 220 ff, II 585 ff, II 469 

approximate solution of, II 585 ff 
Fredholm, II 223 ff 
in conformal mapping, II :309 

nonlinear, II 346 
of first kind, II 241 
of Fredholm type, II 223, II 224 
of second kind, II 223 
of Volterra type, II 240 

Integral(s) continued 
singular, II 238 
with Cauchy kerne!, II 239 
with degenerate kerne!, II 228 
with 1-Iilbert kerne!, II 238 
with symmetric kerne!, II 231 
with weak singularity, II 238 

hyperelliptic, I 551 
identity (elliptic problems), II 208 
im proper, I 522 ff, I 594 
indefinite, I 448 ff 

table, I 4 70 ff 
in sense of principal value, I 524, I 528, 

II 256 
involving parameter, I 534 ff 
Legendre, I 552 
of abstract functions, II 366, II 367 
of Cauchy type, II 255 
of functions of complex variable, II 249 
of ordiuary differential equations, II 3 
particular, II 3 
series expansions, I 550 
singular, II 11, II 33 
surface, I 609 ff 
test, for convergence of series, I 348 
transforms, II 567 ff 

applications, II 570 ff 
Fourier, 1-Iankel, Laplace, Laplace­

Carson, Mellin, II 568 ff 
fundamentally important results, 

II 574 ff 
grammar for Laplace transform, II 577 
Laplace and Fourier, applied to solving 

differential equations, II 570 ff 
one-dimensional finite, II 584 
tables, II 578 ff 
two- and multi-dimensional, II 581, 

II 584 
triple, I 589 ff 

Integrating factor of differential equation, 
II 24 

Integration 
by differentiation with respect to param­

eter, I 455, I 534 
by parts, I 451, I 519 
by substitution, I 453, I 520, I 586, I 592 



Integration contintted 
Cauchy-Riemann, I 512 
in infinite interval, I 527 
Lebesgue, I 560 ff 
of Fourier series, I 687 
of rational functions, I 457 ff 
of series with variable terms, I 643 
Riemann, I 512 
step, li 483 
Stieltjes, I 567 

Intercepts on axes of coordinates, I 170 
Interchange of Iimit and differentiation 

(integration), I 639, I 640, I 641 
lnterior 

diameter of surface, I 609 
parameter, elimination of, II 435 

Interlacing solutions, II 47 
Interpolation, li 665 

approximation, li 665 
by splines, II 684 
formula 

Bessel, II 681 
Gauss, li 681 
Hermite, I 677 
Lagrange, li 676 
Newton, II 678, II 680 
Stirling, II 681 

polynomial, II 675 
Hermite, II 676, II 677 
Lagrange, II 676 

trigonometric, II 683 
Intersection 

of sets, I 45 
of straight line with circle, I 182 
of 2 straight lines, I 172 

lnterval, I 359 
of stability, II 506 

Invariant, I 215 
imbedding method, II 524 
in differential equations, II 68 

Inverse 
formula for spectral density, II 816 
functions, I 362 

hyperbolic, I 92 ff 
trigonometric, I 86 ff 

iteration, II 644 

INDEX 

Inverse conlinued 
matrix, I 50, II 602 
operator, II 345 

Inversion, li 294 
of permutation, I 17 
of a series, I 64 7 

lnvolute 
curtate and prolate, I 135 
of catenary, I 147 
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of circle, constructions and theorems, 
I 134 ff 

of curve, I 297 ff 
Irrational numbers, I 5 
lrregular nets, II 549 
lrrotational vector field, I 235 
Isogonal trajectories of one-parameter 

family of curves, I 304 
Isolated 

Ioad, II 343 
point, II 319 
singularity of holomorphic function, 

II 267 
Isometrie spaces, II 328 
Isoparametrie elements, II 439 

quadrangttlar bilinear, II 440 
quadrangular biquadratic, II 441 
triangular, II 439 

Isoperimetrie problem, II 399 
lterated kernel, II 236 
Iterative 

improvement of solution, II 605 
method(s), II 594, II 615 

consistent, II 616 
general, for solving algebraic and 

transeendental equations, II 661, 
II 662 

one-point, matrix, II 615, II 616, II 617 
preconditioned, II 622 
stationary, II 616, II 621 

Jackson theorems, II 672 
J acobi( an) 

determinant, I 418, I 586, I 592 
elliptic functions, I 553, II 313 
method 

solution of eigenproblems, II 632 
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Jacobi(an) continucd 
solution of linear algehraic systems, 

II 618 
polynomials, I 711 
theta function, II 313 

Jensen inequality, II 730 
Joint 

distribution, II 704 
function, li 704 

probability density, li 705 
Jordan 

block, I 60, li 631 
curve, I 573 
matrix, I 60, II 630 
region, I 573 

Joukowski aerofoils, li 297 
Jump of function, II 7.5 

Kaplan-Meier (product-limit.) cstimat.or, 
II 791 

Karmarkar metbad of successive projec-
tions, li 863 

Kelvin functions, I 703 
Kendall classification, II 806 
Kerne! 

of integral equation, I I 223 
replacement, li .589 

Khachiyan ellipsoid methot!, II 863 
Khintchine theorem, II 7:32 
Kirchhoff formula, li 192 
Knesser theorem, II 48 
Kochaiiski rectification of circle, I 113 
Kolmogorov 

differential equations, II 801 
prospective, II 801 
retrospective, li 801 

inequality, li 730 
theorem, II 732 

Kolmogorov-Smirnov test, II 763 
Kovalewski theorem, li 151 
Kronecker delta, I 244 
"Kugelsatz", li 286 
Kiipper conoid, I 224 

Lagrange 
differential equation, I I 31 
form of Taylor theorem, I 397 

Lagrange contin ucd 
identity, I 230 
inequality, II 649 
interpolat.ion, II 676 
mean value theorem, I 387 
method of undetermined coefficients, 

I 442 
variational problem, II 406 

Lagrange-Charpit solution of Cauchy prob­
lem in two variables, li 165 

Laguerre 
equation, I 712, li 74 
polynomials, I 712, II 74 

Lambda ( .A) matrix, I 56 
Lanczos method, II 643 
L and R integration, I 562 
Laplace 

differential equation, li 17 4 
Dirichlet problem for, II 176 
Neuman problem for, II 176 

integral transform, li .586 
operator, li 174 

in vector analysis, I 237 
transform, II 568 

application to solving differential 
equations, II .570 ff 

Laplace-Carson integral transform, II 586 
Laplace-Gauss integral, I 542 
Latus rectum, I 180 
Laureut series, II 265 

at infinity, II 268 
essential singularity, I 267 

Law 
of error, II 778 
of growth, I 162 
of !arge numbers, li 730, II 731 ff 

strong, li 732 
weak, li 731 ff 

Lax-Mitgram theorem, II 209 
Least 

squares, II 767 
recursi ve, II 772 
weighted, II 778 

upper bound (l.u.b.), I 5 
Lebesgue and Riemann integration distin­

guished, I 562 
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Lebesgue and Stieljes int.egrat.ion, I 560, 
I 567 

Lebesgue integral of unhounded function, 
I 563, I 565 

convergent, I 56:3, I 565 
divergent, I 56:3, I 565 
of functions of more variables, I 566 

Left-hanclecl coordinate system, I 196 
Legeneire 

differential equation, I 705, !I 7 4 
elliptic functions, I .553 

integrals, I 552 

polynomials, I 705, II 7 4, ll 137 
transformation, II 407 

Lehm er process, I I 655 
Leibniz rule 

for convergence of series, I 3.50 
for derivatives, I 384 

Lemniscate of Bernoulli, I 151 
Length 

integral calcul us for 
curves in space, I 620 

plane curves, I 618 
of vector, I 168 

Level surfaces of scalar ficld, I 2:32 
Levenberg-Marquardt method, li 780 
Levy-Lindeberg theorem, II 7:3:3 
L'Hospital rule, I 426 

Liapunov 
stability, II 11:3 ff 
theorem, li 733 
type of surfaces, II 184 

Life, 100-y%, II 786 

Lifetime (time to failure), II 786 

Light cone, li 281 

backwarcl, II 281 

forwarcl, II 281 

Likelihood function and equation, II 749 ff 
Lima<;on of Pascal, I 153 

Limiting process 
interchange of, I 639 

under differentiation sign, I 640 
uncler integral sign, I 639, I 641 

Limit(s), I 336, I 371 ff, I 404 
finite, I 371, 

form of Bessel functions, I 697 

Limit(s) conlinucd 
from right or left, I 371 
importaut, I 342 ff 
infinite, I 373 

of abstract function, II 366 
of composite function, I 372 
of functious of complex variable, II 245 
of sequence 

in mctric space, II 325 
of functions, I 637 ff, II 260 

of matrices, I 111 

of numbers, I 336 

point, I 340, II 319 

theorems in probability theory, li 730 ff 
Linear 

algehraic equations: see below 
algebraic systems: see below 
concepts in solid analytic geometry, 

I 199 ff 
differential equations: see below 
element: see below 
functioual, li 349 
k-step ( multistep) method: see below 
metric space, II 330 
normed space, li 331 

sharply normccl, li 667 
opcrator(s), II 347 

optimization problems: see Linear pro-
gramming 

programming: see below 
set, space, II :no 
subspace, II 331 

Linear algebraic equations 
definition and properties, I 32 

equivalent systems, I 32 
solution 

using cleterminants, I 36 
without use of cleterminants, I 33 

Linear algehraic system, II 59.5 

derived, I! 596 

in matrix form, II 595 
numerical methods for solving it, li 594 ff 
with reetangular matrix, I 36, li 611 
with singular matrix, li 608 

Linear differential equations, li 17, li 50 

characteristic exponent, li 50 
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Linear differential equatious conti11ued 
discontinuous solutions, I! 75 
Euler, I! 60 
Fuchsian type, Il 69 

fundamental equation, II 70 
fundamental system of soiutions, li 5.3 
homogeneous, I I 17, li 51, li 57 

corresponding to nonhomogeneous, 
I! 18, II 51 

periodic solution of, II 49 
with constant coefficieuts, li 57 

indicial equation, II 70 
nonhomogeneous, li 17, I I 51, I I .55 

with constant coefficients and special 
right-hand sides, II 62 

of n-th order, II 50 
of second order with variable coefficients, 

I! 66 

oscillatory solutious, I I 47 
partial of second order, classificat.ion, 

I! 172 

Linear element 
one-dimensional, Il 4:32 
three-dimensional tetrahedral, I! 442 
two-dimensional triangular, I! 4:34 

Linearization method, II 781 
with transformed weights, II 781 

Linear k-step (multistep) methods, I! 495 ff 
based on numerical differentiation, li 504 

backward difference methods, Il 504 
based on numerical integration, II .502 

Adams-Bashforth method, II 502 
Adams-Maulton method, I I so:~ 

characteristic polynomial of, I I 4 98 
essential roots, I! 500 
growth parameters, II .500 

consistency of, II 497 
convergence of, II 497 
D-stable, I! 498 
error constant of, li 497 
explicit, I! 496 
implicit, I! 496 
interval of stahility, II 506 
local error of, II 497 
order of, II 497 
weakly stable, II .502 

Linear programming, I! 822 ff 
artificial variables, II 859 
auxiliary optimization problems, II 859 
basic 

point, II 838 
degenerate, li 838 

solution, II 837 
variables, II 837 

exchange of, II 839 
basis matrix, II 840 
blending problem, II 829 
centroid method, II 863 
characteristic row, II 842 
convex polyhedron, li 824 
cross rule, II 844 
cutting plane methods, I! 863 
discrete, I I 86.3 
duality principle, I! 860 
economic balance, II 828 
epsilon (e )-perturbed problems, li 848 
feasible point, II 82.3 

basic, II 8.38 
Gomory algorithm, II 86.3 
gradient methods, II 86.3 
index basis change, I! 842 
Karmarkar method of successive projec-

tions, II 863 
Khachiyan ellipsoid method, II 86.3 
linear constraints in programming, II 82.3 
linear optimization problem(s), II 824 

dual, I! 862 
equivalence of, I! 827 
in equality form, li 828 
in normal form, I! 827 
optimal point (solution) of, II 824 

maximization ( minimization) problems, 
I I 823, I! 840 

nonbasic variables, I! 8.37 
objective function, li 823 
optimal feasible points, I! 824, II 835 
optimality criterion, II 840 
parametric, I! 860 
pivot (central element), I! 84.3 

column, I! 844 
row, II 843 

polyuomial time algorithm, li 86.3 
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Linear programming continued 
primal-dual algoritlun, II 86:! 
production 

center, II 828 
planning, II 8:! I 

simplex metod, II 848 ff 
dual, II 863 
revised, II 863 

slack variables, II 828 
transportati011 problem, II 828 

Linear regression model, II 768 
best linear unbiased estimator (BLUE), 

II 770 
coefficient of determination, II 771 
full rank, II 768 
generalized, II 777 
normal, II 773 

Lines of curvature on surface, I 331 
Lines of force, I 233 
Liouville 

formula, II 52 
theorem, II 181, li 269 

Lipschitz 
boundary, II 338 
condition, II 6, li 671 
region, II 338 

Ljapunov: see Liapunov 
Loading, II 544 
Load vector, II 423 
Local 

dependence of functions, I 422 
discretization error, II 485, II 497 

Locus of point as equation of a curve, I 169 
Logarithmic 

decrement, I 160 
function of complex variable, II 272 ff 

analytic continuation, II 272 
multivalued, II 272 
principal and second branches, li 272 

potential, II 176 

singularity, II 274 
spiral, I 139 

Logarithms 
concept and properties, I 14 
conversion modulus, I 366 
equations, I 15 

Logarithms continued 
integral, I 551 
moduli of, I 366 
natural base of, I 341, I 365 
power series for, I 646 

Logical concepts, I 1 

Logistic curve, I 164 
Lower integral of Darboux sums, I 512 

Loxodrome, I 313 
LR factorization, II 636 
LR method, II 635 
L2, Lp-spaces, I 662 ff, II 323 ff 
LU factorization, II 599, II 635 

for tridiagonal matrices, II 612 
L.u.b. {least upper bound), I 5 

MacDonald functions, I 703 
MacLaurin 

formula, I 397 
inequality, II 649 

Magnitude of vector, I 168, I 227 
Mainardi equations, I 333 
Maiutenance strategy, II 786 
Majorant 

of function, I 525 
of series, I 346, I 643, II 261 

Mapping (see also Operator{s)), II 344 
conformal, II 289 ff 
continuous, I 418 
contractive, II 345 

definition, I 46, II 344 ff 
injective, li 345 
into set, onto set, I 46, II 344 
linear (systems of algebraic equations) 

composition of, I 63 
definition, I 63 
matrix notatiou for, I 64 

one-to-oue, betweeu sets, I 46 
substitutiou, I 64 

regular, I 418 
surjective, II 344 

Markov 
chain, II 804 

Chapman-Kolmogorov equations, 
li 805 

homogeneous, I I 804 
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Markov conlinucd 
Markov property, li 804 
transition 

matrix, I! 804 
probability, li 804 

inequality, li 729 
process, 11 799 

Chapman-1\olmogorov equation, 
11 800 

failure intensity, li 802 
homogeneous, II 800 
initial and stationary distribu tion, 

11 800 
Kohnogorov differential equations, 

II 800 ff 
Markov property, li 799 
transition 

intensity, 11 801 
probability, II 799 

theorem, I I 732 
Mass 

integral calculus for 
curves in space, I 620 
plane cnrves, I 618 
plane fignres, I 623 
solids, I 626 
surfaces, I 629 

matrix, II 465 
Mathematical physics, problems of, II 147, 

II 172 ff, I I 203 
Matrix, matrices 

analysis, I I 110 
banded, li 613 
characteristic, I 52 

polynomial of, I .59 

complex conjugate, I 52 
congruent, I 64 
conjunctive, I 68 
decomposed into diagonal blocks, I 55, 

I 60 
diagonal, I 56 
diagonally dominant, II 619 
diagonals, principal and secondary, I 26, 

I 56 
eigenvalues of, I 59 
elementary divisors of, I 58 

Matrix, matrices continued 
full, I I 626, li 646 
fnnctions of, 11 110, li 111 
fundamental, li 103, li 517 
Gram, II 422, li 668 
Hermitian, I 53 
Hilbert, II 611 
identity, I 50, li 602 
ill-conditioned, li 605 
indefinite, I 67 
in lower Hessenberg form, I! 638 
in upper Hessenberg form, I! 638 
inverse, I 50, II 602 
Jordan, I 60, I! 630 

block, I 60, II 631 
Iambda- (..\- ), I 56 

divisors, I 57 
elementary transformation, I 56 
equivalence, I 56 
invariant factors, I 57 
rational canonical form, I 57 

lower triangular, I! 596 
mass, li 465 
minor, of order k, I 28 
Moore-Penrose generalized inverse, 

II 609 
mnltiplication of, I 49 
negative definite, I 67 
non-defecti ve, I! 631 
nou-singnlar, I 50 
n-rowed square, I 26 
of linear algehraic system, I 33, I! .595 
Operations on, I 49 ff 
orthogonal, I 52, I 65 
partitioned into blocks, I 53 
plane rotation, II 633 
positive definite, I 67, II 598 
product of, I 49 
profile, II 613 
pseudoinverse, II 609 
rank, definition and theorems, I 26 ff 
reflection, II 641 
regular, I 50 
seq uence of, li 111 
series of, II 111 
signature of form, I 67 
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Matrix, matrices continucd 
similar, I 59, II 630 
skew-synunetric, I 51 
sparse, II 611, li 626 
square, I 50 
stiffness, II 423 
symmetric, I 51 
Toeplitz, li 611 
trace of, I 53 
transposed, I 26 
triangular, I 55 
tridiagonal, li 612 
unitary, I 53 
upper triangular, I 55, II 596 

eigenvalues of, I 59 
Vandermonde, li 611 
well-conditioned, II 605 

Maximal solution of ordinary differential 
equation, li 7 

Maxima of functions, I 392 ff, I 438 ff 
Maximum 

likelihood, estimator, II 749 
for censored random samples, II 790 ff 
method, li 7 4 9 ff 

principle 
for harmonic functions, li 177 
for heat equation, II 200 

Mean 
curvature, I 278 
torsion, I 279 

Mean(mean value), li 698 
conditional, li 706 
curvature, I 278 
deviation, li 701 
of linear transformation of random van­

ables, li 728 
of stocha.'5tic process, II 810, II SB 
sample, II 736 

Mean-value theorem(s), I 387, I 516 
for double integrals, I 580 
for harmonic funct.ions, II 180, II 181 
generalization for several variables, I 41.") 

generalized, I 388 
Measurable 

functions, I 561 
sets, I 560 

Median, II 700 
sample, li 740 

Mellin transform, li 568 
Meromorphic function, li 267 

of several complex variables, li 288 
Mesh point, II 546, II 562 

boundary, II 563 
inner, II 562 
interior, li 562 

Method(s) 
Fourier, II 534 ff 
Galerkin, li 427 
of discretization in time, li 215 
of finite differences, li 546 ff 
of finite elements, li 428 ff 
of parameters, li 28, li 38 
of performing conformal mapping, 

II 296 ff 
of Rothe, II 215 
of Schwarz quotients, li 87 
of separation of variables, li 14, li 534 ff 
of t.ransfer and normalized transfer of 

boundary couditions, II 519 ff 
of variation of parameters, li 18, li 56, 

II 108, li 161 
Ritz, II 422 
Runge-1\utta, li 492 ff 

Metric, II 323 
axioms, II 323 
invariant, II 330 
spaces, II 323 ff 

linear and other operators in, II 344 ff 
tensor of space, I 24 7 

Meusnier theorem, I 327 
Milne 

device, II 510 
formula, II 511 

Minimal angle condition, II 448 
Minima of functions, I 392, I 438 ff 
Minimax 

approximation, II 669 
principle, II 86 

Minimum of functional of energy, II 354, 
li 360, II 412 

Minkowski inequality, I 9 
Minor in dcterminant, I 30 
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Mixed 
derivatives, interchangeability, I 408 
problems for partial different.ial equa­

tions, II 150, II 195, II 199, II 215 
process (ARMA), II 813, II 818 
product of three vectors, I 230 

Mode, II 700 
Modulus 

of continuity, II 671 
uniform, II 671 

of vector, I 227 
Moivre theorem, I 11 
Moivre-Laplace theorem, II 733 

Moment(s), II 698 
central, II 698 
method of, II 750 ff 
mixed, II 708 
of inertia 

formulae for 
plane figures, I 95 ff 
solids, I I 04 ff 

integral calculus for 
curves in space, I 620 
plane curves, I 619 
plane figures, I 624 
solids, I 628 
surfaces, I 631 

sample, II 737 
Monodromy theory, II 277 
Monogenie function, II 246 
Monotone operator, 11 372 
Monotonic 

functions, I 391 
sequences, I 341 

Montpellier conoid, I 224 
Moore-Penrose gcneralized inverse of ma­

trix, II 609 
Movable (free) ends of admissible curves, 

II 395 
Moving 

average (MA), II 812, II 817 
polhode, I 127 
trihedron and Freuet formulae, I 268 ff 

Multigrid method, II 625 
M ultiindex, II 339 

Multiple 
angle formulae of trigonometric func­

tions, I 74 

comparison, II 782 
point of curve, I 261 

M ultiplication 
of matrices, I 49 
of tensors, I 255 
of vectors, I 228 ff 

Multiplicity of eigenvalue, I 84, I 356 
Multipliers, Lagrange mehod, I 442 
Multishooting method, II 518 

M ultivariate 
analysis, II 785 ff 
distribution, II 704, II 725 ff 
process, II 797 

N abla operator, I 234 
N apier rule, I 84 
Natural 

logarithms, base of, I 341 
numhers, I 2 

sums of powers of, I 16 
N avier-Stokes equations, II 203 

n-component (complex) vector, I 24 
n-coordinate ( complex) vector, I 24 
n-dimensional sphere, II 281 

in Euclidean space, II 321 
in metric space, II 326 

ncdimensional torus, II 280 
n-dimensional vector space, I 24 
Negative 

half line, I 17 4 

orientation, I 229 
N eighbourhood 

of point, I 366, I 404, II 319, II 321 
in metric space, II 326 

N eil parabola, I 126 
Nephroid, I 133 

Nets (finite difference method), II 546, 
II 562 

Neumann 
functions, I 700 

problem (see also Dirichlet and Neu­
mann), II 176 
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Neumann continued 
solution for Laplace and Poisson 

equations, II 177 ff 
Newton 

definite integral, I .518 
formula, binomial theorem, I 19 
interpolation formula, II 680 
interpolation polynomial, general, II 678 
method for attaining roots of algebraic 

equations, li 6.58, II 663 
potential, II 17.5 
problem, II 176 

Newton-Cotes quadrature formula, I 556 
Newton-Fourier method in conformalmap-

ping, II 312 
Nicomedes conchoid, I 152 
N odal parameters, I I 430 
Node{s) 

(differential equations), II 26 
of curves, I 291 
of finite element, II 430 
of interpolation, II 67.5 
of quadrature formula, I 5.55 

Nonbasic variables, II 837 
Non-developable surface, I 316 
Nonlinear 

elliptic boundary value problems, II 210 
partial differential eq uations of first 

order, II 160 ff 
regression model, I 779 
systems, numerical solution, II 662 

Nonsingular conic sections, I 189 
Non-zero function in L2, I 664, II 221 
Norm 

of element, II 331 
axioms of, II 331 

offunction, I 663, I 669, II 221 
of matrix, II 604 

spectral, II 604 
of operator, II 348 
of partition, I 513, I 578 
of tangent vector, I 266 
of vector, I 227, II 60:~ 

Euclidean, II 603 
maximum, II 604 
sum, II 604 

Norm coutinued 
uniform, II 604 

Normal 
acceleration, I 276 
cycloid, I 127 
distribution, II 714 
epicycloid, I 130 
equation of straight line, I 177 
equations, II 770 
form (of differential equation), II 68 
fundamental system, II 55 
hypocycloid, I 130 
plane, I 271 
system of differential equations, II 100 
vector 

to plane, I 200 
to surface, I 312 

Normalized transfer of boundary condi­
tions, II 523 

Normed 
element, II 335 
function, I 670 

with weight, I 672 
space, li :J31 

Null vector, I 225 
Numbers 

com plex, I 9 
conjugate, I 10 
imaginary, pure, I 10 

irrational, I 5 
natural, I 2 
rational, I 3 
real, I 4 

N umerical 
calculation of matrix eigenvalues, II 630 ff 
integration, I 555 ff 
methods for sol ving 

elliptic differential equations, II 409 ff, 
II .546 ff 

hyperbolic differential equations, 
II 467 ff, II 546 ff 

ordinary differential equations, 
II 483 ff, II 515 ff 

parabolic differential equations, 
II 463 ff, II 546 ff 

methods in linear algebra, II 594 ff 
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Numerical conlinued 
solution of algebraic and t.ransceudent 

equations, II 648 ff 
basic properties, II 648 
connection of roots with matrix eigen­

values, li 652 
estimates for roots, li 649 

metbods for solving nonlinear systems, 
Il 662 

quadrature, I 555 

Obelisk, volume and centroid of, I 106 
Objective 

function, li 823 

Oblate spberoid, I 110, I 210 
Oblique trajectories, II 36 
Observations, li 736 

calculus of, li 778 
frequency of, II 7 41 

One-parameter family 
of plane curves, envelopes of, I 292 ff 
of surfaces, envelopes of, I 317 

One-step metbod, general, II 489 
One-to-one 

correspondence, I 46, I 362, I 418, li 345 
operator, II 345 

Open 
circle, II 320 

disc, II 320 
interval, I 3.59 
set, II 320 
spbere, II 322 

Operating cbaracteristic, II 792 
curve, II 792 

Operational calculus: see Integral trans­
forms 

Heaviside, II 570 
Operator(s), II 344; seealso Mapping 

absolutely contiuuous, 11 351 
adjoint, II 79, li 350, 11 3.52 lf, II :JS9 
bijective, II 34.5 
bounded, li 347, II .352 ff, li 372 
coercive, II 372 
compact, II 351 
completely continuous, li 3.51 
continuous, II 34 7 

Operator(s) continued 
domain of definition of, II 345 
eigen value of, II 81, II 355 ff, II 362 ff 
extension of, II 349 
idcntity, II 355 
in Hilbert space, li 352 ff 
injective, li 345 
inverse, li 345 
linear, II 34 7 
monotone, li 372 

strictly, II 372 
norm of, li 348 
one-to-one, II 345 
positive, II 354, li 359 

definite, II 204, li 354, li 359, li 410 
potential, li 371 
self-adjoint, II 79, II 351, II 353, II 359 
simple (univalent), II 345 
strictly monotone, li 372 
surjective, li 344 
symmetric, II 359 
unhounded, li 358 ff 
vector analysis, I 234 ff 

Optimal 
feasible point, li 824 
prohlems: see Linear programming 

Order 
of eigenvalue, li 84, li 356 
of quadrature formula, I 555 
of tcnsor, I 247 

Orderiug 
of integers, I 3 
of real numhers, I 5 

Ordinary 
differential equations: see Differential 

eq uations, ordinary 
point (differential geometry), I 306 
point (function of complex variable), 

li 264 
Orientation, I 17 4 

positive and negative sense, I 174, I 196 
rigbt-lianded and left-handed, I 196 

Oricnted 
curve, I 599 
projection of surface, I 609 
straight line, I 174 



Oriented continued 
surface, I 609 

Original 
to an element of a set, I 46 
to an image, II 344, II 567 

Origin of coordinate system, I 167, I 195 
Orthogonal 

conjugate net on surface, I 331 
elemets in Hilbert space, II 335 
functions, I 669 

in generalized sense, li 84 
invariants, I 215 
matrix, I 52 
projection in Hilbert space, II 335 
system in Hilbert space, II 33.5, II 336 
trajectories, I 36 

of one-parameter family of curves, 
I 304 

of tangents to a curve, I 297 
Orthogonali ty 

of two planes, I 202 
of two straight lines, I 176, I 208 
of a straight line and a plane, I 208 

Orthonormal 
basis, II 338, II 668 
function system, I 670 

with weight function, I 672 
system in Hilbert space, II 335, II 336 

Oscillating 
series, II 334 

Oscillations, 
aperiodic motion, I 159 
curves of, I 156 ff 
damped 

critical, I 1.59, II 132 
forced, I 161, II 133 
free, I 1.58, li 132 
supercritical, I 1.59, li 1:12 

harmonic, I 157, II 131 
logarithmic decrement, I 160 
resonance curve, I 158 
transient, I 162 
undamped (continuous), I 1.56, II 131 

forced, I 1.57, li 132 
free, I 156, II 131, li 132 
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Oscillatory solutions of linear differential 
equations, li 47 

Osculating 
circle, I 285 

of vertex of ellipse, I 118 
curves, I 183 ff 
plane, I 271 

Outer 
measure, I 560 
product of vectors, I 229 

Pappus rules, I 633 
Parabola 

as conic section, I 189 
equation for polar, I 192 

constructions, I 123 ff 
cuhical ancl semicubical, I 126, I 279 

definition, I 185 
directrix of, I 185 
focus of, I 123 
lligher degree, I 125 
parameter of, I 122 
sub-normal, I 124 
sub-tangent, I 124 
theorems, I 123, I 185 
vertex and vertex tangent of, I 122 

Paraholic 
equations, li 172, li 197 ff 
segment 

area and centroid of, I 103 
moments of inertia of, I 104 
point, I 326 

Paraboloid 
elliptic and hyperbolic 

canonical and transformed equations, 
I 217 

theorems, I 212 
of revolu tion 

volume, surface area, centroid, mo­
ment of inertia, I 111 

Parallel 
areas theorem, I 633 
axes theorem, I 633 
curves, I 296 
planes, I 203 
straight lines, I 175, I 208 
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Parallel continued 
vectors, I 227 

