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Abstract This paper discusses ergodic properties and cir-
cular statistical characteristics in neuronal spike trains.
Ergodicity means that the average taken over a long time
period and over smaller population should equal the aver-
age in less time and larger population. The objectives are to
show simple examples of design and validation of a neuronal
model, where the ergodicity assumption helps find corre-
spondence between variables and parameters. The methods
used are analytical and numerical computations, numerical
models of phenomenological spiking neurons and neuronal
circuits. Results obtained using these methods are the fol-
lowing. They are: a formula to calculate vector strength of
neural spike timing dependent on the spike train parame-
ters, description of parameters of spike train variability and
model of output spiking density based on assumption of the
computation realized by sound localization neural circuit.
Theoretical results are illustrated by references to experi-
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mental data. Examples of neurons where spike trains have
and do not have the ergodic property are then discussed.
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Abbreviations

CDF Cumulative distribution function
CF Characteristic frequency
IPD Interaural phase difference
ISI Inter-spike interval
ITD Interaural time difference
LSO, MSO Lateral and medial superior olive, twin nuclei

in most mammalian brain stems
PDF Probability density function

List of symbols

a, b, c, d, A, B,

C, K , N , α, β, δ

Parameters

CV Coefficient of variation
ϕ Sound phase
f Frequency of periodic input, function
fB Beta density
fC Characteristic frequency
fD Frequency difference
fS Frequency of sound
fsin Sine density
fmax Maximum sound frequency, here 10kHz,

human fmax is lower than 20kHz
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f, g, h Functions
H Heaviside step function
i Imaginary unit
I Stimulus intensity
R Firing rate
r Vector strength
s Scaling coefficient
σ Standard deviation, when used in spike

times, it is also called spike timing jitter
t Time
T Sound period
u Weight coefficient

1 Introduction

The ergodicity concept was introduced among others by
Ludwig Eduard Boltzmann (1844–1906; after 1870; Boltz-
mann1898) in statistical physics in his kinetic theory of gases.
The ergodic hypothesis states that an average taken over a
smaller set of particles, or just one particle, and a longer time
period should be equal to the average over a larger set of
particles and shorter period of time. Systems fulfilling this
hypothesis are called ergodic.

The elementary neural signals are recorded as all-or-
none events, action potentials, or spikes, which occur in
volleys called spike trains. This is called unit activity. Neu-
rons in most neural nuclei and most brain regions in many
species have been recorded. More is known about this in the
visual pathway (Maunsell 1992; Van Essen and DeYoe 1995;
Marsalek et al. 2017) as compared to the auditory pathway
(Syka 2002). The question was always:What stimulus drives
a given particular neuron to its highest firing rate (Barlow
1972; Koch 2004)? Relation of the best modality to firing
rate is denoted as the rate code (Koch and Laurent 1999),
which implies the highest throughput of firing in neurons.
The highest firing rate neurons in humans are in the auditory
pathway, and they typically do not exceed a rate of R = 500
per second.

Modality is any sensory quality, visual, auditory or other.
In a generalized sense in which we use the word here, it can
be either an objectively measurable quality, or subjectively
quantifiable quality, or even just subjective quality without
a quantitative aspect. In a broader sense, it is used also as
imaging modality or modality of experimental recording like
neuronal firing rate. The concept of modality was introduced
in the field of psychophysics by Gustav Theodor Fechner
(1801–1887; Fechner 1860; Mountcastle 1957; Kandel et al.
2000).

Another general property of neural signaling is specificity.
Most brain regions have a dedicated functionality, which can
be seen in sensory pathways. Let us give examples in relation
to the five major senses. In vision, specific quadrants of the

retina project into corresponding parts of the visual field in
the visual pathway, which is called retinotopy. In the audi-
tory pathway neuronal projections are organized according
to their characteristic frequencies, which is called tonotopy.
In the somatosensory and pain projections the localization
on the surface of the body is present up to the projections
into the neocortex (Mountcastle 1957). In the olfactory path-
way, projections of dedicated lines from olfactory epithelium
make up the mosaic of a smell sensation (Marsalek 1994).
In the gustatory sense, the spatial organization is analogous
to mechanosensory projections (Brozek et al. 1979). All of
these topical encodings are called labeled line codes and are
present in the sensory pathway all the way up to the cere-
bral cortex. They are the basis of the massive parallelism,
which enables fast (motor) reaction times realized by a mass
of relatively slow neurons.

Several questions arise: Under what conditions is it mean-
ingful to characterize the assembly of neuronal population by
its mean firing rate? What other parameters shall we use? Is
it meaningful to average neural firing over given time? Are
neural populations homogeneous, so we can average over
populations?When canwe exchange the population and time
average and get the same result, andwhen canwe not do this?

In description of neural population activity, the ergod-
icity concept can have several possible meanings (Lehky
et al. 2005). We use the ergodic property in the sense men-
tioned above: as interchangeability of averaging over time
and neuronal population in spike train neural coding. Let us
empirically observe sample statistical characteristics of spike
trains. Based on examining the data, the ergodic hypothesis
holds when such characteristics taken over longer time with
fewer neurons are equal to those in less time with more neu-
rons.

Let us show examples where ergodicity hypothesis holds
and does not hold. We propose that ergodicity holds in
the processing of the low-frequency sound azimuth by the
auditory brainstem in man. This is because the unitary com-
putation takes less time during the duration of one sound
cycle than the length of any consciously perceived time inter-
val. For example, in sound frequency fS = 100Hz this range
is T = f −1

S = 10ms, ten times faster than typical reaction
times. Human reaction times range from circa 100 to 200ms
(Thorpe et al. 1996). Reaction times depend on the length
of the efferent neural connection to muscles involved, with
the furthest being a foot on a brake pedal. Auditory stimuli
are as powerful as visual in eliciting motor reactions. Strong
acoustic stimuli can be tested by startle reflex in laboratory
rodents. Rapid serial auditory pipelined stimuli analogous to
visual are described in the psychoacoustic literature Vachon
and Tremblay (2005).

