28.3 INTEGRAL TRANSFORMS (OPERATIONAL CALCULUS) LY

With the aid of this and similar theorems the originals corresponding to various
images can be established. In particular, the calculation of the original of every
rational function can be reduced to the application of formula (2) (with a finite
number of terms on its right-hand side).

Example 1. Let us find the original of the function w/(p? + w?).
Using (2) and formulae for the calculation of residues, we get
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in accordance with Tab. 28.2.
Extensive tables of transform pairs are given, e.g., in [118]. In such tables the
image F'(p) is always given first (see Tab. 28.2).

To tables there is usually attached the so-called grammar, which summarizes the
basic rules governing relationship between originals and images. In Tab. 28.3 below
a sample of a grammar for Laplace transform is given.

TABLE 28.3
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Sufficient conditions for validity of the inversion formula for the Fourier transform
are stated in the following assertion:

Theorem 5. Let f(t) be the original of a Fourier image F(p). If f(t) has bounded
variation in a neighbourhood of a point t, then we have
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TABLE 28.2
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for the I'" function see §13.11
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If, in addition, f(t) is continuous at the point t, then

lim

w—too 2T J_,

F(p)e'® dp = f(t).

If f(t) is the original for the bilateral Laplace transform with image denoted by F(p)

and if

/
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for some py = T + iy, then the function f(t) et is the original for the Fourier
transform whose Fourier image is F(zo + iy).
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TABLE 28.2 (continued)
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If f(t) is an original for the Mellin transform with the corresponding tmage de-
noted by F(p) and if further

/Oo |F(t)tPet] dt < o0
0

for some py = g +iyo, then f(e™™)e~"°% is the original for the Fourier transform
with the Fourier image F(zo +iy). (The substitution ¢ = e~* has been used.)

We will add some elementary properties of the Fourier transform (integrability
of the functions in question is always assumed):