Parallelepiped, I 104 
Parallelism, condition for 

line and plane, I 209 
two straight lines, I 175, I 208 

Parallelogram, geometrical formulae, I 97 
Parameter, I 180 

admisible transformation of, I 264 
in integral, I 534 ff 
of parabola, I 122 

Parametrie 
equations 

of circle, I 181 
of curve in plane, I 180 
of straight line, I 170, I 205 

variational problems, II 403 
Parseval equality, I 675, II 337, II 699 
Partial 

derivatives, I 406 
differential equations: see Differential 

equations, partial 
sum of series, I 343, II 260, II 332 

Particular integral, Il 3 
Partition of domain, II 430 
Pascallima<;on, I 153 
Path of stochastic process, II 797 
Pedal curve, I 303 
Pencil 

of lines, I 173 
of planes, I 203 

Percentile, II 700 
Periodic solutions of differential equations, 

II 49 
Periodogram, II 819 
Permutationsand combinations, I 17, I 18 
Perpendicularity, conditions for 

line and plane, I 208 
two planes, I 202 
two straight lines, I 176, I 208 

Pfaffian equation, II 202 
Phase displacement, I 156 
Picard approxinmt.ion, II 488 
Piecewise 

continuous functiou, I 405, li 75 
smooth 

Piecewise continued 
curve, I 260, I 573 
functiou, I 405, II 75 
surface, I 305, I 575 

Pivot, li 597, II 843 
Pi voting, II 597, II 599, II 644 
Plane 

affine transformation of, I 190 
curves 

approximate constructions for, I 165 
asymptotes of, I 288 
asymptotic points on, I 302 
constructions for, I 112 ff 
definition of, I 263, I 572 
envelopes of one-parameter family of, 

I 292 ff 
explicit and implicit equations of, I 264 
regular ( ordinary) points of, I 264 
singular points of, I 261, I 264, I 290 
subtangent and subnormal of, I 276 

figures, application of integral calculus, 
I 621 

of complex numbers, II 243 
closed, II 243 
completed, II 243 
extended, II 243 

problem of elasticity, II 203 
Planes 

bisection of angles beetween two inter­
secting, I 204 

bundle (star) of, I 204 
pencil (sheaf) of, I 203 

Plate 
clamped, deflection of, II 205 
simply supported, deflection of, II 543 

Plemelj formulae, II 257 
Pliiker conoid, I 224 
Pluriharmonic functions, II 284 
Point 

contact of curves, II 272 
convergence 

of sequence of functions, I 637 
of series of functious, I 641 

of accumulation, II 319, II 326 
of continuability, II 277 
of indetermination, li 288 
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Point continued 
of inflection, I 272, I 284, I :l91 

ordinary, of first order, I 284 

of intersectimt of two straight lines, I 172, 
I 208 

of self-tangency of curves, I 291 
Poisson 

differential equation, II 174 

integral, li 184 
Polar 

Coordinates, I 178 

generalized, I 588 
in solid analytic geometry, I 196 

plane curves, representation in, I 180, 

I 300 ff 
relation with cartesian coordinates, 

I 179 

semi-axis (initial line), I 178 

line, I 288 
nets, I 550 
sub-tangent, I 137 

Pole 
of f(z), II 267 

double, II 267 
of order k, li 267 
simple, Il 267 

of polar coordinates, I 178 

Polhodes, moving and fixed, I 127 

Polycylinder, II 278 

with vectorial radius, li 279 

Polydisc, II 278 
with vectorial radius, li 279 

Polygon 
area of, I 169 
conformal mapping of upper halfplane 

on, Il 302, II 311 
regular, geometrical elemets of, I 98 

Polynomial(s), I 20 ff, I 364 

Chebyshev, I 711, II 136 

degree, definition, I 20 

divisor, definition, I 20 

Hermite, I 712, li 75, II 134 

Hermitiam form, I 62 

Horner method {scheme), I 22 

interpolation, li 675 

J acobi, I 711 

Polynomial(s) continued 
Laguerre, I 712, II 7 4, 
Legendre, I 705, II 74, II 137 

linear factor of, I 21 

of best uniform approximation, li 669 

proeinet and quotient, I 20 
quadratic forms, I 62 

real coefficients, with, I 22 
regression, II 769, II 776 ff 

roots of, I 21, II 648 

sum of, I 20 
time algorithm, li 863 
zero, I 20 

Position vector, I 226 

Positive 

definite 
matrix, I 67, II 598 

operator, li 354, li 359 

eigenvalue problem, li 82 

half line, I 174 
homogeneaus function, Il 403 

numbers, I 3 
operator, II 354, II 359 

problems, II 82 
sense of orientation, I 17 4, I 196 

of curve with respect to region, I 599 

Potential 
equation, II 539 

flow, I! 299 
logarith mic, li 176 

of double layer, II 184 

of single layer, II 184 

operator, li 371 

vector fi.eld, I 233 

Power{s) 
curves, I 125 
function, I 365, li 274, II 755 

of complex variable, II 274 

of test, II 755 

method, II 631, II 644 

of natural numbers, sums of, I 16 

of trigonometric functions, I 76 

series, I 64.5 ff, li 262 ff 

absolute convergence, I 646 

application of, I 658 

arithmetic Operations with, I 64 7 
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Power(s) continucd Probability, probabilities continued 
convergence, I ß46 
definition and theorems, I 645 fr 
differentiation and iutegration, I ß49 
economized, li 67 4 
expansion into, I 650, I 652 
in two or more variables, I 651 
inversion of, I !i47 
substitution in another power series, 

I 649 
with centre at origin, I 646 

with integral exponents, I 11 
Precompact space, II 329 
Preconditioner, II 622 
Preconditioning of iterative met.lwd, II 621 
Prediction 

interval, li 77 4 
theory, li 821 

Predictor-corrector methods, II S08 
Milne device, II 510 

Prehilbert (pre-Hilbert) space, II :na 
Preservation of region, theorem on, I 419 
Prime ends, Caratlu~odory theory of, II :104 
Primitive 

function, I 448, II 2SO 
period of sine curve, I ISS 

Principal 
brauch of logaritlun, II 273 
components, II 78S 
normal of curve, I 268 
part 

of discretization error, li 487, II 491 
of Laureut series, II 266 

vectors, I 227 
Prism 

centroid of, I 104 
truncated triangular, I 104 
volume and surface areas of, I 104 

Prismatic pentahedral three-dimensional 
element, II 443 

Probability, probabilities {see also Raudom 
... ) 

a posteriori, a priori, II 693 
axioms of, II 690 
central Iimit theorems, II 7:30, II na ff 
classical definition of, li 691 

combinatorial calculation of, li 691 
conditional, II 692 
convergence in, II 731 

density, II 696, II 705 

coudi tiou al and marginal, II 706 
of transformed random variable, li 727 

distribution, li 694 
function, II 69S, II 704 

conditional and marginal, II 70G 
law of !arge numbers, weak and strong, 

II 730, II 731 ff 
Iimit theorems, li 730 ff 
measure, II 691 

of event, II 690 

of failure, II 786 
of iut.ersect.ion of eveut.s, II 692 
of survival, TI 786 

paper, II 745 
normal, II 745 

rule, total, II 692 
theory, li 688 ff 
trausitiou, II 799, li 804 

Process, II 797 
arrival, li 806 

autocorrelation function of, II 811 
a u tovarian ce 

fu uction of, II 811 

matrix, 11 813 
autoregressive (AR), 11 812, II 818 
birth-and-death, II 803 ff 
brauehing {Galton-Watson), li 798 

countiug, II 797 
cross-covariance function, li 814 
ergodic, II 814 

estimat.ion of correlation characteristics, 
li 814 

harmonic, li 813, li 818 
in continuous time (random function), 

11 797 

in discrete time ( random sequence, time 
series), II 797 

Markov, li 799 
Markov chain, li 804 

mean of, li 810, li 813 



Process continucd 
mixed (ARMA), li 813, Il 818 
moving average (MA), li 812, II 817 
normal, li 812 
Poisson, II 798, II 802 ff 

intensity of, Il 798 
realization (trajectory, path, sample 

function) of, II 797 
spectral (Fourier) analysis of, II 814 

spectrum, II 815 
stationary, II 811 
univariate and multivariate, II 797 
white noise, II 798, II 812, II 817 
Wiener, II 799 
with continuous and discrete states, 

II 797 
with independent increments, II 817 
Yule, 11 803 

Product 
method, 11 534 ff 
of matrices, I 49 
of sets, I 4.5 
of tensors, I 2.5.5 
of vectors, I 228 ff 

Production planning, II 831 
Product-limit (Kaplan-Meier) cstimator, 

11 791 
Projective transformations 

of plane, I 190 
of regular conic section, I 191 

Prolate 
circular involu te, I 135 
cycloid, I 129 
epicycloid, I 131 
spheroid, I 110, I 210 

Proper 
function of eigenvalue problem, li 81 
value, II 81 

Pseudoinverse of matrix, II 609 

Pseudo-periodic function, II 49 
Pyramid 

centroid, position of, I 10.5 
frustum, volume of, I 106 
regular frustum, lateral area of, I 106 
triangular, volume of, I 1 OS 

INDEX 

QL method, II 637 
QR factorization, II 637 
QR method, II 636 
Quadrant.(s) 

definition, I 168 

767 

first, reduction of trigonometric functions 
to, I 73 

signs of trigonometric functions in, I 72 
Quadratic 

element 
one-dimensional, 11 432 
two-dimensional, II 434 

equations, I 39 
discriminant of, I 39 

form, I 62, II 422 
congruent, I 68 
mat.rix notation, I 64 

functional (functional of energy), II 204, 
II 3.54, II 360, II 409 

theorem of minimum of, II 3.54, li 362 
regression, II 769 
tensor, I 24 7 

Quadrature formula( e) 
Gauss, I 55.5 
Gauss-Legendre, I 5.56 
Newton-Cotes, I 5.56 
Romherg, I .5.57 
Simpson, I 5.57 
trapezoidal rule, I 557 

Quadrics, I 209 ff 
canonical equations, I 216 ff 
cone, I 214 
cylinders, I 214 
degenerate, I 218 
general equations, I 21.5 
transformed equations, I 215 

Quadrilateral, geometrical formulae, I 96 
Quality control, II 792 ff 
Quantile, II 700 

sample, II 741 
Quart.ic equations: see Biquadratic 
Quartile, lower and upper, II 700 
Queueing theory, II 806 

arrival process, II 806 
busy periods, II 806 
1\endal classification, 11 806 
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Queueing theory continued 
service system, II 806 

service time, II 806 

stationary traiTic, li 806 

system, lass, II 807 

M(D)1, II 810 

M(M)n, II 807 ff 

traffic intensity, II 807 

waiting time, II 806 

in system, II 806 

QZ method, II 646 

Raabe test for convergence of series, I 347 

Radius 

of circle 

circumscribed on triangle, I 80 
inscribed in triangle, I 80 

of convergence of power scries, I 646, 

li 262 

of curvature, I 277, I 286, I n8 

of torsion, I 278 

vector, I 226 

Random 

event(s), II 688 

certain, complementary, disjoint, el­
ementary, equivalent, impossible, 

li 688 ff 
difference of, intersection of, union of, 

II 688 
independent, II 693 ff 

experiment, II 688 

function, II 797 

process: see Process 

sample: see Sampie 

sequence, li 797 

variable(s), li 694 

characteristic function of, II 7!ß 

characteristics, li 697 

of location, li 700 
of skewness and kurtosis, l I 702 

of variability, II 701 

coefficient, correlation, II 709 

of kurtosis ( excess ), II 702 

of skewness, II 702 

of variation, II 702 

continuous and discrete, II 695 ff 

Raudom continued 
convergence of, II 731 

covariance of, II 708 

cumulant of, II 704 
density of, li 696 

deviation of, mean and standard, 
II 701 

distribution of, II 694 
independent, II 707 

integer (integral-valued), II 710 

mean ( mean value, expectation) of, 

II 698 
mode of, II 700 

quantile ( decile, median, percentile, 
quartile) of, II 700 

range of, li 702 
transformations of, li 727 ff 
uncorrelated, II 709 

variance of, li 699 

vector, II 704 

characteristic function of, II 710 

characteristics of, II 708 

continuous and discrete, II 705 

correlation and covariance matrix of, 
I1 709 

density of, li 705 

distribu tion of, Il 704 

distribution function of, II 704 
mean of, II 708 

Range 
interdecile, interpercentile, interquartile, 

II 702 
of mapping, II 344 

of operator, Il 344 

Rank 
of matrix, I 26 
of quadratic form, I 63 

of system of vectors, I 25 

of tensor, I 24 7 
Rational 

curve, I 263 

functions, integration of, I 457 ff 
integral function, I 20 

numhers, I 3 
field of, I 48 

Ratio test for convergence of series, I 347 
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Rayleigh quotient, II 85, li 206, li 356, 
II 363, II 531 

Rayleigh-Ritz method, II 457 
Real 

cone, canonical and transformed equa­
tions, I 216 

function, I 359 
number(s), I 4 ff 

absolute value, I 8 
algebraic and transcendental, I 5 
bounds (greatest lower, least upper) of 

a set of, I 5 
general powers of, I 13 
inequalities between, I 6 
roots of, I 12 

space L2, I 662 ff, II 324 
Real and imaginary axes, I 11 
Rearrangement of series, I 346 
Reciprocal 

equations, I 43 
spiral, I 138 

Reetangle of given perimeter having great­
est area, I 39.5 

Reetangular 
Coordinates, I 167, I 19.5 
Hermite elements, II 438 
simply supported plate, deflection of, 

II 543 
Rectification of circle 

Kochinski, I 113 
Sobotka, I 114 

Rectifying plane, I 271 
Recurrent formulae for Bessel functions, 

I 694 
Reduced equations of straight line, I 205 
Reduction of matrix to similar one, I 61, 

II 628, II 640 
Redundancy in reliability theory, II 789 
Reference 

interval, II 432 
triangle, II 433 

Refinement of nets, li 550 
Reflection 

cartesian coordinate system, I 198 
Riemann-Schwarz principle, II .101 

Reflexive space, II 350 

Region, li 320, I 402 
bounded, II 321, II 322 
closed, II 321 

of type A, I 573, I 575 
k-tuply connected, II 321 ff 
of Caratbeodory type ( C-region), II 308 
regular with respect to Dirichlet problem, 

II 190 
simply connected, II 321 ff 
theorem of preservation of, I 419 

Regression 
coefficient of determination, II 771 
error variable, II 766 
explanatory variable (regressor), II 767 
function, II 766 ff 
hyperbolic, II 769 
linear (simple linear regression), II 769, 

II 775 
linear regression model, II 768 
method of least squares, II 767 ff 

recursive, II 772 
weighted, II 779 

nonlinear, II 779 
parameter, II 768 
polynomial, II 769, II 776 ff 
quadratic, II 769 
response variable, II 767 
sum of squares, II 770 

Regressors (explanatory variable), II 767 
orthogonalization of, II 776 

Regula falsi method, II 658 
Regular 

conic sections, I 189 
functions, II 24 7 

hypersurfaces in En, II 392 
mapping, I 417 
nets, II 549 
part of Laureut series, II 266 
point 

of curve, I 261 
of f(z), II 264 
of surface, I 309 

polygon, I 98 
singularity, II 69 
system of decompositions, II 447 
value of operator, II 355 



770 SURVEY OF APPLICABLE MATBEMATICS 

Reinhardt domain, II 280 
Relative 

complement of sets, I 45 
maximum and minimum, I :J92, I 438 

Relatively compact space, II 329 
Reliability 

censoring, II 789 ff 
estimation, II 789 ff 
function, II 786 
hazard rate (failure rate, force and 

mortality), II 787, II 788 
probability of failure and survival, II 786 
redundancy, II 789 

active (parallel) and standby, II 789 
system, II 786 

theory, II 786 
Remainder(s) 

of finite difference approximation, li 54 7 
of interpolatiott formula, II 676 
of quadrature formula, I 555 
of Taylor formula, I 397, I 41.5 

Remes algorithm, II 672 
Removable 

singularity, theorem of, II 181, II 268 
singular point on curve or surface, I 261, 

I 309 
Renewal theory, II 786 
Repeated integrals, I 581 
Representing functions, II 412, II 447 
Residual 

of linear algebraic system, II 605, II 616, 
II 620 

sum of squares, II 770, II 78:J 
Residue theorem, II 270 
Resolvent, II 97, II 2:J4, II 355 
Resonance curve, I 158, I 162 
Response variable, II 767 
Revolution, surfaces of, I 219 
Rhombus, formulae for geometrical ele-

ments, I 97 

Ricatti differential equation, II 21 
Richardson extrapolation, II 512 

Riemann 
integration, I 512 
sphere, II 243 
surface, II 273 

Riemann continued 
theorem ( conformal mapping), II 293 
zeta functiou, I 643 

Riemaun and Lebesgue integratiou, distiuc­
timt betweeu, I 562 

Riemann-Sch warz reflectiou principle, 
II 301 

Riesz-Fischer theorem, II 352 
Right 

conoid, I 316 
helicoid, I 273 
parallelepiped 

moment of iuertia, I 105 
volume aud surface area of, I 105 

Rings 
associative, commutative, division, I 47 
solid, volume, surface area and moment 

of inertia of, I 111 
R-iutegrability: see Riemann 
Risk, cousumer's and producer's, II 792 
Ritz-Galerkin method, ll 427 
Ritz method, ll 30.5, ll 422, ll .589 

convergence of, ll 424 
in conformal mapping, ll 305 

Robertson law of growth, I 164 
Rolle theorem, I 387 
Romberg quadrature formula, I 557 
Root-meau-square, I 9 
Roots of algebraic equatious (polyuomials), 

I 21 , ll 648 ff 
Budan-Fourier theorem, II 6.51 
connection with eigenvalues of matrices, 

II 6.'i2 
Descartes theorem, II 650 
estimates for, II 649 ff 
Lagrange, Maclaurin, Tillot iuequalities, 

II 649 
Sturm theorem, II 651 

Rotation, cartesian coordiuate system, 
I 198 

Rotlte 
function, II 217 
met.hod, II 215, II 464 

Ruled surfaces, I 221, I 316, I 320 
undevclopable, I 316 

Ruling lines, I 221 
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Runge-Kutta methods (formulae), li 492 ff 
Hieberbach error estimate, li 49.5 
Fehlberg, li 493 
Heun, II 493 
modified Euler, II 492 
standard, II 493 

Rytz costruction of axes of ellipse, I 118 

Saddle point, II 27 
Sample(s), II 73.5 

censored, li 789 
characteristics, II 736 
coefficient, correlation, li 737 

of skewness and kurtosis, II 737 
of variation, II 737 

correiation and covariance matrix, II 738 
covariance, II 738 
from normal distribution, II 738 ff 
function of stoclta.'>tic process, II 797 
mean, II 736 
median, li 740 
moment, II 737 

central, li 737 
ordered, II 739 
quantiie, II 741 
random, II 73.5 
range, II 7 40 
size of, II 736 
space, II 736 
standard deviation, II 737 
variance, II 736 

Sampling inspections (sampling plans), 
II 792 

Sarrus rule, I 31 
Scalar 

field, gradient of, I 232 
on surface, I 2.52 
potential, I 233 

Scalar (inner) product, II 221, li 222, II 333 
energetic, II 361 
in Hilbert space, II 333 

axioms of, II 333 
in space L2, I 663, II 221, II 222 
of functions, I 663 

axioms of, II 333 
of vectors, I 228 

Scalar (inner) product continued 
on a surface, I 2.52 

Scheffe method, II 782, II 784 
Sclunidt orthogonalization process, I 677 
Schwarz 

constants and quotients, II 87, II 88 
inequality, I 3.56, I 665, II 334, II 709, 

II 811 
Schwarz-Cauchy inequality, I 356 
Schwarz-Christofrei theorem, II 302 
Screw surface, I 316 
Scroll, I 316, I 321 
Second 

curvature, I 278 
mean value theorem, I .516 
order derivatives, I 379, I 408 

Sector 
of annulus, geometrical formulae, I 101 
of circle, geometrical formulae, I 99 

Segment of circle, geometrical formulae, 
I 99 

Seif-adjoint 
differential equation, II 66, II 79 
operator, II 79, li 351, li 353, II 359 
space, II 350 

Self-tangency, point of, I 291 
Semi-axis, polar coordinates, I 178 
Semi-closed interval, I 359 
Semiconvergent series, I 660 
Semicuhical parabola, I 126 
Semidiscrete methods, II 215, II 464 
Seminorm, II 449 
Semi-open interval, I 359 
Seutences, I 1 
Separable space, II 328 
Separation of variables, II 14, II 534 
Sequence(s) 

bounded above or below, I 339 
Cauchy, II 327 
convergent, I 337, I 637, II 260 
decreasing, I 341 
fundamental, II 327 
important formulae and Iimits, I 342 
increa.sing, I 341 
in metric space, II 325 
monotouic, I 341 
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Sequence(s) continued 
of constant terms, I 336 
of equicontinuous functions, I 639 
of functions of complex variable, li 260 
of matrices, II 111 
of partial sums, I 641, li 260, li 332 
of uniformly bouuded functions, I 638 
oscillating, I 344 
subsequences of, I 339 
with variable terms 

integration and differentiation of, 
I 639-641 

uniformly convergent, I 6:!7 

Sequeutial 
acceptance sampling, II 795 ff 
analysis, II 795 

Series 
application of, I 658 
convergent and divergent, I :344, I 641 
divergent, application of, I 659 
expansion into, I 650, I 652 
harmonic, I 344 
in two or more variables, I 651 
of functions of complex variables, 

convergent, II 260 
uniformly, li 261 

domain of convergence, II 261 
for functions sin z, cos z, ez, 11 263 
Laurent, 11 265 
power, II 262 
Taylor, II 264 

power, I 645 ff 
radins of convergence, I 64G 

tables, I 355 ff 
Taylor, I 652 
with variable terms 

condition of convergence, I 64 2 
differentiation, I 644 
integration, I 64:J 
survey of important formulae, I 654, 

I 661 
uniformly convergent, I !i42 

Serret-Frenet formulae, I 270 
Set(s) 

bounded, II 322 
closed, II 321, II 326 

Set(s) continued 
compact, II 329 
concepts of, I 44 
connected, II 320 
convex, II 321 
countable, li 323 

at most, li 323 
dense, II 326 
harmonic of four points, I 191 
linear, II 330 
mapping of, definitions, I 46 
measurable, I 560 
open, II 320, II 321, II 326 
point of accumulation (duster point, 

Iimit point), II 319 
regions, II 320 

Several variables, functions of, I 402 ff 
composite functions, Iimit, continuity, 

I 403 ff 
extremes, I 438 
introduction of new variables, I 432 
partial derivatives of, I 407 
survey of important formulae, I 446 ff 
transformations, I 432 ff 

Sheaf of planes, I 203 
Shells, problems in tlteory of, II 203 
Shepard correction, II 744 
Shooting method, II 515 ff 
Sigma (u) 

algebra, II 691 
limits, II 716 

Significance 
level of test, II 756 
test of, in normal regression model, 

li 773 ff 
Similar matrices, I 59, II 630 
Simple 

abstract fnnction, li 366 
epicycloid, I 125 
function, II 248 

harmonic motion, I 156 
hypocycloid, I 125 
operator (mapping), li 345 
pole, li 267 

Simplex method, II 848 
Simply connected region, II 321, II 322 
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Simpson 
quadrat11re formula, I 557 

rule, I 557 
Sine 

curves, I 1.55 
integral, I 450, I 550 

theorem, I 79 

Sine and cosine, integrals containing, I 491 ff 
Single layer potential, II 184, II 469 

Singular 
conic sections, I 189 
integral equations, II 238 

integral (solution), II 11, II 33 
points 

of curve, I 261, I 288 

of differential equations, II 26, II 119 

of holomorphic fnnctions, II 267 

of surface, I 306 

value 

Skew 

decomposition of matrix, II 607 
of matrix, II 607 

curve, I 263 
field, I 48 
lines, distance between, I 207 

surface, I 316, I 321 

symmetric 
matrices, I 51 
tensors, I 2.56 

Slack variables, II 828 

Slope of straight line, I 170 

Small numbers, computation with, I 398 ff 
Smooth 

curve, I 261, I 379, I 573 

function, I 379 
surface, I 306 

Sobolev space: see Space(s) 
Sobotka rectification of circular arc, I 114 

Solenoidal (sourceless) vector field, I 234 
Solid analytic geometry 

coordinate systems, I 195 ff 
cylindrical (semi-polar ), I 196 

rectangular, I 195 

spherical (polar), I 196 

linear concepts, I 199 ff 
quadrics, I 209 ff 

Solid analytic geometry continued 
surfaces of revolution, ruled surfaces, 

I 219 ff 
Solicis 

integral calculus, application of, I 624 

of type A, I 575 

volumes, surfaces, centroids anJ mo­
men ts of inertia, I 104 ff 

Solution 
of inequalities, I 7 
of integral equations: see Integral equa­

tions 
of ordinary differential equations: see 

Differential equations, ordinary 
of partial differential equations: see 

Differential equations, partial 
SO R method, II 619 

Space(s) 
adjoint, Jl 350 

Banach, II 331 

C([a, b]), C(O), II 325 

<C", IR 2", II 278 
compact, li 329 
complementary subspace, li 335 
complete, Il 327 

complex G'11 , II 322 

cnrve, definition, I 263 

dual, II 349 
E11 , II 321 
energetic, II 361 

Euclidean, II 319, II 321 

HA, li 361 
Hilbert, II 334, II 409 

ideal elements, II 327 

isometric, II 328 

L2(a, b), L2(0), II 323, II 324, II 220 

Lp(a, b), Lp(O), II 324, II 325 

linear metric, II 330 

metric, II 323 
linear, II 330 

normed, II 331 
sharply, II 667 

of distribu tions, II 342 

of elementary events, II 689 

operators in: see Operator(s) 
parameter, II 746 



774 SURVEY OF APPLICABLE MATHEMATICS 

Space(s) continued Spherica.l 
precompact, li 329 
prehilbert (pre-Hilbert), li 3:3:3 
probability, Il 691 
reflexive, li 3.50 
relatively compact, II 329 

self-adjoint, li 3.50 
separable, II 328 
Sobolev, li 340, li 409 

defined on boundary of domain, II 474 
immersion ( embedding) theorems, 

II 343, II 344 
weighted, II 341 

unitary, II 333 
Späthe theorem, Il 48 
Special 

Cauchy prohlem, II 1.50 
functious of mathematical physics, I 713 

Spectral 
aualysis (Fourier analysis), II 814 
decompositiou 

of autocovariance function, II 81.5 
of stationary process, II 817 

density, li 81.5 
estimatiou of, II 820 
inverse fonnula, II 816 
Parzen estimator of, II 820 
Tukey-Hauuing estimator of, li 820 

distrihution function, II 81.5 
radius, II 604 

Spectrum 
of matrix, II 628 
of operator, II 3.5.5 
of stochastic process, II 81.5 

Sphere 
equation of, I 209 
geometrical form ulae for, I 1 09 ff 
homeomorfic image of, II 322 

in Euclidean space, II 321 
in metric space, II 326 
open, II 322 
sector of, I 109 
segment of, I 110 
volume, surface, moment of inertia, 

I 109 ff 

coordinate surfaces, I 197 
coordinates, I 196, I .593 

generalized, I .593 
in solid analytic geometry, I 196 
trausformations 

of differential equatious and expres­
sions, I 432 ff 

of vectors and corresponding opera-
tors, I 236 

functions, I 70.5 
harmouics, I 708 
layer, I 110 
Legendre functions, I 70.5 
ring, I 110 
surface interior diameter, I 609 
triangle, I 82 

area, I 83 
Euler, I 82 
fundamental properties, I 83 
general, (oblique), I 85 
right-angled, I 84 

trigonometry, I 82 ff 
Spheroid, prolate and ohlate, I 110 
Spirals 

Archimedes, I 136 
hyperholic or reciprocal, I 138 
logarithmic, equiangular or logistic, I 139 

Spline(s), II 684 
classical, li 685 

cuhic, II 685 
natural, li 686 

Hermite, li 687 
Spring constant, I 156 
Square 

integrable functions, I 565, li 220 
matrix, I 50 
uets, li 549 

Stahility of solutious of system of ordinary 
differential equatious, li 113 

Standard 
deviation, II 701 

sample, li 737 
fundamental system, 1I 55 
integrals, I 449 ff 
sample, 1I 737 
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Star of planes, I 204 
Starting point of vector, I 226 
Statical moment 

integral calculus for 
curves in space, I 620 
plane curves, I 618 
plane figures, I 623 
solids, I 627 
surfaces, I 630 

Stationary 
distribution, II 800 
heat conduction equation, II 539 
points of function, I 393 
process, strict and weak, II 811 
traffic, II 806 

Statistic(s), II 736 
estimator, II 736 
mathematical, II 735 ff 
order, II 739 

Statistical model, II 735 
Steady state (oscillations), I 162 
Step of quadrattue fonnula, I 557 
Stereographie projection, II 243 
Stieltjes integral, I 567 ff 
Stiff differential system, II 511 
Stiffness matrix, II 423 
Stirling 

formula for factorials, I 550 
interpolation formula, II 681 

Stochastic process: see Process 
Stokes theorem, I 614, I 616, li 239 
Straight line(s) 

angle between, I 17 4, I 202 
bisectors of angle bctween, I 177 
condition for being parallel or perpendic-

ular to plane, I 208, I 209 
conditions for 2 to be parallel or perpen-

dicular, I 175, I 208 
directed (oriented), I 174 
distance of a point from, I 178, I 207 
equation, I 170, I 205 

directed (oriented), I 174 
examples and theorems, I 171 ff 
general, vector and parametric forms, 