On the other hand we propose that ergodicity does not
hold in the processing of complex sounds such as elements
of speech. The neural processing over a longer time cannot
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be replaced by the population ensemble, since the stimulus
must be processed as a whole.Many neural codes use labeled
lines, like tonotopic or retinotopic organizations in hearing
and vision. Most of these organizations we regard as ergodic.
One can conjecture about ergodicity based on the timeneeded
to process the entire stimulus leading to the unitary percept.
When the duration of this unitary stimulus is short, it is more
likely to be ergodic, as opposed to when the unitary duration
is longer.

This leads us to a prospective application of the ergodic
concept. Observation of ergodicity in a particular modal-
ity will help uncover how this modality is encoded. We
present here an example of parameter estimation in spike
trains with a periodic component imposed by sound period.
Sanda andMarsalek (2012) have shown that sameaccuracyof
incoming sound azimuth can be obtained by either a longer
processing time of fewer neurons, their firing statistically
independent and identically distributed, or alternatively, by a
shorter processing time and more neurons. Our present study
adds further details to this observation.

We use a simple model of auditory spike trains based on
fitting of receptive fields of auditory pathway neurons. This
can be viewed as a simplification of models by Heinz et al.
(2001) and Lopez-Poveda and Meddis (2001). The prospec-
tive study presented here is intended as a simple analytical
continuation of Sanda and Marsalek (2012), where values
of binaural neuron model parameters were obtained using
numerical simulations.

The first neuron of the auditory pathway collecting the
information from both the left and right side is the neuron
of the medial superior olive nucleus. Assuming typical spike
trains are entering the MSO, can we calculate the standard
deviation of spike timing, or timing jitter fromvector strength
of spikes in relation to sound phase difference? Based on this,
can we estimate parameters of the symmetrical beta density,
describing spike timing, from the timing jitter?

Periodicity of sound can range from aperiodic noise to
harmonic tones. The sound phase in cochlea can be defined
in relation to smoothed instantaneous frequency and at least
two points in envelope of incoming sound. Therefore phase
might not be defined when noise is introduced by statistical
formalism. Low frequency sound localization works in both
cases, as in the former the phase reset is due to the sound
onset or amplitude modulation. In the former, only the inter-
aural time difference (ITD) is well defined. In the latter case,
both the ITD, and the interaural phase difference (IPD), are
defined as meaningful signals. In the latter case the probabil-
ity density functions (PDFs) on the support of the real axis
will change into PDFs on the interval [0, 2π ], described by
circular statistics Mardia (1972). Definitions of these quanti-
ties follow. Most of the mathematical formalism here is just
elementary calculus and all symbols and numerical constants
are duly introduced and explained.

2 Definitions, methods, models

2.1 Vector strength

Vector strength measures the periodicity of unit impulses,
like neural spikes. This periodicity may relate to stimulus
periodicity like, for example, low frequency sound envelopes.
Vector strength values range from 0.0 to 1.0. Each unit
impulse (spike) is treated as a unit vector with particular
phase. Let us start with the definitions of the vector strength
Gumbel et al. (1953) and Goldberg and Brown (1969) and
of the statistical distributions we use Cipra (1994). Let us
have sample phases ϕi , i = 1, 2, . . . , N relative to phases
of a given master periodic function. Pure tone is an example
of a sound stimulus that elicits the spikes with these phases.
A spike train is a response to this stimulus. Discrete vector
strength of the sample ϕ1, . . . , ϕN is defined as the quadratic
mean of cos and sin of the phases:

r(ϕ) = 1

N

√
√
√
√
√

(
N

∑

i=1

cosϕi

)2

+
(

N
∑

i=1

sin ϕi

)2

. (1)

If the phase ϕ space is continuous and can attain all values
from an interval of [0, 2π)with the probability density func-
tion g(ϕ), continuous vector strength is defined as

r(ϕ) =
√

(∫ 2π

0
g(ϕ) cosϕ dϕ

)2

+
(∫ 2π

0
g(ϕ) sin ϕ dϕ

)2

.

(2)

In terms of the modulus of a complex number, this can be
rewritten as

r(ϕ) =
∣
∣
∣
∣

∫ 2π

0
g(ϕ) exp(iϕ) dϕ

∣
∣
∣
∣
, (3)

where exp denotes the exponential function and i stands for
the imaginary unit. The three definitions (1), (2), (3) are
equivalent and yield r ∈ [0, 1]. Further details can be found
in (van Hemmen 2013). Alternatively, if the synchroniza-
tion is described by time intervals ti ∈ [0, T ] between the
specific point of the given master periodic function and the
response spike, previous definitions of the vector strength
can be expressed in terms of

ϕi = 2π ti
T

= 2π ti f , (4)

where T is the period of the master function (i.e. period of
the sound). In the case of sound, we alternatively use funda-
mental sound frequency f = 1/T to get rid of the compound
fractions, where it is appropriate.
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2.2 Beta probability density function

In order to scale the spike times distribution by a scale coeffi-
cient s, we introduce a three parameter version of the standard
beta distribution. This way we can use appropriate forms of
the distribution regardless of whether the support is on the
interval [0, 1), or on the interval [0, 2π). This can be decided
by setting values s = (2π)−1 or s = 1. Continuous values of
s ∈ (δ, 1]with small δ describe a continuously parameterized
phase locking of input spikes. We need the scaling parameter
for relation of the spike train instances to the sound phase,
as it will be shown in the beginning of Results. The beta
distribution has then a probability density function written
as:

fB(t, a, b, s) = sB(a, b)−1(t/s)a−1(1 − t/s)b−1

H(t/s)H(1 − t/s), (5)

with variable t and parameters a, b ≥ 1, s > 0. The for-
mula of the distribution is normalized by Euler beta function
B(a, b) to give unity integral (Cipra 1994). Its range is cut off
by Heaviside function H(t), H(t) = 1 for t > 0, otherwise
H(t) = 0. The mean μ, standard deviation σ and coeffi-
cient of variation CV, of the beta distribution expressed in
parameters a, b and s are:

μ = sa

a + b
, σ =

√

s2ab

(a + b)2(a + b + 1)
,CV = σ

|μ|

=
√

b

a(a + b + 1)
. (6)

Numerical computations with descriptive circular statistics
(Mardia 1972) are available as a library package in Matlab
(Berens 2009).

2.3 Auditory model

We use the model by Sanda andMarsalek (2012). The model
uses simplified realization of auditory periphery. The audi-
tory periphery starts in the inner ear and ends at the auditory
thalamus, called the corpus geniculatum mediale. The spike
trains originate in the cochlea. The cochlea is an active
mechanical-to-electrical transducer. An analogy to analog-
to-digital conversion is used to describe cochlea. An analog
electrical signal, which can be captured as a cochlear micro-
phonic signal, is converted into a digital signal of spike trains.
The rest is processed as neural computation. The auditory
periphery diverts spike trains into two branches. The prin-
cipal branch processes sound content. The branch of the
localization part of the auditory pathway depends on compar-
ison of inputs from the left and right ear, which is realized
in a third neuron, counted from the cochlea, belonging to

the medial or lateral oliva superior. These two branches then
constitute sound object and sound localization in the central
part of the auditory pathway.

Themodel describes inmore detail the localization branch
of the neural circuitry, circuit of medial oliva superior. Sound
signal is represented by spike trains produced byphenomeno-
logical neuronal units, which describe first neuron in auditory
nerve. The second neuron is in the cochlear nucleus. All the
diversity and specializations of these neurons are neglected.
Themodel contains diverging outputs of the cochlear nucleus
into the object and localization branches.

The parts of cochlear processing and first neuron of the
model are similar to Heinz et al. (2001). When the phe-
nomenological peripheral part in it was replaced by more
detailed cochlear mechanisms taken from Lopez-Poveda and
Meddis (2001), the major difference between the twomodels
was that the more detailed contained more low pass filtering
properties. Important features of any model discussed above
are nonlinear processing of sound intensity, tonotopic orga-
nization, sound phase propagation through the pathway and
representation of all auditory modalities in spike trains. The
neuronal representation of thesemodalities in spike trains can
be intrinsic and extrinsic, DeWeese et al. (2003) and Lehky
et al. (2013). Extrinsic encodings are typically faster, they
can be multiplexed in small chunks and, therefore, may have
the ergodic property in the sense discussed here.

Even in the absence of sound, most auditory neurons
exhibit spontaneous activity. In the model we neglect this
activity. In construction of the model we can simplify the
threshold definition. Threshold level for pure tones is depen-
dent on sound frequency.

Individual parabolic tuning curves are shown in Fig. 1a
on a logarithmic scale on the x-axis. They have vertices at
given characteristic frequencies (CFs). Threshold intensity is
denoted Ithr on this fitted curve. This can be compared to data
of Joris et al. (1994a,b, 2006a). The example of discretiza-
tion to N tuning curves with index i , i ∈ {1, 2, . . . , N = 20}
is not arbitrary, as all three major manufacturers of cochlear
implants use N ≈ 20 stimulating electrodes (Drapal and
Marsalek 2010). Examples of six tuning curves are shown in
Fig. 1a. With proportionality parameter K = 32, the recep-
tive fields are: Ni (x) = K (x − fCF(i))2 + yCF( fCF(i)),
where x is the frequency variable on the x-axis and y is
the parabolic threshold function on the y-axis. We must
transform sound frequency fS into logarithmic units. fCF(i)
is a set of representative characteristic frequencies. Fig-
ure1b shows responses of model neurons to neighboring
frequencies. The dependence is a concave parabolic func-
tion with its maximum at the CF and tails descending
towards the side frequencies. On the y-axis is a linear fir-
ing rate.

Even though this is a simplified and canonical model of
auditory periphery, when it was used as input to the MSO
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Fig. 1 Auditory neuron firing in response to sound. a Regions of
responses of individual neurons in the spiral ganglion, which is the
originating site of the auditory nerve. The x-axis is in logarithms of
sound frequency and the y-axis is in decibels, which are logarithmic
units of sound intensity. The idealized response regions have the shape
of parabolas and the threshold Ithr is here schematically assumed to
follow the line of y = 0. The vertices of these parabolas are at the point
of characteristic frequency of individual neurons ( fC, 0). b The firing
bandwidth, measured in Hz of sound frequency, for sound frequencies

adjacent to the best frequency. The x-axis in this panel is on a linear
scale. c The panel shows how neuronal firing is saturated. The y-axis
shows the firing rate recruitment in response to rising sound intensity,
and the x-axis shows decibels, starting from the threshold Ithr of individ-
ual neurons. This is a prototypical neural response without spontaneous
activity.dThemonotonic sigmoidal decrease of the vector strengthwith
increase in sound frequency, which is observed in the majority of all
the neurons in the auditory pathway

model circuit, its activity was comparable to a more com-
plicated series of Meddis models, which can be followed
from Lopez-Poveda and Meddis (2001). The rise of the
response rate with rising intensity is given by a sigmoidal
function. The sigmoidal shape comes from the molecular
mechanism of ion channel opening in hair cells following the
kinetics of Michaelis and Menten (1913), Naka and Rush-
ton (1966), Sclar et al. (1990) and Camalet et al. (2000),

R(I ) = Rmax
I n

I n + I n50
, (7)

where I is the relative input intensity, I50 is the intensity
evoking 50% of maximal response Rmax and n is the expo-
nent determining the steepness of this saturation function.

For the purpose of this study, we set Rmax = 250 s−1

and n = 2. Sound intensity I ranges from hearing thresh-
old, Ithr = 0 dB, to pain threshold, which is Imax ≈
130 dB, for the reference sound frequency (1 kHz). We
refer to these values only as to relative intensity deci-
bels. The function R(I ) is called the rate-level (in case of
sound, where term level is used), or the rate-intensity func-
tion (in other modalities). Vector strength decreases with
increasing sound frequency, as described inMarsalek (2001),

r( fS) = 1

1 + exp( fD)
. (8)

The frequency difference fD = ( fmax − fS)/ fmax enters this
empirical formula for r , with fmax = 1 kHz. This equation
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as well as (7) are saturating curves with maxima Rmax and
fmax.