I 170, I 205 
gradient and intercept, I 170 

Straight line(s) continued 
intersectimt of 2 lines, I 172 
normal equation, I 177 
pencil of lines, I 173 
reduced, I 205 
through 2 given points, I 172, I 206 

forming conic sections, I 189 
Stress tensor, II 203 
Strictly monotone operator, II 372 
Strang (Frechet) differential, II 373 
Strongly Bochner measurable abstract 

function, II 366 
Strophoid, I 151 
Sturges rule, II 742 
Sturm-Liouville problem, II 83, II 528 
Sturm theorem, II 47, II 651 
Subnormal, I 124, I 301 
Subsequences, I 339 
Subset, I 45 
Subspace, II 331 
Substantialy singular point, I 309 
Subtangent, I 124, I 301 
Successive 

approximations in solving integral equa­
tions, II 585 

overrelaxation metod, II 619 
Summabilities of series, I 645 
Summation convention (tensors), I 243 
Sumofseries, I344, I 641 

in metric space, II 333 
in space L2, I 667 

Supercritical damping, I 159 
Superosculating circle, I 284 
Supremum (l.u.b.), I 5 
Surface(s) 

conical, I 224 
contravariant and covariant vector on, 

I 252 
cuspidal edge, I 316 
definition, I 209, I 575 
differeutial calculus, application to, I 628 
discriminant, I 324 
edge of regrassion, I 316 
element of area, I 324 
elliptic point of, I 325 
envelope of one-parameter family, I 318 
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Surface(s) continued 
equipotential, I 233 
explicit equation of, I 306 
finite piecewise smooth, I 305 
first fundamental form, I 25:J, I 322 
fundamental coefficients, I 324 
Gaussian curvature, I 330 
generator of, I 317, I 320 
hyperbolic point of, I 325 
integrals, I 609 ff 

of first and second kinds, I 610-611 
interior diameter, I 609 
lines of curvature, I 331 
mean curvature, I 330 
non-developable, I 316 
normal curvature, I 328 
normal secti011 radins of curvature, I 328 
of revolution, I 219 
oriented, I 609 
orthogonal conj ugate net ou, I 331 
parabolic point of, I 325 
parameters and parametric equations, 

I 306 
regular points on, I 209, I 306 
ruled, I 221 
scalar on, I 2.52 
scroll (skew surface), I 316 
second fundamental form, I 325 
second order, I 209 ff 
shape with respect to tangent plane, 

I 32.5 
simple finite piecewise smooth, I .57.5 
singular point on, I 209, I 306 
tensor on, I 2.51 

Surjective operator (mapping), II 344 
Sylvester law of inertia, I 67 
Symbols O(g(x)), o(g(x)), I 376 
Symmetrie 

eigenvalue problem, II 82 
kernels of iutegr<Ll equations, I I 2:n 
matrices, I 51 
operators, li 3.59 
problems, li 82 

System(s) 
closed in Hilbert space, II 3:H 

in space L2, I 67.5 

System(s) continued 
complete in Hilbert space, II 337 

in space L2, I 675 
of decompositions, li 447 

regular, li 447 
of ordinary differential equations, II 2, 

li 4, li 99 ff 
of partial differential equations, li 149, 

II 201 
orthogonal in Hilbert space, li 336 

in space L2, I 670 
orthonormal in Hilbert space, li 336 

in space L2, I 670 

Table 
contingency, II 763 
correlation, li 7 41 
frequency, II 7 41 
of aualysis of variance, li 782 

of Bessel functions Jo(x), J1(x), Yo(x), 
Y1(x), I 69.5, I 701 

of boundary value problems, li 411 
of Fourier transforms, li 582, li .583 
of integrals, I 470-.511, I 541 ff 
of Laplace transforms, II .578, li 579 
of Legeneire polynomials, I 707 
of solved differential equations, II 120 ff 
of zeros of Jo(x), J1(x) and their deriva-

tives, I 695 
Tabular points, li 675 
Tangent and cotangent, integrals containing 

them, I .501 ff 
Tangent(s) 

developable (surface), I 316 
direction, angle and length, in polar 

coordinates, I 300 
drawn to curve from arbitrary point, 

I 303 
length, in polar coordinates, I 301 
plane of surface, I 311 
plane to curve, I 272 
surface, I 316 

theorem, I 79 
to conic, I 191 ff 
vect.or field, I 249 
vector to curve, I 232, I 266 
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Tangential vector to surface, I 311 
Taylor 

expansion for functions 
of one complex variable, II 264 
of several complex variables, li 285 

expansion method, II 491 
formula, I 396 

for polynomials, I 23 
theorem, I 396, I 401 

for several variables, I 414 
series, I 652, II 264 

Temperature distribution 
examples using 

finite difference method, li 559 
Fourier method, II 539 ff 
Laplace transform, II 571, li 572 

Tensor(s) 
alternating, I 256 
calculus, I 242 ff 
characteristic numbers of, I 2.'i8 
conjugate directions, I 257 
contravariant and covariant, I 247 

on surface, I 249 
deformation, I 249, I 256 
first fundamental of surface, I 252 
in space, I 246 ff 
indicatrix of point, I 257 
indices, lowering and raising of, I 255 
metric 

of space, I 24 7 
of surface, I 2.52 

on surface, I 251 
quadratic, I 24 7 
second fundamental of surface, I 2.53 
symmetric and skew-symmetric, I 2.55 
symmetric quadratic, I 254 

Term-by-term 
differentiation, I 644, II 261 
integration, I 643, II 261, li 262 

Termination criterion for iterative methods, 
II 616 

Test{s) 
chi-square, II 761 
Fisher, of periodicity, li 819 
function, II 82 
goodness of fit, li 760 

Test(s) continued 
hypothesis, li 755 
1\olmogorov-Smirnov, II 763 
of linearity, II 77.5 
of significance in normallinear regression 

model, li 773 ff 
of size a, II 756 
one-sample, II 757 
one-sided aud two-sided, II 756 
paired, II 759 ff 
parametric aud non-parametric, II 755 
t, II 757 ff 
two-sample, II 757 ff 
ulliformly most powerfull, II 756 

Theorem{s) 
Abel, I 647, II 263 
Arzela-Ascoli, I 639, II 329 
Banach 

Oll continuous extensioll 
of functional, II 349 
of operator, II 349 

Oll contractioll mapping, II 345 
on fixed point, II 345 
Oll inverse operator, II 349 

Bayes, II 693 
Bernoulli, II 731 
binomial, I 19, I 653 
Bolzano-Weierstrass, I 340 
Budan-Fourier, II 651 
Cauchy, I 349 
Cauchy (complex variable), li 252, li 2.53, 

li 2.58 
Cauchy-Kovalewski, II 1.51 
central Iimit, II 733 
Chebyshev, II 669 
comparison, II 47, II 87 
cosine, I 79, I 85 
Courant, II 86 
De 1\foivre, I 11 
Descartes, II 650 
"edge of the wedge" (functions of several 

complex variables), II 286 
embedding, II 343, II 344 
Euler, I 329, I 416 
expansion, II 90 
Floquet, II 49 
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Theorem(s) continued Theorem(s) continued 
Fredholm, II 225 in onlinary differential equations, II 5, 
Frobenius, I 33 II 6, II 8 

fundamental of algebra, I 21 
Gauss, I 240, I 333, I 613, I 616 

Gauss-Markov, II 770 

Glivenko, II 745 

Green, I 240, I 605, I 616 

Hahn-Banach, II 349 
Harnack (first and second), II 180 

Hilbert-Sclunidt, II 233 
Hurwitz, II 114 
idelltity (functions of complex variable), 

11 275, II 285 
immersion, II 343, II 344 
implicit fuuctious, I 423, I 4:10 

integral, Cauchy, II 252, li 258 
Jackson, II 672 

Khintchiue, li 7:32 
Kueser, II 48 
Kovalewski, li 151 

Kolmogorov, li 7:32 
"Kugelsatz" (functions of several com-

plex variables), II 286 
!arge numbers, 11 731 ff 
Lax-Milgram, 11 209 
Levy-Lindeberg, II 733 

Liapunov, II 733 
Liouville, II 181, II 269 

Markov, II 732 
mean value, I 387, I 516 

mean value (for hannonic functions), 
11 180, li 181 

Moivre-Laplace, II 73:J 
Oll continuous extension of functional 

and operator, II 349 

Oll collvergeuce 
of finite difference method, l I .565, 

II 566 

of finite element method, li 447 
on eigenvalues 

of differential equations, I I 84 

of operators, II 355, II 356, II 363 

on existence and uniqueness of solution 
of problems 

in partial differential equations, 11 177, 
11 190, 11 206, II 210, 11 214, II 219 

on Fredholm integral equatiolls, 11 225 
on Laplace and Fourier transforms, 

II 575 ff 
on maximum 

for harmonic functions, II 177 
for heat equation, II 200 

on minimum of functional of energy, 
II 354, II 360 

on removable singularity, II 181, II 268 
residue, II 270 
R.iemann (on conformalmapping), II 293 
Riemann-Lebesgue, I 688 
Riemann-Schwarz reflection principle, 

II 301 
Riezs-Fischer, 11 352 
Rolle, I 387 
Schwarz-Christoffel, II 302 
sine, I 79, I 85 
Späthe, II 48 
Stokes, I 614, I 616 
Sturm, II 47, II 651 
tangent, I 79 
Taylor, I 396, I 414 
Valle-Poussin, II 669 
Weierstrass 

approximation by polynomials, I 370, 
II 326, II 327 

complex variable, II 261 
Tillot inequality, II 649 
Time 

series, II 797 
service aud waiting, II 806 
to failure (lifetime), II 786 

mean, II 786 
Toeplitz matrix, li 611 
Topologie group, I 713 
Torsal lines, I 321 
Torus, I 111, I 634, li 279, II 280 

Total 
differential, I 409 
discretization error, 11 483 
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Total contin ttcd 
sum of squares, II 770, li 783 
system of events, II 689 

Trace 
of functi011 from Sobolev spa.ce, li :J41 
of matrix, I 53 

Tractrix, I 147 
Traffic intensity, II 807 
Trajectory, trajectories 

of stochastic process, II 797 
orthogonal and isogonal to solutions of 

differential equations, II 36 
Transeendental 

branch point, II 274 
functions, I 364, I 450 
real numbers, I 5 

Transeendeut curve, I 263 
Transfer 

function offilter, II 821 
of boundary conditions, II 520 

Transformation(s) 
affine, I 189 
congruent, of cartesian coordinates m 

plane, I 186 
mapping, I 46, I 417 
matrix of coordinate systems, I 243 
of differential expressions in to polar, 

cylindrical and spherical coordinates, 
I 434 ff 

of random variables, II 727 ff 
projective, in plane, I 190 

Transforms: see Integral transforms 
Transient oscillations, I 162 
Transition 

intensity, II 801 
matrix, II 804 
probability, II 799, II 804 

Translation, cartesian coordinate system, 
I 198 

Trasportation problem, II 828 
Transversality conditions (in variationa.l 

calculus), II 397 
Transverse vibration of rod, liifferential 

equation, II 142 
Trapezoidal rule for definite int.egrals, I 557 
Trial function, II 82 

Triangle( s) 
area of, I 169 
centroid of, I 200 
formulae for geometric elements of, I 95 ff 
geometrical formulae, I 95 ff 
general (scalene), I 78 

formulae for determining, I 79 ff 
fundamental and further relations, 

I 79 ff 
solution, I 80 ff 

inequality, I 8, I 10, I 665 
in metric and normed space, II 331 

spberical, I 82 
Triangular 

elements: see Finite elements 
nets (finite difference method), 1I 550 

Triangulation, II 430 
Trigonometrie 

equations, I 77 
Fourier series, I 678 ff 
functions 

addit.ion formulae, I 74 
behaviour of, I 71 
definitions of, I 70 
difference of, I 76 
expansion into series, I 655 
half-angle formulae, I 74 
higher powers of, I 76 
inverse, I 86 ff 
multiple-angle formulae, I 74 
of same angle, relations among, I 71 ff 
powers of, I 76 
product of, I 76 
relations between, I 71 
signs in individual quadrants, I 72 
sum of, I 76 
values for some special angles, I 73 

interpolation, II 683 
Trigonometry 

plane, I 78 ff 
spherical, I 82 ff 

Trilinear hexagonal three-dimensional ele­
ment, II 442 

Tripie 
integrals, I 589 ff 

im proper, I 594 ff 
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Tripie continued 
method of substitution for, I 5n 

scalar prod uct of three vectors, I 230 

Trochoid, I I27 
Truncation error, II 483 

T-scheme, I 557, II 513 

T -test, II 757 ff 

Tube 

domain, II 280 

volume and moment of inertia, I I 08 

Twisted curve, I 26:3 

Two or more variables, fuuctious of, I 402 ff 

extremes, I 438 ff 

introduction of new variables, transfor­
mations, I 432 ff 

survey of important formulae, I 446 
Two-sided estimates in eigenvalue prob­

lems, II 87 

Ultrahyperbolic equation, II In 
Umbilic, umbilical point, I :330 

Undamped 
oscillations 

forced, curves of, I I57 

free, curves of, I I56 
vibrations, differential equations, I I I3I, 

II 132 
U ndetermined coeflicients, Lagrange 

method, I 442 

Uniform con vergence 
sequences with variable terms, I 6:37, 

li 261 

series with variable terms, l 642, II 26I 

Uniformiy 

bounded sequences, I 6:38 

convergent integral, I 536 
Union of sets, I 45 

Uniqueness theorem (functions of several 
complex variables), II 285 

Unisolvency (finite element method), li 4.30 

Unitary space, li 333 
U nit tangent vector of curve, I 2.32, I 266 

Univalent (simple) function, II 248 

Unsubstantially singular point of curve or 
surface, I 261, I 309 

U pper integral of Darboux sums, I 5I2 

Valle-Poussin theorem, li 669 
Vamlermoude matrix, li 6II 
Variables 

functious of two or more, I 402 ff 

separation of, for solving differential 
equations, li I4, II 534 ff 

Variance, II 699 

of linear transformation of random van­
ables, li 728 

sample, II B6 
Variation 

of functional, II 379 
in Du Bois-Reymond form, li 380 

in Lagrange form, II 380 
of parameters (constants), li 18, li 56, 

II I08, II I61 
VariatiOJtal 

calculus: see Calculus of variations 

condition, II 411 
methods, li 409 ff 

in conformal mapping, li 305 

Vector(s) 
absolute value, I 227 

algebra, I 24, I 225 ff 
analysis, I 23I ff 
circulation along closed curve, I 238 

collinear (parallel) and coplanar, I 227 

column and row, li 704 
complex, I 24 
components (coordinates) of, I 24, I 225 

conformahly colinear (parallel), I 227 

contravariant and covariant, I 242, I 244, 
I 247 

cross product, I 229 
curvilinear aud surface iutegrals, I 238 ff 
derivative, I 23I 
direction angles, direction cosines, I 228 

dot product of, I 228 
equation of straight line, I 205 
field, I 231 

divergence and curl, I 234, I 235 

irrotational, I 235 

potential, I 235 

solenoidal (sourceless}, I 234 

flux of, I 240 
function, I 231, I 262 
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Vector(s) conlinued 
in algebra, I 24 
inner product, I 228 
in three-dimensional space, I 225 
laws, I 24, I 226 
length or magnitude, I 168, I 227 
linearly dependent and independent, I 24 
magnitude, norm, modulus, I 227 
mixed product, I 230 
n-component (n-coordinate), I 24 
non-coplanar in space, I 243 
notation for Stokes, Gauss aml Green 

'theorems, I 239, I 616 
of acceleration, components of. I 276 

on surface, I 252 

outer product, I 229 
principal normal (unit), I 2:J2 
product, I 229 
rank of system of, I 25 

real, I 24 
scalar product of, I 228 
space 

abstract, II 330 
n-dimensional, I 24 

triple product, I 230 
zero (null), I 24, I 225 

Vibrating string equation, II 196, II 534 
Vibrations (harmonic, damped, un­

damped), II 131, II 132, II 133 
Virtual 

cone, I 216 
quadric, I 218 
sphere, I 209 

Void set, I 45 
Valterra integral equat.ions, II 240 
Volumes, formulae, I 101 ff 

Wallis product, I 343, I 358 
Wave equation, II 191 
Weak 

convergence, II 350 
(Gateaux) differential, II 367, II 372 
stability, II 502 
solution 

of boundary value prohlems, TI 209, 
II 211, II 409 

Weak continued 
of evolution problems, II 219, II 464 
of parabolic problems, II 464 

Weber function, I 700 
Weierstra.'>s 

M -test, I 642, II 261 
theorem, I 370, II 261, II 326, II 327 

Weight, I 555 
function, I 672 

Weingarten fundamental equations for 
surfaces, I 333 

Well-posed 
difference scheme, II 564 
problems, II 155, II 177, II 194, II 200 

White noise, II 798, II 812, II 817 
Wilkinson method, II 644 
Wronskian determinant, II 51 

Yule-Walker equations, II 813 

Zero 
divisors, I 48 
funct.ion in space L2, I 664, II 221 
of polynomial, I 21 
vector, I 25, I 225 

Zeta function, I 643 
Z-transformation, II 739 
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I, or II means Volume I, or Volume II, respectively. The symbol ff means "and 
following pages". For example, "Abstract functions, II 364 ff" means that ab­
stract functions are treated in Volume II, starting with page 364. Articles (definite, 
indefinite) have been omitted whenever it was possible. 

Abel 
identity, II .52 
integral equation, II 242 
summability of series, I 645 
test of convergence of series, I :350 
theorem of power series, I 64 7, II 263 

Abelian groups, I 47 
Abscissae of quadrature formula, I 55.') 
Absolute convergence, I :345 
Absolutely continuous operator, II :351 
Absolute sta.bility, li 506 

domain of, Il 511 
interval of, II 506 

Absolute value 
of complex number, I 10 
of real number, I 8 
of vector, I 227 

Abstract function(s), II 364 ff 
Bochner integrable, II 367 
continuity of, II :365 
derivative of, II 366 
integral of, II 366 
Iimit of, II 366 
simple, II :366 
strmigly measurable, li 366 

Acceleration, vector of, components, I 276 
Acceptance sampling, li 792 ff 

acceptance number, II 792 
fraction defective, II 792 
operating characteristic, I I 792 
procedures (sampling inspections, sam-

pling plans), li 792 
by attributes, II 793 
by variables, II 795 
multiple, II 794 
rectifying, II 794 

sequential, II 795, II 796 

Acceptance sampling continued 
risk, consumer's and producer's, II 792 
sequential, II 795, II 796 

Acc.umulation poiut, I 340, II 319 
in metric space, II 326 

Adams-Bashforth method, II 502 
Adams-Maulton method, II 503 
Addition 

of tensors, I 254 
of trigonometric functions, formulae, 

I 74 ff 
of vectors, I 225 

Adjoint 
difl"erential equation, II 79 
integral equation, II 224 
Operator, II 350, II 352 ff, II 359 
space, II 350 
system of coordinates, I 196 

Adjusted value, II 779 
Admissible parameter, I 264 
Affine ratio and transformations, I 189 ff 
Airy function, II 203 
Aitken 

estimator, II 777 
theorem, II 777 

Algebra 
fundamental theorem of, I 21 

Algebraic 
brauch point, II 274 
curves, I 149 ff, I 263, I 289 
equations 

numerical solution of, II 648 ff 
of higher degree, I 37 ff 
quadratic, cubic, biquadratic, I 39 ff 

multigrid method, II 626 
rea.l numbers, I 5 

Almost 
everywhere, I 560 



INDEX 887 

Almost contin·ued 
uniform convergence, Il :261 

Alternating 
direction met hod, li 560 
series, I :350 
tensor, I 256 

Amplitude 
of complex number, I 11 
of sine curve, I 156 

Analysis of variance (AN OVA), li 782 
lev,els, II 71):2 
metbad of multiple comparison, II 782 

Duncan, Scheffe, Tukey, II 78:2, II 784 
multivariate (MANOVA), II 785 
one-way classification, II 782, II 78:3 
sum of squares, II 71):3 

A~factor, residual, total, li 78:3 
table of, II 78:2 
two-way classification, II 782 

Analytic 
continuation ( extension) 

of functions of one com plcx variable, 
II 275, II :27:2 

of functions of several complex vari­
ables, II 286 

function of complex variable, II 274, 
II 276 

geometry 
plane, I 167 ff 
solid, I 195 ff 

Anchor ring, equation of, I :220 
Angle(s) 

between line and plane, I 208 
between two curves, I :304 

between two planes, I 202 
between two straight lines, I 17 4, I 208 
bisectors of, I 178 

circular measure and degrees, I 69 ff 

of contingence, I 278 
trigonometric functions of, I 71 ff 

Angular 
extension, II 181, II 26:3 
frequency, I 156 

Annuloid, volume, surface area, moment of 
inertia, I 111 

ANOVA, li 78:2 

Aperiodic motion, I 159 
A posteriori estimates, II 557 
Applications of integral calculus in geome­

try and physics, I 616 ff 
Approximate 

computation of integrals in finite element 
method, II 4.50 

expressions, I :398 
solution of integral equations, li .585 ff 
solution of ordin-ary differential equa-

tions, II 4 78 ff 
boundary value problems, II 515 ff 

finite difference method, II 52.5 
invariant imbedcling method, II 524 
methods of transfer of boundary 

conditions, li .520 
multishooting method, II 518 
shooting method, II 515 

initial value problems, II 48:3 ff 
Euler method, II 483 
extrapolation methods, li .512 
linear k-step methods, II 496 

predictor-corrector methods, II 508, 
II 509 

Runge-Kutta methods, II 492 

Approximation(s), II 665 ff 
hest, li 666 
Chebyshev, II 669 
curve constructions, I 165 ff 
finite difference, II .546 
first and higher, for various functions, 

I :399 ff 
in Hilbert space, li 667 
in linear normecl space, II 666 
interpolation, li 66.5 
minimax, II 669 
of function by polynomials, I 370, II 669 
succesive, for Fredholm integral equa-

tions, li 585 
uniform, II 669 

A priori extimates, II 5.56 
Archimedes spiral, I 1:3.''i 

constructions and theorems, I 1:36 ff 

equation in polar coordinates, I 1:36 
An·sin, arccos, arctan, arccot functions, 

I 86 ff 



888 SIJI\VEY OF Af'l'LICABLE MATHEMATICS 

Areas of plaiH' figures Autoregressive process (AR), li 812, li 818 

formulae for, I 95 tr 
integral calculus, I 622 

Argand diagram, I 10 

Argument( s) 

calculation, li 648 ff 

by Bairstow method, II 659 
by Bernoulli-Whittaker method, 

li 65:3 
by Graeffe method, II 6.54 
by iterative methods, II 661, li 662 

by Newton method, li 6.58, li 66:3 

by "regula falsi" method, II 658 

of complex numher, I 11 

of function, I :359 
Arithmetic sequences, I 16 

Arsinh, arcosh, artanh, arcoth functions, 
I 92 ff 

Arzela (Ascoli) theorem, I ():39, li :3:2!) 

Associate Legeneire funrt.ions, I 70.5 

Associative 

law, I 4 
for vectors, I 226 

rings, I 4 7 
A-stability, li .') 11 

A-stable methods, II 4G7, II 511 

Astroid, I 1:34 

Asymptotes 

of hyperbola, I 121 

of plane curves, I 288 ff 
in polar coordinates, I :{02 

Asymptotic 

behaiviour of integrals of differential 
equations, II 46 

cone of two hyperboloids, I 214 

curve ( or line) on surface, I :3:32 

directions on surface, I :32G 

expansions of series, I GGO 
point of curve, I 1:38 

stability, li 11:3 
Autocarrelation function, II 811 

Autovariance 

function, II 811 

matrix, li 8U 

Autonomaus system, I! 102 

Auxiliary equa.tion, II 58 

Axes of roordinates, I 1G7, I 195 
Axial pencil of planes, I 20:3 
Axioms for 

addition and multiplication, groups, 
rings, I 47, I 48 

distance, li 323 
metric, li 32:3 
norm, II 3:31 
sralar product, II ;3;3;3 

Backsuhstitution, II .597 
Backward 

analysis of round-off errors, li 603 

difference, li G78 
difference method, li 504 

light cone, II 281 
Bairstow method, II G59 
Balancing of matrix, li G44 

Ball, I! 278 

Banach 
fixed-point theorem, II :345 
spare, li :331 
theorem on 

continuous extension 
of functional, li 349 
of operator, II 349 

contraction mapping, II 345 
on inverse operators, II 349 

Band matrix, II Gl3 
Bandwith of ma.trix, II G1:3 
Basic 

functions, li 423 
point (in linear programming), II 838 
variables (in linear programming), II 837 

Basis in Hilbert space, II 338 
orthonormal, li 338 

Bayes theorem, II G93 
Bendingflexion of bar, li 140 

ber, bei functions, I 704 
Bernoulli 

coefficients, I .')11 
equation, II 20 

lemniscate, I 151 

trials, li 710 
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Bernoulli continued 
succ.es and failure, li 710 

theorem, li 7:31 
Bernoulli-Whittaker method, li 65:J 

Berry-Esse!l inequality, II 7:30 

Bertrand c.urves, I 296 

Bessel 
differential equation, I 69:3, II 70, II 72, 

II 1:!5, II 542 
modified, I 702, II 1:35 

functions, I 692 ff, II 72, II 7:3, II 1:35, 
II .542 

bei x, ber x, I 704 

integral representation of, I 694 

Jo(x), Jt(x) (tables of), I 69.5 
roots of ( tables ), I 69.5, I 697 

roots of their derivatives ( tables ), 
I 695 

kei x, ker x, I 705 

Iimit form of, I 697 

modified, I 702 

of first kind, I 69:2 

of second kind, I 700 
of third kind, I 702 

rec.ursion formulae, I 694 

Yo(x), Yt(x) (tables of), I 700, I 701 

inequality, I 674, II :3:37 

interpolation formulae, II 681 
Best approximation 

in Hibert space, II 667 

in linear normed space, II 666 

uniform, II 669 

Beta function, I 549 

Bias of the estima.tor, II 74i:l 

Bidic.s, II 279 

Dieberbach estimate, II 495 

Biharmonic. 
equation for Airy function, II 20:3 

problem, II 20:3 

Biholomorfic. mapping, II 288 

Bijective opera.tor (ma.pping), II :345 

Bilinea.r 
form, II 208, II 411, II 441 

V-bounded, II 209 
V -elli ptic., II 20!) 

ßilint>ar continued 
Lagrange element two-dimensional, 

II 4:38 
Binomial 

coefficients, I 19 
equations, I 42 
integrals, reduction formulae for, I 490 

series, I 65:3 
theorem, I 19 

Bi normal ( unit vector) to curve, I 269 

Biquadratic 
equations, solution 

algebraic, I 42 
by factorization, I 41 

Lagrange element two-dimensional, 
II 438 

Bisectors of angles 
between two straight lines, I 177 
of triangle, I 80 

Biending problem, II 829 
Boclmer integral, II :J67 
Bolzano-Cauchy condition, I :3:37, I :34fi, 

I :372 
improper integrals, I 524, I 529 
of uniform convergence, I 642 

Bolzano-Weierstrass theorem, I 340 
Bonferroni inequality, II 690 
Bore! field, II 691 
Boundary 

c.onditions, II 80, II 155, II 176, II 410, 
II 480, II .551 

homogeneous, II 80, II 410 

linear, II 80, II 480 
nonhomogeneous, II 410 
separated, II 480 

correspondence principle, II :300 
element method, II 469 ff 

direct, II 469 
indirect, II 4 70 

integral equation method, II 469 
of a set, II :320 
point of a net ( mesh ), II 56:3 
properties in conformal mapping, II :304 
value problems of ordinary differential 

equations, II 80, li 480 
a.pproximate solution, II .515 ff 
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Boundary continued Calculus continued 
by finite difference method, II 525 ff 
by finite element method, II 428 ff 
by shooting method, II 515 
by transferring boundary condi­

tions, II .'520 
by variational methods, li 409 ff 

two point, II 480 
value problems of partial differential 

equations, Il 1.'55, II 176, II 204 ff, 
II 207 ff 

approximate solution, II 409 ff, II 546 ff 
by finite difference method, II 546 ff 
by finite element method, II 428 ff 
by product method, li 5:39, li 54:3 
by variational mf'thods, II 409 ff 

value problems, table of, I1 41:3 
Bounded 

diameter, I 11:3 
function, I :366 
operator, li :34 7, II :352 ff, II :372 
region, II 321, Il :322 
sequence, I :3:39 
set, II 321, II :i22 
variation, function of, I :370 

Bounds of real numbers, I 5 
Brachistochrone problem, II :382 
Brauch 

of a multivalued function, II 276, II 272 
point 

algebraic (of finite order), II 274 
transeendental ( of infinite order), 

II 274 
Brauches of hyperbola, l 119 
Budan-Fourier theorem, II G51 
Bundle of planes, I 204 

Calculus 
differential, I :35!) tr 
integral, I 448 tr 
of observations, II 778, II 779 

adjusted value, II 779 
of variations, II :374 ff 

brachistochrone problem, II :382 
canonical form of Euler equations, 

II 407 

categories of problems 
elementary, II 374 
functionals depending on functions 

of n variables, II 392 
Lagrange, II 406 
moving (free) ends of admissible 

curves, II 395 
parametric, Il 403 
simplest case of isoparametric prob­

lem, II 399 
with constraints, II 405 
with generalized constraints, II 406 

curves of r-th dass ( of dass Tr ), II 375, 
II :l85 

distance of order 7' 

of curves, II :l76, II :l85 
of hypersurfaces, II 392, li :l93 

epsilon (e:)-neighbourhood of order r 

of curve, II :l76, II 385 
Euler equation and special cases, 

Il 381' Il 400 
Euler-Ostrgradski equation, II :l94 
Euler-Poisson equation, li 389 
extremal of variational problem, II 381 
functions of dass Tr, II 375, II 385 
Hamilton 

differential equations, II 407 
function, II 407 

isoperimetric problem, II 399 
Lagrange variational problem, I1 406 
Legendre tranformation, II 407 
necessary c.onditions for extremum, 