2.4 Ergodicity

All the results presented in this paper are calculated under
the ergodic assumption. While many theoretical and exper-
imental results are obtained under ergodic assumption, the
situations where ergodicity is violated would yield higher
than expected variability. This in turn would lead to exper-
imental designs, which are difficult, or even impossible to
reproduce. This non-reproducibility would produce a neg-
ative result and these as such are more difficult to find
throughout the literature. In this study, we first mention
designs where ergodicity holds and later describe designs
correctly pointing to situations where ergodicity is not ful-
filled.

The ergodic assumption is used in the method of record-
ing various sensory evoked potentials, where the spatially
averaged gross potential signal is composed of individual
neuronal contributions. In Results we present dependencies
of vector strength and variation of the interspike interval
on parameters of neuronal models. In general, descriptions
of spike trains as point processes without memory use the
ergodic assumption.

Ergodicity is not present in the binary coding model by
DeWeese et al. (2003). The binary coding model is proposed
as a contrasting mechanism to the rate coding model with
the ergodic property. These authors use the binary coding
model as an explanation for sparse spiking in the recordings
from rat auditory cortex. Another theoretical and experimen-
tal demonstration of higher neuronal firing variability is in
Cecchi et al. (2000). These authors analyze the response from
the cat visual cortex.

3 Results

3.1 Vector strength of neural firing

Vector strength r of a spike train with the beta distribution
(5) of ISIs can be parameterized by a, b and scaled by s. For
the value of s = 1 the distribution has nonzero image for
t ∈ (0, 1). The lowest natural number non-trivial parameters
of the density are a = b = 2. The sound phase defined on
the interval [0, 2π) must be normalized to [0, 1) by setting
s = 1/2π . Assume an example spike train, where the spike
phases relative to sound phase are distributed according to
beta density (5). For this beta density the scaling parameter
s can attain values from 0 ≤ s < 2π and r can be expressed
as

r = 12s−3|s cos(s/2) − 2 sin(s/2)|. (9)

For any given natural a and b, r can be expressed with
the use of hyper-geometric function. However, a formula
for all arbitrary values of a and b does not exist. From
(6) we immediately see that the mean of fB for a = b is
μ( fB(t, a, a, 1)) = 0.5. With s = 1 the value of parame-
ters a = b = 4 appears a better parameter choice for spike
trains, since the density tails at points 0 and 1 are smoother,
compared to a = b = 2.

Now the question arises what error we obtain when we
replace a spike train histogram resembling a sine function by
fB(t, 4, 4, 1). The sine function fsin on support [0, 1] with
the same maximum equal to max fB(t, 4, 4, 1) = 2.2 is

fsin = 1.1(1 + cos 2π1.1(t − 0.5)).

Its integral
∫ 1
0 equals to 1 after normalization by scaling

parameter s ≈ 2.2/2 = 1.1, as it is required to be a prob-
ability density function. We can translate this function such
that its peak in interval [0, 1] is aligned with the peak of
the given beta density. Its nonzero tails therefore do not
end at points 0 and 1 and the pieces of the sine func-
tion on the remainder parts of the interval [0, 1], namely
[0, 0.0555] and [0.9445, 1], because 0.5−0.5/1.1 = 0.0555
and 0.5 + 0.5/1.1 = 0.9445, have to be set to 0 by def-
inition (Marsalek and Lansky 2005). A better alternative,
non-translated sine function can be obtained by a solution of
the nonlinear function for unknown parameter a, such that
max fB(t, a, a, 1) = 2. This way we obtain numerically a
value of a = 3.3818.

Figure 2 shows probability distributions and some of the
parameters studied in this section. Panel a shows imposing
periodic boundary to interval [0, 1). Panel b shows less than
1%difference of two exampleCDFs. Panel c shows examples
of circular densities and their vector strengths. The narrow
rectangular pulse of width 0.3 and height 3.3 has r = 0.8,
the sine function with amplitude 2 and period identical to
boundary has r = 0.5, the arbitrary mixture function with
1 − u = 0.7 of rectangle and u = 0.3 of sine has r = 0.15,
and the rectangular pulse close to constant of width 0.9 and
height 1.11. has r = 0.05.

Figure 2b shows how close the two example densities
are. When we used two different tests for normality, the
Kolmogorov-Smirnov test, (Smirnov 1948) and the test of
Jarque and Bera (1980) implemented in Matlab, neither of
the tests showed any significant difference between these two
densities in comparison to normal density. (Normal density
is not shown on this figure, its graphical comparison to beta
can be found in Drapal and Marsalek (2010)). The two den-
sities passed the test as normal density, which is not correct.
Let us discuss first the case of the PDF support from minus
infinity to plus infinity.

The normal and beta densities clearly differ, as the former
has nonzero tails and the latter has zero value tails on support
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Fig. 2 Comparison of circular probability density functions of sine
and beta density. a Beta density fB with parameters a = b = 3.3818.
The solid line of this beta density closely matches the sine function
fsin = 1 − cos 2πϕ, which is shown by the dotted line with triangles
pointing down. Since the sine function is parameter free, another param-
eter s is introduced. b The two closely overlapped solid lines show two
CDFs of fB(ϕ, 3.38, 3.38, 1), dots, and of the fsin function, triangles.
The thick, interrupted line shows the difference between the two CDFs

multiplied by 100 to visualize the comparison of the CDFs of the two
distributions. c This shows how different mixtures of the uniform and
sinusoidal distributions attain different values of vector strength. A nar-
row pulse rectangle has r = 0.8, a sine function fsin has r = 0.5, the
curve of triangles shows an arbitrary mixture function with r = 0.15,
and rectangle close to a constant function has r = 0.05. Details of other
parameters are in the text.

from −∞ to 0 and from 1 to +∞. Over and above, for the
periodic support, the corresponding two circular distributions
(circular normal, also known as von Mises and sine) also
have different analytical properties. The differences in the
values they attain are small. Hitherto, analytical formulas of
the two distributions are distinct as well. Differentiability is
one property analogous to the range (−∞,+∞) functions:
the analytic CDF expression does not exist for the circular
normal distribution, but does exist for the sine distribution.