II :l81, II :386, II :l89, II 394, 
II :396, II 400, II 404, II 406 

positive homogeneaus functions, II 403 
problems 

parametric, II 40:3 
with constraints, II 405 
with moving ends, II 395 

regular hypersurfac.e, II :392 
system of 

Euler equations, II :l87, II 404 
Euler-Poisson equations, II 391 

transversality conditions, II :396, I1 397 
va.riation of functional 
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Calculus contiTI:ued 
in Du Bois-Reymond form, li 380 

in Lagrange form, li :ISO 

operational, II 567 ff 

tensor, I 242 ff 
vector, I 225 ff 

Camp-Meideil inequality, li 729 

Canonical 

correlation, II 785 

form of Euler equations, li 407 

system of differential equations, li 99 

Cantelli inequality, II 729 

Caratheodory region, li :lOS 

Cardioid, I 132 

Cartesian 

Coordinates 

in plane geometry, I 167 

congruent transformations, I 186 

relations with polar coordinates, 

I 179 

in solid geomctry, I 195 

relations with cyli ndrical and spher­

icaJ coordinat!'s, I 197 

singtdar points, I 1 !)8 

transformation by translation, rota­

tion and reflection, I 1 !)8 ff 

product of sets, I 45 

Cask volume formulae, I 111 

Cassinian ovals, I 151 

Catenaries ( chainl'tt!'s ), I 145 

constant strength, I 147 

general, I 145 

involute of (called tractrix), I 147 

Cauchy 
continuity definition, I ;3()6 

form of Ta.ylor theorem, I :Fl7 

inequality, I 8, I 5:t3 

integral formula and tlwowm 

for functions of one compl<'X variable, 

li 252, II 25:3 

for functions of S<'VPral complex vari-

ables, II 285 

integrals, type of, II 255 

method, II lfi5 

principal vah!f' of integraJ, I 524, I 544, 

li 25fi 

Cauchy continued 

problem for partial differential equations, 

li 150, II 191, II 197 
product of series, I 31\4 

root test for convergence of series, I 34 7 

sequence, II 327 

theorem, I 349, II 252, li 285 

Cauchy-Dirichlet formulae, II 37 

Cauchy-Kovalewski theorem, li 151 

Cauchy-Riemann 

equations 

for functions of one complex variable, 

Il 246 
for functions of several complex vari­

ables, li 28:3 

integrals, I 51:3 

Cauchy-Schwarz inequality, I .5:33 

Cea Iemma, II 424 

( :ensoring, li 789, li 790 

censored random sample, II 789 

method of maximum likelihood for, 

li 790, li 791 

non parametric estimation for, li 792 

Kaplan-Meier ( product-limit) estimator, 
li 7!)1 

random, li 790 

type I (time), II 789 

type li (failure), li 789 

Central 

difference, II 680 

element, li 843 

Iimit theor('ms, li 7:30, li 7:3:l, li la4 

Centre 

of curvature, I 286, I :301 

construction for cyclic curves, I 136 

of gravity 

curves in space, I 620 

plane curves, I 619 

plane figu res, I 62:3 

solids, I 627 
surfaces, I G:n 

(singular point of differential equation), 

Il 27 
( :Pntroids 

plane figures, I 95 ff 

solids, I 104 ff 
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Cesaro summable series, I 354 

Chain 

rule, I 382 

of regions, II 275 
Chainettes: see Catenaries 
Change of order of different.iation, I 408 

Chapman-Kolmogorov equations, li 800, 
li 805 

Characteristic 
curve of fa.mily, I :319 
equation, li 58, li 104 

exponent, II 50 

function, II 81, li :206, li 2:25, II 70:3, 
II 710 

matrix 
of Jordan block, I 60 
of square mat.rix, I 59 

polynomial, II 50 

of k-step method, II 49R 
of mat.rix, I 59, II 629 

row, II 842 

strip, II 166 

value in eigenva.I UP prohiPm, II !i!), II R I, 
II 225 

of integral equation, II 225 

of matrix, I 59, II 628 

Characteristic direction, II 152 

Characteristics, II 152 
of random variable, II 6!}7 

of random vector, li 70X 

sample (empirical), II 7:3G ff 

theoretica.l, II 7:3G 
Chasles theorem, I :321 

Chebyshev 

alterning 
property, II 670 

set, li G70 

approximation, II 669 

equation, I 712 

expansion, II G74 

inequality, II 72!} 

polynomials, I 711, II l:Hi, II G71, II 77G 
theorem, II GG!} 

Chi square test, li 7G1 

Choleski factorization, II GOO 

Circle ( =disc), II 320 
Circle, I 113, I 181 

circumscrihed on triangle, I 80 
closed, II 321 
conchoid of, I 153 
constructions of, I 112 
diamet.er, bounded and conjugate, I 113 
equation of, I 181 

in polar Coordinates, I 182 
formulae for geometrical elements of, I 99 

inscribed in triangle, I 80 
involute of, I 1:34 

curtate and prolate, I 135 
of curva.t.ure, I 285 
open, li :no 
pa.ra.met.ric equations of, I 181 
rectification of, Kochailski and Sobotka, 

I 11:3, I 114 
superosculating, I 287 
Tha.let, I 11:3 

Circular 
cask, volume formula, I 111 

fr<'quency, I 156 
CircumferPnces, formulae for plane figures, 

I 95 
Cissoid of Diocles, I 149 
Clairaut differential equation, II 32 

generalized, II 16:3 
Class, II 742 

freqtu .. ncy, II 742 

int.ervals (cells), II 742 
Classical solution of partial differential 

f'(j ua.tions, II 149, II 175 
Classifica.tion 

one-wa.y, II 782, II 783 
t.wo-wa.y, II 782 

Cla.usen transformation, I :35:3 
Closed 

circle, I 402, li 320 
(completed, extended) plane of complex 

numbers, II 24:3 
curve, I 2G1 
d isc, II :320 

in tPrva.l, I 359 

problem, II 90 
region, I 402, li :321 
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Closed continncd 
set, II 321, II :326 
subspace, II 3:H 
system in Hillwrt space, II 3:n 

Closure of a set 
in Euclidean space, II 321 
in mctric space, II :326 

Clothoid, I 141 
Cluster point, li :H 9 
Codazzi fundamental cquations for surfaces, 

I 333 
Coefficient(s) 

of determination, II 771 
of kurtosis ( excess ), li 702 
of quadrature formula, I 555 
of skewness, II 702 
of Variation, II 702 

Coercive 

functional, li :no 
operator, li :n2 

Cofactor in determinant, I :W 
Collatz theory, li 78 ff 
Combinations, definit.ion and t!teorems, 

I 18 
Common logarithms, I 15 
Commutative 

groups and rings, I 47 ff 
laws governing ved.ors, I 22G, I 229 

Compact 

operator, li 351 
space, II :329 
support, II :3:39 

Camparisan 

function of eigenva.lue problem, li 82 
test for convergence of series, I 346 
theorem, II 47, li 87 

Com plementary su baspace, li :3;35 

Complement of a set, II :322 

Complete 

analytic function, II 276 
hull, li 410 
induction, I 2 
integral, II 161 
Reinhardt domain, II 280 
sequence, II :3:3:-; 
space, li :327 

Complete continucd 
system 

in Hilbert space, li :3:37 
of eigPnvectors, II 35G, II 363, II 631, 

II 90 
Completely continuous operator (mapping), 

II 351 
Campletion of metric space, II :327, li 410 
Camplex 

derivative, II 282 
differentiable function, II 282 
differential, li 282 
function of real variable, II 222 
numbers, I 9 ff 

absolutf' value (modulus) of, I 10 
conjugate of, I 10 
principal value of argument, I 11 
trigonometric form, I 10 ff 

potential of flow, II 248, li 299 
space L2, I 668, II 221 
variable, functions of, I 24:3 ff 

application of the theory of functions, 

I! 248, II 298 ff 

Cauchy integral theorem and formula, 
II 252, II 25:3, II 258, II 284 

derivative, II 24G, II 282 
fundamental concf'pts, II 24:3 ff 

intf'gral of, II 250 
Iimit and continuity, II 245, II 246 
logarithm and power, II 272 ff 

Composite functions, I 361, I 40:3 
rontinuity, I :368, I 406 
differentiation, I :382, I 412 
Iimit, I 372 

CompositP quadrature formula, I 556 
Computation with small numbers, I 398 ff 

Conravity and convexity, I :391 
Conchoid 

of circle, I 153 
Nicomedes, I 152 

Condition 
number of matrix, II 60.5 
of minimal angle, II 448 

Cone 

right circular, I 108 
frustum of, and its centroid, I 108, I 109 
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Cone continued 
virtual, I 216 
volume, surface areas, moment of inertia, 

I 108, I 109 
Confidence 

interval, one-sided and two-sided, II 752 
Ievel, I 752 
Iimits, lower and upper, II 752 
region, li 75:! 

Conformally collinear (parallel) vectors, 
I 227 

Conformal mapping, II 289 ff 
"adjacent" regions, II :!10 
boundary correspondence principle, 

11 aoo 
boundary properties, II :304 
Caratheodory region, II :308 
concept of, li 289 
dictionary of, II ;31 2 ff 
eccentric cylindrical condenser, II 298 
ellipse on cirde, li :!16, li ;31 7 
existence amd uniqueness, II 29:! 
extremal properties, II ao:~ 
flow round an obstade, II 299 
homographic, II 291 
hyperbola on upper half-plane, II :315, 

li :!16 
infinite strip with a cut on infinite strip, 

li :na 
Joukowski airofoils, II 297 
methods of performing, II 296 ff 

by integral equations, li :!08 
examples, li 296 ff 
small parameter, li :305 
variational, li :305 

of n-tuply connected regions, II 295 
parabola on upper half-plane, li :314, 

li :!15 
plane with segments 

on annulus, li :!17 
on plane with segments, II :318 

Riemann-Schwarz reflection principle, 
II 301 

Riemann theorem, II 293 
Schwarz-Christoffel theorem, li :!02 
sector of cirde on upper half-plane, II :!14 

Conformal mapping continued 
square on circle, li 306 
upper half-plane 

on polygon, li :302, II :311 
Oll rectang)e, li :J00 
with segments on upper half-plane, 

li :!14 
use of Green function, li 303 

Congruent 
matrices, I 64 

Hermitian, I 68 
transformation of cartesian coordinates 

in plane, I 186 
Conical surfaces, I 221 
ConieoiJs, I 209 ff 
Co nie section( s) 

axes of, I 193 
conjugate diameters, I 193 
conjugate direction of parallel chords, 

I 192 
discriminant of, I 188 
general equation of, I 188 
polar of a point with respect to, I 192 
pole of a line with respect to, I 192 
singtdar and regular (nonsingular), I 189 
tangents to, I 19:3 

Conjugate 
diameters 

of cirde, I 113 
of conic section, I 193 

directions methods, II 620 
gradients method, II 620, II 622 

Connected set, II 320 
Conoids, I 223 
Conservative vector field, I 233 
Constant strengtl1 catenary, I 14 7 
Constrained extremes, I 441 
Contingency table, II 76:! 

cells, II 763 
two-way and three-way, II 765 

Continuation (extension) 
analytic, II 272, II 27.5, II 286 
of solution of ordinary differential equa­

tion, II 7 
Continuity, I 366, I 404 

Cauchy and Heine definitions, I 366 
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Continuity cont?:nned 
equation, II 204 
of abstract funct.ion, II :l(i!i 
of functions of complex variahl<>, II 24!i, 

II 246 
right-hand and left-hand, I :3G7 
sectional or piecewise, I :3G!J, I 404 

Continuous 

depend<>nce of solution of diff<>rr>ntial 

equations on initial and boundary 
, conditions and on paramaters, II 4!i, 

II 112, II l!i!i, 11177,11194,11200 
extensibility on the boundary, I 40!i, 

II 24G 
functional, II :3G7 
group, I 71:3 
operator, II :34 7 

Contraction 

mapping, II :345 ' 
of tensors, I 2!i!i 

Contravariant and covariant 

tensor on surface, I 2!i I 
tensors, I 24 7 

vector Coordinates, I 242, I 244 
vector on surface, I 249 
vectors, I 24 7 

Convergence 
in the mea.n, I (if)(i, II :32() 

in metric spare, II :32(i 

in norm, II ;3:32 

of improper int<>grals, I !i22, I !i27, I !i94 
Bolzano~Cauchy condition, I !i24, 

I !i2!J 
of matrices, II 111 

of sequence 

of matrices, II 111 
of random variabl<>s, II 7:31 

almost sure ( with probability 1 ), 

II 7:31 
in distribution (weak), li 7:n 
in probability, II 7:31 

of sequences and series, I :t3G, I :34:3, 
I G:37, I G41, II 2GO 

absolute, I :34!i, I :3.51, I G42 
Bolzano~Cauchy condition, I :3:37, 

I :34.5, I 6:37, I G42 

( :onvergence continned 
Clausen transformation, I :3.5:3 
conditional, I :34.') 
domain of, li 261 
improvement of, I :352 
in the mean, I G6G 
in space L2, I (i(i6 

of functions of complex variable, 

II 2!i9, II 2GO 
radius of, I G46 
tests for, I :346 ff 
uniform, I 6:37, I 642 

of series in Hilbert space, li ;3:3:3 
theorems 

for finite difference method, II .565 
for finite element method, li 447 ff 

weak, I! :350 
Convex 

funrtiona.l, li :370 
polyheclron, li 824 

boundary of, li 8:3:3 

df>composition of, li 8:3:3 
dimension of, II 8:32 
edge of, II 8:34 
f a.cf> of, li 8:34 
interior of, II 8:34 
linear span of, II 8:3:3 
vertex of, II 834 

set, li :320 

Convexity ( functions of one variable), I 391 
Convolution, li 580, li 57:3 
Coordinate system, I 1G7, I 19.5 
Coplanar vect.ors, I 227 
Correction of measurement, II 779 
Correctness of boundary value problems, 

II 1.55, II 177, II 194, li 200 
Correlation 

analysis, multivariate, II 785 

canonical, li 785 
coefficient, li 709 

multiple and partial, li 709 
sample, Il 7:37 

matrix, li 709 
sa.mple, li 738 

table, li 741 
Correspondence between two sets, I 46 
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Cosine 
integrals, I 450, I 494 ff 
theorem 

for plane tria.ngle, I 79 

for spherical Euler triangle, I 85 
Counting process, II 797 
Courant minimax principle, II 86, II 5:n 
Covariance, II 708 

matrix, II 709 
sample, II 738 

Covariant and contravariant 
tensor on surface, I 249 
tensors, I 24 7 
vector coordina.tes, I 242, I 244 
vector on surfa.ce, I 249 

vectors, I 247 
Cramer-Rao lower bound, II 749 
Cramer rule, I :lß, II 595 
Crank-Nicolson method ( scheme ), II 4G7, 

II .5ß0 
C-region, II 308 
Critical 

damping, I 159 
region, II 755 

Cross 
covariance function, II 814 
product of vectors, I 229 
ratio of four points, I 189 

Cube, volume a.nd surfa.ce of, I 105 
Cubic 

discriminating, of quadratic, I 218 
equation, I :39 ff 

solution 
algebraic, I 40 
by factorization, I 40 
trigonometric, I 41 

Hermite element 
one-dimensional, II 4:3:3 
two-dimensional, II 4:35 

Lagrange element, II 4:35 
Cubical parabola, I 12ß 

Cumulant, II 704 
Curl of vector, I 235 
Curtate 

cycloid, I 129 
epicycloid, I 1:n 

Cu rtate continned 
involute of circle, I 1:35 

Curvature, I 277, I :326 
Gaussian, I 330 
geodetic, I 3:34 
normal, I 328 

Curve(s) 
approximate constructions of, I 16.5 ff 
ca.nonical equations ( representation) of, 

I 279 
closed, I .') 72 
contact of, I 281 ff 
cyclic, I 127 ff 
definitions and equations, I 260 ff, I .')72 
directrix, I 221 
double point of, I 261 
equations as locus of a point, I 169 
equa.tion of tangent to, I 267 
evolutes a.nd involutes of, I 279 ff 
exponential, I 143 ff 
first and second curvature, I 271, I 277 ff 
gradient on surface, I 33.5 
growth, I 162 
in space, I 260, I 263 

implicit equations defining, I 262 
integral calculus, I 620 

integral, I .599 ff 
intrinsic equations of, I 280 
.Jordan, I .57:3 
length of, I 265, I 573, I 618, I 620 
length of arc, linear element, I 265, I 600 
logistic, I 164 
natural equations of, I 280 
of greatest slope on surface, I 335 
of oscillations, I 156 
of 1·-th dass, II 375, II 385 
on surface, I :309 ff 
oriented in sense of increasing parameter, 

I 599 
osculating circle, I 28.5 
parallel, I 296 
parametric equations, I 261, I 572 
piecewise smooth, I 260, I .')73 
plane, I 112 ff 
positively oriented with respect to its 

in terior, I 599 
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Curve(s) contimted 
power, I 125 
simple finite piecewise smooth, I 572 

positively oriented, I 599 
sim plici ty of, I 5 72 
smooth, I 261, I :H9, I 57:J 

Cu rvili n ear 

Coordinates of points on surface, I 308 

element, II 4:39 

integrals, I 599 ff 
along a curve in space, I 604 
geometrical and physical meanings, 

I 603 
of first and second kinds, I 601 

Cusp of curve, I 2() 1 

Cuspidal eclge, I :n 6 
Cutting plane methods, II 8G:3 

Cyclic 

curves, I 127 ff 

construction of eentres of curvature, 

I 1:36 

red uction, li fj 14 
Cydoicls, I 127 ff 

curtate and prolate, I 12!) 

Cylinder 

hollow (tube), I 108 
hyperbolic, parabolic, real and virtual 

elliptic, canonical a,nd transformed 

equations, I 217 

right circular, I 107 

of given volume having least surface, 

I :395 

segment of, I 107 
truncatecl, I 107 
volume, surfacc areas, moment of inertia, 

I 106 ff 

Cyrindrical 

coordinates 

in solid analytic geometry, I 19() 

transformations of differential equa­

tions and exprcssions into, I 4:32 

functions, I 6()2 tr 
helices, I 2()7 

D'Alembert 

formula, II 1()2 

D'Alembert continued 
ratio test for convergence of series, I 34 7 

Damped 
oscillations 

forced, curves of, I 161 ff 
free, curves of, I 158 ff 

vibrations 

differential equation, li 132, II 133 

Darboux sums, I 512 
Decile, li 700 
Decom position ( s) 

of convex pohyhedron, I1 832 
of domain, II 428 
systems of, II 44 7 

Deferred approach to Iimit, I1 487, I1 491, 
li 557 

Definite integrals, I 512 ff, I 576 ff, I 589 ff 

approximate evaluation, I 555 ff 

Cauchy-Riemann definition, I 51:3, I .577, 

I 590 

Lebesgue definition, I 559 ff, I .562 
Simpson rule, I 557 
Stiltjes definition, I 567 
substitution, I 520, I 58ß, I 592 
table, I 541 ff 
trapezoidal rule, I 557 

Deflection 

of clamped plate, TI 205 
of fixed solid beam, II :390 

of loaded plate, li 543 
Deformation tensor, I 249, I 25() 

Degenerate quadric, I 218 

Degree of freedom, II 430 
"Dei" operator, I 2:34 

Delta (6)-neighbourhood, I 404, II 245, 
II :319, II :321, II 326 

Delta symbol: see Kronecker 

De Moivre formula and theorem, I 11 

De Morgan formulae, I 4() 

Dense set, in metric space, II :32ß 

Density 
of potential 

of double layer, II 185, II 4()9 

of single layer, II 185, II 4()9 

probability, II ß96, II 705 
spectral, II 815 
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Dependence 

of functions, I 420 ff 
of solutions of initial and boundary value 

problems on initial and boundary 
conditions and on parameters, II 45, 
II 155, II 177, II 194, II 200 

Dependent variable, I 359 
Derivative( s ), I 377, I 406 

complex, II 246, II 255, II 282 
Frechet, II 37:3 
fundamental formuht~>, I :379 ff 

Gateau, II :372 
generalized, II :339 
general theorems on, I :387 ff 

improper, infinite, I :378 
interchangeability of mixed, I 408 
left-hand, right-hand, I :378 
of abstract function, II :3fi(j 

of composite functions, I :382 
of inverse functions, I :~82 
of matrices, II 110 
of vector, I 2:~ 1 

partial, I 40G ff 

Descartes 

folium, I 150 
theorem, li G50 

Determinant( s) 
additions rul!', I :30 
cofactor, I :30 
definition and theorems, I 2() 
evaluation of, I :n 
expansion according to i-th row, I :W 
Gram, I 4:1:3 
minor, I :H) 

multiplic.ation of, I :30 
Wronskian, li 51 

Developabl!' surfaces, difh·rential !'quations 
of, I :322 

Dictionary of conforma.l mapping, II :H2 ff 
Difference( s), I :384 

divided, II G77 
k-th backward, li 678 
k-th central, II 61-\0 

k-th forward, II 678 
of sets, I 45 

DiffNentiable function, I :378, I 409, II 24G, 
II 282 

Differential, I :384 
calculus, I 359 ff 

survey of important formulae, I 400 ff 
equations: see separately below 

Frechet, II 373 
Gateaux, li 367, II 372 
geometry 

curves, I 260 ff 
surfaces, I 305 ff 

partial, I 412 
strong, II 373 
total, I 409 
weak, II 367, II 372 

Differential equations 
Bernoulli, II 20 
Sessel, I 69:3, II 70, II 72, II 135, II !)42 
Clairaut, II :32, II 163 
classitication and basic concepts, II 2 
discriminant curve, II :3:3 
EulE>r, II GO 
HE>rmitE>, I 712, II 7 4 
integrals of, II 3, II 4 
LagrangE>, II :n 
LaguE>rre, I 712, II 74 
Laplace, II 17 4 
Legendre, I 705, II 74, li 1:37 
linear, II 17, II 50 

homogeneous, II 18, II 51, II 55 
with constant coE>fricients, II 57 

nonhomogeneous, II 18, II 51, li 5.5 

with constant coefficients, II G2 
Liouville formula, li 52 
order of, II 2, II 148 

nwthods of reducing, II 42 
ordinary: see separately below 
oscillatory solu tion, II 4 7 
partial: see separately helow 

systems of, II 2, II 4, li 09 ff, II 203 
trajectories, II 35 

isogonal (oblique), li :3G 
orthogonal, II :3() 

uniqueness of solution, II 5, II G, II 8, 
11177 



INDEX 899 

Differential equations, ordinary, II 1, II 2 ff 

approximate solution of 

boundary value problems, II 515 ff 
eigenvalue problems, II 528 ff 
initial value problems, II 4~t3 ff 

asymptotic behviour of integrals, II 4G 

boundary value problems, II 80, II 91 ff 

continuation of solution, II 7 
directional elements and field, II 4 

eigenvalue problems, II 81 
two-sided estimate of the least eigen­

value, II R7 
elementary methods of intPgration, 

II 12 ff 

Euler equation, Il GO 
exact, II 2:3 
existence and uniquenE'ss of solution, 

theorems, II 5, II G, II 8 
extension of solu tion, II 7 

first integral of, II 41, II 1 }() 
fundamental 

matrix, II 10:3 
system of solution, II 5:1, li 102 

normal ( standard), II 55 

generat integral (general solution, g<'IJeral 
form of solution), II 9, II 5:3, II 101 

geometrical int.erpretaJ,ion, II :3 
homogeneous, II 15, Il 17, li 51 

with constant coeficients, II 58, II li2 

Burwitz 

matrix, II 114 
polynomial, Il 114 
test, II 114 

initial conditions, li 5 
integral cttrVP, li 5 
integrals of, li :3, II 4 
integrating factor, li 24 

integration, Piementary methods, II 12 ff 

linear homogeneous, II 18, II 51, II 57, 
II 102 

discontinuous snlution. I! 75 
periodic solutions, II 49 

linear nonhomogPn<'ous, Il 18, li 51. 

II 55, II JO,-; 

constant coefticiPnts, sppcial right­

hand sidP, li li2 

DiffPrential equations, ordinary continued 
variation of parameters ( constants ), 

II 18, II 5G, II 108 
linear of n-th order, II .50 
linear of second order with variable 

coefficients, II GG 
Lipschitz condition, II 6 
maximal solution, II 7 
normal (standard) system of solutions, 

II 5.5 
not solved with respect to derivative, 

II 27 

oscillatory solutions, II 47 
periodic solutions, II 49 
sPparation of variables, II 14 
singtdar points, II 2G, li 119 

centre, node and saddle points, Il 2G, 
II 27 

singular solution (integral), II 11, II 33 

solution, II :3, II 4 
approximate, li 4 78 ff 

hy parameter method, II 28, II :38 
hy separation of variables, II 14 
hy variation of paramf'ters, II 18, II .56 
dPpendence on initial conditions and 

parameters, II 46, II 112 
in matrix form, II 111 
stability of, II 11:3 

asymptotic, li 113 

system(s), II 2, II 4, II 99 ff 
ca.nonical form, II 99 
dPpendence and stahility of solutions, 

Il112, li 11:3 

first integral of, li 116 
fundamental, li 102 
general integral of, li 101 
homogeneous, Il 101 
Ii 1war, li 101 ft' 

non- homogeneous, II 101 
normal, II 100 
vPctor (matrix) form, II 4, Il 5, Il 101, 

I I 111 
tablf' of so! ved, II 120 ff 

with r<'gul<tr singularity, II li9 

Dift'erential equations, partial, Il 147 ff 

hasis concepts, II 148 
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Differential equations, partial contin:ucd 
characteristic of first ordn, II \(j(j 

characteristic strip, II ](j(j 

complete integral, !I lö 1 

Dirichlet problem, II 17G 

distinguished from "ordinary", li 149 

eigenvalue problems, II 206 

elliptic, II 172, II 174 ff 
exterior cone condition, II HlO 
first order, II 156 ff 

general intf•gral, li [(j l 
genera.lized so] u tion, II l !14, II 205, II :3Ci2 
harmonic functions, II 175 
Harnack and Liouville theorems, li ISO, 

I1 181 

heat conduction equa.tion, II l !17, II 5:36, 
II 540, II 542 

hyperbolic and ultrahyperholic, li 172, 

I1 191 ff 
integrability, conditions of, I I 202 

integral elements, II l(i(j 

integral strip, I! ](j(i 

linear 
homogeneaus of first onkr, !I 15G 
nonhomogeneaus of first onkr, I! !59 

of second ordf'r, dassification, II 172 

method of discrf'tization in timP, !I 215 

of lines, horizontal, li 21!i 
of Rothe, Il 215 

methods of solution 

finite differeme, !I 54G ff 
finite elenwnt, I I 4:2:-> tr 
functional analytic, II 2(H ff 

infinitE' series (Fourier, product 

method), li 5:34 ff 

operational, I I 5G7 tr 
variational (direct.), II 40!1 ff 

Neumann prohlPm, li 17!i 

nonlinear, of first ordn, II l!iO ff 

order of, II 14:-> 
parabolic, II I 7:2, Il l !17 

potentia.ls of sin11;le and douhlP layf'rs, 

II 1R4 
problems 

bounclary value, I! 155, II 17G, li :204 
Cauchy: Sf'e separately 

Diffprf'ntia.l equations, partial contimted 
Dirichlet and Neumann: see separately 

mixed, II 150, II 195, II 199, II 215, 

li 5:34 ff 

of mathematical physics, II 14 7, II 172, 

li 203 

well-posecl, li 155 
quasilinear of first orcler, li 159 

second ordPr linear, classification, li 172 

system of, II 201 ff 
ultrahyperbolic, li 17:3 

wave, II 191 
weak solution 

of elliptic problems, li 209 

of parabolic problems, li 219 

Di fferf'ntiation 

change of order, I 40R 

composite functions, I :382, I 41:2 

of Fourier SPries, I 687 

of series with variable terms, I G44 

Dilwdral angle, volume and centroid of, 

I lOG 
Diodes cissoid, I 149 

Dirac distribution, li :342 
Direct 

methods, li 409, li 594 
sum of suhspaces, li :3:35 

DirPcted 

distancf', I 1G7 
half-line and line segment, I 174 

sPgments ( Vf'd.ors ), I 226 

straight line, theorems and examples, 

I 17 4 ff 

DirPetion 

rosines, I 174 
of normal t.o surfacf', I :31:3 
of tangent to coordinate curves, I :309 

vPctor of li ne, I :206 
Ilirf'ctiona.l ('lf'lllPtlts and fielcl, li 4 

Dirf'ctrix rurve, I 221 

Diricldet 

formula 
reganling sp]fadjoint problems, li 8:3 

int<c'gral, li :394 

problf'm 

for Laplacf' equation, II 176 
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Dirichlet contirmcd 
for Poisson equation, II 176 

test for convergence of seri~>s, I :350 
Dirichlet and Neumann problems 

existence of solution, II 177 
for Laplace equation, II 176 
for Poisson equation, II 177 
interior and exterior, II 17fj 
uniqueness of solution, II 177 

Disc ( =cirde) 
closed, II 321 
open, II 320 

Discontinuity 
points of, I :3()8 
removable, I :J(j!) 

types of, I 368 
Discontinuous solution of diff~>rPntial equa­

tions, II 75 
Discrete optimization problems, II 86:3 
Discretization error, Il 48:3, II 556 

accumulated, II 48:3 
local, II 485, II 556 

Discriminant 
analysis, II 785 
curve of differential equation, II :33 
of conic section, I 188 
of equation of second and t.hird orders, 

I 39, I 40 
Discriminating cubic of quadric, I 218 
Distance 

between 2 curves, or hypersurfaces, 
II :H5, II :385, II 392 

between 2 parallel planes, I 20:3 
between 2 points in plane, I lß8 
between 2 skew straight lines, I 207 
directed, I 167 
in Euclidean space, II :H9, II :321 
in metric space, II :32:3, II 3:34 
of point from plane, I 202 
of point from straight line, I 178, I 207 

Distinguished boundary of bidisc, II 279 
Distribution (see also Raudom varible, 

Raudom vector) 
alternative, II 6!)6, II 771 
beta, II 724 
binomial, II 710 

Distribution continued 
generallized, II 711 
negative, II 711 

Cauchy, II 724 
chi (x), II 724 
chi squared (x2 ), II 719 
conditional, II 706 
continuous, II 696, II 714 ff 
Dirichlet, II 726 
discrete, II 696, II 710 ff 
Erlang, II 718 
exponential, II 697, II 717 

double, II 717 
F (Fisher-Snedecor}, II 719 
function, II 695, II 704 

empirical, II 744 
marginal, II 705 
spectral, II 815 

gamma, II 718 
geometric, II 711 
hypergeometric, II 713 
initial and stationary, II 800 
integer, II 710 
logarithmic normal (Iognormal), II 716 
logistic, II 724 
marginal, II 705 
Maxwell, II 724 
multinomial, II 725 
multivariate, II 704, II 725, II 726 
normal (Gaussian, Gauss-Laplace), 