In this subsection we have found corresponding param-
eters of pairs of PDFs on the support of (−∞,+∞) and
on the periodic support in the interval [0, 1]. Data recorded
in experiment or used in neuronal models must be classified
according to their underlying PDFs. Negative results are pre-
sented in this subsection on purpose. Of course, once we are
aware of the underlying probabilistic nature of data, we can
correctly compute parameters and use correct statistical tests.
The rather abstract assumption on the probabilistic nature of
the PDFs is, therefore, conditio sine qua non. Hence, if this
essential condition is not followed, one can easily apply inap-

propriate statistical methods with no warning triggered by
the software as the nature of the PDFs has to be determined
before the data analysis.

In the following paragraphs we will address the inver-
sion problem by interchanging the dependent and indepen-
dent variables in Eq. (9) showing dependency of the vector
strength r on the parameter s. Note that following this equa-
tion, we seek relations between parameters (like d, u and
others), standard deviation (spike timing jitter) σ , variance
σ 2, and coefficient of variation CV, of distributions describ-
ing spike timing. Given cases where this is not possible
analytically, we proceed numerically.

3.2 Variation of the interspike intervals

Let us assume a three-parameter probability distribution of
the phase, ϕ, on the unit circle given by its probability density

f (ϕ, α, β, u) = 1

β − α

[

1 − u cos

(

2π
ϕ − α

β − α

)]

H(ϕ − α)H(β − ϕ). (10)
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This formula gives a mixture of uniform and sinusoidal
distributions, and the parameter u is the weight of the sinu-
soidal part. Parameters α and β are bounds of the support of
the distribution. Of course, they must satisfy 0 ≤ α ≤ β ≤
2π . The weight parameter, u, is limited to interval [0, 1].
When u = 0, f (ϕ) becomes the probability density of the
uniform distribution on interval [α, β]. A pure sinusoidal dis-
tribution is achieved for u = 1. The following subscript f
denotes phase representation. The distribution is symmetric
with mean equal to

μ f = 1

2
(α + β) (11)

and variance equal to

σ 2
f = (β − α)2

12π2

(

π2 − 6u
)

. (12)

It can be seen that the variance depends on the difference
β − α only, not on the actual values of α and β. Denoting
δ = β − α as the length of the support, we can write

σ 2
f = δ2

12π2

(

π2 − 6u
)

, (13)

where δ can vary between 0 and 2π . Vector strength of this
distribution is computed in accordance with (2) or (3). Both
give the resulting expression of the vector strength,

r f = 8π2 + 2δ2(u − 1)

δ(4π2 − δ2)
sin

δ

2
, (14)

dependent on the length of the support, δ, and the weight, u.
The subscript g denotes time representation. Let us turn to

the temporal representation of the delay, expressed in terms
of t = ϕT/2π , where T denotes the period of the sound.
The period is equal to the inverse value of the frequency of
the sound, T = 1/ fS. The transformed probability density
g(t) is calculated in accordance with the integral transform
theorem, and it is equal to

g(t, a, b, u) = 1

b − a

[

1 − u cos

(

2π
t − a

b − a

)]

H(t − a)H(b − t), (15)

where the interval [a, b] is its support, 0 ≤ a ≤ b ≤ T . The
new bounds – parameters are transformations of the original
ones, a = (T/2π)α, b = (T/2π)β. The length of the new
support we denote analogously by d = b − a. In the new
parameterization, the delay distribution hasmean value equal
to

μg = 1

2
(a + b) (16)

and variance equal to

σ 2
g = d2

12π2

(

π2 − 6u
)

. (17)

For calculation of the vector strength, the adjusted variant of
(3) is used,

rg =
∣
∣
∣
∣

∫ 2π

0
g(t) exp(2π i t/T )dt

∣
∣
∣
∣
. (18)

The evaluation of the integral gives an analytical expression,
dependent on the parameters d and u,

rg = T 2 + d2(u − 1)

πd(T 2 − d2)
T sin

πd

T
. (19)

Figure 3a shows this dependence (19) and the other panels
b, c, and d show relations between other parameters.

3.3 Model of output spiking density

In a previous subsection we have calculated statistical char-
acteristics of spike trains described by phase locking and
spike timing with the use of the compound uniform and sine
distribution. Spike timing jitter has probability distribution
describedbydensity (15).Weassume that the resulting spikes
form a renewal process. That means all the interspike inter-
vals (ISIs) have the same probability distribution, and all are
mutually independent. In such cases, the stochastic behavior
of the spike train is fully described by the distribution of the
ISIs.

The following are probabilistic computations with indi-
vidual spikes, which have recently been referred to as
neuronal arithmetic Bures (2012) and Bures and Marsalek
(2013). Let us fix the time t = 0 to a specific point on
the sound wave and let us introduce the following notation.
The first random variable, X , gives the random delay of the
time occurrence of a spike; this is given by (15). The second
randomvariable,Y , denotes the time occurrence of the subse-
quent spike: this spike comes at time T during the next sound
wave with random delay given by density (15). In order to
calculate the distribution of the ISIs, it is sufficient to express
the random length of the ISI as a difference Z = (T +Y )−X
of the two random variables, T + Y and X . By the statisti-
cal calculus, the probability density function h of random
variable Z is given by convolution

h(t) = g(t − T, a − T, b − T, u) ∗ g(−t, a, b, u) (20)

of probability densities (15) of random variables (T + Y )

and X . The parameters of function g are as before. The first
one is shifted by the period T , the second is reversed in t .
These arithmetic expressions follow the connectivity in the
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Fig. 3 Relation of the vector
strength to the jitter and other
measures. a The dependence of
the vector strength r on the
width d of the interval support.
In the limit of the Dirac delta,
when d → 0, r → 1. b The
relation of the vector strength r ,
y-axis, to the timing jitter σ ,
x-axis. Because this relation is
monotonic, it is invertible within
the appropriate definition
ranges. c Dispersion measures:
standard deviation σ , circles,
variance σ 2, squares, and the
variation coefficient CV, dots,
are shown here as functions of
the width d. d The relation of the
vector strength r , y-axis to the
variation coefficient CV, x-axis.
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MSO. In the calculation we use the property of the cosine
function that it is an even function, cos(−t) = cos(t), and
we set g(−t, a, b, u) = g(t, a, b, u).