II 714 
bivariate, II 726 
logarithmic, II 716 
multivariate, II 725 
standard, II 714 

of order statistics, II 7 40 
of random vector (joint }, II 704 
Pareto, II 724 
Pascal (binomial waiting-time ), II 711 
Poisson, II 712 
probability, II 694 
Rayleigh, II 718 
symmetric, II 702 
t (Student}, II 719 
triangular, II 724 
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Distribution continned 
uniform (recta.ngular), II 714 

unimodal, II 700 
Weibull, II 718 

Wishardt, II 726 
Distributions, II :341 
Distributive laws of vectors, I 22G 
Divergence of vector, I 2:34 
Divergent 

integrals, I 522, I 528, I 594 
sequences, I :3:37, I 6:37 
series, I :3:34, I G41 

application of, I 659 
Divided differencf's, II 677 
Division rings, I 48 
Domain 

of convergence of series, li 261 
of definition of function, I 359, I 402 
of holomorphy, li 287 

of stability, II 511 
Double 

integral 
evalua.tion by repea.ted integration, 

I 581 
geometric meaning, I 578 

improper, I 594 
method of subst.itution, I 58(i 

layer potential, II 184, II '1G9 
point of curve, I 261, I 290 
pole, II 267 
series, I :351, I 651 

Dual space, II :349 
Duality principle (linear programming), 

II 8GO 
Du Bois-Raymond form of variation, II :380 
Dupin indicatrix, I 3:30 

Economic balance, II 828 

Economized power series, II ß74 
Edge of regression of surface, I :Hß 
"Edge of the wedge" theorem, I1 286 
Efficiency of estimator, I1 749 
Eigenelement of operator, 11 :J:35, II :362, 

II 457 
Eigenfunction, II 81, li 3!15, li 481 

of operator, li 457 

Eigenfundion continued 
orthogona.lity in generalized sense, II 84 

Eigenproblem: see Eigenvalue problem 
Eigenvalue problem(s), Il 81 ff, II 206, 

II 355 ff, II 362 ff, II 481, II 628 ff 
algebraic generalized, II 530, II 645 
comparison function of, li 82 
for matrices, I 59, II 628 

generalized, II .530, II 64.5 
in ordinary differential equations, II 81 ff, 

li 481, li 528 
t.wo-sided estimate for least eigenvalue, 

II 87 
in partial differential equations, II 206 
positive, II 82 
regular, II 84 
symmetric, II 82 

Eigenvalue(s), II 81, II 481 
definition of, I 59, li 81, li 3.'5.5, Il 481 
of mat.rices, I 59, II 628 

connection with roots of algebraic 
equations, li 6.52 

dominant, II 6:n 
multiple, II 631 

of multiplicity p (p-fold), II 84, II :3.56 
of operator, II 355, II 362, li 4.57 
simple, II 84 
two-sided ext.imates of, II 87 

Eigenvector, II :355 
of matrix, li G28 

Elasticity 
plane problems of, II 203 

Electric circuit, differential equation, 11121, 
li 570 

Electromagnetic field, I 20:3 
Elementary 

polynomials of Lagrange interpolation, 
Il 676 

symmeric functions, I 38 
Element of set, I 44 
Elements: see Finite elements 
Elimination 

method, Gaussian, li 596, II 644 
of interior parameter, II 43.5 

Ellipse 
as conic section, I 189 
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Ellipse contirwed 
equation for polar, I 19:2 

centres of curvature at VPrtices, I 118 
centroid of, I 10:2 
circumference, I !01 

approximate calculat.iou, I 10:2 
table, I 10:2 

constructions, I 115 tr 
definition, I 18:~ 

eccentricity, I 101, I 115, I 18:3 
foci and focal radius, I 114, I 18:3 
major and minor axis and vertict>s, I 114 
Rytz construction, I 11S 

sector, area of, I 10:2 
standard equation of, I 18:{ 
tangent and normal to, I 11G 
theorems, I 114 tr 
vt>rtex circles, I 1)5 

Ellipsoid 
canonical and transformed equations, 

I :216 
moment of inertia, I 110 
oblate and prolate, I 110 
real and virtuaJ, I :21G 
volume and surfacP area, 1 110 
volume determinat.ed hy repea.t.ed inte­

gration, I 51'\:~ 

Elliptic 
equations, li 172, II 17,4 tf, II :204 
intt>gral, I 551 

complementary, I 55:3 

complete of first and second kind, 

I 55:2 
paraboloid, equation of, I :21:2 
point, I :3:26 
sector, fonnula for area of, I 10:2 

Embedding theorem, II :34:3, II :HiS 

Empirical distrihution fuuction, I! 744 
Empty set, I 45 
End point of vector, I :2:26 
Energetic 

norm, II :361, II 41:2 
scalar product, II :3fH, II 41:2 
space, II 205, II :361 

Energy 
functional, li :204, II :354, I! :3!i0, II 410 

Energy contin ued 
norm, II :361, II 412 
sralar product, II :361, II 412 
space, II :361 

Entire transeendental function, II 268 
EnvPiope 

of one-parameter family of plane curves, 

I :292 ff 
of surfaces, I :317 

Epirycloid, I 1:30 ff 
Epsilon ( E) -

neighbomhood of curve, II :376 
net, li :329 

Equality of tensors, I 254 
Equation( s) 

algehraic 
hinomial, I 4:2 
hiquadratic, I 41 
cubic, I :39 
linear systems, I :32 ff 

solution by numerical methods, 
II 594 ff 

nonlinear, numerical solution of, 
II 648 ff 

quadratic, I :39 
quartic, I 41 
reciprocal, I 4:3 

differential, II 1 tf, II 147 ff 
elliptic, II 172, II 174 ff 
hyperbolic, II 172, II 191 ff 
integral, II 220 ff 
Laplace, II 174 
nonlinear systems, numerical solution of, 

II 662 
of com pleness, II :3:37 
of mathematical physics, II 147, li 203 
of plane, I 200 
of plane elasticity, II 203 
of straight line, I 170, I 205 
of vibrating string, II 191, II 196, II 5:34 ff 
parabolic, II 172, II 197 ff 
Poisson, II 17 4 

Equiangular spiral, I 1:39 
Equicontinuous functions, I 6:39 
Equidistant curves, I 296 
Equipotential surfaces, I 2:32 
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Equitangentia.l curves, I :~()!) 

Equivalence, I 1 
of norms, li G04 
of systems, I :3:2 

Equivalent functions, I !lGO, I 6!i4 

Error 
estimate 

for bounda.ry elenH'llt method, II 47:~, 
II 474 

for finite difference met.hod, li 556 

a posteriori, II 557 

a priori, II 556 
for finite e!Pment nwthod, II 449, 

II 452, II 459, II cl!iß 

for interpolation formula.e, II G7!l 
function, I !l!ll 
law of, II 77k 

mean square, li 74!) 

of quadrature formulaf', I 5!)5 

probable, II 716 
variable, li 7G(i 
type one and type two, II 75G 

Essential singularity, !I 2G7 

Estimate, point and int.Prva.l, II 7 4 7 

Estimation, estima.tor, I I 770 

Aitken, II 777 
bestlinear unbiased ( BLUE), II 770 

bias of, II 74S 
consistent, Il 7 48 
efficient (minimum variance), li 749 

asym ptotically, II 7 4!) 

in linear regression modPI, II 7GfJ ff 

in nonlinear regression model, II 779, 

Il 780 
interval, II 7!l2 ff 
method 

of maximum likelihood, li 749, II 750 

of moments, II 7!)0 

of correlation characteristics, li 814 
of reliability charad.Pristics, li 7R9 ff 

of spectral density, II R20 
parametric and nonparamPtric, II 7 46 

point, II 747, II 749 ff 

theory of , II 7 45 ff 
unbiased, II 7 4S 

asymptotically, Il 748 

Estima.tion, estimat.or contimted 
\)('st, II 7 4R 

Eurlidea.n 

algorithm, I 21 
space, Il :319, II :~21 

Euler 
roefficients, I 511 
constant, I :14:3, I 541, I 54 7 

equation, II GO 
for extremal in variational problems, 

II :381, II :396, li 400 

linear differential, II 60 

special cases in calculus of variations, 
li :3kl 

integral ( function) 
of first kind, I 549 

of second kind, I 546 

nwthod, II 4S:3 
convergence of, II 484 

discretization error of, II 48:3, II 485 

error lwund of, II 484 
error estimate of, asymptotic, II 484 

im plici t, II 466 

moditied, II 49:3 

rate of convergence of, II 484 
relation, II 2fi4 
summability of series, I G45 

theorem on homogeneaus functions, I 416 
theorem regarding curvature, I :329 

triangle, I 82 
formulae for, I 1\5 

Euler-Ostrogradski equation, II :394 

Euler-Poisson equation, II :389 

Event: see Random event 

Evolutes of curves, I 297 

Exact differrential equation, II 2:3 

Existence and uniqueness theorems for 

solution of problems 

m ordinary differential equations, II 5, 

II 6, Il 8 
m partial differential equations, II 177, 

II 190, li 206, II 210, II 214, II 219 

Expansions of some functions of complex 
variable, II 26:3 

Expansion theorem ( eigenvalue problems ), 

II 90 
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Expectation, Il 69H 

Explanatory variable ( regressor ), li 767 

Explicit 

equation 
of curve on surface, I :310 

of fu nction, I :360 

of plane curve, I 2()4 

of surface, I :306 

scheme (method), II 5GO 

Exponent of power of number, I 12 

Exponential 

curve, I 14:3 

equations, I 15 

function, I 365 
Extension of solu t.ion of ordina.ry differential 

equation, li 7 

Exterior 

cone condition, II 190 

Dirichlet prohlem, II 17G 

Extrapolation methods, I! .'i 12 

Gragg mPthod, II 514 
Richardson extra.pola.tion, II 512 

Extremal 

hypersurfacf', li :394 

n-dimensiona.l variPty, li :394 

of variational problem, li :3S1 

properties of conformal mapping, II :30:3 

Extremes of functions, I :{92, I 4:{S 

Extremum constrainPd, I 4<11 

FACR method, !I ()15 

Factor analysis, II 7S5 
Factorial sym hol, I 17 

Failure rate (hazard rate), li 7H7, II 7SH 

intensity, II S05 

Fast 

Fourif'r transform, I G91, li fiS-l 

method, li G12 

Feasiblf' point(s), !I S2:{ 
basic, !I .'l:3S, ll S5S 

degenPratP, I I ,1{:3S 

regular, I! S:3S 

optimal, II S24 

regular, II s:JS 
set of, I1 s:n 

Fehlberg metl10d, Ir 4f):} 

Field of force of unit charge placed at origin 

of coordinate system, I 234 

Fill-in in LU factorization, Il 613 
Filter 

linear, li 820 

low-pass, II 821 

transfer function of, II 821 

Finite difference approximation, Il 546 

for biharmonic equation, II .'551 

for heat conduction equation, II 550 

for Poisson equation, II .'5.50 

for wavf' equation, Il .551 

remainder of, II 54 7 

Finite difference method, II 525, II 546 

ba.sic concepts, II 546 ff 

basic thf'orems, li 5G5 

bounda.ry conditions, li 551 

containing derivatives, li 55:3 

not conta.ining derivatives, li 551 
hounda.ry valuf' problems for ordinary 

differential equations, II .')25 

error estimates, II 556 

exampks, II 557 ff 

biharmonic equation, II 561 
heat conduction equation, Il 559 
La.place equation, Il 557 

formulaf' for differential operators, 

Ir 550 ff 
formulat.ion of boundary conditions, 

li 551 
Colla.tz method, II 55:3 

grid, II 546, II 5G2 

mesh, II 546, II 562 

point, Il 546, Il 5G2 

net(s), !I 546, li 5G2 

lwxa.gonal, II 550 

irregula.r, !I 549 

polar, li 550 

refi neme1Jt of, li 550 

regllia.r rectangular, li 549 

squa.re, II 549 
tria.ngular, Il 550 

Finite elPment method ( see also Finite 

elf'ments), li 428 

convergence of, li 44 7 
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Finite element(s), II 4:30 ff 

curvilinear, li 4:~9 ff 

nodes of, II 4:30 

one-dimensional, li 4:31 ff 

cubic Hermite, II 4:3:~ 
general Hermite, Il 4:3:3 

general Lagrange, II 4:3:3 
linear, II 4:32 
quaclratir, II 4:32 
reference interval, II 4:~2 

three-dimensiona.l, II 441 ff 

linear tetrahedral, II 442 

prismatic pentahedr<tl, II 44:3 

trilinear hexahedral, II 4:12 

two-climensiona.l isopara mPtrir, II 4:39 ff 

quaclrangular bilinear, II 440 
quadrangtdar biqua.drat.ir, II 441 

triangular, II 4:39 
two-dimensional rectangular, II 4:37 ff 

bilinear Lagra.ngP, II 4:3,1.\ 

biquadratir Lag;ran)!;P, II .):~s 

rPctangular HennitP, II ·HS 

two-dinwnsional triangular, II 4:n ff 

cubir Ilermit.P, II 4:~5 
cu bir Lagrange, II 4:l5 
elimination of intPrior parameter, 

li 4:35 
gpner~ LagrangP, II 4:35 
linPar, II 4:{4 

q uadratir, II 4:~4 

quintir, II 4:{() 

refprPnre tria.ngle, II ~t:n 

Finite elPment spares, !I 44:~ 

First a.nd spcond curva't.urPs, I 277 ff 

First a.nd second int.Pgral IIH'an valuf' 

theorems, I 516 

Firstintegrals (diff<•rpntial pquations), II 41, 
I1 11G 

Fisher tpst of periodici ty, I I S 19 

Fitting curves, !I 767 

Fixecl 

point, II :~4G 

Banach tlworem on, li :{45 

polhode, I 127 

Floquet theorPill, II 49 

Flow 

of visrous incompressible fluid, II 203 

round obstacle, II 299 

Flux of vector, physical meaning, I 240 

Focal radius of hyperbola, I 119 

Focus 

of ellipse, I 183 

of parabola, I 185 
Folium of Descartes, I 150 

FotTed oscillations 

damped, I 161 

undamped, I 157 

Force of mortality (hazard rate), II 787, 

li 7~8 
Forward 

difference, li 678 

light cone, II 281 

suhstitution, li GOO 
Fourier 

cof'f!iciPnts, I G7:3, I 678, II :3:36 

generalized, II 90 

in tegra.l, I 600 

transform, II 5G8 

method (partial differential eq uations ), 
I I ,):34 ff 

series, I 67:3, I 678 

differentiation and integration of, I 687 

expa.nsions of some important func­
tions, I 682 ff 

gf'tH'ra.lized, I 67:3, II 90, II 668 

in Ilil bert s pace, li :3:36 

harmonic analysis, I G91 

in romplex form, I 687 

in 2 variables, I 68~ 

pointwise convergence, I G7~ 

trigonometric, I 678 

transform, li 568 

fast, I 691, li 684 

11-dimensional, li 584 

Fra.ction ddective, li 7!)2 

FramP of bidisr, II 279 

Frazer diagram, II 681 
Frechet 

dPrivative, li :~7:3 
diffprpntia.l, II :37:3 
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Fredholm 

alternative, II :2:25, II :35X 
equations, II 22:3 

integral equations, Il 2:2:3 ff 

approximate 

determination of first eigenvalue, 

li 591 

solution 
by Galerkin method, II 5119 

by replacement of kerne! by 
eiegenerate one, Il 589 

by Ritz method, II 589 

by successive approximations, 
II 5!:15 

using quadrature formulae, TI 58G 

with symmPtric kernels, li :2:31 
theorems, II 2:25 

Free 
oscillations, I 15G, I 15X 

vectors, I :22(i 
Frenel integra.ls, I 544, I 551 

Freuet formulae, I 270 

Frequency 

dass, II 74:2 
empirical and theorPtica.L II 7G 1 

marginal, II 764 

of evpnt, TI G90 

of observation, II 7 41 

cumulative and rPlativP, II 741 
stability, II G90 

tablP, II 741 

Frobenius theorem, I :t3 
Functional( s) 

analysis, II :H 9 ff 

coercivP, II :no 
com plex, II :{45 

convex, li :no 
strictly, I1 :no 

detPrminant, I 41X 

PXtPnsion of, li :340 

PXtrP!lllllll of, II :n7 

strong, II :n7 
wPak, II :377 

maximum and minimu111 along curvP, 

II :n 4, II :nG 

of enPrgy, TI :20·4, I I :{!i-1, II :HJO, Il 'II 0 

Functional(s) contin~ted 

quadratic, II 354, II :JGO 

rPal, li :345 

variation of, li :379 

Function(s) 

abstract ( spe also Abstract functions ), 

II :3G4 

algebraic, I :JG4 

analytic, II 27G, II 24 7 
approximation, I :398 

bPi x, bPr x, I 704 

boundPd, I :366 

com posite, I :361, I 40:3 

diffPrPntiation of, I :382, I 412 

concaw, I 391 

continuity of, I :3GG, I 404 

continuously PXtPnsiblP, I 405 

continuous 

011 curvP, I 576 

011 surfacP, I 57G 
COIIVPX, I :391 

dPcom position of, I 3G2 

dPcrPasi11g, I 390 

dPpPndPnce of, I 420 ff 

derivativPs of, I :377 ff 

ditfr>rPntiablP, I :ni:\, I 409 

domain of dPfinition of, I :359, I 402 

r>kmr>ntary, I :3G4 

equal a.lmost PVPrywhPre, I 560, II 221 

equicontinuous, I G:39 
equiva.!Pnt, I 664 

Prf :c, erfc x, I 551 

even, I :{66 

expone11tial, I :365 
grap!Jical reprPsPntation of, I :394 

Green, I! 9:3, Il 18:2 
barmonir, li 175 

higber transcendental, I :365 

iwlomorlic, II :24 7 
homogeneous, I 41G 

Euler thPorem, I 416 

hyperbolic, I 90 ff 
implicit, I 423, I 4:30 

important formulae, I 400 ff, I 446 ff 

increasing, I :3()0 

inwrsP. I :Hi:2 



908 SUHVEY OF APPLICABLE MATHEMATICS 

Function( s) continned 
hyperbolic, I 92 ff 
trigonometric, I 86 

investigation of, I :393 ff 
kei x, ker :r, I 705 
Lebesgue 

integrable, I 562 
measurable, I 561 

Iimits of, I :371 ff 
computation by l'I-Iospita.l rule, I :388 ff 

linear combination of, I 422 
linearly dependent, indepf:'ndent, I 422 

local dependency of, I 422 
mean-value theorem, I 414 ff 
measurable, I 5ß 1 
meromorphic, II 2ß7, I! 2il8 
monotonic, I :391 
new variables, introduction and transfor­

mations, I 4:32 ff 

normed ( normalized ), I G70 
with weight function, I ()7:3 

odd, I :366 
of bounded variation, I :370 
of dass Tr, II :n5, II :lil5 
of one com plex variable: see separately 

below 
of several com plex variables: SC'e sf:'pa­

ra.tely below 
of two or more variables, I 402 ff 

extremes, I 4:38 tf 
important formulae, I 44G ff 
introduction of llf:'W variables, I 4:32 ff 

oftype B, I 574, I 575, 
piecewise 

continuous, II 75 

smooth, I 405, II 75 
points of intlection, I :l!) 1 
rational, I 364 
real, I :359 
regular, II 24 7 
relative maximum and mmtmum of, 

I :392, I 4:38 
smooth, I :379 
special, of mathema.tiral physics, I 71:3 
square integrable, I 5G5, I ßß2, II 220 
stationary ponts of, I :39:3 

Function( s) contin'Ued 
transcendental, I :364 ff 
uniformly bounded, I 638 
vanishing at infinity, II 175 

with compact support, II 339 
Function(s) of one complex variable, 

II 24:3 ff 
analytic, II 276, II 24 7 

continuation of, II 275, II 272 
natural domain of, II 276 

Cauchy 
integral formula, II 25:3 
theorems, II 252, II 25:3, II 2.')8 
type of integrals, II 255 

Cauchy-Riemann equations, II 246 

df:'l'ivative, II 246, II 255 
domain of definition, II 244 
fundamental concepts, II 24:3 ff 
holomorphic, II 24 7 
integral of, II 249 ff 
Iimit and continuity, II 245, II 246 
Liouville theorem, II 269 
logarithmic, II 272 ff 
meromorphic, II 267 
Plemelj formulae, II 257 
pole, II 267 
regular, II 24 7 

residuf' theorem, II 270 
series, II 249 ff 

Lauren t, II 2ß5 
Taylor, II 264 

simple, II 248 

univalent in domain, II 248 
Function(s) of several complex variables:, 

II 277 ff 
a.nalytic rontinuation of, II 286 
ball, li 278 
bidisc, II 279 
biholomorphic mapping, II 288 

Cauchy integral formula, II 285 
Cauchy-Riemann equations, II 28:3 

complex 
derivative, II 282 
differentiable function, II 282 
differential, II 282 

comph~xified light cone, II 280 
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Function( s) contin'llcd 
distinguished boundary, II :.!79 
domain of holomorphy, II 287 
"edge of the wedge" theorem, II 286 
frame, II 279 
holomorphic, II 283 

mapping, II 288 
relativistic field, Il 280, II 281 

identity theorem, II 285 
"Kugelsatz", II 28() 
light cone, II 280 

backward, II 281 
fm·ward, II 281 

meromorphic, II 288 
pluriharmonic, II 284 
point of indetermination, Il 288 
polycylinder, II 278 
polydisc, II 278 

with vectorial radius, II :279 
Reinhardt domain, II 280 

complete, II 280 
Taylor expansion, II 285 
tube domain, II 280 
uniqueness theorem, II 285 

Fundamental 
equation, II 70 
matrix, II 10:3, II 517 
sequence, II :327 
solution of Laplace and heat conduct.ion 

equatios, II 182, II 198, II 4 70 
system, li 5:3, II 102 

standard, II 55 

Galerkin method, li 427, li 589 
semidiscrete, li 4()4 

Gamma function, I 546 
graph and table, I 548 

Gateaux 
derivative, II :372 
differential, II 3()7, li :l72 

second, li 3G8 
Gauss(ian) 

curvature on surface, I 330 
differential equation, I 710, II 74, II 138 
elimination, II 596 
function, I 550 

Ga.uss(ian) contin'llcd 
fundamental equation for surfaces, I 333 
hypergeometric equation, I 710, II 138 
integral, I 542 
interpolation formula, II 681 
quadrature formula, I 5.'55 
theorem, I 613 

in vector notation, I 240, I 616 
theorem egregium, I 333 

Gauss-Legendre quadrature formula, I .'556 
Gauss-Markov theorem, li 770 
Gauss-Newton method, II 780 
Gauss-Seidel method, Il 618 
Gauss-Ostrogradski theorem, I 613 
General 

Hermite element, one-dimensional, II 433 
integral of differential equations, II 9, 

II 53, II 101 
Lagrange element 

one-dimensional, II 433 
two-dimensional, II 435 

one-step method, II 489 
asymptotic error estimate, II 490, 

II 491 
consistent, II 489 
convergence of, II 489 
error bound of, li 489 
local error of, II 489 
order of, II 489 
regular, II 489 

power, I 1:3, li 274 
solution of differential equations, II 9, 

II 5:3, li 101 
Generalized 

Clairaut equation, li 16:3 
derivatives, li 339 
polar coordinates, I 588 
solution, li 194, li 205, li 362, li 410 
spherical coordinates, I 593 

Generating 
curve, I 127 
function 

for Bessel functions, I 694 
for Legeneire polynomials, I 707 

lines, I 221 
Generators, I 221 
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Geodesie eurvature, I :3:34 
Geometrie 

mean, I 9 
sequenee, I 1ß 

Geometry 
analytie, I lß7 ff 

solid, I 195 ff 
differential, I 2ß0 ff 

Gershgorin 
dise, II ß29 
theorem, II ß29 

Givens method, II ß40 
G.l.b. (greatest lower I)Ound), I 5 
Glivenko theorem, II 745 
Gomory algorithm, I! 8():3 
Goodness of fit. tests, II 7ß0 
Gradient 

eurves on surface, I :3:35 
methods in linear programming, II 8ß:l 
of sealar field, I 2:32 
of straight line, I 170 

Graeffe method, II ß54 
Gragg method, II 514 
Gram 

determinant, I 42:3 
matrix, II 422, li ßß8 

Gravitational field, equation for particle 
moving in, II 14() 

Greatest lower bound (g.l.b.), I 5 
Green 

formula regarding symmetric problems, 
II 83 

funetion, Il 9:3, II 182 
construct.ion, Il 94 
for speeial regions, II 18:3, I! 184 
in eonformal mapping, II 30:3 

identities, I ß15, I ßlß 
resolvent, Il 97 
theorem, I 605 

Grid (see also Net), II 430, II 54ß, II 5ß2 
Grouping, II 742 ff 
Group(s) 

Abelian, I 47 
eommutative, I 47 
eontinuous, I 713 
definition, I 4 7 

Group(s) continued 
representation and special functions, 

I 71:3 
topologic, I 71:3 

Growth 
eurves, I 162 ff 
law of, I 162 
Robertson law of, I 164 

Guldin rules, I 633 

Haar condition, II 670 
Hahn-Banach theorem, Il 349 
Half-angle fonnulae for trigonometric fune­

tions, I 74 
Half-line, directed, I 174 
Ha.milton 

differential equations, II 407 
function, II 407 
nabla operator, I 234 

Hanke) 
functions, I 702 
transform, II 568 

Harmonie · 
analysis, I 691 
functions, II 175, II 24 7 

properties of, II 177, Il 180, II 181 
motion, simple, I 156 
oscillation curves, I 156 
proeess, II 813, II 818 
series, I :344 
set of four poits, I 191 
vibrations, II 131 

Harmonics, spherical, I 708 ff 
Harnaek theorems, first and seeond, II 180 
Hartley method, II 780 
Hazard rate, II 787, II 788 
Beat c.onduetion equation, II 197, II 539, 

II 540, II 542, II 5.'59, II 571, II .'572 
Bessel funetions applied to, II 542 
in infinite eylinder, II 542 
in reetangular regions, II 540 
stationary, II 539 

Beat potentials, II 200 
Heaviside operational ealculus, II 570 
Beine eontinuity definition, I 367 
Helieoid, I 223, I 316 
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Helix 
axis, I 27:l 
cireular, I 27:l 
eylindrieal, I 2!l7 
slope of gra.dient, I 274 

Hermite 
differential equation, I 712, Il 74 
interpola.tion, II 676 
polynomials, I 712, II 75 
~pline, II 687 

Hermitia.n 
forms, I 62 ff 

eongruent, I 68 
ma.triees, I 68 

Heron formula., I 80, I 95 
Heun method, II 49:3 
Hexagonal nets, IL 550 
Higher degree 

hyperbolas, I 125 
parabola.s, I 125 

Hilbert 
kerne!, II 2:38 
matrix, II 611 
spaee, II :3:34, II 409 

operators in, li :352 ff 
bounded, li 352 ff 
unbounded, II :158 ff 

Hilbert-Sehmid t theorem, II 2:3:3 
Histogra.m, II 744 
Hölder 

eondition, II 255, li 671 
inequality, I 8, I :356 

Holomorphie 
funetions, li 247 

of several eomplex variables, II 283 
singular points, li 2()7 

mapping, II 288 
relativistie field, li 280, li 281 

Homeomorphie image of sphere, li :122 
Homogeneous 

coordinates, I 187 
funetions, I 416 

Euler theorem, I 416 
linear differential equations, II 18, li 51 

Homographie mapping, li 291 
Horizontal method of lines, li 215 

Horner seheme (method) for polynomials, 
I 22 

Hausholder method, II 641 
Hull complete, li 410 
Burwitz 

matrix, II 114 
polynomial, li 114 
test, li 114 

llyperbola, I 119 ff, I 184 
as eon ic section, I 189 
asymptotes of, and their directions, I 121 
branches, I 119 
conjugate, I 185 
conjugate diameter, I 121 
constructions, I 119 ff 
exeentricity, I 119, I 184 
focal radius, I 119 
higher degree, I 125 
polar, equation for, I 192 
rectangu la.r, I 185 
segment area, I 10:3 
standard equation for, I 184 
theorems, I 119 ff 

Hyperbolic 
equations, li 172, li 191 ff 

generalized solution, li 194 
functions, I 90 ff 

inverse, I 92 ff 
relat.ions between, I 91 ff 

para.boloid, I 21:3 
point, I 326 
regression, II 769 
spiral, I 1:38 

Hyperboloid( s) 
asymptotie eone of two, I 214 
of one and two sheets, I 210 

canonieal and transformed equations, 
I 216 

of revolution, I 210 
Hyperelliptie integrals, I 551 
Hypergeometrie 

functions, I 710, li 74, li 138 
Gauss equation, I 710, II 74, II 138 
series, I 710, II 74, II 138 

Hypersingular integral, li 472 
Hypersurfaee, II 392 
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Hypocycloids, I no 
simple, astroid, I J:l4 
Steiner, I 1:l:l 

Hypothesis 
null and alternative, li 755 

statistical, II 755 

testing, II 755 ff 

Ideal elements (in completion of nlf'tric 
spare), II :l27 

ldentity 
element of group, I 47 

matrix, I 50, II 111, TI 602 
operator, II :l55 

theorem, II 275, II 285 
Image of element, II :J44 

in integral transforms, II 5G7 

lmagiuary 
axis, I 11 
lines, forming conic section, I 1H9 
part of complex numbf'l', I 10 

Im plication, I 2 

lmplicit 
Euler method, II 4GG 
function, I 42:l, I 4:JO 

geometrical interpretation, I 424 
theorems on, I 42:3 tf 

scheme, II 560 
lmproper integra.ls, I 522 lf 

double and triple, I 594 
involving para.meter, I 5:l4 

lncomplete factorization, II 624 

Indefinite integrals, I 448 

tables of, I 4 70 
irrational functions, I 4 78 ff 
rational functions, I 4 70 ff 
transeendental funrtions, I 50:3 ff 

exponential, I 505 ff 
hyperbolic, I 50:3 ff 
inverse hyperbolic, I 510 tf 

logarithmic, I 506 tf 
trigonometric functions containing 

cosine, I 494 ff 
sine and cosine, I 497 ff 
sine only, I 491 ff 
tangent and cotangent, I 501 ff 

Independent variable, I :l59 
lndir.atrix of Dupin, I :3:30 
Indicial equation, II 70 
Inequalit.ies 

basic rules of, I 3 
between real numbers, I 6 ff 
Cauc.hy, Hölder, Minkonwski, I 8, I 9 