Ergodicity is used in this calculation in the formulation
of the assumption that both inputs are realized by one spike
with given PDF in time. As in Drapal and Marsalek (2010),
we calculate the resulting convolutions of both sine and beta
densities using the symbolic calculation library of the Mat-
lab package. In particular we use the property of the Laplace
transform to change the convolution operation into multipli-
cation. The probability density function of the ISIs is then
equal to

h(t) = d − |t − T |
d2

+ u2(d − |t − T |)
2d2

cos
2π |t − T |

d

+u(4 − u)

4πd
sin

2π |t − T |
d

(21)

for |t − T | ≤ d. This probability distribution has support
[T − d, T + d] and depends on the parameter d and the
weight, u. The resulting probability density is left-to-right
symmetric. In other words, it has zero skewness. We denote
its parameters with the subscript h. Its mean value is equal
to

μh = T (22)

and variance equal to

σ 2
h = d2

6π2 (π2 − 6u). (23)

The coefficient of variation is often used for the description
of the firing characteristics of a spike train. The derived dis-
tribution of ISI has coefficient of variation equal to

CVh = d

πT

√

π2 − 6u

6
. (24)

Expressing the weight, u, from (24) and substituting it into
(19), we obtain the vector strength of the output spike train
as a function of the coefficient of variation of the ISIs of the
input spike train, support interval length d and onset time T ,

rh = T

6πd(T 2 − d2)

[

π2(d2 − 6T 2C2
Vh) + 6(T 2 − d2)

]

sin
πd

T
, (25)

with the parameter d controlling the length of both the sup-
ports of the delay and ISIs.

In this subsection we have presented outputs of the MSO
nucleus. The outputs are then transmitted to upper neuronal
relays. We assume that during this transmission, spike tim-
ing jitter is at least two orders of magnitude smaller than the
shortest sound period in question, σ << T and σ << 1 ms,
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Fig. 4 Ergodicity of reaction
time related to population size
and computation time. Human
reaction times are in the vicinity
of the following points. On both
y-axes the reaction times are
around 150ms. a Population
averaging, with gray bands that
illustrate the response variation.
b Time averaging, which shows
the elementary time step
increments of successive sound
cycles for a range of low sound
frequencies. These range from
fS ≈200–400Hz, with a period
T = 1/ fS of 25 to 50 ms. The
panel shows an example sound
wave of constant frequency
fS = 318.31 Hz on a
logarithmic scale
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Laback and Majdak (2008). A number of lines run in paral-
lel, and as their number increases earlier the ideal observer
module signals its output.We call this the reaction time of the
model. As the methods used above are generally statistical,
we did not write physical units here at all places where they
could be added. The results obtained here are applicable in
any sensory pathway, where the reaction time is measured.
The concept of neuronal arithmeticwith spike trains is a prin-
ciple unifying spike train description making them usable in
all sensory pathways.

3.4 Ergodicity and reaction time

After obtaining the output of the MSO, we ask: How is
the output signaled further up in the auditory pathway? The
assumption that all the neurons in this nucleus are responding
identically is wrong. In that case there would be no advan-
tage in having more neurons than one. This is probably why
parameter variation and stochasticity are beneficial for neural
computation and coding.

Spike timing jitter helps in speeding up the reaction time
in all sensory modalities. Based on experimental paradigm,
the longest reactions originated in the MSO can range from
0.5 s up to 5 s. This would last too long. While detection of
auditory stimulus of 50 ms duration is erroneous, typical dis-
crimination azimuth integration time ranges from 150 to 300
ms. The localization branch of the auditory pathway is highly
parallel and contains more than few hundred neurons. When

the ergodicity is assumed, the reaction time can be divided
between jittered responses of individual neurons, Laback and
Majdak (2008). The time thus obtained corresponds to the
theoretical minimum time required by human listeners to
determine the ITD,when the entire brainstem circuit is work-
ing in parallel and cooperating on the ITD estimation.

Figure 4 shows a simplified schematic example to illus-
trate the ergodic assumption in this case. Figure 4a, showing
the neural population effect, is the output of N copies of one
spike neuronal signal propagating from the MSO to the ideal
observer module, where the latencies of the spike differ from
neuron to neuron due to random variation of spike timing
(spike timing jitter). These are results of repeated numerical
simulations of a single neuronbySanda andMarsalek (2012),
extrapolated for a population size of between N = 5000 and
8000 neurons, which is a typical size of the human MSO
Philip X. Joris, personal communication.

Figure 4b, illustrates results described indetail inMarsalek
and Lansky (2005). In Fig. 4 ibidemwas used constant sound
frequency of 750 Hz, here we use constant frequency of
fS = 318.31 Hz. While on the previous panel a is shown
the population summation, on the panel b is shown repeated
neuronal arithmetical “and” operation, which is clocked by
sound phase. This can be understood as the time summation
effect in individual neuron in generalized sense (since the
term neural time summation is usually reserved for the sig-
nal integration by individual neuron). The staircase reaction
time curve is based on an exact analytical calculation of coin-

123



Biol Cybern (2018) 112:41–55 51

cidence detection probability in the coincidence model of the
MSO in the paper referred to above. The figure indicates that
reaction time is decreasing as a function of population size,
but increasing as a function of time. In Fig. 4a the reaction
time is diminishing when population is larger. In Fig. 4b the
reaction time is growing, as it can be counted by periods of
the principal sound frequency. In this subsection we have
shown how output of the sensory pathway can be traced by
the reaction time.

4 Discussion and prospects

4.1 Spike train statistics

In our computations we sought a simple description of spike
trains following sound phase. The candidate functions we
triedwere circular normal and circular beta distribution func-
tions. These are circular counterparts of normal and beta
PDFs. A sine is circular and is parameter-free, and it is the
simplest of all the circular PDFs. When we use compound
density, a weighted sum of uniform and of sine density, we
arrive to an arbitrary value of vector strength. We can invert
monotonous dependencies of vector strength on standard
deviation and other parameters of circular densities. By using
this procedure, we can fit the ratio of uniform and sine com-
ponent to vector strength of experimental spike trains. The
last section of results describes how spike density changes
when two spike trains from two input pathways undergo neu-
ronal arithmetic operation. As an example operation we use
the difference of spike times calculated in the medial supe-
rior olive. We calculate the output spike density dependent
on the time delay between the right and left side. Finally, we
illustrate the neural computation outputs by description of
reaction time changes, dependent on population size and on
computation time counted in sound time periods.

How are our results relevant for the ergodic hypothe-
sis? Under the ergodic assumption, the individual neurons
of neuronal population are assumed to be independent com-
putational units performing neuronal arithmetic operations.
Arrival time to outputs of these operations can be used as
prediction of reaction times. In this first part of the Discus-
sion we have summarized the results of our computations. In
the rest we discuss the Prospects in the field of neural coding
in auditory system, particularly in sound localization.

4.2 Comparing experiments and theory

Let us return to the notion of rate codes and labeled line
codes from the Introduction. The idea to stimulate experi-
mentally the neuron of interest to the highest possible firing
rate response seems simple. If only all descriptions of neural
coding were that simple. Then one could simply say that all

the neuron encodes is the mean firing rate. One can imagine
this rate is heard by an attentive experimentalist listening to
a neuron over an amplifier and loudspeakers. Her peripheral
auditory system then encodes the sound pitch of this heard
rate again by a rate code, which together with the labeled
lines of her very own auditory nerve generates the impres-
sion of the low frequency sound she perceived.

Or if it were only spike timing coding in the proverbial
grandmother cell, a term coined by Barlow (1972), all of
neural coding could be understood in simple terms. However,
that is not the case. In the brainstem neural circuit, which we
used as an example, it is also important when the neuron of
the MSO fires relative to the sound phase difference between
the two ears.

The spike timing needed for the sound azimuth encod-
ing has more than ten times better timing accuracy than is
observed elsewhere in the mammalian neural system and
its behavioral performance can be even further improved by
training.

Goldberg and Brown (1969) were among the first to
use real-time online contemporary computers to process
the data from the auditory brainstem with time precision
down to microseconds. They accomplished a technically
demanding experiment, while processing data both on- and
off-line. These authors popularized vector strength as a mea-
sure of phase locking, or coherence in the neuroscience
community. Their experiment was at the beginning of the
electro-physiological inquiry of how sound azimuth is cal-
culated in the nervous system. These inquiries and debates
continue to the present time.

One of the leading theories of brainstem circuit compu-
tation was proposed by Jeffress (1948). This study hypothe-
sized that spike timing relative to the sound phase difference
is converted into the labeled line code by a set of delay lines.
The axonal, or alternatively dendritic delays compensate for
the delay differences between the left and right ears due to
the distance the sound must travel in the air. This mecha-
nism was experimentally demonstrated in barn owls, hens
and other birds. Let us only mention one example by Fischer
and Peña (2009), firstly, because their paper combines exper-
imental datawith theoretical concepts, and secondly, because
it discusses the other alternative theories of how sound direc-
tion is computed.

Without aiming to give a fully comprehensive list, we
detail three alternative theories of neural azimuth compu-
tation and one example of a purely mechanical solution to
the problem. We list them in historical order.

Mammals with small heads, such as rodents, and humans
probably employ different mechanisms of azimuth computa-
tion than the (1) Jeffress delay line, (Jeffress 1948; Joris et al.
1998).

Another theory considers the role of the (2) cochlear delay
(Schroeder 1977). Phase information is not used in monaural
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hearing, but it is used in binaural, stereo hearing. Phases of
the basilar membrane traveling wave play a crucial role in
delays between left and right cochlea (Joris et al. 2006b;
Vencovsky and Rund 2016). The cochlear delay theory is
based on recordings from different nuclei of the auditory
pathway including the spiral ganglion of the auditory nerve
in cat.

Another alternative is (3) broadly tuned channels (Brand
et al. 2002; Harper and McAlpine 2004). The theory states
that few directions are combined in a population code, such
as in three color vision channels in trichromats (Denman
et al. 2017). The mechanism of broadly tuned channels in
sound localization was proposed following experiments in
the Mongolian gerbilMeriones unguiculatus by Brand et al.
(2002). Apparently, different animals developed a multitude
of mechanisms for sound localization.

Let us give one more example: the fly (4) Ormia ochracea
has two eardrums less than 0.5 mm apart. Therefore, it
resolves timing differences in the range of nanoseconds. This
is accomplished by a lever mechanically comparing the two
inputs (Mason et al. 2001).

Vector strength is an important parameter (Goldberg and
Brown 1969). It can be found virtually at all levels of spike
train description, which takes into account spike timing rel-
ative to the stimulus phase of another spike train. Marsalek
(2001) discusses vector strength in the MSO nucleus at low
frequencies. Vector strength can be described at the moment
of mechanical-to-electrical transduction in cochlea (Camalet
et al. 2000) and then at many places upwards in the auditory
pathway and beyond.

Convolution is an important operator in signal processing.
For the convolution calculation in the auditory pathway and
comparison of beta and normal densities in this context, see
Drapal and Marsalek (2010, 2011). The Laplace transform
used in these two papers can be found in any standard calcu-
lus textbook, for example (Bronstein and Semendyaev 2013).
The convolution of two spike time densities is used here for
the ISI calculation. Another interpretation of the calculation
and the parameters is possible - the output density also repre-
sents the probability of generating an output spike in a neural
circuit of the MSO as a function of the time delay imposed
into the circuit by the spike arrival difference from the neu-
rons of the peripheral pathways from the left and right ears.
The ensemble code produced this way signals the azimuth of
the sound source localization.