Inertia, Sylvester law of, I 67 

Inflmum, I 5 
Infinite 

products, I :357 
series of 

constant terms, I :l4:l ff 
convergenr.e, I :343 
important formulae, I :354 ff 
multiplication or product, I :353 

functions, I 641 ff, II 260 
lnfluence function, II 96 
Initial 

conditions (differential equations ), II .5, 
II 8, II 488 

line (polar coordinates ), I 178 
point of vector, I 226 
value problems in ordinary differential 

equations, solution by 
general one-step methods, li 489 ff 
linear k-step methods, II 495 ff 
predictor-corector mothods, II 506 ff 

I njective operator, II 345 

Inner 
measure of set, I .')60 

product, li :3:J:l 
of functions, I 663 
of vectors, 1 228 

Integer methods {in linear programming), 
I1 86:3 

In tegers, I :l 

Integrability 
Cauchy-Riemann, I 51:3, 1 577, I 590 

Lebesgue, I .562 

Stieltjes, I 568 
Integral(s) 

able to be rationalized, I 46:3 
calculus 

applications in geometry and physics, 
I 616 ff 
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Integral(s) continned 
of functions of one va.riahlf', I 448 ff 

approximate evalua.tion of definit<" 

integrals, I 555 

basic ( standard) iutl'grals, I 449 

definite integra.ls, I 512 ff, I 576 ff 

table, I 541 ff 
indefinite integrals, I 441'1 ff 

tahle, I 470 ff 

integrals involving paraml'i.f'r, 
1 5:~4 tr 

Lebesgue and Stieltjes integrat.ion, 

I 5GO, I 5G7 

methocls of integration, I 451 ff 

rational functions, I 457 ff 

Riemann ( Cauchy-Riemann) intf'-
gration, I 512 ff 

series expansions, I 550 tr 
su rvey of some im portan t formula.e, 

I 570 
of functions of two or 11101'<" variables, 

I 576, I 580 

basic dPfiHitiom; a11d nota.t.io11, 

I 572 tr 
surface integra.ls, I fi00 ff 

survey of some important formula.e, 

I ß:H 
representation of Bessel fu nctions, I G04 

Cauchy (of Ca.uchy typP), li 255 

convergent and divergPnt, I 522 

curve, II :~ 
curvilinea.r, I 500 ff 

along curve in spare, I 604 

definite, I 512, I 576, I 589 
ta.hle, I 541 ff 

double, I 5 7G lf 

elliptic, I 551 

equa.tions, li 220 ff, I! 585 ff, I! 4G0 

approximatP solut.io11 of, II 5io\5 ff 

Fred holm, I I 22:3 ff 

in conformal mappillg, 11 :lOfJ 

nonlinear, I I :{4(j 

of first kind, I! 241 
of Fredholm type, I! 22:{, II 224 

of second kind, I! 22:~ 
of Volterra. type, I! 240 

Int.Pgral(s) contirmed 
singular, II 2:~8 
with Cauchy kerne!, li 239 

with eiegenerate kerne!, II 228 

with Hilbert kerne!, II 238 

with symmetric kerne!, II 231 

with weak singularity, II 238 

hyperelliptic, I .551 
identity ( ellipt.ic problems ), II 208 

im proper, I 522 ff, I 594 

indf'finite, I 448 ff 

table, I 4 70 ff 
in sense of principal value, I .524, I .528, 

II 256 

involving para.meter, I 5:34 ff 

Legendre, I 552 

of abstract functions, II :36G, II :367 

of Cauchy type, II 255 
of functions of complex variable, li 249 

of ordina.ry differential equations, II 3 
particu lar, II :~ 

series expansions, I 550 

singular, li 11, II :~:~ 

surfa.ce, I ß00 ff 

test., for convergence of series, I :348 

transforms, II 567 ff 
applica.tions, II 570 ff 
Fourier, Hanke!, Laplace, Laplace­

Ca.rson, Mellin, II 568 ff 

fundanH'ntally important results, 

I! 574 ff 

grammar for Laplace transform, II 577 

Laplace and Fourier, applied to solving 

differential equations, II 570 ff 
one-dimensional finite, II 584 

tables, II 5 78 ff 
two- and multi-dimensional, II .581, 

I! 584 

t.riple, I 589 ff 
lntegra.ting fartor of diffPrentia.l equation, 

II 24 
Integration 

hy dilferent.iat.ion with respect to para.m­

et.er, I 455, I 5:H 

by pa.rt.s, I 451, I 519 

by subst.itution, I 45:1, I 520, I 586, I .592 
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Integration contin·ued 
Cauchy-Riemann, I 51:l 
in infinite interval, I 527 

Lebesgue, I 560 ff 
of Fourier series, I 6H7 
of rational funetions, I 457 ff 
of series with variable terms, I 643 
Riemann, I 512 
step, II 48:3 
Stieltjes, I 567 

Intercepts on axes of coordinates, I 170 
Interchange of Iimit and different.iat.ion 

(integration), I 6:39, I 640, I ()41 

Interior 
diameter of surfac.e, I GO!) 
parameter, eliminat.ion of, ll 4:35 

Interlacing solutions, II 4 7 
Interpolation, II 665 

approximat.ion, li G65 
by splines, II GH4 
formula 

Bessel, II GH I 
Gauss, ll (ji\ 1 
Hermite, I G77 

Lagra.nge, I I G7G 
Newton, II 67H, II GHO 
Stirling, II GS l 

polynomial, II 675 
Hermit.e, li G7G, II G77 
Lagrange, li G7G 

trigonometric, II 68:3 
Intersection 

of sets, I 45 
of straight line with ciH·le, I li\2 
of 2 straight. lines, I l 7L 

Interval, I :~59 
of stabilit.y, I I 50G 

Invariant, I 215 
imbedding met.hod, II 524 

in differential equations, li GS 
Inverse 

formula for speetral density, II 816 
funetions, I :IG2 

hyperholic, I 92 ff 
trigonomet.ric, I 8(i ff 

iterat.ion, II 644 

Inverse contin·ued 
matrix, I 50, li 602 

operator, II :345 
Inversion, II 294 

of permutation, I 17 

of a series, I 64 7 
Involute 

curtate and prolate, I 135 
of catenary, I 147 
of eircle, construetions and theorems, 

I 134 ff 
of curve, I 297 ff 

Irrational numbers, I .5 
I rregular nets, li 549 
lrrotat.ional veetor field, I 2:35 

Isogonal trajectories of one-parameter 
family of eurves, I :304 

lsolated 
Ioad, II 34:3 
point, II :319 
singularity of holomorphic funetion, 

II 267 

Isometrie spaees, Il :328 
Isoparametrie elements, II 4:39 

quadrangula.r bilinea.r, II 440 

qua.dra.ngtilar biquadratie, li 441 
triangular, II 4:39 

Isoperimetrie problem, II 399 
lterated kerne], li 236 
Iterative 

improvement of solution, li 605 
method(s), I1 594, II 615 

eonsistent, II 616 

general, for solving algebraie and 
transeendental equations, II 6G1, 
II ßG2 

one-point, ma.trix, li 615, li GIG, Il 617 

preconditioned, II 622 

sta.tionary, II 616, II 621 

.Jackson theorems, II 672 

.Jacohi(a.n) 
det.enninant, I 418, I 586, I 592 

elliptic functions, I 55:3, Il :31:3 
method 

solution of eigenproblems, II 6:32 



.Jacobi(an) continncd 
solution of linear a.l!!;ehra.ic systems, 

II 618 

polynomia.ls, I 711 
theta function, II :31:3 

Jensen inequality, II 7:30 
Joint 

distribution, II 704 
function, II 704 

probability density, II 705 
Jordan 

block, I 60, II G:31 
curve, I 5 7:3 
matrix, I GO, II 6:30 
region, I 5 7:3 

Joukowski aerofoils, li :207 
Jump of function, II 75 

Kaplan-Meier (product-li1nit) estin1ator, 
II 791 

Karma.rka.r mPthod of suc('essive projec-
tions, II 8fj;{ 

Kelvin functions, I 70:{ 
Kenda.ll cla.ssification, II 80G 
Kerne! 

of integral equa.tion, II :2:2:{ 
replacement, II 580 

Kha.chiyan ellipsoid method, li 8G:I 
Khintchine theorem, li 7:3:2 
Kirch hoff formula., II 19:2 
Knesser tlworc>m, 11 48 
Kochaüski rect.ific.ation of cin·le, I 11:3 

Kolmogorov 
ditfE'rential equa.t.ions, I I 801 

prospeeti VE', II 80 I 
retrospective. li 80 I 

inequa.lity, II 7:!0 
theorem, li 7:3:2 

Kolmo!!;orov-S111irnov tPst, II 7G:I 
Kovalewski tl!P<HPIII, II l!il 
Kroneehr dE>Ita., I :2114 
"Kugelsa.tz", li :2SG 
Küpper conoid, I :2:2,1 

Lagrange 
ditfE'rentia.l f'(j ua.t.inn, I l :{I 
form of Taylor t.lworf'lll, I :{')7 

INDEX 

Lagrange continned 
identity, I 2:30 

inE>quality, II 649 
interpolation, Il 676 
mE'an value theorem, I :387 

915 

mE'thod of undetermined coefficients, 
I 442 

variational problem, II 40G 
Lagrange-Charpit soiution of Cauchy prob­

lem in two variables, II 1G5 
Laguerre 

equat.ion, I 712, Il 74 
polynomials, I 712, II 74 

Lambda (.\) matrix, I 56 
La.nczos method, II 64:3 
L a.nd R intPgra.t.ion, I 5G2 
La.pla.ce 

differE'ntia.l equation, II 174 
Dirichlet problem for, II 176 
Neuman probiE'm for, li 176 

intE>gra.l tra.nsform, II 58G 
o1wra.tor, II 17 4 

in vector analysis, I 2:37 
transform, II 568 

applica.tion to solving differE'ntial 
equa.t.ions, II 570 ff 

LaplacE'-( :arson intE'gral transform, II 586 
Lapla.cE'-Ga.uss intE'gral, I 54:2 
Latus rE'ct um, I 180 
La.urent series, li 265 

a.t infinity, II 2()8 
essE'ntial singularity, I 2G7 

Law 

of error, II 778 

of growth, I 1G:2 
of Jarl?/' numbers, li no, II 7:31 ff 

st ron)?;, l I 7:3:2 

weak, li 7:31 ff 

Lax-M ilgram t lworem, li :209 
Least 

squarPs, li 7G7 
recursivE', II 772 

weighted, II 778 
upper bound (l.u.b.), I 5 

LPIH'S)?;UP and Riemann integration distin­
)?;tiished, I 5G:2 
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Lebesgue and Stieljes integration, I 560, 

I 567 
Lebesgue integral of unhonnd<'d function, 

I 563, I 565 
convergent, I 5():3, I 56!'"l 

divergent, I 5fn, I 565 
of functions of more variah!Ps, I 566 

Left-handed coordinatP systPm, I 196 

Legeneire 
differential equa.tion, I 705, I! 74 

elliptic functions, I 55:~ 

integrals, I 552 
polynomia.ls, I 705, !I 7tL II 1:r1 
transformation, li 407 

Leiliner p rocess, I I ()55 
Leibniz rule 

for conver?;enc<> of sNies, I :J50 

for derivatiVPs, I :lk·t 

Lemniscate of RNnotilli, I 151 
Length 

integral ca.lculus for 
curves in spare, I fi20 

plane curvf's, I 61:-\ 
of vector, I 1 (j,~ 

Level surfa.ces of sralar fi<'ld, I :l:l:l 
Levenherg-Ma.rqua.rdt. 11\Pt.hod, II 71'\0 
Levy-Lindelwr?; t lwon'm, I I 7:l:l 

L'Hospital rule, I 42!i 

Lia.punov 
stability, II 11:l ff 

theorem, li 7:33 
type of surfac<>s, I! 1:-\4 

Life, 100/%, II 7k!i 

Lifetime (tinH' to failllrP), II 7k!i 

Light cone, li :2S I 
backward, I! 2k 1 
forward, I! 2k 1 

Likelihood function and Pqnation, li 749 ff 

Lima~on of Pascal, I 15:l 
Limiting procPss 

interchange of, I 6:3() 

under differentiation sign, I li40 
under integral sign, I fH!), I (j.J I 

Limit(s), I 3:lG, I :HJ tL I ·10,1 

finite, I :H1, 
form of BessPl functio11s. I (j!)j 

Limit(s) contimwd 
from right or left, I 371 
important, I :342 ff 

infinite, I 37:J 

of abstra.ct function, II :366 

of composite function, I 372 

of functions of complex variable, II 245 

of seqtwnre 
in metric space, Il 325 

of functions, I 637 ff, Il 260 

of matrices, I 111 
of n um hers, I :336 

point, I :340, Il :n9 
theorPms in prohability theory, II 730 ff 

Linear 
algehraic equations: see below 

a.lgebraic systems: see below 

concepts in solid analytic geometry, 

I 199 ff 
diffNPntia.l equations: sPe below 

eiPmPnt: see below 

functional, II 349 
k-step ( multistep) method: see below 
mPtrir spa.ce, II :l:30 

norm<>d spa.ce, I I :n 1 
sha.rply normed, Il 667 

opf'l'at.or(s), II :347 
optimiza.tion problems: see Linear pro-

!!;ramming 
pro!!;ra.mming: see below 

sf't, spare, li :3:30 
suhspace, li :n1 

LinPar algebraic equations 

definition and propPrties, I :~2 

PquivalPnt systems, I :~2 

solution 
using determina.nts, I :~6 

without use of determinants, I :n 
LinPar algebraic system, II 595 

derived, li 596 
in matrix form, li 595 
uum<'rical methods for solving it, II 594 ff 
with rectaugular matrix, I :lG, Il 611 

wit.h singtdar matrix, li GO~ 
LinPar difrf'l'Putial equations, Il 17, Il 50 

charactPristic exponent, Il 50 
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Linear differential eq uations contin:ncd 
discontinuous solutions, II 75 

Euler, II GO 
Fuchsian t.nw, II G9 

fundamental Pquation, II 70 
fundamental systen1 of solutions, II 5:3 

homogeneous, li 17, II 51, II 57 

corresponding to non hou1ogPneous, 

li 1~, li 51 

periodic solution of, II 40 

with constant coeflici<'nts, II 57 

indicial equation, II 70 
nonhomogeneous, TI 17, li 51, TI 55 

with constant coefliciPuts and sperial 

right-haud sides, II G2 

of n-th order, li 50 

of second order with varia.lllf' codliciPnt.s, 

II GG 
oscillatory solutions, II 4 7 

partial of secoud order, classification, 

li 172 

Linear elemf'JÜ. 
one-dimensional, Il 4:32 

three-dimensional tetra.lwdral, TI 442 

two-dimeusional triangnlar, II 4:3·1 

Linearization nwt hod, Il 7~ 1 

with transfornwd Wf'igh ts, Il 7S 1 

Linear k-step ( multistep) m<'thods, li 4!l5 ff 

based on numf'rical dii!'Preut.ia.tion, II 504 

backward dilff'l'ence mf'thods, Il 504 

based on numerical in t.Pgration, li 502 

Adams-Ba.shforth lllf'thod, li 502 
Adams-Moulton mf'thod, li 50:3 

characteristic polynomial of, II 498 

essential root.s, TI 500 

growth para.nwters, II 500 

consistency of, li 497 

convergence of, II 407 

D-stable, II 408 

error constant of, li 4!)7 

explicit, II 496 

implicit, li 49(} 

interval of sta.bility, II !)Q(j 

local error of, li 497 

order of, II 497 

weakly stable, II 502 

Linear programming, II 822 ff 
artificial variables, II 859 

auxiliary optimization problems, li 859 

basic 

point, li s:31:\ 
dPgenerate, II 8:38 

solution, TI 8:37 
variables, II 8:37 

exchange of, II 8:39 

basis matrix, II 840 

blen<ling problem, II 829 

centroid method, li 86:3 

characteristic row, li 842 

convex polyhedron, II 824 

cross rule, II 844 

cutting plane methods, II 86:3 

d iscret.P, II S6:3 

duality principle, li 8GO 
economic balance, II 828 

epsilon (c )-perturbed problems, II 848 

feasible point, II 82:3 

basic, li 8:38 

Gomory algorithm, TI 8G:3 

gradient nwthods, II 8():3 

index basis change, TI ~42 

1\armarka.r method of succPssivP projec-

tions, II 86:3 
1\ha.chiya.n ellipsoid method, II 8fi:3 

linea.r constraints in programming, Il 82:3 

linear optimization problem(s), II 824 

dual, II 862 
equivalence of, II 827 

in equality form, II 828 

in normal form, II S27 

optima.J point ( solution) of, II 824 

maximization ( minimiza.tion) problems, 

II 82:3, II 840 

nonbasic variables, II 8:H 
ohject.ive function, II 82:3 

optimal feasible points, II 824, II 8:35 

optimality criterion, II 840 

parametric, II 860 

pivot (central element), II 84:3 

column, II 844 

row, II 84:3 

polynomial time algorithm, II 86:3 
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Linear programming contin:tu:d 
primal-dual a.lgorithm, II 8(n 

production 
center, I! s:28 
planning, I! s:H 

simplex nwtod, li S4k ff 
dual, li S(H 

revisC'd, li 8G:3 
slack variahl<:>s, I! 8:28 
transportation problf'm, I I 8:28 

Linear regression mot!Pl, I I 7G8 
bestlinear unhias<:>d <:>stimator (BLUE), 

II 770 
coefficient of df'termination, I! 771 
full rank, li 768 
generaliz<:>d, I! 777 
normal, li 77:3 

Lines of curvaturP on surface, I :tH 
Lines of forcP, I :n:~ 
Liouville 

formula, li 5:2 
theorem, II 1Sl, II :2G!l 

Lipschitz 
boundary, li :t{S 
condition, II 6, II G71 
region, II :3:{,'\ 

Ljapunov: see Lia.puuov 
Loading, li 544 
Load vector, II 4:2:~ 

Local 
dependence of functions, I 4:2:2 
discretization error, II ·185, li 497 

Locus of point as <:>quation of a curve, I 1G9 
Logarithmic 

decrement, I 1GO 
function of complex variable, II 272 ff 

analytic coutinuation, II :27:2 
multivalued, li 272 
principal and second hranches, II :27:2 

potential, II 17() 
singularity, li 27 4 
spiral, I 1:39 

Logarithms 
concept and properties, I 14 
conversion mod ulus, I ;{()() 

equations, I 15 

Logarit h ms contin nerl 
intC'gral, I 551 
mod uli of, I :3(iß 
natural base of, I :341, I :365 
power series for, I ()4() 

Logical concepts, I 1 
Logistic curve, I 1()4 
LowPr integral of Darboux sums, I 512 
Loxodrome, I :31:3 
L R factorization, II 6:36 
LR method, II 6:35 
L2, Lp-spaces, I ()()2 ff, II :323 ff 
LU factorization, II 599, II ():35 

for tridiagonal matrices, li 612 
L.u.b. (least upper IJOund), I ,'j 

MacDonald functions, I 70:3 
MacLaurin 

formula, I :397 
inequality, II G49 

Magnitude of vector, I lß8, I :227 
Mainardi equations, I :J:t3 
Maintenance stratE>gy, II 7S() 
Majorant 

of function, I 525 
of series, I :HG, I ß4:3, II 2()1 

Mapping (sE'e also Operator(s)), II :344 
conformal, li 289 ff 
continuous, I 418 
contractive, li :345 
definition, I 46, li :344 ff 
inject.ive, II :345 
into set, onto set, I 4(), II :344 
linear ( systems of algebraic eq uations) 

com posi tion of, I ();3 

definition, I ():3 
matrix notation for, I 64 

one-to-one, between sets, I 4() 

substitution, I 64 
regular, I 418 
surjective, II :344 

Markov 

chain, li 804 
Chapman-Kolmogorov equations, 

II 805 
homogeneous, II 804 
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Markov continucd 
Ma.rkov propnt.y, I I so,l 

t.ransit.ion 

ma.trix, II S04 

prohabili ty, I I 80 11 

inequa.lity, II 7:20 
process, II 7!JIJ 

Chapman-1\olmo~?,orov Pquat.ion, 
II soo 

failure int.Pnsity, II S0:2 

homogenf'ous, Il ROO 
. initial and sta.tionary distrihution, 

II ROO 
Kolmo~?,orov diffprf'ntial f•quations, 

II soo ff 

Markov propf'rty, II lfJfJ 

transition 

intensity, II SO 1 
prohability, li 799 

theorem, II 7:3:2 
Mass 

integral cakulus for 

curves in spart>, I 6:20 

plant> curvt>s, I Gis 

plane fi~?,urf's, I G:2:3 
solids, I 6:2() 
surfact>s, I G:29 

matrix, II 4()5 
Mathematical physics, problf'ms of, II 147, 

II 1 7:2 ff, II :20:3 
Matrix, matrices 

analysis, II 110 
banded, li 6 1:3 

charact.eristic, I 5:2 
polynomial of, I 59 

complex conjugate, I 5:2 
congruent, I 64 
conjunctive, I 6S 

decomposed into diagonal hlocks, I 55, 
I 60 

diagonal, I 5G 
diagonally dominant, li 619 
diagonals, principal and secondary, I :2G, 

I 5G 
eigenvalues of, I 50 
elementary divisors of, I 5R 

l\·latrix, matrices continued 
full, II G:2G, II G46 
functions of, II 110, II 111 
fundanH'ntal, II 10:3, II 517 
Gram, II 4:22, II 668 
IIPrmit.ian, I 5:3 
Ililbert, II G 11 
ident.ity, I 50, II 602 
ill-conditioned, II 605 
indefinite, I G7 
in lower liessenberg form, II 6:38 
in up]wr Hessenberg form, II G38 
inversP, I 50, II G02 
.Jordan, I GO, Il 6:W 

block, I GO, II 6:31 
Iambda- (,\-),I .5G 

divisors, I 57 
f'lementary transformation, I 56 
equivalence, I 56 
invariant factors, I 57 
rational canonical form, I 57 

lowPr triangular, II 59G 
mass, I I 465 
minor, of order k, I :28 
Moore-Penrose generalized inverse, 

II GO!l 
mult,iplication of, I 49 
tH'gative definite, I 67 
non-defertive, II 6:31 
non-singular, I 50 
n-rowPd square, I :26 
of linPar algebraic system, I :3:3, II .59,5 
opf'rations on, I 49 ff 
orthogonal, I 52, I G5 
partitioned into blocks, I .53 
plane rotation, II 6:3:3 
positive definite, I 67, II .598 
prod uct of, I 49 
profile, Il 61:3 
pseudoinverse, li 609 
rank, definition and theorems, I 26 ff 
retlection, II 641 
regu lar, I 50 
seq ut>nce of, Il 111 
serit>s of, II 111 
signature of form, I 67 
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Matrix, matrices continnerl 
similar, I 59, II 6:l0 

skew-symmet.ric, I 51 

sparse, II 611, II 626 
square, I 50 
stiffness, II 4 2:1 
symmetric, I 51 

Toeplitz, II Gll 
trace of, I 5:3 
transposed, I 2G 
triangular, I 55 
tridiagonal, II 612 
unitary, I 5:3 

upper triangular, I 55, li 596 
eigenvalues of, I !i9 

Vandermondf', II G 11 
well-conditionl.'d, Il GO.'i 

Maximal solution of ordina.ry diffNentia.l 
equation, II 7 

Maxima of funct.ions, I :392 lf, I 4:3H ff 

Maximum 
likelihood, est.ima.tor, II 7,1!) 

for censored ra.ndom sam pll's, II 790 ff 

method, II 7 4 9 ff 
principle 

for harmonic funrtions, II 177 
for heat. equation, II :.WO 

Mean 
curvature, I 27H 
torsion, I 279 

Mean( mean valtw ), II (i!)X 
conditional, II 70G 

curvature, I 278 

deviation, II 70 l 
of linear transformation of random van­

ables, II 72X 
of stochastic process, II RIO, II Ht:3 
sample, II 7:36 

Mean-value theorem(s), I :!H7, I 51() 
for double integrals, I 5:'!0 

for harmonic functions, II 180, II 181 
generalization for several variables, I 415 
generalized, I :388 

Measurable 
functions, I 5G 1 
sets, I 5GO 

Median, II 700 

sam plf', II 7 40 
Mellin t.ransform, II 5G8 
Meromorphic function, II 267 

of several complex variables, II 288 
Mesh point, li 546, II 562 

bounda.ry, II 563 
inner, II 562 
interior, II 562 

Method(s) 

Fourier, II 534 ff 
Galerkin, II 427 

of discretization in time, II 215 
of finite differences, II .'546 ff 
of finite el!'ments, II 428 ff 
of parameters, II 28, II :38 
of pPrforming conformal mapping, 

II 296 ff 
of Rotlw, II 215 

of Schwarz quotients, II 87 

of separation of variables, II 14, II 5:34 ff 
of tra.nsfer and normalized transfer of 

boundary conditions, II 519 ff 
of variation of parameters, II 18, II 56, 

II 108, II 161 
Ritz, II 422 
Runge-Kutta, II 492 ff 

Metric, II :32:3 

axioms, II 32:3 
invariant, li :3:30 

spa.ces, II :32;3 ff 
linear and other operators in, li 344 ff 

tensor of space, I 24 7 
Meusnier theorem, I 327 

Milne 
device, li 510 
formula, II 511 

Minimal angle condition, li 448 
Minima of functions, I 392, I 4:38 ff 
Minimax 

approximation, II 669 
principle, II 86 

Minimum of functional of energy, II 354, 
II :160, II 412 

Minkowski inequality, I 9 
Minor in determinant, I 30 
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Mixed 

derivatives, intcrchan~•·ahilit.y, I 40~ 

problems for partial ditrerential equa­

t.ions, II 1 !iO, II 19!i, II 199, II 21 !i 

process (ARMA), li 81:3, li 81~ 

product of thrcc vectors, I :no 
Mode, II 700 
Modulus 

of continuity, li G71 
uniform, II G71 

of vcctor, I 227 

Moivre theorcm, I 11 
Moivre-Laplace theorf'm, II 7:!:l 
Moment(s), II ()!)~ 

central, II 6!)1~ 

method of, II 7!i0 ff 

mixed, II 708 
of inertia 

formulaP for 

planc fif!;lll"PS, I !l!i rr 
solids, I I 04 ff 

integral calculus for 

curves in spacc, I (j10 

planc curves, I (jl<) 

plane figurPs, I G1•1 

solids, I G18 

surfaccs, I G:H 
sample, II 7:l7 

Monodromy thPory, II 111 

Monogenie function, II '2-IG 

Monotone opera.tor, 11 :n1 

Monotonic 

functions, I :_{<) 1 

sequencPs, I :l-11 

Montpellicr conoid, I 114 

MoorP- Pcrl!'ose gnJPrali U'd i IIV<'l"S<' of ma­
trix, II GO<) 

Movablc (freP) euds of admissiblP curves, 
li :!<)5 

Moving 

avcragc (MA), II 8!1. II XII 

polhode, I I '21 

trilwdron aml FrPI\01. formula<'. I :2(i8 rr 
M ultigrid nwt. hod, I I G2!i 
M ultiinuex, I! :{:{<) 

Multiple 

angle formulae of trigonometric func­
tions, I 7 4 

comparison, I! 782 

point of curve, I 261 

M ultiplication 

of matrices, I 49 

of tensors, I 25.5 

of vectors, I 228 ff 

Multiplicity of eigenvalue, I 84, I 3!i6 

Multipliers, Lagrange mehod, I 442 

Multishooting method, li !i18 

M ultivariate 

analysis, II 785 ff 

distrihution, li 704, II 72.5 ff 
process, II 797 

Nabla operator, I 2:34 

N apier ru!P, I 84 

Natural 

logarithms, hase of, I :!41 

nuJnhers, I 2 

sums of powers of, I l(j 

N avier-Stokes equations, II 20:3 

n-com ponent ( com plex) vector, I 24 

n-coordinate ( complex) vector, I 24 

n-dimensional sphere, II 281 

in Euclidean space, II :321 

in nwtric space, I! :32G 

71-dinH•nsional torus, li 280 

11-dimensional vector space, I 24 

Negat.ivc 

half lirw, I 174 

orientation, I 229 

Neighbourhood 

of point, I :3GG, I 404, II :319, II :321 

in nwtrir space, II :32() 

N eil parabola, I 12(j 
NPphroid, I 1:!;! 

Nf'ts (finitc differPnce method), II !i46, 
li .)(j1 

NPUI\Ja.nn 

functions, I 700 

prohlem (see also Dirichlet and Neu­

mann), II 176 
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Neumann contin·ned 
solution for Laplace and Poisson 

equations, II 177 ff 
Newton 

definite integral, I 518 
formula, binomial theorem, I 19 

interpolation formula, II 680 
interpolation polynomial, general, II 678 
method for attaining roots of algebraic 

equations, II 658, II fi6:l 
potential, II 17 5 
problem, II 17G 

Newton-Cotes quadrature formula, I 55(} 
Newton-Fourier met.hod in conforma.l map-

ping, II :312 
Nicomedes conchoid, I 152 
Nodal parameters, II 4:JO 
Node(s) 

(differential equations ), li 2G 
of curves, I 291 
of finite element, II 4:30 
of interpolat.ion, II ii7!i 
of q uad rat u re form u Ia, I 5.'i!i 

Nonbasic va.riahl<>s, II i·n7 
Non-developa.b!P surface, I :HG 
Nonlinear 

elliptic bounda.ry value proh!Pms, II 210 
partial differential equa.tions of first 

order, II 1()0 ff 
regression model, I 779 
systems, numerica.l solution, II GG2 

Nonsingular conic sertion~, I 1S9 
Non-zero funrt.ion in L2, I Gli4, II 2:.ll 
Norm 

of element, II :UJ 

axioms of, I I :{:J I 
offunction, I GG:J, I GG!l, II 221 
of matrix, II G04 

spectra.l, II G04 
of operator, II :34 S 

of pa.rtition, I !il:{, I 57S 

of tangent vert.or, I 21Hi 

of vector, I 227, II G0:3 
Euclidean, II G0:3 
maximum, li GO:I 
sum, II ßO:I 

Norm continned 
uniform, II 604 

Normal 
acceleration, I 276 
cydoid, I 127 
distribution, li 714 
epicydoid, I 130 

equation of straight line, I 177 
equations, II 770 
form ( of differential equation ), II 68 

fundamental system, II .'55 
hypocydoid, I 1:l0 
plane, I 271 
system of differential equat.ions, li 100 

vector 
to plane, I 200 

to surface, I 312 

Normalized transfer of boundary condi­
tions, II 52:3 

Normed 
el!~ment, II :3:35 
function, I 670 

wit.h weight., I fi72 
spare, II :3:31 

Null vector, I 225 
N umlH'rs 

complex, I 9 
conjugate, I 10 

imaginary, pure, I 10 
irrational, I 5 
natural, I 2 
rational, I :3 
real, I 4 

N umerical 
ea.lculation of matrix eigenvalues, II ():30 ff 
integration, I .'j.'j!) ff 
methods for solving 

elliptic differential equations, II 409 ff, 
II 546 ff 

hyperbolic differential equations, 
II 467 ff, II 546 ff 

ordinary differential equations, 
II 4S:l ff, li 515 ff 

parabolic diffen~ntial equations, 
II 4 G:3 ff, II 54G ff 

mPthods in linear algebra, li .')!)4 ff 
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N umerical conti11:ned 
solution of algebraic and t.ranscendent. 

equations, II 648 ff 
basic properties, II 648 

connect.ion of roots with matrix eigen­

values, II 652 
estimat.es for roots, II 649 

met.hods for solving nonlinear systems, 

II G62 
quadrature, I 555 

Obelisk, volume and centroid of, I 106 

Objective 
funct.ion, I! 82:i 

Oblate spheroid, I 110, I 210 
Oblique t.rajectories, II :w 
Observations, II 7:W 

cakulus of, li 77X 

frequency of, I! 741 

One-parameter family 

of plane curves, envelopPs uf, I 292 ff 

of surfaces, Pnvelopes of, I :H7 

One-stPp mPthod, g(']wral, II 4,"!) 
One-to-one 

correspondence, I 4G, I :w2, I 4LX, II :345 

operator, II :345 

Open 
circlc, II :{20 

disc, II :{20 

interval, I :i59 

set., II :~20 

spherP, I I :~22 

Operating charactPristic, I I 7flL 

curvc, li 792 

Operat.iona.l calc.ulus: sPP Intq~ral trans­

forms 

Heaviside, I! 570 

Operator(s), II :J.1.J; SPP also !Vlapping 

a.bsolutcly continuous, Il :Vd 

acljoint, !I 79, II :{50, Il :Fi2 fL li :{.')9 

biject.ive, I I :{45 

bounded, Il :{47, Il :352 ff, ll :n2 

coercive, Il :{72 

compa.ct, Il :{51 

completely continuous, II :{.'i] 

con ti nuous, II :l11 7 

Operator( s) continued 
uomain of definition of, II 345 

eigenvalue of, II 81, II 3.55 ff, II 362 ff 
extension of, II 349 

iclentity, li 35.5 

in Hilbert space, II 3.52 ff 
injective, I! 345 
inverse, II :345 
linear, I! 347 

monotone, II 372 

strictly, II 372 

norm of, II 348 

one-to-one, II :345 
positive, I! :3.54, II :359 

definite, II 204, II 354, II :359, II 410 

potential, II :371 

sPlf-adjoint, li 79, li 351, II :353, li 359 

simple (univalent), II :~45 

strictly monotone, li :372 
surjPdive, li :344 

symmetric, li 359 

unboundecl, II :358 ff 
vector ana.lysis, I 2:34 ff 

Optimal 
feasible point, II 824 
proh!Pms: see Linear programming 

OnlPr 

of PigPnvalue, li 84, II :35G 

of qua.dra.ture formula, I 555 

of tensor, I 24 7 

Ordering 

of integers, I :3 
of rea.l numbers, I 5 

Orclinary 

diffNential equations: see Differential 

equations, orclinary 

point ( difrerPntial geomPtry ), I :w6 
poin t (function of com plex variable), 

Tl 2fi4 

0 riPn ta.tion, I 1 7 4 
positivP a.ncl negative sense, I 174, I 196 

right-hanclecl ancl left-ha.nclecl, I 196 

Oriented 

curve, I 599 
projPrtion of surface, I (i09 

straight line, I 174 
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Oriented continnerl 
surface, I 609 

Original 

to an element of a set, I 46 

to an image, Il :344, Il !i(i7 

Origin of coordinate syst<•m, I IG7, I 19.) 

Orthogonal 

conjugate net on surfacP, I :3:31 
elemets in Ililhert spare, li :t\!i 
functions, I (i(j!) 

in generaliz<·d sensP, II S4 

invariants, I 21!i 

matrix, I !i2 
projection in Tlili>Prt. spacP, II :n!i 
system in Hiii>Prt span•, II :\:\.'), I! :l:l(i 
trajectories, I :Hi 

of one- para metPr fa.111 i l,v of cu rvPs, 

I :w4 
of tangents to a Cl in'<', I 2!)7 

Orthogonali t.y 

of two pla1ws, I 202 

oftwo straight. linPs, I 17(i, I 20S 

of a straight. linP and a plan<', I 20S 

Orthonormal 

basis, II :tlS, I I Gfi,'i 

function systnn, I G70 

with weight. funct.ion, I G72 

system in Ilii!H·rt space, li :nr,, II :l:Hi 

Oscillati ng 

series, II :!:l4 
Oscillations, 

aperiodic mot.ion, ].r,!l 
curves of, I 1 !i(i II' 
damped 

critical, I 159, II J:l2 

forced, I !GI, II J:n 
free, I 15S, II t:l2 

supPITrit.iral, I J!)f), II J:\2 

harmonir, I 1!i7, II J:\1 

logarit.hmic d<·cn•mPnt, I I liO 

resonancP curv<>, I 1.r,x 
transien t, I I li2 

undamped (cont.inuous), I l!ifi, II J:\1 

forced, I 157, li 1:32 

free, I 156, II J:H, li 1:l2 

Oscillatory solutions of linear differential 

eq uations, II 4 7 

Osculating 

circle, I 285 

of vertex of ellipse, I 118 
curves, I 18:3 ff 

plane, I 271 

Ou ter 

measure, I 560 

produrt of vectors, I 229 

Pappus rules, I 6:3:3 

Pa.rabola 

as con ic section, I 189 

equation for polar, I 192 
constructions, I 12:l ff 

cuhiral and semiruhical, I 126, I 279 

dPfinition, I 185 

dirPctrix of, I 1S5 

focus of, I l2:l 

higlwr df'gre<', I 125 

parameter of, I 122 

su h-normal, I 124 

suh-tangent, I 124 

t.lworems, I 12:3, I 185 

Vf'rtex and vertex tangent of, I 122 

Paraholic 

equations, II 172, Il 197 ff 

segment 

area and c<>nt.roid of. I 10:3 
mom<>nts of inPrtia of, I 104 

point, I :l2G 
l'araholoid 

Pliiptic and hyperholic 

canonical and transformed equations, 

I 217 

th<>orems, I 212 

of r<>volution 

volunlf', surfare area, centroid, mo­

men t. of i nnt.ia, I 111 

l'aralld 
area.s theorPill, I (i:l:l 
axPs thPorem, I G:l:l 

c urves, I 29G 
planes, I 20:3 

straight lines, I 175, I 208 
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Parallel conii'fl:ucd 
vectors, I :2:.27 

Parallelepiped, I l 04 
Parallelism, condit.ion for 

line and plane, I :200 
two straight linf's, I 17!i, I :.20S 

Parallelogram, geomctrical formula.e, I 97 

Parameter, I 180 
admisible transformation of, I :264 

in integral, I !i:H ft' 

of parahola, I 1:2:2 

Parametrie 

equations 

of circle, I LS1 
of curve in plane, I 1 SO 

of straight lin<", I 170, I :20!i 

variational prnhl<'ms, I I 40:{ 

Parseval equa.lity, I 675, li :l:l7, II G99 

Partial 

derivatives, I 40G 
differential eq uations: sef' Diff<"rf'ntial 

equations, partial 

sum of series, I :{4:{, li :2GO, li :U:2 

Partindar int.Pgral, li :{ 
Partition of doma.in, II <J:l() 

Pascal lima<_;on, I 1.):{ 

Path of stochastic tHocpss, li 797 

Pedal curve, I :{O:l 

Pencil 
of lines, I 17:{ 
of planes, I 20:{ 

Percentile, II 700 

Pi<"cewise continued 
curve, I 260, I .573 

function, I 405, Il 75 
surfa.ce, I :lQ.), I 575 

Pivot, li 507, li 84:{ 

Pivoting, li 507, li 509, II 644 
Plane 

affine transformation of, I 190 
curves 

approximate constructions for, I 16.) 

asymptotes of, I 288 

asymptotir points on, I :102 
constructions for, I 112fT 

definition of, I :2G:l, I 572 

PnvelopPs of one-parameter family of, 

I :29:2 ff 

Pxplicit and implicit equations of, I 2G4 

rPgular ( ordinary) points of, I 264 

singtdar points of, I :2G1, I 2G4, I 290 

subtangent and subnormal of, I 27G 

figurPs, application of integral calculus, 

IG21 
of complex numbers, li :.24:3 

closed, li :24:{ 

com piPted, II 24:{ 

extended, II :24;{ 

prob!Pm of elastici ty, li :20:3 
Planes 

bisection of angles beetween two inter­

sPcting, I :.204 
bundle (star) of, I :204 

pencil (sheaf) of, I 20:3 

Periodic solutions of differPntial Pqua.tions, Plate 

II 49 clamped, deflPction of, li 205 

Periodogram, li 819 sim ply su pported, deflection of, II 543 

Permutationsand combinat.ions, I 17, I JS 

Perpendicula.rity, condit.ions for 

line and plane, I :20S 

two planes, I :20:2 
two straight lines, I 176, I :.20S 

Pfaffian equation, II 202 

Phase displacement, I 15G 
Picard approximation, II 41·\S 

Piecewise 

continuous function, I 405, li 75 

smooth 

Plemelj formulae, II :257 

PlükPr conoid, I :2:24 

Pluriharmonic functions, II 284 

Point 

contact of curves, li :272 

con vergence 
of sequence of functions, I G:H 

of series of funct.ions, I 641 

of accumulation, li 310, II :326 

of continuability, II :277 

of incletermination, II 288 
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Point contin:nerl 
of inflection, I 272, I 284, I :391 

ordinary, of first order, I 284 
of intersection of two straight lines, I 172, 

I 208 
of self-tangency of curves, I 291 

Poisson 
differential equa.tion, II 174 
integral, II 184 

Polar 
coordina.tes, I 178 

generalized, I 588 
in solid analytic geometry, I 196 
plane curves, representation in, I 180, 

I :100 lf 
relation wit.h cartesia.n coordina.tes, 

I 179 
semi-axis (initia.l line ), I 178 

line, I 288 
nets, I 550 
sub-tangent, I I :37 

Pole 
of f(z), II 267 

double, II 267 

of order k, li 267 
simple, II 267 

of polar c.oordinates, I 171:1 
Polhodes, moving a.nd fixPd, I 127 
Polycylinder, II 278 

with vectorial radius, II 279 

Polydisc, II 278 
with vectorial radius, II 279 

Polygon 
area of, I 169 

c.onformal mapping of upper halfplane 
Oll, II :302, II :311 

regular, geometrical elemets of, I 98 

Polynomial(s), I 20 ff, I :364 
Chebyshev, I 711, II 1:36 

clegree, definition, I 20 
divisor, definition, I 20 
Hermite, I 712, II 75, II 1:34 
Hermitiam form, I 62 
Horn er method ( scheme), I 22 
interpolation, II 675 

Jac.obi, I 711 

Polynomial(s) continued 
La.guerre, I 712, II 74, 
Legendre, I 705, II 74, II 1:37 
linear factor of, I 21 
of best uniform approximation, II 669 
product and quotient, I 20 
quadratic forms, I 62 
real c.oeffic.ients, with, I 22 

regression, II 769, II 776 ff 
roots of, I 21, II 648 

sum of, I 20 
time algorithm, II 863 
zero, I 20 

Position vector, I 226 
Positive 

definite 
mat.rix, I 67, II 598 
operator, II :354, II 359 

eigenvalue problem, II 82 
half lirw, I 174 
homogeneous function, II 403 
numbers, I 3 
operator, II :354, II 359 
problems, II 82 

sense of orientation, I 174, I 196 
of curve with respect to region, I 599 

Potential 
equation, II 539 
flow, II 299 
logarithmic, II 176 
of double layer, II 184 
of si ngle layer, II 184 
operator, II 371 
vector field, I 2:33 

Power(s) 
curves, I 125 

function, I 365, II 274, II 755 

of romplex variable, II 274 
of test, II 755 

method, II 6:31, II 644 
of natural numbers, sums of, I 16 
of trigonometric functions, I 76 
series, I 645 ff, II 262 ff 

absolute convergence, I 646 
application of, I 658 

arithmetic operations with, I 647 
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Power( s) continned 
couvergeucP, I G46 

defiuitiou aud tllf>orems, I ß45 ff 
differeut.ia.tion and integration, I ß4!) 
economized, II G74 

expansion into, I G50, I ()5:2 
in two or more variables, I 651 
inversion of, I ()4 7 
substitution in another power series, 

I ß4!l 

, with centre at origin. I 64() 
with integral expouents, I 11 

Precompact space, II 329 
Preconditioner, II 622 
Preconditioning of iterative met.hod, II G2l 
Prediction 

iuterval, II 774 
theory, II 821 

Predictor-corrector methods, II 508 
Milne device, II 510 

Prehilbert ( pre- Bi! bert) space, II :3:3:3 
Preservation of region, theorem on, I 419 
Prime ends, Caratheodory theory of, II :304 
Primitive 

function, I 448, II 250 
period of sine curve, I 155 

Principal 
brauch of logarithm, II :27:3 
compouents, II 785 
normal of curve, I 2()8 
part 

of discretization error, II 487, II 491 
of Laureut series, II 266 

vectors, I 227 
Prism 

ceutroid of, I 104 
truncated triaugular, I 104 

volume aud sm-face areas of, I 104 
Prismatic peutahedra.l three-dimeusioual 

elemeut, II 44:3 
Probability, probabilities (see also Raudom 

0 0 0) 
a posteriori, a priori, II 69:3 
axioms of, II G90 

central Iimit theorems, II 7:30, II 733 ff 
classic.al definition of, II 691 

Probability, probabilities continued 
combinatorial calculation of, II 691 
rondit.ioual, II 692 
convergence in, II 7:31 
densit.y, li 696, II 705 

condit.ioual and marginal, II 706 
of t.ra.nsformed random variable, II 727 

distribution, II 694 

function, II 695, II 704 

conditional and marginal, II 706 
law of !arge numbers, weak and strong, 

II 7:30, II 731 ff 
Iimit theorems, II 730 ff 
measure, li 691 
of event, II 690 

offa.ilure, II 786 

of intersection of events, II 692 
of survival, II 786 

pa.per, II 7 45 
normal, II 7 45 

ru Je, total, II 692 
theory, II 688 ff 
transition, II 799, II 804 

Process, II 797 
arri val, li 806 
autocorrelation fuuction of, li 811 
au tova.riance 

function of, II 811 
matrix, II 81:3 

autoregressive (AR), II 812, II 818 
birth-and-death, II 803 ff 
branrhing (Galton-Watson), II 798 
counting, II 797 

cross-covariance function, II 814 
ergodic, II 814 
estimation of correlation characteristics, 

II 814 
harmonic, II 813, II 818 
in con tin uous time ( random function), 

II 797 
in disrrete time (random sequence, time 

series), II 797 
Markov, II 799 
Markov chain, II 804 
mean of, II 810, II 813 
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Process contin'llcd 
mixed (ARMA), li Rn, II Rl~ 

moving average (MA), li Hl:2, II 817 

normal, II 812 
Poisson, li 7!lH, II 80:2 if 

intensity of, li 7!>8 

realization ( trajectory, pa.t.h, ~a.mple 

function) of, li 7!>7 

spectral (Fourier) analysis of, ll H14 

spectrum, li 815 
stationary, li H 11 
univariate and multiva.riatc, II 797 

white noise, II 798, II Hl:2, II 817 
Wien er, I I 7!>!) 
with continuous and discret.e states, 

li 797 
with independcnt incremPnts, II ,-; 17 

Yule, II 80:3 

Product 
method, II 5:3,1 II" 
of matrices, I cl() 

of sets, I 45 

of tensors, I 255 
of vectors, I :2:28 tr 

Production planning, II 8:31 
Product-limit (1\apla.n-Meif'r) f'stimator, 

II 791 
Projective transformat.ions 

of plane, I 1 !)0 

of regtt!ar conic section, I Hll 
Prolate 

circular involute, I 1:J5 

cycloid, I 129 

epicycloid, I 1:31 
spheroid, I 110, I 210 

Proper 

function of eigenva.luf' prnblf'm, II 81 

value, II 81 

Pseudoinverse of matrix, II 609 

Pseudo-periodic function, II 49 

Pyramid 

centroid, position of, I 105 

frustum, volume of, I 106 

regular frustum, lateral a.rea. of, I 106 

triangula.r, volume of, I 105 

QL mct.hod, II 6:37 
Q R. fa.ctoriza.tion, II 6:37 
QR method, II 6:36 
Quadrant( s) 

definition, I 168 
first, reduction of trigonometric functions 

to, I 7:3 
signs of trigonometric functions in, I 72 

Quadra.t.ic 

element 
onf'-dimensional, II 4:32 
two-dimensiona.l, II 4:34 

eq uations, I :l9 
discriminant of, I :39 

form, I 62, II 422 
congruf'nt, I 68 
ma.trix notation, I 64 

functional ( functional of energy), II 204, 
II :354, ll :360, II 40!> 

tlworf'm of minimum of, II :354, II :362 
rf'gression, II 769 
tf'llSOI', I 24 7 

Quadra.tttrf' formula(e) 
Gauss, I 555 
Gauss- Legendre, I 556 
Newton-Cotes, I 556 
Romberg, I 5i57 
Simpson, I 557 
trapezoirlal rule, I 55 7 

Quadrics, I 209 ff 
canonical f'quations, I 216 ff 
cone, I 214 

cylinrlers, I 214 

degenerate, I 218 

generat equations, I 215 
transformed equations, I 21.') 

Qua.drila.teral, geometrical formulae, I 96 
Qua.lit.y control, II 792 ff 
Quantile, li 700 

sam ple, li 7 41 

Quartic equations: see Biquadratic 
Qua.rtile, lower and upper, II 700 

Queueing theory, II 806 

arrival proc.ess, II 806 
busy periods, II 806 
Kendal dassification, II 806 
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Queueing tiH•ory continu.ed 
service system, II KOG 

service time, II KOG 
stationary trafllc, II XOfi 

system, loss, li ,\l07 

M(D)l, II KlO 

M(M)n, II 807 ff 

traffic intensity, li H07 

waiting time, li 806 

in system, li 806 

QZ method, li 64() 

Raabe tf•st for convergt>nn· of sPries, I :347 

Radius 

of circle 

circumsnihPd on tria.ngle, I SO 
inscribed in trianglP, I SO 

of convergencP of power sPries, G4G, 

II 262 

of curvaturP, I 277, I 28fi, I :l2X 

of torsion, I 278 

vector, I 22G 

Random 

event( s), II GS,\l 

certain, coinpl<'lll<'ll1.<try, disjuint., Pl­

ement.ary, Pquivalent., ilnpossibiP, 

II fi,\l8 lf 

clitference of, intPrsPct.ion of, union of, 

II G88 

indepPndent, li fi!H lf 

experimPnt, I! fi8,\l 

function, li 7rl7 

procpss: sPe P rocess 

sample: s<:>P Sampie 

sequenc<:>, li 7rl7 

variablP(s), li fif)4 

charact<:>ristic function of, !I 70:3 

characterist.ics, I! GD7 

of location, I I 700 

of skewness and kurtosis, [[ 702 

of variahility, !I 701 

coefliciPn1., correlation, [[ 70!l 

of kurt.osis (Pxcess), li 702 

of skewness, I I 702 

of variat.inn, li 702 

continuous all!l discrl'tP, II (jf)!) lf 

R andom contimted 
convergence of, li 7:31 
covariance of, II 708 

cumulant of, li 704 

density of, li G9G 

deviation of, mean and standard, 

II 701 

distribution of, II 694 

independent, li 707 

integer (integral-valued), li 710 

!llPan ( mean value, expectation) of, 

li 6!)8 

mode of, II 700 

quantile ( decile, median, percentile, 

quartile) of, II 700 

range of, II 702 

transformations of, II 727 ff 
uncorrelatecl, II 709 

variance of, !I 69!) 

vector, II 704 

characteristic fund.ion of, li 710 

charact.eristics of, li 708 

continuous and discrete, !I 70!) 

correlation and covariance matrix of, 

!I 709 

densit.y of, II 70!) 

distribution of, II 704 

distrilmtion function of, li 701 

mean of, II 708 

Range 
interdecile, interpeiTentile, interquartile, 

I! 702 

of mapping, li :344 
of opera.tor, li :344 

Hank 

of matrix, I 26 

of quadrat.ic form, I 6:3 

of system of vectors, I 2!) 

of tensor, I 24 7 
Rational 

Clll'Vf', I 2G:3 

functions, int.egration of, I 4!)7 ff 

intPgral funct.ion, I 20 

numbPrs, I :3 
lield of, I 48 

Hatio tPst for convergencP of series, I :347 
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Rayleigh quotient, II 85, li 206, II 356, 
11 363, II 5:n 

Rayleigh-Ritz met.hod, li 457 
Real 

cone, canonic.al and transformed equa­
tions, I 216 

function, I :359 
number(s), I 4 ff 

absolute va.lue, I 8 
algebraic and transcendenta.l, I 5 
bounds (greatest lower, least upper) of 

a. set of, I 5 
generat powers of, I 1 :l 
inequalities between, I 6 

roots of, I 12 
space L2, I 662 tf, II :324 

Real a.nd imaginary axes, I 11 
Rearra.ngement of series, I :{4G 
Reciprocal 

equations, I 4:~ 
spiral, I 1:~8 

Reetangle of givl'n periml'tPr having great.­
est area, I :~!)5 

Reetangular 
c.oordinates, I 1()7, I 195 
Hemlite elements, li 4:38 
simply supported plate, cleftection of, 

II 54:3 
R.ectification of cirde 

Kochinski, I 11:~ 

Sobotka, I 114 
Rectifying plan!', I 271 
Recurrent formula.e for BI~SSI'l fuurtions, 

I 694 
R.educed equations of straight line, I 205 
Reduction of matrix to simila.r one, I 61, 

II 628, Il G40 
Redundancy in reliability theory, II 789 
Reference 

interval, II 4:12 
triangle, II 4:1:{ 

R.efinement of nPts, II 550 
Reflection 

cartesian coord i na.te system, I 198 
R.iemann-Schwa.rz principle, II :301 

Reflexive space, II :350 

Region, II :320, I 402 
bounded, II :321, II 322 
closed, II 321 

of type A, I 573, I .'57."i 
k-tuply connected, II 321 ff 
of Caratlu~odory type (C-region), II 308 
regular with respect to Dirichlet problem, 

II 190 
simply connected, II 321 ff 
theorem of preservation of, I 419 

Regression 
coefficient of determina.tion, II 771 
error variable, II 766 
expla.natory variable ( regressor ), II 767 
function, II 766 ff 
hyperbolic, II 769 
linear (simple linear regression), II 769, 

II 775 
linear regression model, II 768 
method of least squares, II 767 ff 

recursive, II 772 
weighted, II 779 

nonlinear, II 779 
parameter, II 768 
polynomial, II 769, II 776 ff 
quadratic, II 769 
response variable, II 767 

sum of squares, II 770 
Regressars (explanatory variable), II 767 

orthogonalization of, II 776 
Regula fa.lsi method, II ()58 
Regular 

conic sections, I 189 
functions, II 24 7 
hypersurfaces in E,., II :l92 
mapping, I 417 
nets, II 549 
part of Laureut series, II 266 
point 

of curve, I 2Gl 
of .f( z ), II 264 
of surface, I :J09 

polygon, I 98 
singularity, II 69 
system of decompositions, II 447 
value of operator, II :l55 
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Reinhardt doma.in, II 280 
Relative 

complement of sets, I 45 
maximum and minimum, I :392, I 4:38 

Relatively c.ompa.d space, II :}29 
Reliability 

censoring, II 789 ff 
estimation, II 789 ff 
function, II 78() 
hazard rate (failure rate, force and 

mortality), II 7R7, II 788 
probability of failure and surviva.l, II 78() 
redundanc.y, Il 789 

active (parallel) and sta.ndby, II 789 
system, II 786 
theory, li 78G 

Remainder( s) 
of finite dilference a.pproxi1uation, II 547 
of interpola.tion formula., II G7G 
of quadratu re formula, I 555 
of Taylor formula, I :397, I 415 

Remes a.lgorithm, II fi72 
Removable 

singularit.y, theon~m of, II lRI, li 2G8 
singula.r point. on curve or surfa.ce, I 2Gl, 

I :30!) 
Renewal theory, li 78fi 
Repeated intcgrals, I 581 
Representing functions, li 1112, li 447 
Residual 

of linear algehraic syst.<•m, II G05, II GIG, 
II G20 

sum of squares, li 770, li 78:3 
Residue theorem, Il 270 
Resolvent, II 97, Il 2:34, II :355 
Resonanre curve, I 158, I IG2 
Response variable, li 7G7 
Revolution, surfa.cl's of, I :ll!l 
Rhombus, formula.e for geometrical ele-

ments, I 97 
Ricatti ditferentia.l eq ua.tinn, Il 21 
Richardson extrapola.tion, li 512 
Riemann 

integra.tion, I 512 
sphere, II 24:i 
surfaee, II 27:3 

Riemann continued 
theorem (conformal mapping), II 293 
zeta function, I 643 

R.iemann and Lebesgue integration, distinc­
tion between, I .562 

R.iemann-Schwarz reflection prindple, 
II :301 

Riesz-Fischer theorem, II 352 
Right 

c.onoid, I :316 
helicoid, I 27:3 
parallelepi ped 

moment of inertia, I 105 
volume and surface area of, I 105 

Rings 
a.ssociative, commutative, division, I 47 
solid, volume, surface area. and moment 

of inertia of, I 111 
R-integrability: see Riemann 
Risk, consumer's and producer's, II 792 
Ritz-Galerkin method, II 427 
Ritz method, II 305, II 422, II 589 

convergence of, II 424 
in conformal mapping, II :305 

Robertson la.w of growth, I lß4 
Rolle theorem, I :387 
Romberg quadrature formula, I 557 
Root-mean-square, I 9 
Roots of algebraic equations (polynomials ), 

I 21 , II ß48 ff 
Budan-Fourier theorem, II 651 
connection with eigenvalues of matrices, 

li ()52 

Descartes theorem, II 650 
Pst.i ma.tes for, II 649 tf 
La.gra.nge, Maclaurin, Tillot inequalities, 

li 649 
Sturm theorem, Il G51 

Rotation, cartesia.n coordinate system, 
I 198 

Rothe 
function, li 217 
method, II 215, II 4fi4 

Ruled surfaces, I 221, I :nG, I :320 
undevelopable, I :316 

Ruling lines, I 221 
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Runge-Kutta methods (formulae), li 492 ff 

Hieberbach error estimate, li 495 

Fehlberg, II 49:3 

Heun, II 49:3 
modified Euler, li 4!12 

standard, II 4():3 
Rytz costruction of axf>s of Pllipse, I 118 

Saddle point, II 27 

Sample(s), II 7:35 
censored, II 789 
characteristirs. II 7:3G 

coefficient, correlation, I! 7:37 

of skewness and kurtnsis, II 7:37 

of variation, II 7:17 

correlation and covmiancP ntatrix, II 7:{8 

covariance, II i':{8 

from norma! distrilnttion. II 7:{8 II' 

function of stochastir procPss, II 797 

mean, II 7:3G 

median, II 7 40 
moment, li 7:37 

central, li 7:37 
ordered, li 7:39 
quantile, li 741 

random, li 7:3!i 
range, II 740 
size of, II (:3(j 

space, li 7:3() 

standard deviation, li l:l7 

variance, li 7:Hi 
Sampling inspections (santpling pla.ns), 

li 792 
Sarrus rule, I :n 
Scalar 

field, gradient of, I :n2 

on surfacP, I 252 
potential, I 2:n 

Scalar (inner) product, II 221, I I 222, II :n:l 
energetic, li :3() 1 

in Hilbert space, li :n:l 

axioms of, II :3:3:! 

in space L2, I GG:l, li 2:n, I I 222 

of functions, I (i(i:l 

axioms of, II :tn 
of vectors, I 228 

Scalar (inner) product continued 
on a surface, I 252 

Scheffe method, II 782, II 784 

Srhmidt orthogonalization process, I 677 

Schwa.rz 
constants and quotients, li 87, II 88 

inequality, I :35G, I 665, II :3:34, II 709, 

li 811 
Schwarz-Cauchy inequality, I 356 

Schwarz-Christofrei theorem, II 302 

Screw surface, I 316 

Scroll, I :316, I :321 
Second 

curvature, I 278 
mean value t heorem, I 51 G 

order derivatives, I :l/9, I 408 

SPctor 

of annulus, geometrica1 formulae, I 101 

of cirde, geometrical formulae, I 99 

Segment of circle, geometrical formu1ae, 

I 99 
Seif-adjoint 

diffPrPntial Pquation, II G6, II 79 
operator, II 79, I! :351, li :35:3, II :3!i9 

space, 11 :!50 
Self-tangPncy, point of, I 291 

SPnti-axis, polar coordinates, I 178 

Setui-closed interval, I :l!i9 

SPmiconvergent seriPs, I 660 

Semicuhical parabola, I 126 

SPmidiscrete methods, li 215, li 4G4 

Seminorm, li 449 
SPmi-opf'n interval, I :359 

SPntences, I 1 
Sq>ara.b!P spare, li :328 

SPparation of variables, II 14, li .5:34 

SPq liPilCP( s) 
hounded aboveor below, I :3:39 

Cauchy, li :327 

convergen t, I a:n, I 6:37, II 2GO 

decreasing, I :341 

fundamental, Il :327 
import.ant formulae and Iimits, I :342 

increa.sing, I :341 
in met ric s pa.ce, II :325 

monotonic, I :!41 
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Sequence( s) contin'll.ed 
of constant tenns, I :3:H> 
of equicontinuous func.t.ious, I 6:3!) 
of functions of complex variable, II 260 
of ma.trices, II 111 
of partia.l sums, I 641, li :WO, li :3:32 
of uniformly bounded functions, I 6:38 
osci\lating, I :344 
su bseq uences of, I :3:39 
with variable terms 

integrat.ion and diffPr<'nt.iaJion of, 
I G:39-G4l 

uniformly convergent, I n:n 
Sequential 

acceptance sa.mpling, li 795 ff 
analysis, li 795 

Series 
application of, I G58 
convergent and divPrgPnt, I :J.H, I fi 111 
divergent, application of, I G59 
expansion into, I 650, I G52 
harmonic., I :344 
in two or more variables, I fi51 
of functions of complex variables, 

convergent, li 2GO 
uniformly, li 2G1 

domain of convergence, II 2G 1 
for functions sin ::, cos ::, e 0 , li 26:3 
Laurent, II 265 
power, li 2fi2 
Taylor, II :2()4 

power, I 645 ff 
radius of convergence, I G4G 

tables, I :355 ff 
Taylor, I 652 
with variable terms 

condition of convergence, I 642 
differentiation, I 644 
integration, I 64:3 
survey of important formulae, I 654, 