The choice of the PDFs (normal, circular normal, beta,
sine) in the calculations was made based on the correspon-
dence between PDFs on the aperiodic versus on the periodic
supports. The beta distribution was used because one of the
authors and his colleague found an analytical result with
the use of Laplace transform to describe spike computations
based on the convolution of two beta distributions (Drapal
and Marsalek 2010). Circular statistics is essential in the

description of periodic data Kajikawa and Hackett (2005),
Joris et al. (2006a), Sun et al. (2012) and Ahveninen et al.
(2016).

It is generally assumed that neural coding uses eithermean
firing rate or spike timing. Mean firing rates were frequently
attributed to labeled line encodings, sometimes also known
as spatio-temporal codes (Koch and Laurent 1999). Timing
codes were frequently demonstrated in a unitary situation,
where one and only one spike encodes a complex visual
information. This can be regarded as elementary or unitary
encoding (Thorpe et al. 2001). Any timing code must survive
timewarping (Hopfield andBrody 2001; Nawrot et al. 2008).
Brain pathways diverge and converge between several nuclei
and it is also important, in which order the elementary com-
putations are executed. Bures (2012) andBures andMarsalek
(2013) give comparison of these orderings between the LSO
and the MSO nuclei.

4.3 Ergodicity and neural signals

Howcan the ergodic property contribute andhelp this debate?
First of all, experimental recording from the auditory brain-
stem is quite difficult. It is also difficult to record from
several neurons instead of just one. Therefore, the popula-
tion coding cannot be recorded directly. This situation calls
for a construction of models. Second, the concept of the
ideal observer can be used. The ideal observer has com-
plete access to a signal relayed by a given population of
neurons. This gives a precision that allows discrimination
between input signals. The ideal observer is used in sig-
nal detection theory, in psychophysics and also in neural
coding Tanner Jr. (1961), Green and Swets (1966), Geisler
(2011) and Sanda and Marsalek (2012). Third, the ergodic
assumption can be used in the comparison of experimental
results in different species with different numbers of neu-
rons involved in the nuclei of sound localization circuits.
Even though the assumption of similar neural computation
in animals with different head sizes is not obvious and it is
already known that multitude of neural computations exist in
sound localization pathways (Joris et al. 1998) ergodicity can
bring unifying view at behavioral performances of different
species.

Next, let us put this a bit more generally: When an input
signal is processed in parallel, frequently it can be regarded
as ergodic. Let us illustrate the opposite, which is serial pro-
cessing, using an example outside neuroscience. We can
compare encodings of a signal from multimedia process-
ing by digital technology. We know that a digitally encoded
signal takes a narrower radio transmission bandwidth, but
also longer time to decode and that signal decoding requires
a certain amount of computational power that has become
available only recently, in comparison to analog transmis-
sion schemes (Haykin and Moher 2007; Meinel and Sack
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2014). In this sense, digital encoding is intrinsic (implicit),
which means the modality cannot be read out without com-
putational decoding, which is likely not ergodic. This can be
compared to the extrinsic (explicit) encoding of analog sig-
nals, which we expect to be ergodic. By this we want to point
to possible cause, why neural codes are still poorly under-
stood compared to genetic code. Frequently, the spike train
modality serves as a carrier signal of the neurally transmitted
intrinsic modality.

4.4 Open questions for future research

Cochlear implants are successful in replicating a series
of action potentials in the auditory nerve by imitation of
the mechanical to electrical transduction in the cochlea
by contemporary electronics (Drapal and Marsalek 2010).
Constructing cochlear implants involves reverse biomimetic
and neuromimetic engineering. The biomimetic and neu-
romimetic approaches are an engineering method to con-
struct industrial sensors by mimicking nature’s solution to
the problem. Both the reverse and neuromimetic engineer-
ing are very dependent on computational modeling, on
the right choice of models and on their complexity. The
knowledge that neural pathways calculate some quantity
does not necessarily tell us how it is computed. There-
fore, phenomenological models of the auditory brainstem
computation are useful as a first approximation, which can
be refined in subsequent research (Marsalek and Kofranek
2005).

Even though some formulas presented here as for exam-
ple the formula for output PDF of neural circuit Eq. (21)
are far from elegant, we urge our kind readers to direct
their attention to the figures, which correspond to formu-
las and offer a more simplified view of the computations
discussed here. Many other concepts from statistical physics
besides ergodicity have been successfully employed in the
description of neural computation, particularly in descrip-
tions of sensory transduction into spike trains. We can
look for ergodicity in many experiments dealing with time
frequency/spatial frequency, and time/space separability,
Lehky (1985). Another such example is Boltzmann’s pro-
posal in 1876 to develop the equipartition principle. One
of the authors with a colleague used the equipartition prin-
ciple in descriptions of several disperse measures of spike
timing in Kostal and Marsalek (2010). Neural codes are
optimal, as has been demonstrated not only in the binau-
ral hearing (Harper and McAlpine 2004; Ahveninen et al.
2014), but also in the olfactory system (Pokora and Lan-
sky 2008). Information-theoretic approaches are infamous
for the promiscuous and sometimes unnecessary use of com-
plicated formulas. A somewhat more readable account on
information-theoretic measures can be found in Kostal et al.
(2011).

4.5 Conclusions

We investigated the characteristics of the neuronal firing
related to the sound phase in lower sound frequencies from
20Hz to 2kHz. We have solved a classic problem of the fit-
ting of unknown parameters of a hypothetical neuronal firing
distributions to experimental data. Starting from parameters
of the beta density, we were able to describe the relation
between the spike synchronization measured by the vector
strength and the standard deviation of spike timing. Also, we
described the relation between the interspike interval and the
spike timing distributions.
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