I 661 
uniformly eonvergent, I 642 

Serret-Frenet formula.e, I 270 
Set(s) 

bounded, II :322 
closed, II :l21, II :l2G 

Set(s) continued 
compact, II :329 
concepts of, I 44 
connected, II :320 
convex, II :321 
countable, II 32:3 

a.t most, II :l2:3 
dense, li :326 
harmonic of four points, I 191 
linear, I! :tlO 
mapping of, definitions, I 46 
mea.su rable, I 560 
open, li :320, II :121, II :326 
point of accumulation (duster point, 

Iimit point), II 319 
regions, II 320 

Sevt>ral variables, func.tions of, I 402 ff 
composite functions, Iimit, continuity, 

I 40:3 ff 
extremes, I 4:38 
introduction of new variables, I 4:l2 
partial derivatives of, I 407 
survey of important formulae, I 44G ·ff 
transformations, I 4:32 ff 

Sheaf of planes, I 20:3 
Shells, problems in theory of, II 20:3 
Shepard correction, II 744 
Shooting method, II 515 ff 
Sigma (a) 

a.lgebra., II 691 
Iimits, li 716 

Significa.nce 
Ievel of test, II 756 
test of, in normal regression model, 

II 773 ff 
Simila.r matrices, I 59, II 6:30 
Simple 

abstract function, li :366 
epicycloid, I 125 
function, II 248 
ha.nnonic motion, I 156 
hypocycloid, I 125 
opera.tor ( mapping), II :345 
pole, II 267 

Simplex method, II 848 
Simply connected region, II :321, II :322 
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Simpson 
quadrature fonnula, I !\57 
rule, I 557 

Sine 
curves, I 155 
integral, I 450, I 550 
theor!'m, I 79 

Sine ancl cosine, int!'grals containing, I 491 fr 
Single layer potential, li 1~4, II 4G!J 
Singular 

conic sections, I 189 
intl'gral l'quations, II :n8 
integral (solution), II 11, li ;{;{ 
points 

of curve, I 2G1, I :288 
of differential l'quations, II 2G, II 119 
of holomorphic fundions, II 2G7 
of surfacP, I :3Q(i 

value 

Sk!'w 

deromposition of matrix, II G07 
of matrix, II G07 

curve, I 2G:3 
fidel, I 48 
linl's, distance hetween, I :207 
surface, I :HG, I :3:21 
symmetric 

matrices, I !j 1 

tensors, I 25li 
Slack variables, I I 82~ 
Slope of straight line, I 170 
Small numlwrs, romputa.t.ion wit.h, I :39~ ff 
Smooth 

curve, I :2G1, I :H9, I 57:3 
function, I :379 
surface, I :lOG 

Sobolev spare: see Spac!'( s) 

Sobotka rectification of circular arc, I 114 
Solenoielai ( sou rcf'!!'ss) vector fiele!, I 2:14 

Solid analytic geonwtry 
coordinat!' syst!'ms, I I !J!j ff 

cylindrical (semi-polar), I 19G 
reetangular, I 195 
spherical (polar), I I 9G 

linear concepts, I 199 ff 

quadrics, I 209 ff 

Solid ana.lytic geom!'try contin·ned 
surfac!'s of r!'volution, rul!'cl surfac!'s, 

I 219 ff 
Solicis 

integral calculus, application of, I G24 
of typ!> A, I 575 
volum!'s, surfaces, c!'ntroids and mo­

ments of inl'rtia, I 104 ff 
Solution 

of inequalities, I 7 
of integral equations: see Integral equa­

tions 
of ordinary differential equations: see 

Differential equations, orclinary 
of partia.l differ!'ntial equations: see 

Diffl'rential equations, partial 
SOR ml'thod, li 619 
Space(s) 

adjoi n t, II :150 
Banarh, li :131 
C([a, b]), C(IT), II :3:25 
C", IR 2", II 278 
com pa.ct, II :329 
complementary subspace, II :335 
completP, II :3:27 
complex C 11 , II :322 
curve, cl!'finition, I 26:3 
dual, II :349 
E,., li :121 
!'nergetic, II :3G 1 
Eudidean, li :319, li :J21 

HA, li :J61 
Hilbert, li :3:34, II 409 
ideal l'iements, II :327 
isometric, li :328 
Lz ( a, b ), Lz (0.), II 32:3, li 324, li 220 
Lp(a,b),Lp(fl), li :124, li :125 
linear metric, li 3:10 
metric, li :J23 

linear, II :1:10 
normed, II :3:31 

sharply, II 667 
of distributions, II 342 
of elementary events, II 689 

operators in: see Operator(s) 
parameter, II 7 46 
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Space( s) contiu:ncrl 
precom pa.ct, II :32fl 

prehilhert ( pr<'-Ililhert ), II :3:U 

probability, I I (jf) 1 

reflexiv<', II :FiO 

relatively COIHJ>a.Ct; II :320 

self-a.djoint, II :350 

sepa.ra.ble., I I :l2~ 

Sobolev, II :340, II 40fl 

defined on hounda.ry of doma.in, II 474 

immersion ( em hPdd i ng) t heorem s, 

II :34:3, Il :344 

weighted, II :34I 

unita.ry, II :n:l 
Späthe theorem, ll 4~ 
Special 

Ca.uchy prohlPm, li 1!i0 
functions of mathema.tica.l physics, I 71:3 

Spectra.l 

analysis (Fouri<>r analysis ), II ~ 14 

decomposition 

of a.utocova.ria.nce function, II :-\15 

of stationa.ry process, II ~17 

density, II R I 5 

estimation of, I I ~20 

inverse formnla., II ~J(j 

Parz<'n Pstima.tor of, II ~20 

Tu key-n a.nn i ng PS t i lll a tor of, ll X20 

distrihution function, TI ~15 

radius, II G04 

Spectrum 

of matrix, II G2R 

of operator, II :355 
of stochastic proress, II ~15 

Sphere 

equation of, I 200 

geometrical formula.e for, I IOD ff 

homeomorfic image of, I I :322 

in Euclidean space, II :121 

in metric space, II :32() 

open, II 322 
sector of, I 1 Ofl 

segme11t of, I 110 
volume, surfa.ce, moment of inertia, 

I IOD fT 

Spherical 
coordinate surfaces, I I97 
coordina.tes, I I9G, I 59a 

gen<'ra.lized, I 5!.!:3 
in solid analytic geometry, I 19() 

transformations 

of differential equations and expres­

sions, I 4:32 ff 

of vectors and corresponding opera-
tors, I 2:3() 

functions, I 705 

harmonirs, I 708 

la.yer, I 110 
LPgf'ndre functions, I 705 

ring, I 110 
surface interior diameter, I ()09 

triangle, I 82 
arPa., I 8:3 

Euler, I 82 
fundamental properties, I 8:3 

general, (oblique), I 85 

right-ang!PCI, I 84 

trigonomPtry, I 82 ff 

Splwroid, prolate and oblate, I 1IO 

S pi ra.ls 
Archim<>des, I 1:3() 

hyperholic or reciprocal, I 1:38 

loga.rithmic, equiangular or logistic, I 139 

Spline( s ), II ()84 

classical, TI G85 
cuhic, II G85 

natural, TI GSG 
Hermite, II G87 

Spring constant, I I5G 

Sq ua.re 
integra.hle functions, I 5G5, II 220 

matrix, I 50 

nets, II 549 

Sta.bility of solutions of system of ordinary 

differential equations, II I1:3 
Standard 

deviation, II 701 
sa.m ple, II 737 

fundamental system, II 5.5 

integrals, I 449 ff 

sample, II 7:37 
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Star of planes, I '204 

Starting point of vertor, I '2'2G 

Statical mome11t 

integral calculus for 

curves in spare, I 620 

plane ctll"VPs, I G IX 

plane figures, I G2:J 

solids, I G:27 
surfaces, I G:W 

Stationary 

distribution, II SOO 

heat condurtion Pquation, II 5:Hl 

points of funct.inn, I :l!"l:l 
process, strict and wPak, II SI] 

traffic, II SOG 

Statistic(s), li 7:\G 
estimn-tor, II 7:lG 

matlwmn-tical, II 7:l.'i fl' 

order, I I 7:l!l 
Statistical morkl, I I 7:\!i 

Steady state ( oscilla.tions ), I 1 fi'2 

Step of quadrat.urP forn1111a., I !i!i7 

Stereographie projed.ion, II L'I:J 

Stieltjes integral, I .'ifi7 f]' 

Stiff differPntial s.vstem, II !i 11 
Stiffness matrix, I I ,J'2;j 

Stirling 

formula for factorials, I .'i!iO 
interpolation formula, li (jS 1 

Stochastic procpss: see Process 

Stokes theorem, I Gl4, I G1G, li '2:3!1 

Straight linP(s) 
angle betwPell, I 17,1, I '20'2 

bisectors of a11giP lwtwee11, I 177 

condition for hci11g paralld nr peqwndic-

ular to planP, I 20S, I '20!1 

conditions for 2 to he pö rall<'l or perpen-

dicular, I 17!i, I '20S 

directed ( orien ted), I 17 4 

distance of a point from, I 17S, I 207 

equation, I 170, I 205 

dired.ed (oriPnl<'d), I 174 

exampl<'s and thPnr<'ms, I 171 ff 

general, vertnr a11d parantet.ric forms, 

I 170, I '20!i 

gradient and int.Prcept, I 170 

Straight line(s) continued 
intf'rsection of 2 1ines, I 172 

normal f'<J uation, I 177 
pencil of lines, I 1 7:! 

reduced, I 205 

through '2 given points, I 172, I 20G 

forming conic sections, I 189 

StrPss tensor, II 20:3 

Strictly monotone operator, II 372 

Strong (Frechet) differential, II 373 

Strongly Bochner measurable abstract 

funct.ion, II :WG 

Strophoid, I l.'il 

Sturg<'s ruh', II 742 

Sturm-Liouville prohlem, !I :•n, li .'i2X 

Sturm theorem, li 47, II G!i1 
Suhnormal, I 124, I :301 
Su hseq uencPs, I :3:3!) 

Su hsPt, I 4.'i 

Suhspace, II :3:31 

Su hstantialy singtdar point, I :30() 

SuhtangPnt, I 124, I :JOJ 
SurcPssi ve 

approximations in solving integral equa­

tions, II .'i85 

OV!'rrelaxation metod, li 619 

Summa.hilities of series, I G45 

S u mma.tion convention ( tensors ), I 243 

Sum of s<'riPs, I 344, I 641 
in metric space, li a:n 
in space L2, I 667 

Stqwrrritical damping, I 159 

Sup<'roscula.ting circle, I 284 

Supremum (l.u.h.), I .'i 

S u rface( s) 

ronical, I 224 

contra.variant and covariant vector on, 

I 25:2 

cuspidal edge, I :31G 
definition, I 209, I 571) 

diff<'r<'ntial calculus, applica.tion to, I 628 

discriminant, I 324 

N1ge of regra.ssion, I :n G 
plf'nwnt of area, I :1:24 

elliptic point of, I :3:2.'5 
envelope of one-parameter fa.mily, I 318 
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Surface( s) continned 
equipotential, I 2:3:l 
explicit equation of, I :30G 
finite piecewise smooth, I :305 
first fundamental form, I 25:3, i 322 

fundamental c.oefficients, I :324 
Gaussian curvature, I :3:30 
generator of, I :31 7, I :320 
hyperbolic point of, I :325 
integrals, I ()09 ff 

of first and second kinds, I 610-611 
interior diamet.er, I G09 

lines of curvature, I :3:31 
mean curvat.ure, I :no 
non-developable, I :HG 
normal curvat. u re, I :12X 

normal section radiüs of curvature, I :tlX 
of revolution, I 219 

orient.ed, I GO!l 
orthogonal c.onjugat.e net. Oll' I a:H 
parabolic rlOint. of, I :325 
parameters and pa.ra.met. ric eq ua.t.ions, 

I :30G 
regular points on, I 20!l, I :30() 
ruled, I 221 
scalar on, I 252 
sCI·oll (skew surfa.ce), I :nG 
second funda.nH•nt.al form, I :{25 
second order, I 209 ff 
sha.pe wit.lt rPsprd t.o t.a.ngent plane, 

I :325 
simple finite piecewise smooth, I 575 
singular point on, I 20fl, I ;jü(j 

tensor on, I 25 l 
Surject.ive opera.t.or ( ma.ppin~!;), I I :H4 
Sylvester la.w of i rwrt.ia., I (jj 
Symbols O(g(;r)), o(y(:t)). I :J/(j 

Symmetrie 
eigenvalue problem, II X2 
kernels of integral equa.tions, II 2:n 
matrices, I 51 

operat.ors, li :J5!l 
problems, II X2 

System(s) 
dosed in Hill•rrt. space, Il :3:37 

in spacP L~, I G75 

System(s) continued 
complete in Hilbert space, II 337 

in space L2, I 675 

of decompositions, II 447 

regu lar, II 44 7 
of ordinary differential equations, II 2, 

II 4, II 99 ff 
of partial differential equations, II 149, 

li 201 
orthogonal in Hilbert space, II 33() 

in space L2, I 670 

orthonormal in Hilbert space, II 336 

in space L2, I G70 

Table 
contingency, II 76:3 
correlat.ion, li 741 
frequency, II 741 

of analysis of variance, li 782 
of Bessel funct.ions .Jo(:1:), .J1(x), Yo(x), 

Y1(x), I 695, I 701 

of boundary value problems, II 411 
of Fourier transforms, II 582, II 583 

of integrals, I 470-511, I 541 ff 
of Laplace transforms, II 578, II 579 

of Legendre polynomials, I 707 
of solved differential equations, li 120 ff 
of zeros of .1u(:r), .J1(x) and their deriva-

tives, I G95 
Tabular points, II 675 
Tangent and cotangent, integrals containing 

them, I 501 ff 
Tangent( s) 

developable ( surface ), I :316 
direction, angle and length, m polar 

coordinates, I 300 

drawn to curve from arbitrary point, 
I :30:3 

length, in polar coordinates, I :301 
plane of surface, I :311 
plane to curve, I 272 
su rfa.c.e, I :316 
theorem, I 79 
to conic, I 191 ff 
vect.or field, I 249 

vector to cu rve, I 2:32, I 266 
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Tangential vector to surface, I :H 1 

Taylor 
expansion for functions 

of one complex variable, II 2G4 
of several complex variables, II 285 

expansion method, II 491 
formula, I :306 

for polynomials, I 2:3 
theorem, I :39G, I 401 

for several variables, I 414 
series, I ()52, II 2G4 

Temperature distributiou 
examples using 

finite differPnce nlf'thod, II 559 
Fourier nwthod, II 5:3() ff 

Laplace transform, Il 571, II 572 
Tensor(s) 

alternating, I 25(i 
calculus, I 242 ff 
characteristic n um hers of, I 258 
conjugate directions, I 2:i7 
contravariant and covariant, I 247 

on surface, I 249 
deformation, I 24 9, I 2:i6 
first fuiHlanlf'ntal of surfacP, I 252 
in space, I 24G rr 
indicatrix of point, I 257 
indicPs, lowering and raising of, I 255 
metric 

of spacP, I 24 7 

of smfacP, I 252 

on surface, I 251 

quadratic, I 247 
second fundamental of su rfacP, I 25:3 
symmetric and skt'w~sym m<'tric, I 255 

symmetric quadra.tic, I 254 
Term-by-t<'rm 

differentiation, I G4<1, I! 2fi1 
integration, I G4:3, II 2fi I, I! 2G2 

Termination crit.Prion for it.Prat.iv<' IIH'thods, 

II G16 

Test( s) 
chi-square, !I 7G 1 

Fisher, of periodicity, II 81() 
function, li 82 
goodness of fit, li 7GO 

Test( s) continned 
hypothesis, II 755 
Kolmogorov-Smirnov, II 76:3 
of linearity, II 775 
of significance in normal linear regression 

model, II 773 ff 
of size o:, II 756 
one-sample, II 757 
one-sided and two-sided, li 756 
paired, II 759 ff 
parametric and non-para.metric, II 755 
t, II 757 ff 
two-sa.mple, II 757 ff 

unifonnly most powerfull, li 756 
Theorem(s) 

Abel, I 647, II 26:3 
Arzela.-Ascoli, I 639, II 329 

Banach 

on continuous extension 

of functional, li :349 
of operator, II :34() 

on contraction mapping, II :345 
on flxf'd point, II :345 
on inverse opera.tor, II :349 

Bayes, II G9:3 

Beruoulli, li 7:31 
hinomial, I 19, I 653 

Bolzano-Weierstrass, I :340 
Budan-Fourier, II G51 
Cauchy, I :349 
Ca.uchy ( complex variable), li 252, II 25:3, 

li 258 
Cauchy-Kovalewski, I! 151 

cen t ral Ii mit, !I 7:3:3 
Chebyshev, II G69 
com parison, II 4 7, II 87 

cosine, I 79, I 85 
Coura.nt, II 86 

De Moivre, I 11 
DPscartes, II G50 
"edge of the wedge" (functions of several 

rom plex variables), TI 2~G 

embedding, !I :34:3, II :344 
EulPr, I :329, I 41G 
expa.nsion, !I 90 
Floquet, li 4!1 
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Theorem(s) continued 
Fredholm, li 2:25 

Frobenius, I :n 
fundamental of algebra., I :21 

Gauss, I 240, I :3:~:3, I ()1:~, I GIG 

Gauss-Ma.rkov, li 770 

Glivenko, II 745 

Green, I 240, I G05, I Giß 

Hahn-Banach, II :~4!) 

Harnack (first and second), II 1.':0 

Hilbert-Schmidt, li 2:3:3 

Hurwitz, II 114 

identity (functions of complcx variable), 
li 275, Il :2N5 

immersion, II :!4:~, li :344 

implicit functions, I 4:.2:{, I 4:10 

integral, ( :auchy, II 252, II :2!jS 

J ackson, II (i 7:2 

Khintchine, II 7:~:2 

Kneser, Il 4N 

Kovalewski, li 1!j1 

Kolmogorov, I I 7:~2 
"Kugelsatz" (functions of several com-

plex variahll•s ), I I 28(i 

!arge numlwrs, II 7:H II' 

Lax-Milgra.m, II :200 

Levy-LindeiH'rg, !I 7:!:! 

Liapunov, li 7:n 
Liouvil!P, Il 181, li :2()0 

Markov, li 7:!2 

mean vahw, I :!87, I !i l!i 

mea.n value ( for harrnon ic fu nctions ), 

Il 180, II 181 

Moivre-Laplar<', II TB 
on continuous ext.ension of funct.ional 

a.nd OJ>Prator, l I :!-10 
on convergpncc 

of finite difl"crcncP IIIPI.hod, I! 5G5, 

II 5GG 

of finite P!Pment mPthod, II -1-ll 

Oll eigcnva.IUPS 

of differf'ntial Pquatinns, Il S4 

of operators, I! :~!i5, li :l!j(i, II :Hi:l 

on existf'ncc and nniqiiPllPss of solut.ion 

of proh!Pms 

Theorem(s) continued 
in ordinary differential equatiolls, II 5, 

II 6, li 8 

in partial differential equations, II 177, 
II 190, II 206, II 210, II 214, II 219 

on Fredholm integral equatiolls, li 22.5 

oll Laplace alld Fourier trallsforms, 

Il 575 ff 
Oll maxirn um 

for harmonic functiolls, Il 177 

for heat equatioll, II 200 

Oll minimum of functional of energy, 

II :!54, II :360 
on removable singularity, II 181, II 268 

residue, II 270 

Riemann ( on confonnal mapping), II 293 

Riemann-LPiwsgue, I 688 

RiPmann-Schwarz rdlection principle, 

li :!0 1 

Riezs-Fischer, II :~52 
Rolle, I :3H7 
Schwarz-Christoffel, II 302 

sine, I 7(), I Wi 
Spä.thf', II 4H 
Stokf·s, I Gl4, I GIG 

Sturm, II 47, Il 651 

tangPJII., I 79 
Taylor, I :306, I 414 

Valle-Poussin, II 6G9 

Wf'instrass 

approxima.tion by polynomials, I :370, 
II :326, II :327 

complex variable, li 261 

Tillot inequalit.y, li ()49 

Time 

sPries, li 707 
servicP and waiting, li 806 

to failure (lif8ti nw ), li 786 

nwan, li 78G 

Toeplitz mat.rix, li Gll 

Topologie group, I 71:3 

Torsal litws, I ;~21 

Torus, I 111, I G:~4, li 279, li 2HO 
Total 

di!ferential, I 409 

discrPtiz;üion f'rror, II 48:3 
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Total continued 
sum of squares, li 770, li 78:3 

system of events, I! 689 
Traee 

of funetion from Soholev spare, Il :341 
of matrix, I 5:3 

Traetrix, I 147 
Traffic intensity, Il 807 
Trajeetory, trajertorirs 

of stoehastic process, II 797 

orthogonal and isogonal to solutions of 
differ'ential equation~, II :3() 

Transeendental 
brauch point, II :274 
func.tions, I :JG'l, I 450 
real numlwrs, I 5 

Transeendeut curve, I :.W:l 
Transfer 

func.tion of filter, II .1.\:21 
of bounrlary conditions, II 5:20 

Transformation ( s) 
affine, I 18() 
congruent, of cartesia.n roordinates in 

plane, I 1116 
mapping, I 4G, I 417 
matrix of roorrlinate syst.ems, I :24:1 
of differential PXJHPssions into polar, 

cylindrical and splwrical roordina.t.es, 
I 4:34 ff 

of random variables, I! 7:27 ff 
projec.tive, in plane, I l!JO 

Transfonns: see Integral transforms 
Transient oscilla.tions, I I ():2 
Transition 

intensity, I! RO l 

matrix, II 804 
probability, II 79!), I I SO' I 

Translation, cartesian rnnrdi n ate system, 
I 198 

Trasportation prob!Pm, I I .'\:2S 

Transversality conditions (in variat.iona.l 
ealculus ), I! :397 

Transverse vibra.t.ion of rod, rliffprentia.l 
equation, II 14:2 

Trapezoielai rule for detlnit.e intpgra.ls, I 557 
Trial function, II X:2 

Triangle( s) 
a.rea of, I 169 
centroid of, I 200 

formulae for geometrie elements of, I 95 ff 
geometrieal formulae, I 95 ff 
gPneral (scalene), I 78 

formulae for determining, I 79 ff 
funcla.mental and further relations, 

I 79 ff 
solution, I 80 ff 

inequality, I 8, I 10, I 665 
in metric and normed spaee, li 331 

spherical, I 82 
Triangular 

elements: see Finite elements 
nets (finite difference method), II 550 

Tria.ngula.tion, II 4:30 
TrigonorrlPtric 

Pqua.tions, I 77 
Fourier series, I 678 ff 
functions 

addition formulae, I 74 
behaviour of, I 71 
defi nitions of, I 70 
clifference of, I 76 
PXpa.nsion into seJ'ies, I 655 
hal f-a.ngle formu lae, I 7 4 
higlrPr powers of, I 76 
inverse, I 86 ff 
multiple-angle formulae, I 74 
of same angle, relations among, I 71 ff 
powers of, I 76 
procluct of, I 76 
rela.t.ions between, I 71 
signs in individua.l quadrants, I 72 
sum of, I 7() 

va.luPs for some special angles, I 7:3 
interpola.tion, li (j,';:3 

Trigonon1Pt.ry 
plane, I 78 tf 
spherica.l, I 82 ff 

Trilinear hexagonal three-dimensional ele­
ment, II 442 

Tripie 
in t.egra.ls, I 589 ff 

im proper, I 594 ff 
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Tripie contin'llerl 
method of substitution for, I 592 

scalar pr;"lduct of three VPct.ors, I 2:30 

Trochoid, I 127 
Truncation error, II 48:3 

T-scheme, I 557, II 51:3 

T-test, II 757 ff 
Tube 

domain, II 280 
volume and moment of incrtia, I 108 

Twisted curve, I 2G:l 
Two or more variables, fuuct.ions of, I 402 ff 

extremes, I 4:38 ff 
introduction of new variables, transfor­

ma.tions, I 4:32 ff 

survey of important formulae, I 44G 
Two-sided Pstimat.es in ei~envalnc prob­

lems, II 87 

Ultrahyperbolic equation, II 1 n 
Umbilic, umbilical point, I :3:W 
Undamped 

oscillations 
forced, curves of, I 157 

free, curves of, I 15G 
vibra.tions, difFerential equations, II l:H, 

II l:l2 
U ndetermined coefficients, Lagrange 

method, I 442 
Uniform convergence 

sequences with variahiP terms, I 6:37, 
II 261 

series with variable terms, I 642, II 261 

Uniformly 
bounded sequences, I G:38 

convergent integral, I 5:3() 
Union of sets, I 45 
U niqueness theorem ( functions of several 

complex variables), II 285 

Unisolvency (finite element met.hod), II 4:!0 
U nitary spa.ce, II :3:3:3 
U nit tangent vector of curve, I 2:t2, I 266 

Univalent (simple) function, II 248 
Unsubstantially singttla.r point of curve or 

surface, I 261, I :309 
Upper iutegral of Darboux sums, I 512 

Valle-Poussin theorem, II 669 
Vandermonde matrix, II 611 
Variables 

functions of two or more, I 402 ff 
separation of, for solving differential 

equations, II 14, II 534 ff 
Variance, II 699 

of linear transformation of random vari­
ables, II 728 

sample, li 7:36 
Variation 

of funct.ional, II 379 
in Du Bois-Reymond form, II 380 
in Lagrange form, II 380 

of parameters ( constants ), II 18, II .'i6, 
II 108, II 161 

Varia.tional 
calculus: see Calculus of variations 
condition, II 411 
methods, II 409 ff 

in conformal mapping, II :JO.'i 
Vector(s) 

absolute value, I 227 
algebra, I 24, I 22!) ff 
analysis, I 2:31 ff 
circulation along dosed curve, I 238 
collinPar (parallel) and coplanar, I 227 
column and row, II 704 

com plex, I 24 
components (coordinates) of, I 24, I 225 
confonnably colinear (parallel), I 227 
contravariant and covariant, I 242, I 244, 

I 247 
cross product, I 229 

curvilinear a.nd surface integrals, I 238 ff 
derivative, I 2:31 
direction angles, direction cosines, I 228 
dot prod uct. of, I 228 
equation of straight line, I 205 
field, I 2:31 

divergence and curl, I 234, I 2:J.'i 
irrotational, I 235 
potential, I 235 
solenoidal ( sourceless ), I 234 

flux of, I 240 
funrtion, I 2:31, I 262 
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Vector(s) contin:u.ed Weak continned 
in algebra, I 2,1 
inner product, I 228 
in three-dimensional spacP, I 225 

laws, I 24, I 22() 
length or ma.gnitude, I Hi8, I 227 

linearly depeudent and independent, I 24 

magnitude, norm, modulus, I 227 

mixed product, I 2:30 
n-component ( n-coordina:te ), I 24 

non-coplanar in space, I 24:l 

notati011 for Stokes, Gauss a.nd Green 
theorPms, I 2:m, I G lG 

of a.cceleration, componPrJts of, I 27fi 

on surfa.ce, I 252 
outer product, I 229 
principal normal ( unit ), I 2:{2 
product, I 229 

rank of system of, I 2!) 
real, I 24 
scalar product of, I 22ii 
space 

abstract, II :rw 
n-dimensional, r 24 

triple product., r 2::10 
zero (null), I 24, I 225 

Vibrating striug equation, II 19G, II 5:34 

Vibrations (ha.nnonic, da.mped, un­
damped ), II l:H, II 1 :l2, II 1:3a 

Virtual 
cone, I 216 
qua.dric, I 218 

sphere, I 209 
Void set, I 45 

Volterra integral equa.tions, II 240 
Volumes, formula.e, ( 104 fl' 

Wallis produet, I :Ha, I :l!i8 

Wave equation, II 191 
Weak 

convergence, Jl :350 

(Gatea.~lx) difl'Prent.ial, II :lfi7, II :H2 
stability, II 502 

solution 
of bounda.ry va.lue prohlf'lllS, II 209, 

II 211, II 409 

of evolution problems, II 219, II 464 
of para.bolic prohlems, II 464 

\Veber function, I 700 
Weierstra.ss 

M-test, I 642, II 261 
theorem, I :370, li 261, li 326, li :327 

Weight, I 555 
function, I 672 

Weingarten fundamental equations for 
surfa.ces, I 3;33 

Well-posed 
dilference scheme, II 564 
problems, II 155, II 177, II 194, II 200 

White noise, Il 798, Il 812, II 817 
Wilkinson method, II 644 
Wronskiau determina.nt, II 51 

Yule-Wa.lker equa.tions, II 813 

Zero 
divisors, I 48 
function in spa.ce Lz, I 664, II 221 
of polynomial, I 21 
vector, I 25, I 225 

ZPta. function, I 64:~ 
Z-tra.nsforma.tion, II 7:39 
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